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Abstract

We study the properties of the essential algebraic numerical range as
well as the essential spatial numerical range for Banach space operators.
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1 Introduction

Let A be a complex normed algebra with a unit and let A∗ denote its dual
space. For a comprehensive theory on normed algebras, we refer to [4]. We
define the algebraic numerical range of an element a ∈ A by V (a,A) = {f(a) :
f ∈ A∗, f(1) = 1 = ‖f‖}. Let X denote a complex Banach space and L(X)
be the Banach algebra of all bounded linear operators acting on X. We de-
note the algebraic numerical range of any T ∈ L(X) by V (T,L(X)). For
T ∈ L(X), the spatial numerical range is defined by W (T ) = {〈Tx, x∗〉 : x ∈
X, x∗ ∈ X∗, ‖x‖ = 1 = ‖x∗‖ = 〈x, x∗〉}. In the case that X is a Hilbert space
the definition reduces to W (T ) = {〈Tx, x〉 x ∈ X, ‖x‖ = 1} which is the well
known definition of the Hilbert space numerical range.
The algebraic and spatial numerical ranges of any T ∈ L(X) are closely related
and this relationship has been a problem of study for the past few decades.
See for instance [3, 4, 7, 8, 9] and references therein. In particular, for Hilbert
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space operators the set W (T ) is convex by the classical Toeplitz-Hausdorff
theorem and V (T,L(X)) = W (T ) where W (T ) is the closure of W (T ). The
above assertions are no longer true for Banach space operators. Specifically
we only have V (T,L(X)) = convW (T ), where conv denotes the convex hull,
see [3, 5] for details.
Let K(X) denote the ideal of all compact operators acting on a complex Ba-
nach space X. Also let q be the usual canonical mapping from L(X) onto the
Calkin algebra L(X)/K(X). The essential algebraic numerical range, Ve(T ),
of an operator T ∈ L(X) where X is an infinite dimensional Banach space is
defined by Ve(T ) = V (q(T ),L(X)/K(X), ‖.‖e) where ‖.‖e denotes the essential
norm given by ‖T‖e = inf{‖T + K‖ : K ∈ K(X)}. On the other hand the
essential spatial numerical range We(T ) of an operator T ∈ L(X) is defined
to be the set of all complex numbers λ with the property that there are nets
(uα) ⊂ X, (u∗α) ⊂ X∗, such that ‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for all α, uα → 0
weakly and 〈Tuα, u∗α〉 → λ.
As remarked in [2], the essential algebraic and the essential spatial numerical
ranges for a Hilbert space operators coincide. For Banach space operators,
the properties of the essential algebraic numerical range have been remarkably
studied in literature. Surprisingly, the first reasonable attempt for the cor-
responding study of the essential spatial numerical range was by [2] in 2005.
The reasons behind this strange observation isn’t apparent but we believe it
might be due to the lack of the equality in We(T ) 6= W (q(T )). It is also noted
in [2] that for a successful study of the properties of this numerical range, it is
important to consider another norm which is a “measure of non-compactness”
instead of the usual essential norm ‖.‖e. In this study we consider these two
numerical ranges on Banach spaces. Apart from extending the well known
properties of the essential algebraic numerical range, we establish some new
properties of the spatial numerical range.

2 Essential Algebraic Numerical Range

Let X be an infinite dimensional Banach space and T ∈ L(X). The basic
properties of the essential algebraic numerical range Ve(T ) can be found in [5]
and we summarize them in the following theorem;

Theorem 2.1. (i) Ve(T ) is a nonempty compact subset of C and σe(T ) ⊂
Ve(T ) where σe(T ) denotes the essential spectrum of T .

(ii) Ve(T ) = {0} if and only if T ∈ K(X).

(iii) Ve(T ) =
⋂
{V (T +K,B(X)) : K ∈ K(X)}.

(iv) Ve(T ) = {f(T ) : f ∈ B(X)∗, f(I) = 1 = ‖f‖, f(K(X)) = {0}}
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(v) exp(−1).‖T‖e ≤ max{|λ| : λ ∈ Ve(T )} ≤ ‖T‖e.

As an extension of the above properties, we establish the following addi-
tional algebraic properties of Ve(T ).

Theorem 2.2. For T, S ∈ L(X) and α, β ∈ C, we have:

(i) Ve(αT ) = αVe(T )

(ii) Ve(T + S) ⊆ Ve(T ) + Ve(S).

(iii) Ve(αT + βS) ⊆ αVe(T ) + βVe(S).

Proof. To prove (i), let p be a complex number. Then p ∈ Ve(T ) if and only if
|p−λ| ≤ ‖T +K −λ‖ for each complex number λ and each compact operator
K. So p ∈ Ve(αT ) if and only if |p−λ| ≤ ‖α((T +K)−λ)‖ = |α|‖T +K −λ‖
for each complex number α and λ and each compact operator K. Hence
Ve(αT ) = V (q(αT ) = V (αq(T )) = αV (q(T )) = αVe(T ).
Now, Ve(T +S) = V (q(T +S)) = V ((T +S) +K) = V ((T +K) + (S+K)) ⊆
V (T + K) + V (S + K) = V (q(T )) + V (q(S)) = Ve(T ) + Ve(S), which proves
(ii).
The proof of (iii) follows from (i) and (ii) above.

Let νe(T ) denotes the essential algebraic numerical radius defined by νe(T ) =
sup{|λ| : λ ∈ Ve(T )} , that is, the numerical radius associated with Ve(T ), then
we obtain the following consequence of the above theorem;

Corollary 2.3. For T, S ∈ L(X) and α,β ∈ C, we have:

(i) νe(αT ) = |α|νe(T )

(ii) νe(T + S) ≤ νe(T ) + νe(S)

(iii) νe(αI + T ) = |α|+ νe(T )

(iv) νe(αT + βS) ≤ |α|νe(T ) + |β|νe(S).

Proof. Follows immediately from Theorem 2.2 and the definition of νe(T ).

For compact operators, the following theorem details the relation between
the essential spectrum and the essential algebraic numerical range;

Theorem 2.4. If T, S ∈ K(X) and α ∈ C, then

(i) σe(T ) = Ve(T ) = {0}

(ii) σe(T + S) = Ve(T + S) = Ve(T ) + Ve(S).

(iii) σe(T
∗) = Ve(T

∗)
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(iv) σe(αT ) = Ve(αT )

Proof. For T ∈ K(X), Ve(T ) = {0}. But σe(T ) ⊆ Ve(T ), and since the
spectrum σe(T ) is nonempty, the result follows, and this proves (i). To prove
(ii), since T, S ∈ K(X), T + S ∈ K(X) and {0} = σe(T + S) ⊆ Ve(T + S) =
Ve(T ) + Ve(S) = {0}.
Assertion (iii) follows from the fact that σe(T ) = σe(T

∗), while assertion (iv)
is obvious.

Consequently, if re(T ) is the essential spectral radius in the sense that
re(T ) = sup{|λ| : λ ∈ σe(T )}, then we have the following result;

Corollary 2.5. If T ∈ K(X),then re(T ) = νe(T ) = 0

3 Essential Spatial Numerical Range

The literature on the study of essential spatial numerical range for Banach
space operators is very scanty. One known study that’s available in litera-
ture is the work [2] by Barraa and Müller. In their attempt to study some
properties of We(T ) on Banach spaces, the authors in [2] considered another
measure of non-compactness instead of the essential norm in the Calkin al-
gebra. They remarked that this is a probable reason why We(T ) has never
been studied before. For T ∈ L(X) where X is an infinite dimensional Ba-
nach space, we define a seminorm ‖.‖µ on L(X) by ‖T‖µ = inf{‖T |M‖ : M ⊂
X a subspace of finite codimension }. Following [2], ‖.‖µ is a measure of non-
compactness, that is, ‖T‖µ = 0 if and only if T is compact. Moreover, ‖.‖µ
is an algebra norm on the Calkin algebra L(X)/K(X). As a result, another
essential numerical range Vµ(T ) defined by Vµ(T ) = V (T,L(X)/K(X), ‖.‖µ)
was introduced. In particular, Vµ(T ) is the set of all λ ∈ C such that there is
a functional Φ̃ ∈ (L(X)/K(X), ‖.‖µ)∗ satisfying ‖Φ̃‖ = 1 = Φ̃(I + K(X)) and
Φ̃(T + K(X)) = λ. Equivalently, there is a functional Φ ∈ L(X)∗ such that
Φ(K(X) = 0,Φ(I) = 1,Φ(T ) = λ and |Φ(S)| ≤ ‖S‖µ for all S ∈ L(X).
Before looking at the properties of the essential spatial numerical range We(T ),
we summarize some properties of Vµ(T ) in the following theorem:

Theorem 3.1. Let X be an infinite dimensional Banach space and T ∈
L(X). Then

(i) Vµ(T ) is a closed, convex and compact subset of C.

(ii) Vµ(T ) = {0} if and only if T is compact

(iii) Vµ(T +K) = Vµ(T ) for K ∈ K(X).

(iv) Vµ(T + S) ⊆ Vµ(T ) + Vµ(S) where S ∈ L(X).
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Proof. To prove that Vµ(T ) closed, let λn ∈ Vµ(T ) be such that λn → λ as
n→∞. Then for a fixed n, there exists Φn ∈ L(X)∗ such that Φn(K(X)) = 0,
Φn(I) = 1, Φn(T ) = λn and ‖Φn(S)‖ ≤ ‖S‖µ for all S. Then Φ(I) =
limn Φn(I) = 0, Φ(T ) = limn Φn(T ) = limn λn = λ, Φ(K(X)) = limn Φn(K(X)) =
0 and ‖Φ(S)‖ = limn ‖Φn(S)‖ ≤ ‖S‖µ for all S. Thus λ ∈ Vµ(T ) and this
proves that Vµ(T ) is closed. Following [2], Vµ(T ) = conv(We(T )) which clearly
indicates that Vµ(T ) is convex since it is a convex hull of some set. In general,
we know that Vµ(T ) ⊂ Ve(T ). But Ve(T ) is compact [5] and Vµ(T ) is closed
. The result then follows immediately from the fact that a closed subset of a
compact set is compact. This proves (i).
Now, for any T ∈ L(X), we have that Vµ(T ) = {0} if and only if Ve(T ) = {0}
which is true if and only if T is compact. This proves (ii).
The proof of (iii) follows from the definition of Vµ(T ) and from the fact that
‖.‖µ is a measure of non-compactness.
For (iv), from the sum property of the algebraic numerical range, we have

Vµ(T + S) = V (T + S,L(X)/K(X), ‖.‖µ)

⊆ V (T,L(X)/K(X), ‖.‖µ) + V (S,L(X)/K(X), ‖.‖µ)

= Vµ(T ) + Vµ(S).

Define νµ(T ) = sup{|λ| : λ ∈ Vµ(T )} as the numerical radius corresponding
to the numerical range Vµ(T ). We can then deduce the following Corollary;

Corollary 3.2. Let X be an infinite dimensional Banach space and T ∈
L(X). Then

(i) νµ(T ) = {0} if and only if T is compact

(ii) νµ(T +K) = νµ(T ) for K ∈ K(X)

(iii) νµ(T + S) ⊆ νµ(T ) + νµ(S) where S ∈ L(X).

(iv) νµ(T ∗) = νµ(T ).

Proof. Follows from the definition of νµ(T ) and Theorem 3.1 above.

It’s important to take note that in general Vµ(T ) ⊂ Ve(T ), but if X is a
Hilbert space we obtain equality, that is, Vµ(T ) = Ve(T ).
The next result gives some properties of the essential spatial numerical range.

Theorem 3.3. For T ∈ L(X), we have

(i) We(T ) is nonempty closed non-convex and compact subset of the complex
plane C.
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(ii) We(T ) = {0} if and only if T is compact

(iii) We(βT ) = βWe(T ) for some β ∈ C.

(iv) We(T + S) ⊆ We(T ) +We(S), where S ∈ L(X).

(v) We(αT + βS) ⊆ αWe(T ) + βWe(S), where S ∈ L(X) and β, α ∈ C.

Proof. Following [2], σe(T ) ⊂ We(T ). Since σe(T ) is nonempty, it follows that
We(T ) is nonempty as well. The noncovexity of We(T ) is immediate from the
relation Vµ(T ) = conv(We(T )). For closedness, let λn ∈ We(T ) be such that
λn → λ as n → ∞. We want to show that λ ∈ We(T ). Since λn ∈ We(T ),
choose nets which are partially ordered on subsets of X and X∗ by the relation
≤ as (uα) ⊂ X, (u∗α) ⊂ X∗ such that ‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for each α
and uα → 0 weakly. Fix n such that |〈Tuα, u∗α〉 − λn| < 1

n
. Then

|〈Tuα, u∗α〉 − λ| ≤ |〈Tuα, u∗α〉 − λn|+ |λn − λ|
< 1

n
+ |λn − λ| → 0 as n→∞.

The compactness of We(T ) follows from the compactness of Vµ(T ) since We(T )
is a closed subset of Vµ(T ). This proves (i).
To prove (ii), take note that We(T ) ⊂ conv(We(T )) = Vµ(T ) = {0} if and only
if T is compact. Since We(T ) is nonempty, the latter statement is equivalent
to We(T ) = {0} if and only if T is compact, as desired.
For (iii), let λ ∈ We(T ). This is equivalent to ∃ (uα) ⊂ X, (u∗α) ⊂ X∗ such
that ‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for all α, uα → 0 weakly and 〈Tuα, u∗α〉 → λ.
Then βWe(T )⇔ β〈Tuα, u∗α〉 → βλ. This in turn is equivalent to 〈βTuα, u∗α〉 →
βλ. Since βλ ∈ C, it follows that βWe(T ) = We(βT ).
To prove (iv), let λ ∈ We(T + S). Then ∃ (uα) ⊂ X, (u∗α) ⊂ X∗ such that
‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for all α, uα → 0 weakly and 〈(T+S)uα, u

∗
α〉 → λ.

Then 〈Tuα + Suα, u
∗
α〉 → λ is equivalent to 〈Tuα, u∗α〉+ 〈Suα, u∗α〉 → λ. This

implies that 〈Tuα, u∗α〉 → λ1 and 〈Suα, u∗α〉 → λ2 where λ = λ1 + λ2. Thus,
λ1 ∈ We(T ) and λ2 ∈ We(S) with λ = λ1 + λ2. Hence λ ∈ We(T ) +We(S).
Assertion (v) follows immediately from assertions (iii) and (iv) above.

Define the essential spatial numerical radius of T , ωe(T ), by

ωe(T ) = sup{|λ| : λ ∈ We(T )}.
Then the following is an immediate consequence of Theorem 3.3 above.

Corollary 3.4. For T, S ∈ L(X) and α, β ∈ C, we have

(i) ωe(T ) = 0 if and only if T ∈ K(X)

(ii) ωe(βT ) = |β|ωe(T )

(iii) ωe(T + S) ≤ ωe(T ) + ωe(S)

(iv) ωe(αT + βS) ≤ |α|ωe(T ) + |β|ωe(S).
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