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Abstract

A general analytical solution to the one dimensional regular Cauchy

problem of Euler-Poisson-Darboux (EPD) equation has been investi-

gated. The one dimensional EPD which is a Partial Differential Equa-

tion (PDE) with initial conditions is transformed into Ordinary Dif-

ferential Equation (ODE) using Similarity Transformation. The first

derivative of the ODE is eliminated by substitution technique. The co-

efficient of the first derivative is equated to zero and then solved. The

general solution is a product of two terms. The first term is the one

obtained when the first derivative is eliminated from the ODE and the

second term is the complementary function (cf) obtained from the re-

maining part of ODE. The arbitrary constants of the cf are obtained

in terms of x and t when the initial conditions are substituted in the

general solution. The general solution is a solution for one dimensional

regular Cauchy EPD’s and degenerate EPD’s, which by coincident are

one dimensional wave equations.
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1 Introduction

The regular Cauchy problem of Euler-Poisson-Darboux equation appears in

various areas of Mathematics and Physics, such as the theory of surfaces, the

propagation of sound, etc [3]. The Cauchy problem of Euler-Poisson-Darboux

equation takes the form:

∂2U

∂x21
+
∂2U

∂x22
+ ...+

∂2U

∂x2n
=
∂2U

∂t2
+
k

t

∂U

∂t

U(x1, ..., xn, 0) = f(x1, ...xn)

∂U

∂t
(x1, ..., xn, 0) = 0 (1)

where x1, x2, ...xn are points in Rn, k is a real parameter, t is a time parameter,

f is function, U is diplacement of a wave and Rn is Euclidean space. The

problem is called singular if k
t
→ ∞ as t → 0 and degenerate if k

t
→ 0 as

t→ 0. When the initial conditions in (1) are replaced by

U(x1, ..., xn, t) = f(x1, ...xn)

∂U

∂t
(x1, ..., xn, t) = 0

the problem becomes regular Cauchy when −∞ < k
t
< ∞. Davis [5] found

the explicit solution for a regular Cauchy problem for the n-dimensional EPD

equation. To obtain the solution , Davis extended the method of Riesz to

include non self adjoint equations. Existence and uniqueness were shown.

Asral [1] solved the regular Cauchy problem for the EPD equations using the

method of ascent. In our earlier paper, Manyonge et al [6], we found the

weak solution for the singular Cauchy problem of EPD equation for n = 4 by

applying Fourier transform to form Bessel differential equation. Convolution

theorem is then applied on the inverse transform of the solution of Bessel

differential equation. In the present paper, we have obtained analytically, a

general solution for one dimensional regular Cauchy problem of Euler -Poisson-

Darboux equation . The solution also works for one dimensional EPD’s that

are degenerate.
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2 One dimensional regular Cauchy problem of

Euler-Poisson-Darboux equation

The regular Cauchy problem of Euler-Poisson-Darboux (EPD) equation for

n-dimensions takes the form

∂2U

∂x21
+
∂2U

∂x22
+ ...+

∂2U

∂x2n
=
∂2U

∂t2
+
k

t

∂U

∂t
(2)

U(x1, ..., xn, t) = f(x1, ...xn) (3)

∂U

∂t
(x1, ..., xn, t) = 0 (4)

For one dimensional EPD, equations (2) to (4) become:

∂2U

∂x2
=
∂2U

∂t2
+
k

t

∂U

∂t
(5)

U(x, t) = f(x) (6)

∂U

∂t
(x, t) = 0 (7)

The main task is to find a function U(x, t) which satisfies equations (5) to (7)

above.

3 Converting PDE of EPD into ODE by Sim-

ilarity Transformation

To apply the Similarity Transformation method [2], let U(x, t) = G(xnt) so

that:
∂U

∂x
= ntxn−1G′(xnt) (8)

∂2U

∂x2
= n(n− 1)txn−2G′(xnt) + n2t2x2(n−1)G′′(xnt) (9)

∂U

∂t
= xnG′(xnt) (10)

∂2U

∂t2
= x2nG′′(xnt) (11)

Substituting equations (9) to (11) in equation (5) gives

n(n− 1)txn−2G′(xnt) + n2t2x2n−2G′′(xnt) = x2nG′′(xnt) +
k

t
xnG′(xnt) (12)
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Let σ = xnt so that t = σ
xn

then equation (12) becomes

n(n− 1)σx−2G′(σ) + n2σ2x−2G′′(σ) = x2nG′′(σ) +
k

σ
x2nG′(σ)

The equation above is made consistent only when −2 = 2n so that n = −1.

The equation then becomes

G′′(σ) +

(
2σ2 − k
σ3 − σ

)
G′(σ) = 0 (13)

Equation (5) which is a PDE has been converted into an ODE as shown in

equation (13).

4 Elimination of first derivative

The first derivative in equation (13) is removed by using the following trans-

formation [4]: Let
d2G

dσ2
+ A

dG

dσ
+BG = C (14)

where A, B and C are functions of σ and coefficients of G and its derivatives.

Let also G = wz, where z is not an integral solution of complementary function

(cf), then
dG

dσ
= z

dw

dσ
+ w

dz

dσ

d2G

dσ2
= z

d2w

dσ2
+ 2

dw

dσ

dz

dσ
+ w

d2z

dσ2

Putting G, dG
dσ

and d2G
dσ2 in equation (14) we obtain

d2w

dσ2
+

(
A+

2

z

dz

dσ

)
dw

dσ
+

(
d2z

dσ2
+ A

dz

dσ
+Bz

)
w

z
=
C

z
(15)

The first derivative is eliminated by equating the second bracket on the left in

equation (15) to zero. z in G = wz is not part of cf

A+
2

z

dz

dσ
= 0

z = e−
1
2

∫
Adσ (16)

The value of first bracket on the left of equation (15) is found by using equation

(16) as follows:
dz

dσ
= −1

2
e−

1
2

∫
Adσ = −1

2
Az (17)
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d2z

dσ2
= −1

2

dA

dσ
z − A

2

dz

dσ
= −1

2

dA

dσ
z − A

2

(
−1

2
Az

)
= −1

2

dA

dσ
z +

1

4
A2z (18)

Equations (17) and (18) are put in the coefficient of w in equation (15) and

become

d2z

dσ2
+A

dz

dσ
+Bz = −1

2

dA

dσ
z+

1

4
A2z+A

(
−1

2
Az

)
+Bz = z

(
B − 1

2

dA

dσ
− 1

4
A2

)
(19)

When the first derivative is eliminated from equation (15), the equation be-

comes
d2w

dσ2
+ w

(
B − 1

2

dA

dσ
− 1

4
A2

)
=
C

z

d2w

dσ2
+ w

(
B − 1

2

dA

dσ
− 1

4
A2

)
= Ce

1
2

∫
Adσ (20)

From equation (20), let

B1 =

(
B − 1

2

dA

dσ
− 1

4
A2

)
C1 = Ce

1
2

∫
Adσ

Putting B1 and C1 in equation (20) gives

d2w

dσ2
+B1w = C1 (21)

Since G = wz, w is obtained from the solution of equation (21) which is an

ODE while z obtained from the integration of equation (16).

5 General solution for the one dimensional Euler-

Poisson-Darboux equation

5.1 Elimination of the first derivative dG
dσ

Using equations (13) and (14)

A =
2σ2 − k
σ3 − σ

,B = 0, C = 0

B1 =

(
B − 1

2

dA

dσ
− A2

4

)
(22)

dA

dσ
==
−2σ4 − 2σ2 + 3σ2k − k

(σ3 − σ)2
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A2

4
=

1

4

(
2σ2 − k
σ3 − σ

)2

=
1

4

(
4σ4 − 4σ2k + k2

(σ3 − σ)2

)
Equation (22) becomes

B1 =
(2σ2 + k)(2− k)

4(σ3 − σ)2
(23)

Since

C1 = Ce
1
2

∫
Adσ

and C = 0 then C1 = 0. Putting B1 and C1 in equation (21), gives

d2w

dσ2
+

(
(2σ2 + k)(2− k)

4(σ3 − σ)2

)
w = 0 (24)

5.2 The complementary function (cf)

From equation (24), let m be its root then

m = ±i

√
(2σ2 + k)(2− k)

4(σ3 − σ)2

The cf is therefore

w = M cos

√
(2σ2 + k)(2− k)

4(σ3 − σ)2
σ +N sin

√
(2σ2 + k)(2− k)

4(σ3 − σ)2
σ (25)

Where M and N are arbitrary constants. Since σ = t
x√

(2σ2 + k)(2− k)

4(σ3 − σ)2
σ = x

√
(2t2 + x2k)(2− k)

2(t2 − x2)

Equation (25) becomes

w = M cosx

√
(2t2 + x2k)(2− k)

2(t2 − x2)
+N sinx

√
(2t2 + x2k)(2− k)

2(t2 − x2)
(26)

Equation (26) is the complementary function (cf).

5.3 Finding z which is not part of complementary func-

tion

From equation (16)

z = exp−1

2

∫
2σ2 − k
σ3 − σ

dσ =
(σ2 − 1)

k−2
4

σ
k
2
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Again since σ = t
x
,

z =
(t2 − x2) k−2

4 x

t
k
2

(27)

Equation (27) gives the value of z, which is not part of complementary function

5.4 General solution for the one dimensional Euler-Poisson-

Darboux equation

The general solution of the one dimensional Euler-Poisson-Daxboux equation

is given by

U(x, t) = G(σ) = G

(
t

x

)
= wz (28)

Putting equations (26) and (27) in equation (28) gives

U(x, t) =

[
M cosx

√
(2t2 + x2k)(2− k)

2(t2 − x2)
+N sinx

√
(2t2 + x2k)(2− k)

2(t2 − x2)

](
(t2 − x2) k−2

4 x

t
k
2

)
(29)

6 General solution for the EPD in terms of x

and t

To find the general solution for the EPD in terms of x and t, we put initial

conditions in equation (29) to obtain values of arbitrary costants M and N in

terms of x and t.

6.1 Substituting U(x,t)=f(x)

Putting U(x, t) = f(x) in equation (29) we have

f(x) =

[
M cosx

√
(2t2 + x2k)(2− k)

2(t2 − x2)
+N sinx

√
(2t2 + x2k)(2− k)

2(t2 − x2)

](
(t2 − x2) k−2

4 x

t
k
2

)
(30)

6.2 Substituting ∂U
∂t = 0

Before differentiating equation (29) partially with respect to t, let

P = M cosx

√
(2t2+x2k)(2−k)

2(t2−x2) , R = N sinx

√
(2t2+x2k)(2−k)

2(t2−x2) and Q = (t2−x2)
k−2
4 x

t
k
2
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∂U

∂t
=

∂

∂t
(PQ) +

∂

∂t
(RQ) = PQ′ + P ′Q+RQ′ +R′Q = 0 (31)

Putting P,Q,R, S and their primes in equation (31) gives(
x(t2 − x2) k−6

4 (x2k − 2t2)

2t
k+2
2

)
M cosx

√
(2t2 + x2k)(2− k)

2(t2 − x2)

+(
(t2 − x2) k−2

4 x

t
k
2

)(
xt(2− k)

1
2 (t2 + x2 + x2k)

(2t2 + x2k)
1
2 (t2 − x2)2

)
M sinx

√
(2t2 + x2k)(2− k)

2(t2 − x2)

+(
x(t2 − x2) k−6

4 (x2k − 2t2)

2t
k+2
2

)
N sinx

√
(2t2 + x2k)(2− k)

2(t2 − x2)

−(
(t2 − x2) k−2

4 x

t
k
2

)(
xt(2− k)

1
2 (t2 + x2 + x2k)

(2t2 + x2k)
1
2 (t2 − x2)2

)
N cosx

√
(2t2 + x2k)(2− k)

2(t2 − x2)
= 0

(32)

6.3 Values of arbitrary constants M and N

Arbitrary constants M and N are found by solving equations (30) and (32)

simultaneously , therefore let D = x

√
(2t2+x2k)(2−k)

2(t2−x2) , E = x(t2−x2)
k−6
4 (x2k−2t2)

2t
k+2
2

,

F = xt(2−k)
1
2 (t2+x2+x2k)

(2t2+x2k)
1
2 (t2−x2)2

and H = (t2−x2)
k−2
4 x

t
k
2

.Putting D, E, F and H in equation

(30) it becomes

M =
f(x)−NHsinD

HcosD
(33)

Putting again D, E, F and H in equation (32) it becomes

MEcosD +MHFsinD −NFHcosD +NEsinD = 0 (34)

Putting equation (33) in (34), gives

N =
f(x)(E cosD +HF sinD)

H2F
(35)

Putting equation (35) in equation (33) it becomes

M =
f(x)(HF cosD + E sinD)

H2F
(36)
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6.4 Substituting M and N in the general solution

Putting equations (35) and (36) in equation (29) gives

U(x, t) = f(x)
HF + E sin 2D

HF
(37)

Writing equation (37) in terms of x and t gives

U(x, t) = f(x)

1 +
(t2 − x2)(x2k − 2t2)(2t2 + x2k)

1
2 sin 2x

√
(2t2+x2k)(2−k)

2(t2−x2)

2xt2(2− k)
1
2 (t2 + x2 + x2k)


(38)

7 Results

7.1 Regular case

Equation (38) is the general analytical solution for the regular Cauchy case

when t > 0 and k is a real parameter,

7.2 Degenerate case

When k = 0, equation (38) becomes

U(x, t) = f(x)

[
1−

t(t2 − x2) sin 2xt
t2−x2

x(t2 + x2)

]

which is the general analytical solution to the one dimensional wave equation.

Conclusion

In this research, the general analytical solution for the one dimensional regular

Cauchy EPD has been worked out . The same equation is also the general

analytical solution for the one dimensional wave equation when k = 0.
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