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Abstract

The study of duality properties of the spaces of analytic functions contin-

ues to attract the attention of many mathematicians. Most studies have

concentrated on the reflexive Hardy and Bergman spaces both on the unit

disk and the upper half-plane. For instance, Zhu, Peloso, among others

have determined the duality properties of Hardy and Bergman spaces.

For the non-reflexive Bergman spaces of the disk, it was proved by Axler

that the dual and the predual are identified as big and little Bloch spaces

respectively. For non-reflexive Bergman spaces of the upper half-plane

L1
a(U, µα), the dual is well known as the Bloch space B∞(U, i) but the

predual is not known. In our study therefore, we have determined the

predual of L1
a(U, µα). We have also determined the group of weighted

composition operators defined on predual space of L1
a(U, µα) and inves-

tigated both its semigroup and spectral properties. To determine the

predual space of L1
a(U, µα), we used the Cayley transform as well as re-

lated works on the unit disk by Zhu, Peloso among others. To investigate

the properties of the weighted composition groups, we employed func-

tional analysis techniques as well as semigroup theory of linear operators

to determine the infinitesimal generator of the semigroup and established

the strong continuity property. Using spectral theory, we determined the

resolvents of the infinitesimal generator which were obtained as integral

operators. Finally, we used known theorems like the Hill-Yosida theorem

and spectral mapping theorem to obtain the spectral properties of the

obtained integral operators. The results obtained in this study is of great

importance to the physicists where the concept of semigroup properties

plays a major role in the evolution equations.
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Chapter 1

Introduction

1.1 Background of the study

The study of semigroups of composition operators on the spaces of an-

alytic functions was first considered by Berkson and Porta [8] on Hardy

spaces and later on by Siskakis on Bergman and Dirichlet spaces [33, 34].

Most of the work done on the duality properties of these spaces of analytic

functions has mainly concentrated on Hardy spaces as in [26, 27] and the

reflexive Bergman spaces [36] both on the unit disk and the upper half-

plane. For extensive discussion of Bergman spaces and their composition

operators, we refer to [14, 19] and references there in. Athanasios [25]

identified the semigroups consisting of bounded composition operators on

the Hardy spaces of the upper half-plane and determined their infinitesi-

mal generators. Matache [26] later studied the composition operators on

Hardy spaces of the right half-plane, boundedness and compactness of

the Hardy spaces. The resolvents of the generators of strongly continuous

groups of isometries on the Hardy and Bergman spaces were obtained

by Bonyo in [11] using the similarity theory of semigroups and spectral
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CHAPTER 1. INTRODUCTION

theory. The resulting resolvents in [11] were given as integral operators

for which the norms and spectra were obtained. The dual and predual

of non-reflexive Bergman space on the unit disk are well known to be

identified as the Bloch and little Bloch spaces respectively [36]. However,

the predual of non-reflexive Bergman space of the upper half-plane is not

known. This has motivated our first concern of this study. In our study

we intend to determine the duality property of the non-reflexive Bergman

space of the upper half-plane, as well as study both the semigroups and

spectral properties of composition operators on it.

1.2 Basic Concepts

1.2.1 Vector spaces and Normed spaces

A vector space (linear space) over a field K is a nonempty set X together

with two algebraic operations of addition and scalar multiplication defined

on it such that for all x, y ∈ X and α ∈ K, we have, x+y ∈ X and αx ∈ X.

A norm ‖.‖ : X −→ K is a function on X such that for all x, y ∈ X,

α ∈ K;

(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖αx‖ = |α|‖x‖,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality).

A normed space is a vector space with a norm defined on it. A normed

space X is said to be complete if every cauchy sequence in X converges.

2



CHAPTER 1. INTRODUCTION

A sequence (xn) ⊆ X is said to be convergent if for every ε > 0 there

exists a number M such that for every n ≥ M , we have ‖xn − x‖ < ε

for all xn, x ∈ X. A sequence of vectors (xn) ⊆ X in a normed space is

said to be cauchy sequence if for every ε > o, there exist a number M

such that ‖xm− xn‖ < ε for all m,n > M . A Banach space is a complete

normed space (complete in the metric defined by the norm).

An inner product space (or pre-hilbert space) is a vector space X with an

inner product defined on X. Here, an inner product on X is a mapping

from X ×X into the scalar field K; that is, with every pair of vectors x

and y there is an associated scalar which is written as 〈x, y〉 and is called

the inner product of x and y, such that for all vectors x, y, z and scalar

α, we have,

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

(ii) 〈αx, y〉 = α〈x, y〉,

(iii) 〈x, y〉 = 〈y, x〉,

(iv) 〈x, x〉 ≥ 0, and

(v) 〈x, x〉 = 0⇔ x = 0.

An inner product on X defines a norm on X given by

‖x‖ =
√
〈x, x〉.

A Hilbert space is a complete inner product space (complete in the metric

defined by the inner product). Hence inner product spaces are normed

3



CHAPTER 1. INTRODUCTION

spaces and Hilbert spaces are Banach spaces. We refer to [13, 28, 36] for

details.

1.2.2 Dual spaces

Let X be a vector space over the field F. A linear functional on X is a

linear map φ : X −→ F. The set of all linear functionals on X is a vector

space denoted by X∗, and called the dual space of X, where the vector

space operations are defined pointwise, that is;

(φ+ψ)(x) := φ(x) +ψ(x) and (αφ)(x) := αφ(x) for all φ, ψ ∈ X∗, α ∈ F.

An element of X∗ is said to be a bounded linear functional on X.

Also X∗∗ = (X∗)∗ is the bidual or second dual of the normed space. For

all x ∈ X, define a linear functional x̂ on X∗ by setting x̂(φ) = φ(x) and

|x̂(φ)| = |φ(x)| ≤ ‖φ‖‖x‖ so that x̂ ∈ X∗∗ with ‖x̂‖ ≤ ‖x‖.

A normed space X is called reflexive if it satisfies the following equivalent

conditions;

1. The evaluation map φ : X −→ X∗∗ is surjective.

2. The evaluation map φ : X −→ X∗∗ is an isometric isomorphism of

normed spaces.

A reflexive space X is a Banach space, since X is isometric to the Banach

space X∗∗.

4



CHAPTER 1. INTRODUCTION

1.2.3 Unit disk and upper half plane

Let C be the complex plane. The set D := {z ∈ C : |z| < 1} is called

the open unit disc. Let dA denote the area measure on D, normalized so

that the area of D is 1. In terms of rectangular and polar coordinates,

we have: dA(z) = 1
π
dxdy = r

π
drdθ, where z = x + iy = reiθ ∈ D.

For α ∈ R, α > −1, we define a positive Borel measure dmα on D by

dmα(z) = (1 − |z|2)αdA(z). Moreover, if α = 0, then dm0 = dA. Thus

we consider dmα as a weighted measure and a generalization of dA.

On the other hand, the set U := {ω ∈ C : Im(ω) > 0} denotes the

upper half of the complex plane C with Im(ω) being the imaginary part

of ω ∈ C. For α > −1, we define a weighted measure on U by dµα(ω) =

(Im(ω))αdA(ω) where ω ∈ U. Again it can easily be seen that α = 0

coincides with the unweighted measure.

The function ψ(z) = i(1+z)
1−z is referred to as the Cayley transform and

maps the unit disc D conformally onto the upper half-plane U with the

inverse ψ−1(ω) = ω−i
ω+i

.

Let ∂D be the boundary of the disk D. Then for any z = eiθ ∈ ∂D and

h > 0, let

Bh(z) = {w = reit ∈ D : 1− h ≤ r < 1, |t− θ| ≤ h}.

Bh(z) is called a Carleson square or a sector at z ∈ ∂D. Given a positive

Borel measure µ on D, we say that µ is a Carleson measure if

‖µ‖ = sup

{
µ(Bh(z))

h
: z ∈ ∂D, h > 0

}
<∞.

5
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For further details, see [13, 28, 36].

1.2.4 Analytic functions

Holomorphic function is a complex-valued function of one or more com-

plex variables, that is, at every point of its domain, complex differentiable

in a neighbourhood of the point. The existence of a complex derivative in

a neighbourhood is a very strong condition, for it implies that any holo-

morphic function is actually infinitely differentiable and equal, locally, to

its own Taylor series (analytic). A biholomorphism is a map which is bi-

jective and holomorphic (then its inverse is also holomorphic). Analytic

self-map is a mapping f : Ω→ Ω of a domain Ω onto itself.

Homomorphism is a structure-preserving map between two algebraic struc-

tures of the same type (such as two groups, two rings or two vector spaces).

Automorphism is simply a bijective homomorphism of an object with it-

self, that is, it is a way of mapping the object to itself while preserving

all of its structure. The set of all automorphisms of an object forms a

group. For further details, see [28, 36].

1.2.5 Analytic spaces of interest

For an open subset Ω of C, letH(Ω) denote the space of analytic functions

on Ω.

6



CHAPTER 1. INTRODUCTION

(i) Bergman and Hardy spaces

For 1 ≤ p <∞, α > −1, the weighted Bergman space of the upper

half-plane U is defined by

Lpa(U, µα) :=
{
f ∈ H(U) : ‖f‖Lpa(U,µα) =

(∫
U |f(z)|pdµα(z)

) 1
p <∞

}
.

In particular, Lpa(U, µα) = Lp(U, µα) ∩ H(U), where Lp(U, µα) or

simply Lp(µα) denotes the classical Lebesque spaces associated with

the weighted measure dµα. It is important to note that the case

α = 0 yields the unweighted Bergman space. Also ‖.‖Lpa(U,µα) de-

fines a norm on Lpa(U, µα).

Lpa(U, µα) is a Banach space with respect to the norm

‖f‖Lpa(U,µα) =

(∫
U
|f(z)|pdµα(z)

) 1
p

<∞.

For p = 2, L2
a(U, µα) is a Hilbert space. The growth condition for

the weighted Bergman spaces is given as follows: For every f ∈

Lpa(U, µα) and ω ∈ U, there exist a constant K such that,

|f(ω)| ≤ K‖f‖
(Im(ω))γ

,

where γ = α+2
p

.

While for 1 ≤ p < ∞, α > −1, the Hardy spaces of the unit disk

are defined by

Hp(D) :=

{
f ∈ H(D) : ‖f‖pHp(D) = sup

0<r<1

1

2π

∫ π

−π
|f(reiθ)|pdθ <∞

}
.

7
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The Hardy spaces of the upper half plane Hp(U) are also defined as

Hp(U) :=

{
f ∈ H(U) : ‖f‖Hp(U) = sup

y>0

(∫ ∞
−∞
|f(x+ iy)|pdx

) 1
p

<∞

}
.

‖.‖Hp(.) defines a norm on the Hardy spaces, and therefore Hp spaces

are Banach spaces with respect to the norms both on the unit disk

and on the upper half-plane. For p = 2, H2(D) and H2(U) are

Hilbert spaces.

For Hp(D), we state the following well known growth condition: For

every f ∈ Hp(D), there exists a positive constant C such that

|f(z)| ≤
C‖f‖Hp(D)

(1− |z|)
1
p

,

for every z ∈ D. For further details, see [13, 28, 36].

(ii) Bounded Mean Oscillation Analytic (BMOA) and Vanish-

ing Mean Oscillation Analytic (VMOA) spaces

BMOA is the Banach space of all analytic functions in the Hardy

space H2(D) whose boundary values have bounded mean oscillation.

We give the characterization of this space in terms of Carleson mea-

sures: A function f ∈ H2(D) belongs to BMOA if and only if there

exists a constant C > 0 such that

∫
R(I)

|f ′(z)|2(1− |z|2)dA(z) ≤ C|I|,

8



CHAPTER 1. INTRODUCTION

for any arc I ⊂ ∂D, where R(I) is the Carleson rectangle determined

by I, that is

R(I) :=

{
reiθ ∈ D : 1− |I|

2π
< r < 1, eiθ ∈ I

}
.

As usual, |I| denotes the length of I and dA(z) the normalized

Lebesque measure on I ⊂ ∂D. The corresponding BMOA norm is

‖f‖BMOA := |f(0)|+ sup
I⊂∂D

(
1

|I|

∫
R(I)

|f ′(z)|2(1− |z|2)dA(z)

) 1
2

.

Trivially, each polynomial belongs to BMOA.

The closure of all polynomials in BMOA is denoted by VMOA.

Alternatively, VMOA is the subspace of BMOA formed by those

functions f ∈ BMOA such that

lim
|I|→0

1

|I|

∫
R(I)

|f ′(z)|2(1− |z|2)dA(z) = 0.

For more details, we refer to [10].

(iii) Bloch and Little Bloch spaces

The Bloch space of the unit disk, denoted by B∞(D), is defined by

B∞(D) := {f ∈ H(D) : ‖f‖B∞,1(D) = supz∈D(1 − |z|2)|f ′(z)| < ∞}.

The norm on B∞(D) is given by ‖f‖B∞(D) := |f(0)| + ‖f‖B∞,1(D),

while ‖.‖B∞,1(D) is a seminorm. Hence B∞(D) is a Banach space

with respect to the norm ‖.‖B∞(D).

On the other hand, the Bloch space of the upper half plane denoted

by B∞(U) is defined by

9
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B∞(U) := {f ∈ H(U) : ‖f‖B∞,1(U) = supω∈U Im(ω)|f ′(ω)| < ∞}.

B∞(U) is also a Banach space with respect to the norm given by

‖f‖B∞(U) = |f(i)|+ ‖f‖B∞,1(U).

The little Bloch space of the unit disk denoted by B∞,◦(D) is defined

as

B∞,◦(D) :=

{
f ∈ H(D) : lim

|z|−→1
(1− |z|2)|f ′(z)| = 0

}
but with the same norm as B∞(D) and therefore is also a Banach

space. While on the upper half-plane, the little Bloch space is de-

noted by B∞,◦(U) and is defined by

B∞,◦(U) :=

{
f ∈ H(U) : lim

Im(ω)−→0
Im(ω)|f ′(ω)| = 0

}

but with the same norm as B∞(U) and hence a Banach space.

For further details, see [13, 17, 28, 36].

(iv) Dirichlet spaces

For α ≥ 0, the weighted Dirichlet spaces of the disk D, Dα(D)

consists of those analytic functions f on D, f ∈ H(D), such that

‖f‖Dα(D) =

(
|f(0)|2 +

∫
D
|f ′(z)|2dmα(z)

) 1
2

<∞.

(Dα, ‖.‖) is a Banach space with respect to the norm ‖.‖Dα .

10
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(v) Besov spaces

An analytic function f is in the Besov space Bp if

‖f‖Bp :=

(∫
D
|f ′(z)|p(1− |z|2)

)p−2

dA(z) <∞,

that is, the function (1− |z|2)f ′ ∈ Lp(D, dλ), where

dλ(z) = (1− |z|2)−2dA(z).

1.2.6 Duality of Bergman Spaces

For 1 < p < ∞, 1
p

+ 1
q

= 1 and α > −1, the dual space of the Bergman

space on the disk Lpa(D,mα) is given by

(Lpa(D,mα))∗ ≈ Lqa(D,mα),

under the integral pairing

〈g, f〉 =

∫
D
g(z)f(z)dmα(z),

where g ∈ Lpa(D,mα) and f ∈ Lqa(D,mα).

Also for 1 < p <∞, 1
p
+ 1

q
= 1 and α > −1, the dual space of the Bergman

space of the upper half-plane Lpa(U, µα) is given by

(Lpa(U, µα))∗ ≈ Lqa(U, µα),

11
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under the integral pairing

〈g, f〉 =

∫
U
g(ω)f(ω)dµα(w),

where g ∈ Lpa(U, µα) and f ∈ Lqa(U, µα).

It is important to note that for 1 < p < ∞, 1
p

+ 1
q

= 1 and α > −1, the

Hardy and Bergman spaces (Hp(.) and Lpa(.)) are reflexive

For p = 1, the Bergman spaces L1
a(.) are non-reflexive and the dual

and predual spaces of the Bergman space L1
a(D,mα) are respectively given

by

(L1
a(D,mα))∗ ≈ B∞(D),

under the usual pairing

〈g, f〉 =

∫
D
g(z)f(z)dmα(z),

where g ∈ L1
a(D,mα) and f ∈ B∞(D), and

(B∞,◦(D))∗ ≈ L1
a(D,mα),

under the same pairing

〈g, f〉 =

∫
D
g(z)f(z)dmα(z),

where g ∈ L1
a(D,mα) and f ∈ B∞,◦(D). We refer to [29, 36] for details.

12
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1.2.7 Semigroups of Linear Operators

Let X be a Banach space. A one-parameter family (Tt)t≥0 is a semigroup

of bounded linear operators on X, if

1. T0 = I (Identity operator on X), and

2. Tt+s = Tt ◦ Ts for every t, s ≥ 0 (semigroup property).

A semigroup (Tt)t≥0 of bounded linear operators on X is strongly con-

tinuous if limt→0+ Ttx = x or limt→0+ ‖Ttx − x‖ = 0 for all x ∈ X. The

infinitesimal generator Γ of (Tt)t≥0 is defined by Γx := limt→0+
Ttx−x
t

=

∂
∂t

(Ttx)|t=0 for each x ∈ dom(Γ), where the domain of Γ is given by

dom(Γ) =
{
x ∈ X : limt→0+

Ttx−x
t

exists
}

.

We refer to [13, 17, 28] for more details on semigroup theory.

1.2.8 Spectra of Linear Operators

Let (X, ‖.‖) and (Y, ‖.‖) be Banach spaces over C. The space L(X, Y ) =

{T : X → Y such that T is linear and continuous}, endowed with the op-

erator norm ‖T‖ = sup‖x‖≤1 ‖Tx‖ is a Banach space. We write L(X,X) =

L(X). Now, T is said to be a closed operator if its graph

G(T ) := {(x, Tx) | x ∈ dom(T )} ⊆ X × Y is closed.

Theorem 1.2.1 (Closed graph theorem)

Let X and Y be Banach spaces. Then every closed linear mapping T :

X → Y is continuous.

13
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Let T be a closed operator on X. The resolvent set of T , ρ(T ), is given by

ρ(T ) = {λ ∈ C : λI − T is invertible} and its spectrum σ(T ) = C \ ρ(T )

.Therefore, σ(T ) ∪ ρ(T ) = C. The spectral radius of T is defined by

r(T ) = sup{|λ| : λ ∈ σ(T )} with the relation r(T ) ≤ ‖T‖. The point

spectrum σp(T ) = {λ ∈ C : Tx = λx for some 0 6= x ∈ dom(T )}. For

λ ∈ ρ(T ), the operator R(λ, T ) := (λI − T )−1 is, by the closed graph

theorem, a bounded operator on X and is called the resolvent of T at the

point λ or simply the resolvent operator. In fact, ρ(T ) is an open subset

of C and R(λ, T ) : ρ(T ) → L(X) is an analytic function with respect to

λ. For further details, see [13, 17, 22, 28].

1.2.9 Composition operators

Let ϕ : U → U be a self-analytic map on U. Then for any f ∈ H(U),

the composition operator induced by ϕ, denoted by Cϕ, is a mapping

Cϕ : H(U) → H(U) defined by Cϕ(f) = f ◦ ϕ. Now, let Aut(U) denotes

the group of all automorphisms of U. For ϕt ∈ Aut(U), t ≥ 0, the

group of composition operators associated with ϕt are defined on H(U)

by Cϕt(f) = f ◦ϕt for all f ∈ H(U). The corresponding group of weighted

composition operators induced by ϕt will therefore be defined by

Tt(f) := Sϕtf = (ϕ′t)
γfoϕt, where γ is an appropriately chosen weight.

We refer to [13, 17, 28, 36] for more details.
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CHAPTER 1. INTRODUCTION

1.3 Statement of the Problem

The study of duality properties of the spaces of analytic functions has

mainly concentrated on the Hardy and reflexive Bergman spaces as cov-

ered in literature. For the non-reflexive Bergman space of the unit disk,

L1
a(D,mα), the dual and predual have been identified with Bloch and the

little Bloch spaces respectively. Recently, the dual of the non-reflexive

Bergman space of the upper half-plane L1
a(U, µα) was determined while

the predual still remain unknown. Moreover, the properties of semigroups

of composition operators on these spaces have not been exhaustively stud-

ied. In this study therefore, we have determined the predual of the non-

reflexive Bergman space L1
a(U, µα) of the upper half-plane. Further, we

have investigated both the semigroup as well as the spectral properties

of the group of weighted composition operators defined on the predual of

L1
a(U, µα).

1.4 Objectives of the Study

The main objective of the study was to determine the duality properties

of non-reflexive Bergman space of the upper half-plane L1
a(U, µα) and

investigate the properties of the groups of weighted composition operators

defined on them.

The specific objectives were to:

1. Determine the predual of the non-reflexive Bergman space of the

upper half-plane L1
a(U, µα).

15
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2. Determine the group of weighted composition operators on the pre-

dual space of non-reflexive Bergman space of the upper half-plane

L1
a(U, µα).

3. Investigate both the semigroup and spectral properties of the group

of weighted composition operators defined on the predual space of

the non-reflexive Bergman space L1
a(U, µα).

1.5 Research methodology

To determine the predual of non-reflexive Bergman space of the upper

half plane L1
a(U, µα), we used the Cayley transform as well as related

works on the unit disk D by Zhu, Peloso among others. Using the def-

inition of weighted composition operators as well as the duality pairing

for the established predual, we determined the group of weighted com-

position operators on the predual space of non-reflexive Bergman space

of the upper half plane L1
a(U, µα). To investigate the semigroup proper-

ties of the group of weighted composition operators, we employed theory

of semigroups of the Linear operators and functional analysis where we

determined infinitesimal generator of the group of weighted composition

operator obtained, then established the strong continuity property. Using

spectral theory, we obtained the resolvents of the infinitesimal generator

which was given as integral operators. Finally, we used the known results

like spectral mapping theorems for resolvents and semigroups, among

other functional analysis theories to obtain the spectral properties of the

infinitesimal generator as well as the resolvents. Then, we applied the

16
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Hille-Yosida theorem to obtain the norm properties of the resulting inte-

gral operators.

1.6 Significance of the Study

The study of duality properties of the spaces of analytic functions have

been investigated by many mathematicians, although on the non-reflexive

Bergman spaces, it has not been fully exhausted specifically on the identi-

fication of predual space on the upper half-plane. We hope that our study

will contribute richly to the existing literature as well as advance further

research for the development of this area of research. Its therefore of

great significance to determine the duality properties of the non-reflexive

Bergman spaces of the upper half-plane, L1
a(U, µα) and the properties of

both semigroups and spectral of the group of weighted composition oper-

ators defined on the predual of L1
a(U, µα). We hope the results obtained

in this study shall be of importance to both applied mathematicians and

theoretical physicists where the concept of semigroup properties plays a

major role in evolution equations in Physics.

17



Chapter 2

Literature Review

The theory of semigroups of bounded linear operators began with the work

of Hille and Yosida in [35]. On spaces of analytic functions they were first

studied by Berkson and Porta in [8] on Hardy spaces and later on by

Siskakis on Bergman and Dirichlet spaces [33, 34]. Zhu in his study gave

broad definitions and basic facts of the spaces and for the composition

semigroups on these spaces as in [36]. A lot have been done on semi-

groups but of recent work by Basallote and Blasco [7, 9, 10] the authors

considered semigroups of composition operators on the Bloch space and

weighted Banach spaces of analytic functions. Composition operators, in-

duced by a fixed analytic self-map of the upper half-plane, acting between

Hardy and Bloch-type spaces of the upper half-plane was also studied by

Sharma, et al [32]. Weighted composition operators also appeared in the

study of classical operators like Cesáro and Hilbert operators and they

play an important role in the study of composition operators on Hardy

spaces of half-plane.

For thorough discussion of Bergman spaces and their composition oper-

ators we refer the reader to the work by [14, 19]. In 1997, Valentine

18
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Matache [26] studied the composition operator on Hardy spaces of right

half plane, boundedness and compactness on the spaces. The resolvents of

the generators of strongly continuous groups of isometries on the Hardy

and Bergman spaces were obtained by Bonyo in [11] using the similar-

ity theory of semigroups and spectral theory. The resulting resolvents

in [11] were given as integral operators for which the norms and spectra

were obtained. Recently, Ballamoole, Bonyo, L. Miller and G. Miller in [6]

constructed integral operators associated with strongly continuous groups

of invertible isometries on the Hardy spaces and the weighted Bergman

spaces of the upper half-plane. Specifically, they obtained the spectrum

and point spectrum of the generator and represented resolvents as inte-

gral operators related to the ces’aro’s operators.

In [27], Matache also proved that composition operators are bounded on

the Hardy space of the half plane if and only if the inducing map fixes

the point at infinity and it has a finite angular derivative there. Later El-

liot and Jurry’s calculation strengthened the result on non-compactness

of composition operator studied by Matache in [27]. Cima, Thomson

and Wogen [12] characterized the closed-range composition operators on

Hardy spaces, phrasing their result in terms of the boundary behavior of

the inducing function . They also characterized the Fredholm composi-

tion operators as precisely the invertible ones.

MacCluer and Shapiro [25] characterized boundedness and compactness

of composition operators in terms of Carleson measures. MacCluer [25]

also studied the connection between angular derivative and components

in the space of composition operators . Jarchow, Hunziker and Maschioni

[21] studied similar problems for other situations that is in the class of
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Hilbert-Schmidt Composition operators and in the topology induced by

the Hilbert -Schmidt norm. In the paper by Mark and Fiona [15], condi-

tions were established in which these semigroups can be extended in their

parameter to sector given a priori and complete characterization of all

composition operators acting on the Hardy space on the right half-plane.

In 2013, Arvanitidis [4] identified the semigroups consisting of bounded

composition operators on the Hardy spaces of the upper half-plane and

finally the identification of the infinitesimal generator.

On the unit disk, Blasco, Contreras, Diaz-Madrigal, Martinez, Papadimi-

trakis and Siskakis in [10] studied the maximal subspace in Bounded Mean

Oscillation (BMOA) where a general semigroup of analytic functions on

the unit disk generates a strongly continuous semigroup of composition

operators. A related necessary condition is also proved by Blasco et al

[10] in the case when the semigroup has an inner Denjoy-Wolff point. As a

byproduct they also provided a generalization of the theorem of Sarason.

Arevalo and Oliva [3] later gave the general result on the separable spaces

and used it to prove that semigroups are always strongly continuous in

the Hardy and Bergman spaces. Complete continuity of weighted compo-

sition was given in [10]. Kang and Young in their paper [24] studied some

properties of weighted Bergman spaces and their duality on the setting

of the half-plane of the complex plane. They obtained some character-

ization of Compact Toeplitz Operators. Although most of the research

were mainly on Hardy and Bergman spaces, Irevalo in [2] on her article

studied the strongly continuous semigroups on the mixed norm spaces.

On the Bloch spaces, recently Antti Perala [30] calculated the norm of the

Bergman projection from the space of essentially bounded functions to the
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Bloch space. On the same space, Xi Fu and Zhang [18] in 2017 defined

the Bloch-type spaces of the upper half- plane U and characterized them

in terms of weighted Lipschitz functions. They also discussed the bound-

edness of a composition operator acting between two Bloch spaces. Also

Allen and Colonna in their paper [1] established bounds on the norm of

multiplication operators on the Bloch spaces of the unit disk via weighted

composition operators. In doing so, they characterized the isometric mul-

tiplication operators to be precisely those induced by constant functions

of modulus 1. They then described the spectrum of the multiplication

operators in terms of the range of the symbol. Lastly, they identified the

isometries and spectra of a particular class of weighted composition oper-

ators on the Bloch space. On functions in the little Bloch space and inner

functions, Rohde [31] proved that analytic functions in the little Bloch

space assume every value as a radial limit on a set of Hausdorff dimen-

sion one, unless they have radial limits on a set of positive measure. The

analogue for the inner functions in the little Bloch space was also proven,

and characterization of various classes of the Bloch functions in terms of

their level sets were given.

The duality properties of Bergman spaces are well known in literature.

For instance in [36], it is proved by Zhu that for 1 < p < ∞, 1
p

+ 1
q

= 1

and α > −1, the dual space of reflexive Bergman space on the unit disk

Lpa(D,mα) is Lqa(D,mα). For the non-reflexive Bergman space on the unit

disk L1
a(D,mα), it is shown in [36] by Zhu that the dual and predual

space are Bloch space and little Bloch space respectively. For the corre-

sponding spaces of the upper half plane as in [5], that the dual space of

reflexive Bergman space on the upper half plane of Lpa(U, µα) is Lqa(U, µα)
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for 1 < p <∞, 1
p

+ 1
q

= 1 and α > −1. When p = 1, the space L1
a(U, µα)

is non-reflexive, its dual have been determined by Kang in [23] and it’s

not known what its predual would be. Therefore in this study we have

determined the predual of the non-reflexive Bergman space of the upper

half-plane. We have also investigated semigroup and spectral properties.

The following known theorems will be useful in proving the results of this

study:

Theorem 2.0.1 (Hille-Yosida theorem)

A linear operator Γ is the infinitesimal generator of a strongly continuous

semigroup of contractions (Tt)t≥0 ⊆ L(X) if and only if;

1. Γ is closed and dom(Γ) = X, and

2. The resolvent set ρ(Γ) of Γ contains R+ and for every λ ≥ 0,

‖R(λ,Γ)‖ ≤ 1

λ
.

In this case, if h ∈ X, then

R(λ,Γ)h =

∫ ∞
0

e−λtTthdt

is norm convergent.

Theorem 2.0.2 (Spectral mapping theorem for resolvents)

Let Γ be a closed operator on X and λ ∈ ρ(Γ). Then it asserts that,

σ(R(λ,Γ)) \ {0} = (λ− σ(Γ))−1

=

{
1

λ− µ
: µ ∈ σ(Γ)

}

22



CHAPTER 2. LITERATURE REVIEW

for λ ∈ ρ(Γ).

For details, see [28].

Theorem 2.0.3 (Spectral mapping theorem for semigroups)

Let (Tt)t≥0 be a strongly continuous semigroup on X and Γ be its in-

finitesimal generator. Then

σ(Tt) ⊃ etσ(Γ).

For the point spectrum,

etσp(Γ) = σp(Tt) \ {0}.

For details, see [28].

Theorem 2.0.4 (Hahn-Banach extension theorem)

Let X be a normed space over a field F and let Y ⊆ X be a linear

subspace. Then for every ϕ ∈ Y ∗ there exists some φ ∈ X∗ such that

φ = ϕ on Y and ‖φ‖ = ‖ϕ‖.

Theorem 2.0.5 (Riesz representation theorem for measures)

Let the dual space of X be identified with the space X∗ of all finite

complex weighted measure on Ω such that each measure µ in X∗ defines

a bounded linear functional Fµ on X as,

Fµ(f) =

∫
Ω

f(x)dµ(x), f ∈ X,

and every bounded linear functional on X arises in the above manner.

Here, X∗ is equipped with the norm ‖µ‖ = |µ|(Ω).
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Theorem 2.0.6 (Fubini’s theorem)

Let (X1,A1, µ1) and (X2,A2, µ2) be two complete finite measure spaces.

Suppose f is an integrable function on X1 ×X2 and also µ = µ1 × µ2 be

a product measure. Then;

∫
X1

∫
X2

f(x1, x2)dµ2dµ1 =

∫
X2

∫
X1

f(x1, x2)dµ1dµ2 =

∫
X1×X2

f(x1, x2)dµ.

For details, see [28].
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Chapter 3

Duality of the Non-reflexive

Bergman space

In this chapter, we establish the predual space of non-reflexive Bergman

space of the upper half-plane L1
a(U, µα). Before we give the main result

of this chapter, we prove the following lemmas:

Lemma 3.0.1

Let f ∈ B∞(U), then

‖f‖B∞,1(U) =
1

2
‖f ◦ ψ‖B∞,1(D).

In particular, f ∈ B∞(U) if and only if f ◦ ψ ∈ B∞(D).

Proof. Let f be a function in B∞(U). Then by definition,

‖f‖B∞,1(U) = supω∈U Im(w)|f ′(w)| <∞.
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If ψ is the Cayley transform, let ω = ψ(z). Then

Im(ω) =
ω − ω

2i

=
ψ(z)− ψ(z)

2i
.

But ψ(z) = i(1+z)
1−z and ψ(z) = −i(1+z)

1−z , therefore

Im(ω) =

i(1+z)
1−z −

−i(1+z)
1−z

2i

=
i(1 + z)(1− z) + i(1 + z)(1− z)

2i(1− z)(1− z)

=
i(2− 2zz)

2i(1− z)(1− z)
=

1− |z|2

|1− z|2
. (3.1)

Moreover ψ′(z) = 2i
(1−z)2 and therefore |ψ′(z)| =

∣∣∣ 2i
(1−z)2

∣∣∣.
Now, by definition we have

‖f‖B∞,1(U) = sup
z∈D

(
1− |z|2

|1− z|2

)
|f ′(ψ(z))| <∞.

Since |1− z|2 = 2
|ψ′(z)| , we obtain

‖f‖B∞,1(U) =
1

2
sup
z∈D

(1− |z|2)|ψ′(z)||f ′(ψ(z))| <∞.

In this case, d(f◦ψ)(z)
dz

= df
dψ
.dψ
dz

= f ′(ψ(z))ψ′(z), therefore

|ψ′(z)||f ′(ψ(z))| = |(f ◦ ψ)′(z)| and hence

‖f‖B∞(U) =
1

2
sup
z∈D

(1− |z|2)|(f ◦ ψ)′(z)| <∞

=
1

2
‖f ◦ ψ‖B∞,1(D).
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�

Lemma 3.0.2

Let f ∈ B∞,◦(U), then

‖f‖B∞,1(U) =
1

2
‖f ◦ ψ‖B∞,◦(D).

In particular, f ∈ B∞,1(U) if and only if f ◦ ψ ∈ B∞,◦(D).

Proof. Let f be a function on B∞,1(U), then by definition

lim
Im(w)→0

Im(w)|f ′(w)| = 0.

But we know from Equation 3.1 that Im(w) = 1−|z|2
|1−z|2 , hence

‖f‖B∞,1(U) = lim
|z|→1

(
1− |z|2

|1− z|2

)
|f ′(ψ(z))|.

=
1

2
lim
|z|→1

(1− |z|2)|ψ′(z)||f ′(ψ(z))|.

But it is clear that |ψ′(z)||f ′(ψ(z))| = |(f ◦ ψ)′(z)|, and hence

‖f‖B∞,1(U) =
1

2
lim
|z|→1

(1− |z|2)|(f ◦ ψ)′(z)|.

Therefore,

‖f‖B∞,1(U) =
1

2
‖f ◦ ψ‖B∞,◦(D).

�
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Lemma 3.0.3

Let f ∈ L1
a(U, µα), then

‖f‖L1
a(U,µα) = ‖S

ψ
f‖L1

a(D,mα).

In particular, f ∈ L1
a(U, µα) if and only if (ψ′)α+2f ◦ ψ ∈ L1

a(D,mα).

Proof. Let f be a function in L1
a(U, µα). Then

‖f‖L1
a(U,µα) =

∫
U
|f(w)|dµα(w)

=

∫
U
|f(w)|Im(w)αdA(w) <∞,

for dµα(ω) = (Im(ω))αdA(ω).

By change of variables, let w = ψ(z), then ψ′(z) = 2i
(1−z)2 , Im(w) = 1−|z|2

|1−z|2

from Equation 3.1, and dA(w) = |ψ′(z)|2dA(z).

Therefore,

‖f‖L1(U,µα) =

∫
D
|f(ψ(z))|

(
1− |z|2

|1− z|2

)α
|ψ′(z)|2dA(z)

=
1

2α

∫
D
|f(ψ(z))||ψ′(z)|α+2(1− |z|2)αdA(z) <∞

=
1

2α

∫
D
|(ψ′(z))α+2(f ◦ ψ)(z)|dmα(z) <∞

=
1

2α

∫
D
|(ψ′(z))γ(f ◦ ψ)(z)|dmα(z) <∞.

Hence,

‖f‖L1
a(U,µα) =

1

2α
‖Sψf‖L∞a (D,mα),

where γ = α+2 since p = 1 and Sψ is the weighted composition operator.
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�

Lemma 3.0.4

Let f ∈ L∞(U, µα), then

‖f‖L∞(U,µα) = ‖Cψf‖L∞(D,mα).

In particular, f ∈ L∞(U, µα) if and only if Cψf ∈ L∞(D,mα).

Proof. Let f be a function on L∞(U, µα). Then f is essentially bounded

which implies that f ◦ ψ is essentially bounded as well since composition

by invertible maps preserves essential boundedness. Since ψ is an invert-

ible mapping from D onto U, it follows that f ◦ ψ ∈ L∞(D,mα). The

converse follows similarly. �

Remark 3.0.5

It is easy to verify that Cψ−1 = C−1
ψ . The Lemma 3.0.4 above therefore

imply that Cψ is an isometry up to a constant and at the same time in-

vertible on the respective spaces with the inverse also acting on the same

appropriate spaces.

More generally, let {V1, V2} = {D,U}, and let LF (Vi, Vj) denote the col-

lection of conformal mappings from Vi to Vj. Then LF (Vi, Vj) = Aut(Vi),

and if h ∈ LF (Vi, Vj), then g ∈ Aut(Vj) 7→ h−1 ◦ g ◦ h ∈ Aut(Vi) is an

isomorphism from Aut(Vi) onto Aut(Vj). From each g ∈ LF (Vi, Vj), we

define a weighted composition operator Sg : H(Vj)→ H(Vi), by

Sgf(z) = (g′(z))γf(g(z)), for all z ∈ Vi.
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We note that if g ∈ LF (Vi, Vj) and h ∈ LF (Vj, Vi), then it is clear by

Chain Rule that ShSg = Sgh and S−1
g = Sg−1 .

The duality properties of Bergman spaces are well known in literature.

For instance in [36], it is proved that for 1 < p <∞, 1
p
+ 1
q

= 1 and α > −1,

the dual space of reflexive Bergman space on the unit disk Lpa(D,mα) is

Lqa(D,mα). For the corresponding spaces of the upper half plane as in [5],

that the dual space of reflexive Bergman space on the upper half plane

of Lpa(U, µα) is Lqa(U, µα) for 1 < p < ∞, 1
p

+ 1
q

= 1 and α > −1. For

the non-reflexive Bergman space on the unit disk when p = 1, it is shown

in [36] that the dual and predual space of non-reflexive Bergman space

on the unit disk L1
a(D,mα) are Bloch space and little Bloch space respec-

tively.

The next result is a recent one and is due to S. Kang [23]. It gives the

dual of the non-reflexive Bergman space of the upper half-plane L1
a(U, µα).

But first we give the following definition:

Definition 3.0.6

Let B∞(U, i) denote the subspace of the Bloch space B∞(U) consisting of

functions vanishing at a point i. Therefore B∞(U, i) is defined as

B∞(U, i) := {f ∈ B∞(U) : f(i) = 0}.

Then B∞(U, i) is a Banach space with respect to the norm ‖f‖B∞,i :=

‖f‖B∞(U) = ‖f‖B∞,i(U) .

Similarly, let B∞,◦(U, i) denote the subspace of B∞,◦(U) consisting of
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functions vanishing at point i. Then

B∞,◦(U, i) := {f ∈ B∞,◦(U) : f(i) = 0},

with the norm ‖f‖B∞,i := ‖f‖B∞(U) = ‖f‖B∞,i(U) .

The following result is due to S. Kang [23].

Theorem 3.0.7

For any α ∈ R, α > −1, we have

(L1
a(U, µα))∗ ≈ B∞(U, i),

under the integral pairing

〈g, f〉 =

∫
U
g(w)f(w)dµα(w),

where g ∈ L1
a(U, µα) and f ∈ B∞(U, i).

With the help of Theorem 3.0.7 above, we determine the predual space of

L1
a(U, µα), that is, a set whose dual is L1

a(U, µα), but first we state some

definitions and results.

Let C◦(D) be the subalgebra of C(D) consisting of functions f with f(z)→

0 as |z| → 1−, where C(D) is the algebra of complex-valued continuous

functions on D, the closure of D.

We can now state the following Theorem due to K. Zhu and details can

be found in [36].
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Theorem 3.0.8

If t > 0 and α > −1, then the integral operator T = Tt,α defined by

Tf(z) = (1− |z|2)t
∫
D

f(ω)

(1− zω)2+t+α
dmα(ω),

has the following properties:

1. T = (α + t+ 1)T 2.

2. T is a bounded embedding of B∞(D) into L∞(D).

3. T is an embedding of B∞,◦(D) into C◦(D).

Now, let C(U) be the algebra of complex valued continuous functions

on U, and C◦(U) be the subalgebra of C(U) consisting of functions f such

that f(ω) −→ 0 as Im(ω) −→ 0.

Proposition 3.0.9

Let C◦(U) be the subalgebra of C(U) consisting of functions f such that

f(ω) −→ 0 as Im(ω) −→ 0 and C◦(D) be the subalgebra of C(D) consist-

ing of functions f with f(z) → 0 as |z| → 1−. Then C◦(U) = {g ◦ ψ−1 :

g ∈ C◦(D)}.

Proof. Let K ⊂ U be compact. Since Cayley transform ψ : D −→ U

is a continuous bijection, it follows that K ⊂ U is compact if and only if

ψ−1(K) is compact in D. If f ∈ C◦(U) and ε > 0, then there exists K

compact in U such that supω∈U\K |f(ω)| < ε.

Now; if g = f ◦ ψ is continuous on D with f = g ◦ ψ−1, then

sup
z∈D\ψ−1(K)

|g(z)| = sup
ω∈U\K

|f(ω)| < ε.
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�

Using Proposition 3.0.9 above, we obtain the following result which is the

upper half-plane analogue of Theorem 3.0.8.

Proposition 3.0.10

For t > 0, α > −1, let the integral operator T on H(D) be defined by

Tf(z) = (1− |z|2)t
∫
D

f(ω)

(1− zω)2+t+α
dmα(ω).

Let S be the corresponding integral operator on H(U) defined by

S := Cψ−1TCψ. Then the following properties hold:

(a) S = (α + t+ 1)S2,

(b) S is a bounded embedding of B∞(U) into L∞(U), and

(c) S is an embedding of B∞,◦(U) into C◦(U).

Proof. For (a), from Theorem 3.0.8, we have,

S = Cψ−1TCψ = Cψ−1(α + t+ 1)T 2Cψ

= (α + t+ 1)Cψ−1T 2Cψ

= (α + t+ 1)S2

For (b), we have

B∞(U)
Cψ−→ B∞(D)

T−→ L∞(D,mα)
Cψ−1

−−−→ L∞(U, µα).

33



CHAPTER 3. DUALITY OF THE NON-REFLEXIVE BERGMAN SPACE

Now Cψ is an isometry of B∞(U) onto B∞(D) (Lemma 3.0.1) up to con-

stant, T which is a bounded embedding of B∞(D) into L∞(D), By Lemma

3.0.4, Cψ−1 is also an isometry of L∞(D,mα) onto L∞(U, µα), it there-

fore follows that S = Cψ−1TCψ is a bounded embedding of B∞(U) into

L∞(U, µα) (Proposition 3.0.10).

For (c), we have

B∞,◦(U)
Cψ−→ B∞,◦(D)

T−→ C◦(D)
Cψ−1

−−−→ C◦(U).

Cψ is a bijection of B∞,◦(U) into B∞,◦(D) from Lemma 3.0.2, T is an

embedding of B∞,◦(D) into C◦(D) (Theorem 3.0.8) and on the other hand

Cψ−1 is also a bijection of C◦(D) into C◦(U). Therefore S = Cψ−1TCψ is

an embedding of B∞,◦(U) into C◦(U), which completes the proof. �

We now establish the predual space of L1
a(U, µα).

Theorem 3.0.11

For any α > −1, we have;

(B∞,◦(U, i))∗ ≈ L1
a(U, µα),

under the pairing

〈g, f〉 =

∫
U
g(ω)f(ω)dµα(ω),

where g ∈ B∞,◦(U, i) and f ∈ L1
a(U, µα). Here, B∞,◦(U, i) is equipped

with the same norm as B∞(U, i), that is, ‖f‖B∞,i(U,i) := ‖f‖B∞(U) =

‖f‖B∞,i(U) .

Proof. If f ∈ L1
a(U, µα), then by Theorem 3.0.7,
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g 7−→
∫
U g(ω)f(ω)dµα(ω) defines a bounded linear functional onB∞,◦(U, i).

Conversely, if F is a bounded linear functional on B∞,◦(U, i), we want to

show that there exists a function f ∈ L1
a(U, µα) such that

F (g) =
∫
U g(ω)f(ω)dµα(ω) for g in a dense subset of B∞,◦(U, i).

Now we fix any positive parameter t and consider the embedding S of

B∞,◦(U, i) into C◦(U) as given by Proposition 3.0.10.

The space X = S(B∞,◦(U, i)) is a closed subspace of C◦(U) and F ◦S−1 :

X → C is a bounded linear functional on X since F and S−1 are both

bounded, that is ‖F ◦ S−1‖ ≤ ‖F‖‖S−1‖.

By the Hahn-Banach extension theorem (Theorem 2.0.4), F ◦S−1 extends

to a bounded linear functional on C◦(U). By the Riesz representation the-

orem Theorem 2.0.5, there exists a finite weighted measure µα on U such

that ‖µα‖ = ‖F ◦ S−1‖ and F ◦ S−1(h) =
∫
U h(ω)dµα(w), h ∈ C◦(U).

In particular, if g is a polynomial (polynomials are dense in B∞,◦(U, i)),

then F (g) = F ◦ S−1 ◦ S(g) =
∫
U Sg(ω)dµα(ω). Since S := Cψ−1TCψ

and letting the integral operator T on H(D) be defined by Tf(z) =

(1 − |z|2)t
∫
D

f(ω)
(1−zω)2+t+α

dmα(ω) as in Proposition 3.0.10. Now let f ∈

H(U), then S(f) = Cψ−1TCψf = Cψ−1Tf ◦ ψ. By substituting for

T =
∫
D

f(ω)
(1−zω)2+t+α

dmα(ω), we obtain

Cψ−1Tf ◦ ψ = Cψ−1

∫
D

f ◦ ψ(ω)dmα(ω)

(1− zω)2+t+α

= Cψ−1

∫
D

f(ψ(ω))dmα(ω)

(1− zω)2+t+α

=

∫
U

f(ψ−1 ◦ ψ)(w)dµα
(1− zw)2+t+α

=

∫
U

f(ω)dµα(ω)

(1− zω)2+t+α
.

Therefore, F (g) =
∫
U Sg(w)dµα(ω) =

∫
U

∫
U

f(ω)
(1−zω)2+t+α

g(ω)dµα(ω)dµα(ω).

By Fubini’s theorem 2.0.6, we have F (g) =
∫
U g(ω)f(ω)dµα(ω), where
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f = Cψ−1TCψ which is bounded since T is bounded. �
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Chapter 4

Groups of weighted

composition operators

The automorphisms of the upper half plane U were classified into three

distinct groups [6, Proposition 2.3], namely: the scaling, the translation

and the rotation groups depending on the location of their fixed points.

Since the induced groups of composition operators for rotation group

are defined on the analytic spaces of the unit disk, we shall only con-

sider groups of composition operators associated with the scaling and

the translation groups in this chapter. In Section 4.1, we determine the

group of weighted composition operator on B∞,◦(U, i) and investigate

both the semigroup and the spectral properties for the scaling group. In

Section 4.2, we determine the group of weighted composition operator on

B∞,◦(U, i) and investigate both the semigroup and spectral properties for

the translation group.
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4.1 Scaling group

The automorphisms of this group are of the form ϕt(z) = ktz, where

z ∈ U and k, t ∈ R with k 6= 0. Now, without loss of generality, we

consider the analytic self maps ϕt : U −→ U of the form ϕt(z) = e−tz for

z ∈ U. The corresponding group of weighted composition operators on

Lpa(U, µα) is given by

Ttf(z) = e−tγf(e−tz),

for all f ∈ Lpa(U, µα), where γ=α+2
p

, 1 ≤ p <∞ and α > −1. For p = 1,

(Tt)t≥0 is defined on L1
a(U, µα) with γ=α+2

1
= α + 2.

Following Theorem 3.0.11, the predual of L1
a(U, µα) is given by the duality

relation

(B∞,◦(U, i))∗ ≈ L1
a(U, µα)

under the integral pairing 〈g, f〉 =
∫
U g(w)f(w)dµα(w), where g ∈ B∞,◦(U, i)

and f ∈ L1
a(U, µα). Note that B∞,◦(U, i) ⊆ B∞,◦(U).

Using the integral pairing above, we obtain the corresponding group of

weighted composition operators on B∞,◦(U, i) as follows.

Let g ∈ B∞,◦(U, i) and f ∈ L1
a(U, µα), then,

〈g, Ttf〉 =

∫
U
g(z)e−tγf(e−tz)dµα(z)

=

∫
U
g(z)e−tγf(e−tz)dµα(z)

=

∫
U
g(z)e−tγf(e−tz)(Im(z))αdA(z).
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By change of variables, let w = e−tz, then z = etw, using the Jacobian,

dA(w) = |ϕ′t(z)|2dA(z). Since ϕt(z) = e−tz, it therefore follows that

dA(w) = e−2tdA(z) and Im(z) = etIm(w).

Thus,

〈g, Ttf〉 =

∫
U
g(z)e−tγf(e−tz)(Im(z))αdA(z)

=

∫
U
g(etw)e−tγf(w)eαt(Im(w))αe2tdA(w)

=

∫
U
g(etw)e−tγe(α+2)tf(w)(Im(w))αdA(w)

=

∫
U
g(etw)e−tγetγf(w)dµα(w)

=

∫
U
g(etw)f(w)dµα(w)

= 〈T ∗t g, f〉,

where T ∗t g(w) = g(etw).

Now, St := T ∗t is defined on B∞,◦(U, i). But we see that Stg(i) = g(eti) 6=

0 and therefore Stg does not vanish at i. This means that St does not map

B∞,◦(U, i) onto itself. We now therefore redefine St to act on B∞,◦(U)

so that it maps the space onto itself. Thus, for all t ≥ 0 and for all

g ∈ B∞,◦(U), Stg(w) := g(etw) is a semigroup as well as a group of

composition operators defined on B∞,◦(U). We shall carry out a complete

study of both the semigroup and spectral properties of this group on

B∞,◦(U).
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4.1.1 Semigroup properties

In this section, we investigate the semigroup properties and determine the

infinitesimal generator Γ of (St)t≥0 on B∞,◦(U) where, Stg(w) = g(etw).

Proposition 4.1.1

(St)t∈R is a group on B∞,◦(U).

Proof. It suffices to prove that both (St)t≥0 and (S−t)t≥0 are semigroups

on B∞,◦(U).

First we show that (St)t≥0 is a semigroup on B∞,◦(U). Indeed,

S0g(w) = g(e0w) = g(w) ⇒ S0 = I(Identity).

For semigroup property, we have;

SsStg(w) = Ssg(etw)

= g(et.es(w))

= g(et+s(w))

= St+sg(w),

for all t, s ≥ 0. Hence, (St)t≥0 is a semigroup.

Similarly we need to show (S−t)t≥0 is also a semigroup on B∞,◦(U).

From definition, Stg(w) = g(etw), it follows that S−tg(w) = g(e−tw).

Thus,

S−0g(w) = g(e−0w) = g(w) ⇒ S0 = I(Identity)
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Now for the semigroup property, we have;

S−s(S−tg(w)) = S−sS−t(g(w))

= S−sg(e−t(w))

= S−sg(e−t(w))

= g(e−s.e−t(w))

= g(e−s+−t(w))

= S−t+−sg(w) = S−(t+s)g(w),

for all t, s ≥ 0.

Therefore (S−t)t≥0 is a semigroup on B∞,◦(U).

Hence (St)t∈R is a group as desired. �

Theorem 4.1.2

(St)t∈R is an isometry on B∞,◦(U).

Proof. By the definition of isometry, we have;

‖Stg‖B∞,◦(U) = sup
w∈U

Im(w)|Stg′(w)|

= sup
w∈U

Im(w)|g′(etw)|

= sup
w∈U

Im(w)|g′(etw).et|

= sup
w∈U

Im(w)et|g′(etw)|.

Now by change of variables, let z = etw then w = e−tz, and Im(w) =

e−tIm(z).
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Therefore,

‖Stg‖B∞,◦(U) = sup
z∈U

e−tIm(z)et|g′(z)|

= sup
z∈U

Im(z)|g′(z)|

= ‖g‖B∞,◦(U), as desired.

Thus (St)t∈R is an isometry. �

Theorem 4.1.3

(St)t∈R is strongly continuous on B∞,◦(U).

Proof. From our calculation of weighted composition operator defined

on B∞,◦(U), Stg(w) = g(etw). We now write St = Cϕ−t . Then Cϕ−t is

strongly continuous on B∞,◦(U) if and only if (Cψ−1◦ϕ−t◦ψ)t∈R is strongly

continuous on B∞,◦(D).

Now ψ−1 ◦ ϕ−t ◦ ψ(z), can be rewritten as ψ−1(ϕ−t(ψ(z))). Recall that

ψ(z) = i(1+z)
1−z and therefore,

ψ−1 ◦ ϕ−t ◦ ψ(z) = ψ−1

(
ϕ−t

(
i(1 + z)

1− z

))
.

Since ϕ−t(z) = et(z), we get,

ψ−1 ◦ ϕ−t ◦ ψ(z) = ψ−1

(
et
(
i(1 + z)

1− z

))
.

But ψ−1(z) = z−i
z+i

, and therefore we obtain,

ψ−1 ◦ ϕ−t ◦ ψ(z) =
et( i(1+z)

1−z )− i
et( i(1+z)

1−z ) + i
.
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Simplifying the fraction, we have

ψ−1 ◦ ϕ−t ◦ ψ(z) =
et(i(1 + z))− i(1− z)

et(i(1 + z)) + i(1− z)

=
et(1 + z)− 1 + z

et + zet + 1− z

=
(1 + et)z − 1 + et

(−1 + et)z + 1 + et
.

Dividing both numerator and denominator by 1 + et we get,

ψ−1 ◦ ϕ−t ◦ ψ(z) =
z − 1−et

1+et

1− 1−et
1+et

z
.

Now we let at = 1−et
1+et

and substitute to obtain,

ψ−1 ◦ ϕ−t ◦ ψ(z) =
z − at
1− atz

= ha(z).

Hence ψ−1 ◦ ϕ−t ◦ ψ(z) = ha(z) by letting z−at
1−atz = ha(z) and z → 0 as

at → 0.

It therefore suffices to show that ‖Chaf − f‖B∞,◦(D) → 0 as a→ 0.

Using density of polynomials in B∞,◦(D), let f(z) = zn. Then;

Chaz
n − zn = (ha(z))n − zn, n ≥ 1

(Chaf − f)′(z) = n(ha(z))n−1h′a(z)− nzn−1

= n[(ha(z))n−1h′a(z)− zn−1].
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But

ha(z) =
z − at
1− atz

.

h′a(z) =
(1− atz)1− (z − at)(−at)

(1− atz)2

=
1− atz + atz − atat

(1− atz)2

=
1− atat

(1− atz)2
.

Therefore,

(Chaf − f)′(z) = n

[
(ha(z))n−1(1− atat)

(1− atz)2
− zn−1

]
= n

[
( z−at

1−atz )n−1(1− atat)
(1− atz)2

− zn−1

]

= n

[
(z − at)n−1(1− atat)

(1− atz)n−1(1− atz)2
− zn−1

]
= n

[
(z − at)n−1(1− atat)

(1− atz)n+1
− zn−1

]
= n

[
(z − at)n−1(1− atat)− zn−1((1− atz)n+1)

(1− atz)n+1

]
.

Now,

lim
t→0+
‖Chaf − f‖B∞,◦(D) = lim

t→0+

(
sup
z∈D

(1− |z|2)|(Chaf − f)′|(z)

)
.

Therefore, by substituting for (Chaf − f)′(z), we obtain

limt→0+ ‖Chaf−f‖B∞,◦(D) = limt→0+

(
supz∈D(1− |z|2)

∣∣∣n [ (z−at)n−1(1−atat)−zn−1((1−atz)n+1)
(1−atz)n+1

]∣∣∣) .
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Hence,

lim
t→0+
‖Chaf − f‖B∞,◦(D) = lim

t→0+

(
sup
z∈D

(1− |z|2)

∣∣∣∣n [(zn−1)(1)− zn−1(1)

(1)n+1

]∣∣∣∣)
= lim

t→0+

(
sup
z∈D

(1− |z|2)

∣∣∣∣n(zn−1 − zn−1

1

)∣∣∣∣)
= lim

t→0+

(
sup
z∈D

(1− |z|2)
∣∣n[zn−1 − zn−1]

∣∣)
= 0.

Hence, (St)t∈R is strongly continuous on B∞,◦(U). �

Theorem 4.1.4

The infinitesimal generator Γ of (St)t≥0 onB∞,◦(U) is given by Γg(w)=wg′(w)

with the domain dom(Γ) = {g ∈ B∞,◦(U) : wg′(w) ∈ B∞,◦(U)}.

Proof. By definition, the infinitesimal generator denoted by Γ of (St)t≥0

is given by;

Γg(w) = lim
t→0+

g(etw)− g(w)

t

=
∂

∂t
g(etw)

∣∣∣∣
t=0

= etwg′(etw)
∣∣
t=0

= wg′(w).

Therefore Γg(w)=wg′(w). This implies that dom(Γ) ⊆ {g ∈ B∞,◦(U) :

wg′(w) ∈ B∞,◦(U)}.

To prove the reverse inclusion, we let g ∈ B∞,◦(U) be such that wg′(w) ∈

B∞,◦(U).
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Thus for w ∈ U, we have;

Stg(w)− g(w) =

∫ t

0

∂

∂s
g(esw)ds

=

∫ t

0

wg′(esw)ds.

Now let F (w) = wg′(esw), therefore Stg(w)− g(w) =
∫ t

0
F (w)ds.

Thus limt→0+
Stg−g
t

=limt→0+
1
t

∫ t
0
F (w)ds and strong continuity of (Ss)s≥0

implies that 1
t

∫ t
0
‖SsF − F‖ds → 0+ as t → 0+. Hence dom(Γ) ⊇ {g ∈

B∞,◦(U) : wg′(w) ∈ B∞,◦(U)}, which completes the proof. �

4.1.2 Spectral properties

Here we obtain the spectral properties of the generator Γ as well as the

resulting resolvents.

Theorem 4.1.5

Let Γ be the infinitesimal generator of (St)t∈R on B∞,◦(U). Then σp(Γ) =

∅ and σ(Γ) = iR. In particular, Γ is an unbounded operator on B∞,◦(U).

Before we prove this theorem (Theorem 4.1.5), we first give the following

Lemma:

Lemma 4.1.6

If ν ∈ C and c ∈ R, we have

1. g(ω) = cων 6∈ B∞,◦(U) for any c,

2. f(ω) = (ω − i)ν ∈ B∞,◦(U) if and only if Re(ν) < 0.
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Proof. From Lemma 3.0.2, we know that g ∈ B∞,◦(U) if and only if

g ◦ ψ ∈ B∞,◦(D). Then for z ∈ D,

(g ◦ ψ)(z) = g(ψ(z)) = c(ψ(z))ν = c

(
i(1 + z)

1− z

)ν
= ci(1 + z)ν(1− z)−ν .

Now, g ◦ψ ∈ H(D) if and only if Re(ν) > 0 and Re(−ν) > 0 which is not

possible, and therefore g ◦ ψ 6∈ H(D). Hence g 6∈ B∞,◦(U). This proves

(1).

For (2), following [6, Lemma 3.2], for any ν ∈ C, (ω − i)ν ∈ H(U) if and

only if Re(ν) < 0 since γ = 0 in this case. �

Proof of Theorem 4.1.5. To obtain the point spectrum of Γ, let λ

be an eigenvalue of Γ and g be the corresponding eigenvector. Then the

point spectrum σp(Γ) is given by σp(Γ) = {λ ∈ C : Γg = λg for some

0 6= x ∈ dom(Γ)}.

For our case Γg(w) = wg′(w). Therefore from Γg(w) = λg(w) we have,

wg′(w) = λg(w) which implies that wg′(w)
w

= λg(w)
w

by dividing both sides

by w. Therefore,

g′(w) =
λg(w)

w
.

Dividing both sides by g(w) implies that g′(w)
g(w)

= λ
w

, and hence

dg(w)

g(w)
= λ

dw

w
.
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By integrating both sides, we obtain

∫
dg

g
= λ

∫
dw

w

⇒ ln g(w) = λ ln(w) + ln c.

Therefore, g(w) = cwλ.

Now, g(w) = cwλ for λ ∈ C. We now check when g ∈ B∞,◦(U).

From Lemma 3.0.2, we know that g ∈ B∞,◦(U) if and only if g ◦ ψ ∈

B∞,◦(D) which is equivalent to supz∈D(1− |z|2)|(g ◦ ψ)′(z)| <∞.

Then,

g ◦ ψ = g(ψ(z))

= c(ψ(z))λ.

But,

ψ(z) =
i(1 + z)

1− z
,

and therefore, g ◦ ψ = c
(
i(1+z)

1−z

)λ
implying that,

(g ◦ ψ)′(z) = cλ

(
i(1 + z)

1− z

)λ−1

.
i(1− z) + i(1 + z)

(1− z)2
,

= cλ

(
i(1 + z)

1− z

)λ−1

.
i− iz + i+ iz)

(1− z)2
,

=
2icλ(i(1 + z))λ−1

(1− z)λ+1
,

=
2icλiλ−1(1 + z)λ−1

(1− z)λ+1
,

= 2icλ(i(1 + z))λ−1(1− z)−(λ+1).
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Now for (1− z)−(λ+1),

Re(−(λ+ 1)) = Re(−λ− 1) > 0

⇔ −Re(λ)− 1 > 0

⇔ −Re(λ) > 1

⇔ Re(λ) < −1.

And for (1 + z)λ−1,

Re(λ− 1) = Re(λ− 1) > 0

⇔ Re(λ) > 1.

Then (1 + z)λ−1 ∈ B∞,◦(D) if and only if Re(λ) > 1 and (1 − z)−(λ+1) ∈

B∞,◦(D) if and only if Re(λ) < −1. Hence Re(λ) does not exist and

thus there is no such λ. Therefore the point spectrum is empty, that is

σp(Γ) = ∅.

Since each St is an invertible isometry, its spectrum satisfies σ(St) ⊆

∂D. Therefore the spectral mapping theorem [Theorem 2.0.3] for strongly

continuous groups implies that etσ(Γ) ⊆ σ(St) ⊆ ∂D. Now let λ ∈ σ(Γ),

then |etλ| = 1 ⇒ tλ = 0 ⇒ Re(λ) = 0. Thus λ ∈ iR and therefore

σ(Γ) ⊆ iR.

We now need to show that the reverse inclusion, that is, iR ⊆ σ(Γ)

holds. Fix λ ∈ iR and assume λ 6∈ σ(Γ) which implies that the resolvent

operator R(λ,Γ) : B∞,◦(U)→ B∞,◦(U) is bounded. Consider the function

h(ω) = (ω− i)−(λ+1). Then Re(−(λ+1)) = −1 < 0 and following Lemma

4.1.6, it is immediate that h ∈ B∞,◦(U). The image function f = R(λ,Γ)h

is equivalent to (λ−Γ)f = h hence λf−Γf = h which yields a differential
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equation

λf(ω)− ωf ′(ω) = h(ω),

Now, dividing both sides by -1 to obtain

ωf ′(ω)− λf(ω) = −h(ω),

therefore dividing by ω, that is

ωf ′(ω)

ω
− λf(ω)

ω
= −h(ω)

ω
,

we obtain the differential equation of the form,

f ′(w)− λ

ω
f(ω) = −h(ω)

ω

= −ω−1h(ω).

Hence, we obtain

(ω−λf(ω))′ = −ω−1−λh(ω)dω.

Now, we consider the function h(ω) = (ω − i)−(λ+1).

Hence, by substituting the function h(ω) = (ω − i)−(λ+1) we obtain

(ω−λf(ω))′ = −ω−1−λ(ω − i)−(λ+1)dω.
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Therefore, by integrating and dividing both side by ω−λ of

ω−λf(ω) = −
∫
ω−1−λ(ω − i)−(λ+1)dω,

we obtain the general solution

f(ω) = (ω − i)−λ + cωλ.

which does not belong to B∞,◦(U) for any c, by Lemma 4.1.6. Thus

h 6∈ R(λ− Γ) and so σ(Γ) = iR.

Since σ(Γ) = iR and since r(Γ) ≤ ‖Γ‖, it follows that Γ is unbounded on

B∞,◦(U). �

Theorem 4.1.7

Let Γ be the infinitesimal generator of (St)t∈R. Then the following holds;

1. For λ ∈ ρ(Γ), and h ∈ B∞,◦(U) then,

(i) R(λ,Γ)h(w) = wλ
∫∞
w

1
zλ+1h(z)dz, if Re(λ) > 0.

(ii) R(λ,Γ)h(w) = −wλ
∫ w

0
1

zλ+1h(z)dz, if Re(λ) < 0.

2. σ(R(λ,Γ)) =
{
w : |w − 1

2Re(λ)
| = 1

2Re(λ)

}
.

3. r(R(λ,Γ)) = ‖R(λ,Γ)‖ = 1
|Re(λ)| .

Proof. To prove (1), we take note that the resolvent set is given as

ρ(Γ) = {λ ∈ C : Re(λ) 6= 0}. We therefore consider the following cases:

Case 1: If Re(λ) > 0, then the resolvent operator is given by the Laplace

transform. For every h ∈ B∞,◦(U), we have R(λ,Γ)h =
∫∞

0
e−λtSthdt with
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convergence in norm. Therefore,

R(λ,Γ)h(ω) =

∫ ∞
0

e−λth(etw)dt.

By change of variables, let z = etw, then w = e−tz, dz
dt

= wet then

dt = dz
wet

= dz
z

. Therefore when t = 0⇒ z = w and t =∞⇒ z =∞ and

so

R(λ,Γ)h(ω) =

∫ ∞
ω

e−λth(z)
dz

z

=

∫ ∞
ω

( z
ω

)−λ 1

z
h(z)dz

=
1

ω−λ

∫ ∞
w

z−(λ+1)h(z)dz

= ωλ
∫ ∞
ω

z−(λ+1)h(z)dz

= ωλ
∫ ∞
ω

1

zλ+1
h(z)dz.

Case 2: If Re(λ) < 0, then

R(λ,Γ)h(ω) = −R(−λ,−Γ)h

= −
∫ ∞

0

eλth(e−tw)dt.

Then by change of variables, let z = e−tw then et = w
z
, dz
dt

= −we−t then

dt = −dz
we−t

and dt = −dz
z

. Therefore t = 0 ⇒ z = w and t = ∞ ⇒ z = 0
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and so;

R(λ,Γ)h(ω) = −
∫ ∞

0

eλth(z).− dz

z

= −
∫ ω

0

(w
z

)λ
h(z).

dz

z

= −ωλ
∫ ω

0

(
1

z

)λ
.
1

z
h(z)dz

= −ωλ
∫ ω

0

z−λ.z−1h(z)dz

= −ωλ
∫ ω

0

z−(λ+1)h(z)dz

= −ωλ
∫ ω

0

1

zλ+1
h(z)dz.

To prove (2), we use the spectral mapping theorem [Theorem 2.0.2] for

the resolvent operator which asserts that

σ(R(λ,Γ)) = (λ− σ(Γ))−1 =
{

1
λ−µ : µ ∈ σ(Γ) for λ ∈ ρ(Γ)

}
\ {0}.

Therefore,

σ(R(λ,Γ)) =

{
1

λ− ir
: r ∈ R

}
\ {0}

=

{
1

Re(λ) + i(Im(λ)− r)
: r ∈ R

}
\ {0}.

Rationalizing the denominator and simplifying we get,

σ(R(λ,Γ)) =

{
1(Re(λ)− i(Im(λ)− r))

(Re(λ) + i(Im(λ)− r))(Re(λ)− i(Im(λ)− r))
: r ∈ R

}
=

{
(Re(λ)− i(Im(λ)− r))
(Re(λ))2 + (Im(λ)− r)2

: r ∈ R
}
,
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where,

λ = Re(λ) + iIm(λ).

Now by letting w = (Re(λ)−i(Im(λ)−r))
(Re(λ))2+(Im(λ)−r)2 and subtracting 1

2Re(λ)
, therefore we

obtain,

w − 1

2Re(λ)
=

Re(λ)− i(Im(λ)− r)
(Re(λ))2 + (Im(λ)− r)2

− 1

2Re(λ)

=
2Re(λ)(Re(λ)− i(Im(λ)− r))− ((Re(λ))2 + (Im(λ)− r)2)

2Re(λ)((Re(λ))2 + (Im(λ)− r)2)

=
2(Re(λ))2 − 2iRe(λ)(Im(λ)− r))− ((Re(λ))2 − (Im(λ)− r)2)

2Re(λ)((Re(λ))2 + (Im(λ)− r)2)

=
(Re(λ))2 − (Im(λ)− r)2 − 2iRe(λ)(Im(λ)− r)

2Re(λ)((Re(λ))2 + (Im(λ)− r)2)
.

Now finding the magnitude of both sides of the equation and simplifying

we get,

∣∣∣∣w − 1

2Re(λ)

∣∣∣∣2 =

∣∣∣∣(Re(λ))2 − (Im(λ)− r)2 − 2iRe(λ)(Im(λ)− r)
2Re(λ)((Re(λ))2 + (Im(λ)− r)2)

∣∣∣∣2
=

[(Re(λ))2 − (Im(λ)− r)2]2 + 4(Re(λ))2(Im(λ)− r)2

4Re(λ)2[(Re(λ))2 + (Im(λ)− r)2]2

=
1

(2Re(λ))2
.∣∣∣∣w − 1

2Re(λ)

∣∣∣∣2 =
1

(2Re(λ))2∣∣∣∣w − 1

2Re(λ)

∣∣∣∣ =
1

2Re(λ)
.

Therefore, σ(R(λ,Γ)) =
{
w : |w − 1

2Re(λ)
| = 1

2Re(λ)

}
.
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For part (3), the spectral radius r(R(λ,Γ)) is by definition given as;

r(R(λ,Γ)) = sup{|w| : w ∈ σ(R(λ,Γ))}

= sup

{
|w| :

∣∣∣∣w − 1

2Re(λ)

∣∣∣∣ =
1

2Re(λ)

}
=

1

|Re(λ)|
.

Finally, to determine ‖R(λ,Γ)‖, we use the Hille Yosida theorem [Theo-

rem 2.0.1] as well as the fact that the spectral radius is always bounded

by the norm.

Since r(R(λ,Γ)) = 1
|Re(λ)| , then using the Hille Yosida theorem which

asserts that for every λ ≥ 0 ,

‖R(λ,Γ)‖ ≤ 1

|Re(λ)|
,

we get,

1

|Re(λ)|
= r(R(λ,Γ)) ≤ ‖R(λ,Γ)‖ ≤ 1

|Re(λ)|
,

which implies that ‖R(λ,Γ)‖ = 1
|Re(λ)| .

Therefore, r(R(λ,Γ)) = ‖R(λ,Γ)‖ = 1
|Re(λ)| . �

4.2 Translation Group

In this group the automorphisms are of the form ϕt(z) = z + kt, where

z ∈ U and k, t ∈ R with k 6= 0. Again, without loss of generality, we let

k = 1 and consider self analytic maps of U of the form ϕt(z) = z+t. Then
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the corresponding group of composition operators defined on Lpa(U, µα) is

given by

Ttf(z) = f(z + t),

for all f ∈ Lpa(U, µα) where 1 ≤ p < ∞. For p = 1, (Tt)t≥0 is defined on

L1
a(U, µα).

Again by using the duality pairing 〈g, f〉 =
∫
U g(w)f(w)dµα(w) where

f ∈ L1
a(U, µα) and g ∈ B∞,◦(U, i), we obtain a group of composition

operators on B∞,◦(U, i) as follows:

Let g ∈ B∞,◦(U, i), then

〈g, Ttf〉 =

∫
U
g(z)f(z + t)dµα(z).

Now by change of variables, let w = z + t, then z = w − t and dA(w) =∣∣dw
dz

∣∣2 dA(z) = dA(z).

Therefore,

〈g, Ttf〉 =

∫
U
g(z)f(z + t)(Im(w))αdA(z)

=

∫
U
g(w − t)f(w)(Im(w))αdA(w)

=

∫
U
g(w − t)f(w)dµα(w)

= 〈T ∗t g, f〉.

Now, we define St := T ∗t on B∞,◦(U, i). But we see that just as in the

case of the scaling group, Stg(i) = g(i − t) and therefore Stg does not

vanish at i. This means that St does not map B∞,◦(U, i) onto itself. We

therefore redefine St to act on B∞,◦(U) so that it maps the space onto
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itself. Thus, for all t ≥ 0 and g ∈ B∞,◦(U), Stg(w) = g(w − t) is the

group of composition operators defined on B∞,◦(U). In the next sections,

we study the semigroup properties of (St)t≥0 on B∞,◦(U).

4.2.1 Semigroup properties

In this section, we prove that (St)t∈R is a group, is an isometry and is

strongly continuous on B∞,◦(U) and finally determine the infinitesimal

generator Γ of (St)t≥0 on B∞,◦(U).

Lemma 4.2.1

(St)t∈R is a group on B∞,◦(U).

Proof. From definition, Stg(w) = g(w − t), therefore first we need to

show that (St)t≥0 is a group.

S0g(w) = g(w − 0) = g(w) ⇒ S0 = I(Identity).

And for St+sg(w) = (St ◦ Ss)g(w), we need to show that,

(St ◦ Ss)g(w) = St+sg(w) = St(Ssg(w)).

We have,

(St ◦ Ss)g(w) = St.Ssg(w) = St(g(w − s))

= g((w − s)− t)

= g(w − (s+ t))

= Ss+tg(w) = St+sg(w).
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Therefore, St+sg(w) = (St ◦ Ss)g(w).

Hence, (St)t≥0 is a semigroup.

Similarly, we need to show that (S−t)t≥0 is also a group.

From definition, Stg(w) = g(w − t). Therefore S−tg(w) = g(w + t)

Thus,

S−0g(w) = g(w − 0) = g(w) ⇒ S0 = I(Identity).

And we need to show that,

(S−t ◦ S−s)g(w) = S−t−sg(w) = S−t(S−sg(w)).

Therefore we have

(S−t ◦ S−s)g(w) = S−t(S−sg(w))

= S−t(g(w + s))

= g(w + s+ t) = g(w + (s+ t))

= S−s+−tg(w) = S−t+−sg(w).

Therefore it is clear that S−t−sg(w) = (S−t ◦ S−s)g(w). Thus (S−t)t≥0 is

a semigroup.

Hence, (St)t∈R is a group. �

Theorem 4.2.2

(St)t∈R is an isometry on B∞,◦(U).

58



CHAPTER 4. GROUPS OF WEIGHTED COMPOSITION OPERATORS

Proof. By definition, we have;

‖Stg‖B∞,◦(U) = sup
w∈U

Im(w)|(Stg)′(w)|

= sup
w∈U

Im(w)|(g(w − t))′|

= sup
w∈U

Im(w)|g′(w − t)|.

By change of variables, let z = w− t then w = z+ t and Im(w) = Im(z).

Hence,

‖Stg‖B∞,◦(U) = sup
z∈U

Im(z)|g′(z)|

= ‖g‖B∞,◦(U), as desired.

This therefore means that (St)t∈R is an isometry. �

Theorem 4.2.3

(St)t∈R is strongly continuous on B∞,◦(U).

Proof. We know that weighted composition operators defined onB∞,◦(U)

is Stg(w) = g(w − t). We let St = Cϕ−t which is strongly continuous on

B∞,◦(U) if and only if (Cψ−1◦ϕ−t◦ψ)t∈R is strongly continuous on B∞,◦(D).

By computing ψ−1 ◦ ϕ−t ◦ ψ(z) we obtain;

ψ−1 ◦ ϕ−t ◦ ψ(z) = ψ−1 ◦ ϕ−t(ψ(z))

= ψ−1(ϕ−t(ψ(z)))
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By letting ψ(z) = i(1+z)
1−z and ϕ−t(z) = z − t and substituting, we get

ψ−1 ◦ ϕ−t ◦ ψ(z) = ψ−1

(
i(1 + z)

1− z
− t
)

=

i(1+z)
1−z − t− i
i(1+z)

1−z − t+ i

=

i(1+z)
1−z − (t+ i)
i(1+z)

1−z + (i− t)
.

We simplify the fraction to obtain,

ψ−1 ◦ ϕ−t ◦ ψ(z) =
i(1 + z)− ((t+ i)(1− z))

i(1 + z) + (i− t)(1− z)

=
i+ iz − t+ tz − i+ iz

i+ iz + i− iz − t+ tz

=
2iz + tz − t)
2i− t+ tz)

=
(2i+ t)z − t
2i− t+ tz

.

Dividing each term of the fraction by 2i+ t, we get

=
z − t

2i+t
2i−t
2i+t

+ t
2i+t

z
.

Now we let

at =
t

2i+ t
,

bt =
2i− t
2i+ t

.
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Therefore,

ψ−1 ◦ ϕ−t ◦ ψ(z) =
z − at
bt + atz

= ha(z).

For z−at
bt+atz

= ha(z) and t → 0 as at → 0 and bt → 1. It therefore suffices

to show that

‖Chaf − f‖B∞,◦(D) → 0 as t→ 0.

Using density of polynomial in B∞,◦(D), we let f(z) = zn. Then;

Chaz
n − zn = (ha(z))n − zn, n ≥ 1.

Therefore,

(Chaf − f)′(z) = n(ha(z))n−1h′a(z)− nzn−1

= n[(ha(z))n−1h′a(z)− zn−1].

But,

ha(z) =
z − at
bt + atz

.

This implies that,

h′a(z) =
(bt + atz)(1)− (z − at)(at)

(bt + atz)2
.
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Therefore by substituting,

(Chaf − f)′(z) = n[(ha(z))n−1h′a(z)− zn−1]

= n

[(
z − at
bt + atz

)n−1
(bt + atz)− (z − at)(at)

(bt + atz)2
− zn−1

]

= n

[
(z − at)n−1(bt + atz)− (z − at)(at)

(bt + atz)n+1
− zn−1

]
.

Now,

lim
t→0+
‖Chaf − f‖B∞,◦(D) = lim

t→0+

(
sup
z∈D

(1− |z|2)|(Chaf − f)′|(z)

)

Therefore by substituting for (Chaf − f)′(z), we obtain

limt→0+ ‖Chaf−f‖B∞,◦(D) = limt→0+

(
supz∈D(1− |z|2)

∣∣∣n [ (z−at)n−1(bt+atz)−(z−at)(at)
(bt+atz)n+1 − zn−1

]∣∣∣)
Hence, it implies that the limt→0+ ‖Chaf − f‖B∞,◦(D) =

limt→0+

(
supz∈D(1− |z|2)

∣∣∣n [ (z−at)n−1(bt+atz)−(z−at)(at)−zn−1(bt+atz)2

(bt+atz)n+1

]∣∣∣).

Therefore,

lim
t→0+
‖Chaf − f‖B∞,◦(D) = lim

t→0+

(
sup
z∈D

(1− |z|2)

∣∣∣∣n[zn−1 − 0− zn−1]

1

∣∣∣∣)
= 0.

Hence (St)t∈R is strongly continuous. �

Theorem 4.2.4

The infinitesimal generator Γ of (St)t≥0 onB∞,◦(U) is given by Γg(w)=−g′(w)

with the domain dom(Γ) = {g ∈ B∞,◦(U) : g′(w) ∈ B∞,◦(U)}.

Proof. By definition, the infinitesimal generator denoted by Γ of g(w)
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is given by;

Γg(w) = lim
t→0+

g(w − t)− g(w)

t

=
∂

∂t
g(w − t)

∣∣∣∣
t=0

= −g′(w).

Therefore, Γg(w) = −g′(w) with the dom(Γ) = {g ∈ B∞,◦(U) : g′(w) ∈

B∞,◦(U)}.

This therefore implies that dom(Γ) ⊂ {g ∈ B∞,◦(U) : g′(w) ∈ B∞,◦(U)}.

Now to prove the reverse inclusion, let g ∈ B∞,◦(U) such that g′(w) ∈

B∞,◦(U).

Thus for w ∈ U, we have;

Stg(w)− g(w) =

∫ t

0

∂

∂s
g(w − s)ds

=

∫ t

0

−g′(w)ds.

Now letG(w) = −g′(w), therefore Stg(w)−g(w) =
∫ t

0
G(w)ds. SoG(w) =

−g′(w) is a function of B∞,◦(U).

Thus limt→0+
Stg−g
t

=limt→0+
1
t

∫ t
0
G(w)ds and strong continuity of (Ss)s≥0

implies that 1
t

∫ t
0
‖SsG − G‖ds → 0+ as t → 0+ hence dom(Γ) ⊇ {g ∈

B∞,◦(U) : −g′(w) ∈ B∞,◦(U)}, which completes the proof. �
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Chapter 5

Summary and

Recommendations

5.1 Summary

In this thesis, we determined the predual of the non-reflexive Bergman

space L1
a(U, µα) using the Cayley transform as well as the approach used

by K. Zhu on the duality of Bergman spaces of the unit disk. Specifically,

we have established that the predual of L1
a(U, µα) can be identified with

B∞,◦(U, i) which is the little Bloch space of the upper half-plane consist-

ing of functions vanishing at i, see Theorem 3.0.11. We also considered

the groups of composition operators induced by the group of self analytic

maps of the upper half plane which are distinctively classified into scal-

ing, translation and rotation groups. In this study we considered only the

scaling and translation groups. On the scaling group, we considered the

analytic self maps ϕt : U −→ U of the form ϕt(z) = e−tz for z ∈ U and

obtained the corresponding group of weighted composition operators on

the predual of the space L1
a(U, µα) using the duality pairing. Therefore,
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we obtained Stg(w) := g(etw) as the semigroup of composition operators

defined on B∞,◦(U, i). Since (St)t∈R is not well defined on B∞,◦(U, i), we

extended the domain to B∞,◦(U) where (St)t∈R is well defined and studied

both the semigroup and spectral properties of the groups on B∞,◦(U). For

the semigroup properties, we established the strong continuity property

in Theorem 4.1.3. and also in Theorem 4.1.4, we determined the infinites-

imal generator Γ of (St)t≥0 on B∞,◦(U), and obtained its domain.

For the spectral properties, we obtained the spectrum and point spectrum

of the infinitesimal generator Γ. In Theorem 4.1.6, we obtained the resol-

vent of the infinitesimal generator Γ of this group using spectral theory,

which was obtained as an integral operator. Finally, using Hille-Yosida

theorem, we determined the spectral radius of the infinitesimal generator

as r(R(λ,Γ)) = 1
|Re(λ)| and the norm as ‖R(λ,Γ)‖ = 1

|Re(λ)| .

On the translation group, we also considered the self analytic maps of U

of the form ϕt(z) = z + t and obtained a group of composition operators

on B∞,◦(U, i) again using the same duality pairing. In this case, we ob-

tained Stg(w) = g(w − t) as the group of composition operators defined

on B∞,◦(U, i). Again, since (St)t∈R is not well defined on B∞,◦(U, i), we

extended the domain to B∞,◦(U) where (St)t∈R is well defined and studied

both the semigroup and spectral properties of the groups on B∞,◦(U). For

the semigroup properties, we established the strong continuity property

in Theorem 4.2.3. and also determined the infinitesimal generator Γ of

(St)t≥0 on B∞,◦(U), where Stg(w) = g(w − t) in Theorem 4.2.4. and ob-

tained its domain
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5.2 Recommendations

From the results obtained in this study, we recommend the following for

further research:

1. In this study, we considered the group of weighted composition oper-

ators corresponding to the self analytic maps defined on the scaling

and translation groups on B∞,◦(U) and studied their semigroup and

spectral properties. Therefore, we recommend an extension of the

same study on the weighted composition operators corresponding to

the self analytic maps defined on the rotation groups on B∞,◦(U).

2. From this work, we have successfully investigated the semigroup and

spectral properties of weighted composition operators corresponding

to the self analytic maps defined on the predual of non-reflexive

Bergman spaces of the upper-half plane, but on the other spaces

like Dirichlet spaces, Besov spaces and among other spaces this has

not been carried out. Therefore we recommend an extension of the

same investigation of semigroups and spectral properties of groups

of weighted composition operators on Dirichlet spaces and Besov

spaces on the upper half-plane.

3. In this study, we obtained the semigroup of composition opera-

tors defined on B∞,◦(U, i) but since (St)t∈R is not well defined on

B∞,◦(U, i), we extended the domain to B∞,◦(U) where (St)t∈R is

well defined and studied both the semigroup and spectral proper-

ties of the groups on B∞,◦(U). Instead of extending the domain, we

recommed the use of correction factor on the obtained semigroup of
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composition operators defined on B∞,◦(U, i) in order to study both

the semigroup and spectral properties of the groups on B∞,◦(U, i).

4. From this thesis, we considered the group of weighted composition

operators corresponding to the self analytic maps defined on the

scaling and translation groups on B∞,◦(U). Therefore, we recom-

mend an extension of the study to more general classes of the Bloch

spaces, usually called, Bloch type spaces.
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