
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/236586845

On the Solution of Confined Aquifer Flow Equations: Finite Difference

Approximations

Article  in  Applied Mathematical Sciences · April 2013

DOI: 10.12988/ams.2013.13256

CITATIONS

2
READS

1,013

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Well water pumping using wind energy energy system for enhanced food security and health View project

Jared Okiro

Otto-von-Guericke-Universität Magdeburg

1 PUBLICATION   2 CITATIONS   

SEE PROFILE

Alfred Wanyama Manyonge

Maseno University

40 PUBLICATIONS   183 CITATIONS   

SEE PROFILE

J. Shichika

University of Eldoret

6 PUBLICATIONS   81 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Alfred Wanyama Manyonge on 23 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/236586845_On_the_Solution_of_Confined_Aquifer_Flow_Equations_Finite_Difference_Approximations?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/236586845_On_the_Solution_of_Confined_Aquifer_Flow_Equations_Finite_Difference_Approximations?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Well-water-pumping-using-wind-energy-energy-system-for-enhanced-food-security-and-health?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jared_Okiro?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jared_Okiro?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Otto-von-Guericke-Universitaet_Magdeburg?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jared_Okiro?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfred_Manyonge?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfred_Manyonge?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Maseno_University?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfred_Manyonge?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Shichika?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Shichika?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Eldoret?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Shichika?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfred_Manyonge?enrichId=rgreq-a5fd39d97af53dfbf9108ee1c6893f76-XXX&enrichSource=Y292ZXJQYWdlOzIzNjU4Njg0NTtBUzoxMDAwNTg0ODk5NTAyMjZAMTQwMDg2NzIxMTkzMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Applied Mathematical Sciences, Vol. 7, 2013, no. 58, 2885 - 2896
HIKARI Ltd, www.m-hikari.com

On the Solution of Confined Aquifer Flow Equations:

Finite Difference Approximations

Okiro, J. O.1, Manyonge, A. W.21, Ongati, N.O.,3

Shichikha, J. M.4 and Kimaiyo, J. K.4

1Institute for Analysis and Numerics
Otto-Von-Guericke Universität

Universitätspaltz 02, 39106 Magdeburg, Germany

2Centre for Research on New and Renewable Energies
Maseno University, P.O. Box 333, Maseno, Kenya

3School of Mathematics and Actuarial Sciences
Oginga Odinga University, P.O. Box 210 - 40601, Bondo, Kenya

4Department of Mathematics
Moi University P.O. Box 3900, Eldoret, Kenya

jaokiro@gmail.com, wmanyonge@gmail.com
omolo ongati@yahoo.com, jmaremwa@yahoo.com

jkimaiyokipyego@yahoo.com

Copyright c© 2013 Okiro, J. O. et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Abstract

In general, groundwater flow in porous media on a microscopic level
is three-dimensional. However, when considering regional flow problems
i.e. groundwater flow on a macroscopic level, it is noted that because
of the low ratio of aquifer thickness to horizontal length, the flow in
the aquifer is practically horizontal[21]. Flow in confined aquifers is
therefore described by a two-dimensional second order non-linear partial
differential equation with variable coefficients on a finite domain. In this
paper, we examine the case of a confined aquifer that is being pumped

1Corresponding author
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and recharged at the same time. The concepts of stability, consistency
and convergence of the solution are assumed since the numerical schemes
involved are known to be unconditionally stable for all finite values of
mesh ratio[2]. The practical application of the results is illustrated
by presenting a numerical example whose solution is compared to the
measured data observed in a field site.

Mathematics Subject Classification: 65C20

Keywords: Finite difference methods, confined aquifer flow equations,
Alternating Direction Implicit (ADI), nonlinear partial differential equation

1 Introduction

Flow through porous media has been studied extensively from the late 18th
century. A wide range of problems in civil engineering requires the under-
standing of groundwater flow through porous media. These problems include
determination of yield of wells situated at different locations above aquifers,
determination of flow patterns under a dam in hydraulics, the study of con-
taminant transport in groundwater in environmental geotechnics and problems
of outflow from oil bearing strata in petroleum engineering.

The finite difference method, based on the approximate substitution of
derivatives by difference quotients, has been developed theoretically and prac-
tically by the work of many investigators. The results have been a number
of finite difference techniques. The finite difference method obtains a finite
system of linear equations from a partial differential equation by discretizing
the domain and operators. For the origin and development of the various finite
difference schemes, see e.g. [3, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Several other
numerical schemes have also been used to approximate aquifer flow equations,
see [13, 14, 15]. All the numerical methods used above have always resulted
in a finite system of a large number of linear equations that have been more
convenient for a computer solution. This has led to the development of com-
puter codes for almost all classes of problems encountered in the management
of groundwater, see e.g. [16, 17, 18, 19]. Other computer codes have also been
developed lately e.g. FEMWATER and modern variations of FORTRAN. In
this paper, the two - dimensional nonlinear groundwater flow equations are
linearised and simplified using the ADI methods, see Jain [2]. The numerical
scheme is then used to verify and validate the variation of groundwater lev-
els in wells for Kisumu District(Kenya) hydrogeologic setting, incorporating
measured data observed in a field site, see [20]. This has been achieved by
generating a large matrix that is then solved using MATLAB. We are unaware
of any published work on solving confined aquifer flow equations using the
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ADI methods. The rest of this paper is organised as follows: In Section 2,
we present groundwater flow model in two - dimensions and its discretization
using the ADI methods. In Section 3, we present a numerical application of
the derived ADI scheme using data obtained from wells located within Kisumu
District(Kenya) hydrogeologic setting. In the conclusions, we analyze the effi-
ciency and accuracy of the method used and briefly discuss the relevance of our
results to civil engineers on the current problems in modelling and simulation
of groundwater flow.

2 Finite difference (ADI) approximations to

the two-dimensional confined aquifer flow

equation

Consider a two-dimensional confined aquifer flow equation of the form, see
Bear [21]

S
∂h

∂t
=

∂

∂x

(
T
∂h

∂x

)
+

∂

∂y

(
T
∂h

∂y

)
− P (x, y, t) +R(x, y, t) (2.1)

where h is the piezometric head defined as h = p
ρlg

+ z, p is the pressure and

z is the positive vertical coodinate, P (x, y, t) is the rate of pumping(per unit
area of aquifer), R(x, y, t) is the rate of recharge (per unit area of aquifer).
S is the aquifer storativity defined by S = φρlcgb where φ is the porosity of
the soil/rock surface, ρl is the liquid density, c is the chemical/contaminant
concentration in the water, g is the gravitational acceleration and b is the
thickness of the aquifer. T is the aquifer transmitivity defined by T = kb,
in which b may vary with x and y and k is the permeability of the medium.
The aquifer storativity is defined as the volume of water added to storage in
a unit area of aquifer, per unit rise of piezometric head. Hence the left side of
equation (2.1) expresses the volume of water added to storage in the aquifer,
per unit area per unit time. Thus equation (2.1) implies that the excess of
inflow over outflow of water in a unit area of an aquifer, per unit time, at
a point, is equal to the rate at which water volume is being stored, where
storage is due to fluid and solid matrix compressibilities. In equation (2.1), we
can reasonably assume that the rate of pumping and recharge are constants,
since all the wells in the considered domain have the same source of recharge.
We then solve (2.1) inside the aquifer model with the following initial and
boundary conditions:

(i) Specified head boundary: h(x, y, t) = h(x, y, 0) = 13m (lower value of
the piezometric head in the considered domain at any time).
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(ii) Vertical boundaries: ∂h
∂x

= 0 at x = 0, I; ∂h
∂y

= 0 at y = 0, J , indicating
zero flux boundary where I and J are intervals on the x− and y− axes
respectively.

(iii) The bottom of the flow system is an impermeable rock unit (unfractured
igneous rocks). Thus, this physical boundary is also represented as a zero
flux boundary.

Let m, l, and n be index sets in the x, y, and t directions respectively. Here,
x = mΔx, y = lΔy and t = nΔt where Δx,Δy and Δt are spacing in the
x, y, and t directions respectively. We may therefore write:

h(x, y, t) = h(mΔx, lΔy, nΔt) = hn
m,l (2.2)

Equation (2.1) can be linearized using the ADI methods by a procedure that
we describe below, see [2]. We consider one space dimension, and then later
translate the result to two- dimensional space. We then have:

S
∂h

∂t
=

∂

∂x

(
T
∂h

∂x

)
− P (x, t) +R(x, t) (2.3)

Substitution of T ∂h
∂x

= Z(x, t) into (2.3) and rearranging gives

∂Z

∂x
= S

∂h

∂t
+ P (x, t) − R(x, t) (2.4)

which can be written as

∂Z

∂x
= K(h; x, t) (2.5)

On integrating (2.5) between the limits (xm− 1
2
, xm+ 1

2
), we obtain the result

Z(xm+ 1
2
, t) − Z(xm− 1

2
, t) =

∫ x
m+1

2

x
m− 1

2

K(h;λ, t)dλ (2.6)

Integrating (2.5) between the limits (xm− 1
2
, x) and then multiplying this with

1
T (x,t)

, and integrating again between (xm−1, xm), we get

∫ xm

xm−1

Z(x, t) − Z(xm− 1
2
, t)

T (x, t)
dx =

∫ xm

xm−1

∫ x

x
m− 1

2

K(h;λ, t)dλ

T (x, t)
dx (2.7)

Substituting for T ∂h
∂x

= Z(x, t) in (2.7), we obtain

∫ xm

xm−1

∂h

∂x
−
Z(xm− 1

2
, t)

T (x, t)
dx =

∫ xm

xm−1

∫ x

x
m− 1

2

K(h;λ, t)dλ

T (x, t)
dx (2.8)
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Integrate with respect to x to obtain

h(xm, t) − h(xm−1, t) − Z(xm− 1
2
, t)

∫ xm

xm−1

dx

T (x, t)
=

∫ xm

xm−1

∫ x

x
m− 1

2

K(h;λ, t)dλ

T (x, t)
dx

(2.9)

Rearranging, we get

Z(xm− 1
2
, t)

∫ xm

xm−1

dx

T (x, t)
= [h(xm, t) − h(xm−1, t)] −

∫ xm

xm−1

∫ x

x
m− 1

2

K(h;λ, t)dλ

T (x, t)
dx

(2.10)

Solving for Z(xm− 1
2
, t) yields

Z(xm− 1
2
, t) =

h(xm, t) − h(xm−1, t)∫ xm

xm−1

dx
T (x,t)

− 1∫ xm

xm−1

dx
T (x,t)

∫ xm

xm−1

dx

T (x, t)

∫ x

x
m− 1

2

K(h;λ, t)dλ

(2.11)

Similarly, we have

Z(xm+ 1
2
, t) =

h(xm+1, t) − h(xm, t)∫ xm+1

xm

dx
T (x,t)

− 1∫ xm+1

xm

dx
T (x,t)

∫ xm+1

xm

dx

T (x, t)

∫ x

x
m+1

2

K(h;λ, t)dλ

(2.12)

Substituting (2.11) and (2.12) into (2.6) and integrating between the limits
(tn, tn+1), we obtain the integral identity as follows

∫ tn+1

tn

h(xm+1, t) − h(xm, t)∫ xm+1

xm

dx
T (x,t)

dt−
∫ tn+1

tn

h(xm, t) − h(xm−1, t)∫ xm

xm−1

dx
T (x,t)

dt =

∫ tn+1

tn

dt

∫ x
m+1

2

x
m+1

2

K(h;λ, t)dλ+

∫ tn+1

tn

dt∫ xm+1

xm

dx
T (x,t)

∫ xm+1

xm

dx

T (x, t)

∫ x

x
m+1

2

K(h; u, t)du

−
∫ tn+1

tn

dt∫ xm

xm−1

dx
T (x,t)

∫ xm

xm−1

dx

T (x, t)

∫ x

x
m− 1

2

K(h;λ, t)dλ

(2.13)

The integrals in (2.13) may be evaluated by the quadrature formulas:

∫ tn+1

tn

f(t)dt ≈k[γ1f(tn) + (1 − γ1)f(tn+1)]

∫ tn+1

tn

f(t)g′(t)dt ≈[γ1f(tn) + (1 − γ1)f(tn+1)][g(tn+1 − g(tn))]
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where γ1, 0 ≤ γ1 ≤ 1 is a parameter.∫ xm−1

xm

dx

φ(x)
≈ R

1

φ(xm− 1
2
)
;

∫ xm+1

xm

dx

φ(x)
≈ R

1

φ(xm+ 1
2
)
;

∫ x
m+1

2

x
m− 1

2

φ(x)dx ≈ aφ(xi);

∫ xm

xm−1

dx

φ(x)

∫ x

x
m− 1

2

ψ(s)ds ≈ 0;

∫ xm+1

xm

dx

φ(x)

∫ x

x
m+1

2

ψ(s)ds ≈ 0

Equation (2.13) can now be simplified to

[(1 − γ1)S
n+1
m + γ1S

n
m]
hn+1

m − hn
m

k
− (1 − γ1)

R2
[T n+1

m− 1
2

hn+1
m−1 − (T n+1

m− 1
2

+ T n+1
m+ 1

2

)hn+1
m + T n+1

m+1h
n+1
m+1]

− γ1

R2
[T n

m− 1
2
hn

m−1 − (T n
m− 1

2
+ T n

m+ 1
2
)hn

m + T n
m+1h

n
m+1] + (1 − γ1)P

n+1
m hn+1

m + γ1P
n
mh

n
m

= (1 − γ1)R
n+1
m + γ1R

n
m

(2.14)

where

T n
m± 1

2
= T (xm± 1

2
, tn); Sn

m = S(xm, tn); P n
m = P (xm, tn) and Rn

m = R(xm, tn)

Equation (2.14) may be written as

[(1 − γ1)S
n+1
m + γ1S

n
m]Δth

n+1
m − [(1 − γ1)rδx(T

n+1
m δxh

n+1
m ) + γ1rδx(T

n
mδxh

n
m)]

+(1 − γ1)kP
n+1
m hn+1

m + γ1kP
n
mh

n
m = (1 − γ1)kR

n+1
m + γ1kR

n
m

(2.15)

The values γ1 = 1 and γ1 = 0 give the ADI explicit and implicit schemes
of order of accuracy (k + n2) respectively. The value γ1 = 1

2
gives the Crank-

Nicholson scheme of order (k2 + n2). Since ADI methods are second order
accurate and are unconditionally stable and convergent for all finite values
of the mesh ratio, we choose γ1 = 0 and use the implicit scheme. We then
re-write equation (2.15) as

Sn+1
m Δth

n+1
m − rδx(T

n+1
m δxh

n+1
m ) + kP n+1

m hn+1
m = kRn+1

m (2.16)

Since the values of S,R and P have been taken as constants at particular
instances, we have

SΔth
n+1
m − rδx(T

n+1
m δxh

n+1
m ) + kPhn+1

m = kR (2.17)

Similarly, considering the y-space dimension, we write

S
∂h

∂t
=

∂

∂y

(
T
∂h

∂y

)
− P (y, t) +R(y, t) (2.18)
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which gives the finite difference scheme of the form

SΔth
n+1
l − rδy(T

n+1
l δyh

n+1
l ) + kPhn+1

l = kR (2.19)

Combining equations (2.17) and (2.19) gives the required finite difference
scheme approximation to equation (2.1). This is expressed as

SΔth
n+1
m − rδx(T

n+1
m δxh

n+1
m ) + kPhn+1

m = SΔth
n+1
l − rδy(T

n+1
l δyh

n+1
l ) + kPhn+1

l

(2.20)

and can be simplified to

SΔt(h
n+1
m − hn+1

l ) + r[−δx(T n+1
m δxh

n+1
m + δy(T

n+1
l δyh

n+1
l ] + kP (hn+1

m − hn+1
l ) = 0
(2.21)

and written as

Shn+1
i+1,j − Shn+1

i,j+1 + rT (hn+1
i,j−1 + hn+1

i,j+1 − hn+1
i+1,j − hn+1

i−1 ) + kPhn+1
i,j = 0 (2.22)

3 Numerical Application

Consider a schematic representation of the aquifer model with mesh spacing
as shown in Figure 1. We now examine the use of equation (2.22) vis-a-

Figure 1: Discretised aquifer model

vis the nodes of Figure 1 using the implicit ADI method described so far.
Equation (2.22) holds in the interior of the model of Figure 1 with the initial
and boundary conditions described above. We then proceed with the solution
as follows: Assume the solution is known at the time level tn . We determine
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the solution at tn+1 as follows:
Sub-divide the interval I on the x-axis into four equal spacing, sub-divide
the interval J on the y-axis into four equal spacing and finally sub-divide the
interval N on the t-axis into thirty two equal spacing. The size of the system
of equations depends on the number of slices we make in the cube. We can
minimize the complexity of the system without loss of generality by taking
m = 4 i.e. Δx = Δy = 1

4
on the x and y axes and use Δn = 1

32
on the

t axis as an illustration. This gives r = 1
2

where r = Δn
(Δx)2

. We label all

the mesh-points of the cube (Figure 1) in the aquifer model as h1, h2, . . . , h81.
Apply equation (2.22) to each interior point of the model to obtain a system
of 9 equations in 9 unknowns. The system of equations can be expressed in
matrix vector form as:

Ah = b (3.1)

where A is a (m−1)2 matrix of known coefficients, h is the vector of unknown
quantities (piezometric head at internal mesh points) and b is a vector of known
quantities (from boundary conditions, aquifer storativity, rate of pumping and
rate of recharge). We repeat the above procedure for time tn+2, tn+3, . . . until
a stable solution is achieved. But since the implicit ADI scheme is uncondi-
tionally stable, we will consider in our scheme, only one step i.e. at time tn+1.
For purely illustrative purposes, we shall solve the aquifer flow equation inside
the model of Figure 1 when subjected to the following boundary conditions
obtained from the field data.

h(0, y, t) = 13m
h(1, y, t) = 50m
h(x, 0, t) = 11m
h(x, 1, t) = 42m
h(x, y, 0) = 10m
h(x, y, 1) = 50m

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

The average values of the other parameters considered in the domain of study
were recorded as follows:

S = 36m3/minute
T = 1m2/minute
R = 23m3/minute
P = 6m3/minute

⎫⎪⎪⎬
⎪⎪⎭

(3.3)

The model has nine internal points, at which the piezometric heads are to be
evaluated, and may be written in vector form as: [h1

11, h
1
22, h

1
23, h

1
24, h

1
32, h

1
33, h

1
34, h

1
42, h

1
44]

T .
This can be renamed as: [h1, h2, h3, h4, h5, h6, h7, h8, h9]

T . Applying the scheme,
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we obtain a system of equations, which we represent in matrix form as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 0 0 0 0 0
0 35 0 0 0 0 0 0 0
0 0 35 0 0 0 0 0 0
0 0 0 35 0 0 0 0 0
0 6 −35 0 35 0 0 0 0
0 −1 0 0 6 35 0 −35 0
0 0 0 0 0 0 35 0 0
0 1 6 −35 0 0 0 35 0
0 0 −1 0 1 6 −35 0 35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

h3

h4

h5

h6

h7

h8

h9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

251
1720
1413
1463

8
−42
1691
50
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using MATLAB, we obtain

h1 = 41.8m h6 = 29.6m

h2 = 49.1m h7 = 48.3m

h3 = 40.4m h8 = 34.9m

h4 = 41.8m h9 = 43.5m

h5 = 32.2m

4 Conclusion

In this paper we have presented a numerical scheme for groundwater flow in
an anisotropic heterogenous fully confined aquifer based on the ADI method.
Considering the results in Section 3, it can be seen that the numerical scheme
has reliably validated and predicted the variations of groundwater levels for
the 120 wells located within Kisumu District hydrogeologic setting. From
these results of the numerical example, the finite difference approximation has
yielded solutions which reliably replicate those obtained from measured field
data. This is critical in planning and implementing groundwater remediation
within the considered region.
We wish to point out that in differencing the groundwater flow equation, we
have developed a numerical scheme that is only second order accurate. We
have also considered a domain defined by the horizontal Cartesian space co-
ordinates. Future research may take into consideration higher order accuracy,
and a medium defined by cylindrical polar co-ordinates that describe radial
groundwater flow into wells, and well pumping test analysis.

References

[1] D’Yakonov, G. E. (1963): On the application of disintegration difference
operators. Z. Vycist. Mat. Mat. Fiz, vol 3, pp385-388



2894 Okiro, J. O. et al.

[2] Jain, M. K. (1984): Numerical Solution of Differential Equations, 2nd ed.
Wiley Eastern Limited, New Delhi.

[3] Crank, J. and Nicholson, P. (1947): A practical method for the numerical
evaluation of solutions of partial differential equations of the heat conduc-
tion type. Proc. Comb. Phil. Sco., vol. 43, 50-57.

[4] Douglas, J Jr. and Rachford, H. H. (1956): On the numerical solution of
heat conduction problems in two and three space variables. Trans. Amer.
Math. Soc., 82(20), PP421-439.

[5] Dufort, E. C. and Frankel, S. F. (1953): Stability conditions in the nu-
merical treatment of parabolic differential equations. Math. Comp., vol.
7, pp135-152.

[6] Larkin, B. K. (1964): Some stable explicit difference approximation to
the diffusion equation. Math. Comp., vol. 18, pp196-202.

[7] Lax, P. D. and Richtmyer, R. D. (1956): Survey of the stability of linear
finite differential equations.Comm. Pure Appl. Math.,vol. 9, pp267-293.

[8] Li, Z. and Shen, Y. (1999): A numerical method for solving heat equations
involving interfaces. Electronic Journal of Differential Equations, Conf.,
vol. 3, pp100-108.

[9] Li, Z. and Mayo, A. (1993): ADI method for heat equations with discon-
tinuities along an arbitrary interface. Proc. Symp. Appl. Math, AMS, vol.
48, pp311-315.

[10] Peaceman, D. W. and Rachford, H. H. (1955): The numerical solution of
parabolic and elliptic equations. J. Soc. Indust. Appli. Math., 3(1), pp28-
41.



Solution of confined aquifer flow equations 2895

[11] Sarmaskii, A. A. (1964): Local one- dimensional difference schemes for
multidimensional hyperbolic equations in an arbitrary region. Zh. Vychisl.
Mat. Mat. Fiz., 4(4), PP638-648.

[12] Saul’yen, V. K. (1964): Integration of Equations of Parabolic Type by
the Method of Nets. Pergamon Press.

[13] Charvent, G. and Jaffre, J. (1986): Mathematical Models and Finite El-
ements for Reservoir Simulation. North Holland, Amsterdam.

[14] Herrling, B. and Heckele, A. (1986): Coupling of finite element and opti-
mization methods for management of groundwater systems. Advances in
Water Resources, 9(4), pp190-195.

[15] Tegnander, C. (2001): Models for groundwater flow: A numerical com-
parison between Richard’s model and the fractional flow model. Transport
in Porous Media, 43(2), pp213-224.

[16] McDonald, M. G. and Harbaugh, W. A. (1988): A modular three-
dimensional finite-difference groundwater flow model. Volume 6 of Tech-
niques of Water Resources Investigation of the United States Geological
Survey, Chapter A1, Scientific Software Group.

[17] Trescott, P. C. (1975): Documentation of finite-difference model for Sim-
ulation of three-dimensional groundwater flow. U.S Geological Survey
Open-File Report, vol. 32, pp75-438.

[18] Trescott, P. C. and Larson, S. P. (1976): Documentation of finite-
difference model for Simulation of three-dimensional groundwater flow.
U.S Geological Survey Open-File Report, vol. 21, pp75-591, Supplement
to Open File Report 75-438.

[19] Trescott, P. C., Pinder, P. C. and Larson, S. P. (1976): Finite-difference
model for aquifer simulation in two-dimensions with results of numerical
experiments in Techniques of Water-Resources Investigation of the U.S
Geological Survey. Book 7, 116.



2896 Okiro, J. O. et al.

[20] Ker, Priestman and Associates (1988): Water Resources Assessment Sur-
vey Report of Muhoroni, Nyando and Winam Divisions, Lake Basin De-
velopment Authoroty(LBDA), Nairobi.

[21] Bear, J. (1979): Hydraulics of Groundwater. McGraw-Hill, New York.

Received: March 15, 2013

View publication statsView publication stats

https://www.researchgate.net/publication/236586845

