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Abstract. There is need to identify ecosystems that support richer assemblages
of biological species in order to preserve habitats and protect the greatest number
of species. Remotely sensed data hold tremendous potential for mapping species
habitats and indicators of biological diversity, such as species richness. Landscape
level habitat analysis using remotely sensed data and Geographical Information
Systems (GIS) has the potential to aid in explaining species richness patterns at
fine-scale resolutions. We used Landsat Thematic Mapper (TM) image and GIS
as well as field data to classify habitat types in the Maasai Mara ecosystem,
Kenya. The accuracy of the resulting habitat map was assessed and indices of
habitat diversity computed. We then determined the relationship between large
mammal species richness and habitat diversity indices, and investigated whether
this relationship is sensitive to changes in spatial scale (extent and grain size).
Statistical analyses show that species richness is positively correlated with habitat
diversity indices and changes of scale in calculations of habitat diversity indices
influenced the strength of the correlation. The results demonstrate that mamma-
lian diversity can be predicted from habitat diversity derived from satellite
remotely sensed data.

1. Introduction
Biodiversity is commonly used to describe the number, variety and variability of

living organisms. As the living world is mostly considered in terms of species, the
number of species in a site or habitat (species richness) is commonly used as an
indicator of biodiversity (Groombridge 1992). The general perception of conservation
biologists and ecologists is that, all things being equal, diverse ecosystems are more
important to preserve than low diversity systems (Podolsky 1994). The reason for
this is that diverse ecosystems support richer assemblages of biological species than
do simple ones (Diamond 1988, Podolsky 1994). However, it must be pointed out
that many low diversity ecosystems support rare or endangered species whose
protection is also critical (Podolsky et al. 1992).
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Mapping species richness and distributions is an important aspect of conservation
and land use planning (Spellerberg 1991, Miller and Allen 1994). For example, maps
can help identify areas of special biodiversity importance where conservation
resources should be focused. Such areas include ‘hot spots’ of high species richness
as well as places where species assemblages of particular interest occur (Cardillo
et al. 1999). As the current rate of species extinction causes increasing concern
(Wilson 1988), land managers and biologists have sought to identify habitats import-
ant to the preservation of species diversity (Debinski et al. 1999). To identify and
conserve areas with high biological importance, remote sensing technology can
provide information concerning many variables useful for inventorying, modelling
and monitoring species richness (Stoms and Estes 1993). Coupled with GIS, remote
sensing can provide information about landscape history, topography, soil, rainfall,
temperature and other climatic conditions, as well as about present-day habitat and
soil coverage—factors on which the distribution of species depend (Noss 1996).
Relationships between species distribution patterns and remotely sensed/GIS data,
if known, can be used to predict the distribution of single species or sets of species
over large areas (Debinski and Humphrey 1997). However, the utility of remotely
sensed data to biological preservation is a function of the extent to which these data
correlate with various biological resources (Podolsky et al. 1992).

Spatial heterogeneity is one of the most popular hypotheses used to explain
patterns of species richness. The heterogeneity hypothesis states that diverse eco-
systems support richer assemblages of biological species than simple ecosystems
(Diamond 1988). Researchers have examined the spatial configuration of habitat
variables to predict species richness (Stoms and Estes 1993). Measures of spatial
patterning include a diversity index from information theory based on number and
proportions of vegetation or soil types (Miller et al. 1989). Species richness has been
found to be strongly associated with measures of habitat heterogeneity (Owen 1990).

Ecologists recognize three levels of diversity: alpha diversity is a measure of
richness within a single homogeneous community; beta diversity measures the change
in composition along environmental gradients between communities within a land-
scape; and gamma diversity ( landscape scale) describes the number of species in a
landscape containing more than one community type (Stoms and Estes 1993). Since
most management decisions concerning the conservation of species richness are made
at landscape scale, it is essential to examine gamma diversity (Bohning-Gaese 1997).
This study aims to determine the relationship between indices of habitat diversity
based on spectral reflectance and large mammal species richness, and to test whether
the prediction of species richness by indices of habitat diversity is sensitive to change
in spatial scale.

1.1. Remote sensing of spatial heterogeneity
Remote sensing is the primary tool for the synoptic analysis of habitats at

landscape scale. It allows researchers to address such general questions as (i) what
elements are present, (ii) what spatial arrangements these elements have and (iii) what
their temporal dynamics are (Quattrochi and Pelletier 1991). Because remote sensing
affords the ability to classify habitats based on species composition, structural attrib-
utes and phenological differences, and to detect and monitor natural as well as
human-induced vegetation dynamics and disturbances, it readily permits the detec-
tion and monitoring of spatial heterogeneity (Weishampel et al. 1997). Thus, remote
sensing has been applied to characterize spatial patterns and processes of vegetation
such as the dynamics of biome boundaries (Tucker et al. 1985). Landscape ecologists
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have also derived or adapted indices of habitat heterogeneity from remotely sensed
data products such as land cover or habitat maps (O’Neil et al. 1988).

The digital nature of land cover information from satellite imagery enables a
potentially large number of landscape metrics to be derived (Haines-Young and
Chopping 1996). Jorgensen and Nohr (1996) used Landsat TM derived land cover
to compute the Shannon-Wiener and Simpson’s indices of diversity for the Ferlo
region of Senegal. Areas with the highest landscape diversity were found to support
higher numbers of bird species than areas with relatively less landscape diversity.
However, some of these indices can be sensitive to spatial resolution and to the
number of land cover classes, making generalizations of their relationships to species
richness difficult (Stoms and Estes 1993).

2. Methods
2.1. Study area and animal species data

Kenya is situated between latitudes 5° 40∞ north and 4° 4∞ south and between
longitudes 33° 50∞ and 41° 45∞ east. The study area is the Maasai Mara ecosystem,
which is an approximately 7000 km2 area in Narok district (figure 1). The vegetation
varies from grasslands to shrublands to wooded grasslands and riverine forests. The
riverine vegetation is spread along major river valleys and covered with discontinuous
forests. One of the world famous wildlife sanctuaries, Maasai Mara National reserve,
is situated in the Maasai Mara ecosystem. Our study focused on large mammal
species because the Maasai Mara ecosystem has a high diversity of mammal species,
which attract large numbers of tourists annually.

The large mammal species data (1981–1997) were obtained from the Department
of Resource Surveys and Remote Sensing (DRSRS), Ministry of Environment and
Natural Resources, Kenya. The systematic reconnaissance flight methodology used
by DRSRS for aerial census of animals is well documented (Norton-Griffiths 1978).
Statistical analyses to validate DRSRS survey methodology have proved the method
and data to be reliable (De Leeuw et al. 1998, Ottichilo and Khaemba 2001).
Topographic maps of scale 1:250 000 were used for flight planning and all transects
conform to the Universal Transverse Mercator (UTM) coordinate system. The aerial
surveys were carried out along transects oriented in an east–west direction and
spaced at 5 km intervals. The standard flying height and aircraft speed were 120m
and 190 kmh−1 respectively. Two experienced and well-trained observers occupied
the rear seats of a high wing aircraft (Cessna 185 or Partenevia) and counted animals
that appeared between two rods attached to the wing struts. The field of vision
between these rods was calibrated by flying repeatedly across ground markers of
known spacing (Ottichilo and Sinange 1985). The number of animals falling within
the survey strips on either side of the aircraft along each 5 km transect segment were
counted and recorded into tape recorders by the two rear-seat observers. Groups
of animals more than 10 in number were also photographed. After every survey
the tape-recorded observations were transcribed to data sheets which, together
with processed photographs, were interpreted for animal species using 10× bin-
ocular microscope and overhead projector. Since we carried out the study also at
other spatial scales, the processed data at 5 km×5 km quadrats were converted
to 10 km×10 km, 15 km×15 km, 20 km×20 km, 25 km×25 km and 30 km×30 km
quadrats by spatial aggregation. The analyses focused on large mammal species that
are non-migratory. Hence, animal species that were consistently observed over a
17-year period were presumed to be resident to the study area.
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(a)

(b)

Figure 1. (a) Location of Kenya and Narok district where the study area is situated. (b) The
Maasai Mara ecosystem with the major rivers and location of sample sites taken in
May–June 1997.

2.2. GIS and remote sensing analysis
The methodology for this study was directed toward producing a map of spec-

trally distinct habitat types as a basis for measuring habitat diversity of the study.
Since the study focused on non-migratory large mammal species richness, single date
imagery was considered appropriate for measuring habitat diversity. The Landsat
5 TM image (pixel size=30m) of the study area for 2 January 1995 was georeferenced
to±0.5 pixel (15m) accuracy and resampled to a UTM coordinate system to match
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topographic maps of the region. A colour composite image was created to serve
as a background image during sampling and subsequent supervised classification.
The combination of bands 4, 3 and 2 (red: near infrared band 4; green: red visible
band 3; and blue: green visible band 2) at ratio 1:1:1 was the best that allowed the
identification of different habitat types in the study area.

An Iterative Self-Organizing Data Analysis (ISODATA) clustering algorithm was
applied to the three-band image file to identify spectrally similar pixels. The ISODATA
algorithm operates by initially seeding a specified number of cluster centroids in spectral
feature space. The euclidean distance between each pixel and each cluster centroid is
calculated, and the pixel assigned to a cluster centroid (class). The process of pixel
evaluation–centroid recomputation continues iteratively until a threshold percentage
(typically 95%) of pixels no longer change cluster centroid assignment. Ten initial
clusters were specified for the ISODATA clustering, producing a map of 10 classes,
which enabled us to discriminate habitat types present in the study area.

2.3. Field vegetation mapping
The field vegetation mapping was carried out from mid-May to mid-June 1997

at the height of the growing season when the vegetation cover was present and
adequate. This enabled us to get a good discrimination of the vegetation structure,
especially herbaceous layer, in order to prepare a classification scheme that is
hierarchical in nature (table 1). A clustered random sampling design (McIntyre 1978)
was used to collect data in the field. Computer generated primary cluster points
randomly as well as six secondary sample sites, each within a distance of 500m from
the primary cluster. Sample sites were located in the field using Global Positioning
System, topographic map (scale 1:250 000) and the Landsat TM 1995 image. Once
the sample site was located (figure 1(b)), a quadrat of 20m×50m was established,
the height (in metres) and the total cover percentage of each habitat type was visually
estimated.

Since multiple layering of vegetation will often result in total land cover values
of well over 100%, the Braun-Blanquet scale was used where the range 0–100% was
partitioned into five classes (Kent and Coker 1992). The field data were further
processed in a spreadsheet and habitat types were categorized into six distinct classes:
cultivated/fallow/bare land; dwarf shrubs/short grassland; forest; tall grassland;
shrubland; and woody/shrubby grassland (table 1). The field data were divided into
training and testing samples (table 2).

2.4. Supervised classification and accuracy assessment
Representative or prototype pixels for each of the habitat types were chosen

which form training data. The training pixels for each habitat type lay in a training
field, 3×3 window (nine pixels). The training data estimated the parameters of the
classifier algorithm to be used—these parameters are the properties of the probability
model used or equations that define partitions in the multispectral space. Using the
trained maximum likelihood classifier, every pixel in the image was classified into
one of the desired habitat types. A majority filter was applied on the classified image
to smooth classification results. An accuracy assessment was then performed on the
filtered habitat map (see figure 5).

Test samples were selected from every cluster sampled in the field for each habitat
type class (table 2). They were carefully located on the habitat map using the UTM
coordinates and since each test sample lies in the centre of 3×3 window, the latter
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Table 1. Criteria used to classify habitat types from the field data.

Sample
Habitat type size Woody species Non-woody species

Cultivated/fallow/bare land 22 – wheat farms/fallow
Dwarf shrubs/short grassland 103 15–50% (∏0.5 m) >50% (∏0.25 m)
Forest 4 >50% (>6 m) <15%
Tall grassland 39 <15% >50% (>0.25 m)
Shrubland 16 >50% (�0.5–4 m) <15%
Woody/shrubby grassland 38 15–50% (�0.5–∏6 m) >50%

Table 2. Sample sizes for each habitat type used for training classifier and testing the accuracy
of the supervised classification.

Habitat type Training Testing

Cultivated/fallow/bare land 9 13
Dwarf shrubs/short grassland 50 53
Forest 2 2
Tall grassland 18 21
Shrubland 7 9
Woody/shrubby grassland 18 20

was considered to be a homogeneous test area representing a single habitat type
class. Therefore, every classified pixel in the window was checked for correctness by
comparing image class and the field habitat type class in the reference data. From
the field checked data an error matrix table was constructed (see table 5).

2.5. Calculation of the TM-based habitat diversity index and species richness
The large mammal species richness and habitat diversity index were esti-

mated in six quadrats of different sizes, 5 km×5 km, 10 km×10 km, 15 km×15 km,
20 km×20 km, 25 km×25 km and 30 km×30 km. The size of the smallest quadrat
(5 km×5 km) was determined by the aerial sampling method used by DRSRS and
described in §2.1. In each quadrat the number of species was counted to give a value
for total species richness. Prior to calculation of habitat diversity indices for these
six quadrats, two point maps were created for each quadrat. The two point maps
were then rasterized to two different pixel sizes (25m and 75m) with appropriate
point sizes (table 3). For example, point size 200 means that each sample unit in a

Table 3. The quadrat sizes (km) with corresponding distance (m) between quadrats, point
sizes and total number of pixels for pixel sizes 25 m and 75 m in a quadrat.

Point size Total pixels

Quadrat Distance 25 m 75 m 25 m 75 m

5×5 5000 200 67 40 000 4489
10×10 10 000 400 133 160 000 17 689
15×15 15 000 600 200 360 000 40 000
20×20 20 000 800 267 640 000 71 289
25×25 25 000 1000 333 1 000 000 110 889
30×30 30 000 1200 400 1 440 000 160 000
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point map will be represented by 200×200 pixels in the output raster map. Thus,
all 40 000 pixels had the same identity as the sample unit.

Integrating habitat map (pixel size=30m) and quadrat raster maps (pixel size=
25m or 75m) requires compatible pixel sizes. By using the Nearest Neighbour
resampling method, the habitat map was resampled twice to pixel sizes of 25m and
75m and then crossed with each of the six quadrat raster maps of 25m and 75m
pixel sizes respectively. Table 4 shows an example of the resulting output table for
an individual sample unit.

The habitat diversity was calculated for every sample unit based on habitat map
of fine spatial scale (pixel size=25m) and relatively coarse spatial scale (pixel size=
75m). The two commonly used diversity indices for quantifying landscape structure
(Haines-Young and Chopping 1996); Shannon-Wiener index (H∞) and Simpson’s
index (D) were employed:

H∞=−Sp
i
ln p
i

(1)

D=1/Sp2
i

(2)

where p
i
represents the fractional abundance of each habitat type in a quadrat (i.e.

number of pixels of specific habitat type i divided by total number of pixels in a
quadrat).

The Shannon-Wiener index is based on information theory that tries to measure
the amount of uncertainty (Krebs 1989) in every quadrat. Thus, measuring the
amount of uncertainty in a quadrat can provide a measure of diversity. Hence, a
quadrat with only one habitat type has no uncertainty (no diversity) in it, H∞=0 so
the larger the value of H∞, the greater the uncertainty (diversity); whereas Simpson’s
index is based on the probability that two habitat types are similar (Simpson 1949).

Regression lines between the dependent variables (species richness) and the inde-
pendent variables (Shannon and Simpson’s habitat diversity indices) were calculated
along with 95% confidence interval for different quadrat sizes. The correlation
coefficients for the relationships between large mammal species richness and habitat
diversity indices calculated at two different pixel sizes were compared at different
quadrat sizes. In addition, the relationship between the number of classes in the
image classification and habitat diversity indices was calculated.

3. Results
Table 5 shows the error matrix resulting from classifying training set pixels and

testing the accuracy. The overall accuracy is computed by dividing the total correct

Table 4. Cross table resulting from crossing a quadrat (15 km×15 km) raster map and habitat
map of pixel size 25 m for a single sample unit. The number of pixels was used to
compute habitat diversity using Shannon-Wiener and Simpson’s indices.

Sample unit Habitat type No. of pixels

60095 Woody/shrubby grassland 212 125
60095 Forest 18860
60095 Dwarf shrubs/short grassland 69 191
60095 Tall grassland 53 095
60095 Shrubland 2872
60095 Cultivated/fallow/bare lands 3857

Total 360 000
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sum of the major diagonal by the total number of pixels in the error matrix (Jensen
1996). The producer accuracy indicates the probability of a reference pixel being
correctly classified and it is calculated by dividing diagonal value for each category
by its column total. Conversely, user accuracy is the probability that a pixel classified
on the map actually represents that category on the ground and it is calculated by
dividing diagonal value for each category by its row total (Story and Congalton
1986).

KAPPA analysis is a discrete multivariate technique of use in accuracy assessment
(Congalton and Mead 1983). It yields a KHAT statistic (an estimate of KAPPA)
that is a measure of agreement between image data and the reference data or accuracy
(Congalton 1991). The KHAT statistic is computed as:

K
hat
=N ∑

r

i=1
x
ii
−∑
r

i=1
(x
ri
×x
ci
)/N2−∑

r

i=1
(x
ri
×x
ci
) (3)

where r is the number of rows in the matrix, x
ii

is the number of observations in
row i and column i, and x

ri
and x

ci
are the marginal totals for row i and column i,

respectively, and N is the total number of observations. The overall classification
accuracy is 89%, while the KHAT accuracy is 87%. The results are different because
the two measures incorporated different information. The overall accuracy only
incorporated the major diagonal and excluded the omission and commission errors.
By contrast, KHAT accuracy computation incorporated the off-diagonal elements
as a product of the row and column marginals.

Figure 2 shows the relationship between number of habitat type classes in the
image classification and Shannon habitat diversity measure derived from habitat
map of two different pixel sizes, 25m and 75m. The Shannon habitat diversity index
based on habitat map of pixel size 25m has a wider range of values (figure 2(a)) than
that derived from habitat map of pixel size 75m. As the number of classes in the
image classification increases, the value of the habitat diversity index increases. This
indicates that the habitat diversity index is sensitive to the presence of rare habitat
types, which is consistent with the findings of Haines-Young and Chopping (1996).

The habitat diversity indices (Shannon-Wiener and Simpson) based on habitat

Table 5. Error matrix of the classification map derived from Landsat TM data of the Maasai
Mara ecosystem. Diagonal elements represent correctly classified pixels and are meas-
ured by overall accuracy (OA). All non-diagonal elements represent errors of omission
and commission, which are measured by producer accuracy (PA) and user accuracy
(UA) respectively.

Classification Cultl Dshg For Gra Shgr Shbl Total UA (%)

Cultl 100 36 0 0 0 0 136 74
Dshg 8 254 0 9 6 0 277 91
For 0 0 30 0 1 0 31 96
Gra 0 6 9 292 1 0 308 94
Shgr 0 0 4 1 110 11 126 87
Shbl 0 0 5 13 0 61 79 77

Total 108 296 48 315 118 72 957

PA (%) 93 85 62 93 93 85 OA 89

Habitat types classified: cultivated/fallow/bare land (Cultl ); dwarf shrubs/short grassland
(Dshg); forest (For); tall grassland (Gra); woody/shrubby grassland (Shgr); shrubland (Shbl).
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(a)

(b)

Figure 2. The influence of the number of habitat type classes in the image classification on
Shannon habitat diversity measure based on (a) habitat map of 25 m pixel size (r2=
0.365), and (b) habitat map of 75 m pixel size (r2=0.237) at quadrat size, 5 km×5 km.
The correlation coefficients are significant at p<0.05. The straight lines were fitted
because residuals tend not to vary in a systematic fashion between positive and
negative.

map of pixel size 25m have significant correlation with mammalian species richness
at all spatial scales (table 6). On the other hand, habitat diversity indices based
on habitat map of pixel size 75m do not have significant correlation at quadrat
sizes, 25 km×25 km and 30 km×30 km (table 6). Generally, Shannon-Wiener habitat
diversity index has a stronger correlation with species richness than Simpson’s habitat
diversity index. At quadrat sizes 5 km×5 km and 10 km×10 km, habitat diversity
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Table 6. Coefficient of correlation (r2 ) for the relationships between large mammal species
richness and habitat diversity indices (Shannon-Wiener and Simpson) based on habitat
map at 25 m and 75 m pixel sizes at different quadrat sizes (km).

Shannon Simpson

Quadrat 25 m 75 m 25 m 75 m n

5×5 0.119 0.104 0.090 0.087 182
10×10 0.554 0.552 0.494 0.492 43
15×15 0.854 0.315 0.831 0.258 21
20×20 0.862 0.618 0.819 0.415 13
25×25 0.855 ns 0.810 ns 8
30×30 0.833 ns 0.775 ns 7

ns=not significant at p<0.05; n=sample size.

indices based on habitat map of pixel sizes 25m and 75m have more or less similar
correlation with species richness. However, at quadrat sizes 15 km×15 km and
20 km×20 km habitat diversity indices based on habitat map of pixel size 25m have
a stronger correlation with species richness than habitat diversity indices derived
from habitat map of pixel size 75m (table 6).

The coefficient of correlation is so low for the base quadrat size (5 km×5 km)
because of the presence of few outlier quadrats, which have a relatively high number
of species but low habitat diversity (figure 3(a)). However, the strength of correlation
increases as quadrat size increases (table 6) because the outlier quadrats (5 km×5 km)
are eliminated with increasing spatial aggregation. The highest correlation between
species richness and habitat diversity indices based on habitat map of pixel sizes
25m and 75m were obtained at intermediate quadrat size (20 km×20 km) with r2
values of 0.862 and 0.618 respectively (table 6).

Figure 3 shows that mammalian species richness increases with increase in habitat
diversity at 5 km×5 km and 20 km×20 km quadrats which account for 12% and
86% respectively of the observed variation of species richness. When the coefficient
of correlation between species richness and habitat diversity basemaps (pixel size=
25), with different resolutions (i.e. side length of squares used for habitat diversity
calculations) are plotted, the coefficient of correlation increases exponentially with
increase in side length of squares and levels off at a side length of 15 000m (360 000
pixels) (figure 4).

Figure 6(a) shows that the highest habitat diversity is associated with two ecolo-
gical units of the Maasai Mara ecosystem, namely, Mara (including Mara Reserve)
and Sianna (figure 5). On the other hand, low values of habitat diversity are found
in the northern part of the ecosystem (i.e. Loita region), associated with areas covered
mainly with cultivated/fallow/bare land and dwarf shrubs/short grassland (figure 5).
Figure 6(b) shows that large mammal species richness is relatively high in the southern
parts of the Maasai Mara ecosystem, which have diverse habitats (figure 5).

4. Discussion
4.1. Relationship between habitat diversity and species richness

An interesting question is: which features in the Maasai Mara ecosystem give
high habitat diversity? The major rivers, namely, Mara, Talek and Sand (figure 1(b))
and their tributaries, drain Mara (including Mara reserve) and Sianna, hence there
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(a)

(b)

Figure 3. Scatterplot of large mammal species richness (S ) vs Shannon habitat diversity index
(H∞) based on habitat map of pixel size 25 m calculated at quadrat sizes (a) 5 km×5 km
(S=5.968+3.865H∞), and (b) 20 km×20 km (S=3.095+8.375H∞). The least-squares fit
for the relations in both (a) and (b) were fitted with straight lines because residuals
tend not to vary in a systematic fashion between positive and negative.

is a variety of habitat types such as riverine forests, tall grassland, dwarf shrubs/
short grassland, shrubland and woody/shrubby grassland (figure 5). In addition,
there are no significant human activities that may cause large-scale habitat destruc-
tion. Consequently, Mara and Sianna regions support greater numbers of large
mammal species (compare figures 5 and 6(b)). By contrast, the Loita region has a
low number of species probably due to extensive habitat destruction caused by
mainly large-scale wheat farming. As a consequence, the most common habitat types
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Figure 4. The change in coefficient of correlation (r2 ) between the number of species and
different side lengths in squares used for calculation of habitat diversity index based
on Shannon-Wiener (H∞) and Simpson’s indices (D).

Figure 5. Habitat map based on Landsat TM of January 1995—six categories of habitat
types important for mammal species were classified.

are dwarf shrubs/short grassland and cultivated/fallow/bare land (figure 5). The
results (table 6) show that large mammal species richness is positively correlated
with habitat diversity, confirming that highly diverse habitats are endowed with
more species (figure 3). So, why does higher habitat diversity increase the species
richness of mammals? One possibility is that a particular species tends to occur only
in certain habitats and not others. Thus, as one proceeds along a habitat gradient,
one accumulates more and more species, and the accumulated number of species
increases with the diversity of habitats encountered (Diamond 1988).
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(a)

(b)

Figure 6. (a) Habitat diversity map derived by computing Shannon-Wiener index at 10 km×
10 km quadrat of the habitat map (pixel size=25). (b) Spatial distribution of the
number of large mammal species observed at 10 km×10 km quadrat size.

4.2. Habitat diversity–species richness relationship and scale
The main prerequisite for using satellite images for mapping of biodiversity is

that habitat features important to higher animals, in this case large mammal species,
can be detected on the images. This is mainly a question about scale of study—
extent as well as grain (Allen and Starr 1982). Extent refers to the size of the study
area investigated, while grain is the resolution of the remote sensor—radiometric,
spatial, spectral and temporal. As extent increases, the level of detail (grain) that can
be maintained, given constraints on time, effort and money, will decrease, and vice
versa. The amount of information that can be retrieved on numbers of habitat types
depends on these factors (Nagendra 2001). In view of these, the scale of the satellite
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image is important when analysing habitat diversity in relation to species richness
(Jorgensen and Nohr 1996).

Our results (table 6) show that the changes of scale in estimation of habitat
diversity influence the correlation with large mammal species richness. The latter
has a stronger correlation with habitat diversity indices derived from habitat map
of fine spatial resolution (25m pixel size) at quadrat sizes of 15, 20, 25 and 30 km
resolutions than relatively coarse resolution (75m pixel size). Apparently, the choice
of raster map pixel size (grain) has important implications for diversity indices that
depend on the number of habitat types (figure 2). The loss of information associated
with relatively coarser resolution (75m pixel size) particularly at quadrat sizes of 15,
20, 25 and 30 km resolutions leads to the disappearance of habitat types represented
by the least extensive and least compact patches (Haines-Young and Chopping
1996). Consequently, Shannon-Wiener and Simpson’s habitat diversity indices calcu-
lated from reduced number of habitat types have a narrow range of values (figure 2(b))
that weakens the strength of correlation with species richness.

The strengths of association between species richness and habitat diversity indices
derived from habitat maps of pixel sizes 25m and 75m increase as quadrat size
increases and peak at intermediate scale (20 km×20km) then decline. Presumably, as
quadrat size increases the species richness is increased by the presence of uncommon
habitat types such as riverine forests and shrubland with unique set of species. However,
as the quadrat size increases further, the number of habitat types mapped within
quadrats tends to decrease with corresponding decline in number of species predicted.
Because small patches are no longer mapped due to generalization, some habitat types
and their associated species are no longer predicted to occur in a given quadrat (Stoms
1992). Figure 4 illustrates the correlation between habitat diversity calculated with
different sizes of squares and number of species observed. The curves level off at side
length of square 15 000m (15km×15km)—this may be recommended as the minimal
area for assessing the relationship between Landsat TM image (25m pixel size) derived
habitat diversity and large mammal species richness in the study area.

4.3. Habitat map classification and accuracy assessment
In ecological systems, local heterogeneity can play a comparably central role in

regulating stability and diversity (Weishampel et al. 1997). Heterogeneity among
patches is believed to generally increase species coexistence (Czárán and Bartha
1992). Differences among climates, soils, hydrological conditions and disturbance
histories are thought to produce repeatable differences among vegetation patches
(McIntosh 1985). This view provides a rationale for vegetation (habitat) classification
schemes and for the generation of thematic maps showing the spatial disposition of
areas of different habitat types (Weishampel et al. 1997). To generate signatures that
accurately represent habitat types during supervised classification of the Landsat
TM image, training samples were repeatedly selected, and the signatures gener-
ated from samples were evaluated or manipulated by merging or deleting. The
spectral separability between the datasets was studied and the training sets that were
overlapping were either merged or deleted.

A classification is not complete until it has been assessed and that is when the
decisions made based on that information have any validity. It is obvious that in
order to adequately to assess the accuracy of the remotely sensed classification,
accurate ground or reference data must be collected. In addition, selection of the
proper sampling scheme is absolutely critical to generating an error matrix that is
representative of the entire classified image (Congalton 1991). During the field
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surveys the choice of sampling scheme was influenced by cost and time effectiveness,
good sample distribution throughout the study area and accessibility of the terrain.
The clustered random sampling was employed which involved clustering of mapping
units which ensured survey efficiency. The clusters were distributed throughout the
accessible parts of the study area (figure 1(b)) so that all habitat types were sampled.
Multiple samples for all habitat types were taken to ensure evenness of the spread
of observations over the whole of the Maasai Mara ecosystem. Moreover, the sample
parameters were accurately estimated. Due to inaccessibility fewer samples were
taken in categories such as forest and shrubland (table 1). Although Congalton
(1991) suggested that a minimum of 50 samples for each habitat type category in
the error matrix should be collected, we failed to reach the minimum samples for all
categories, except dwarf shrubs/short grassland (table 1), because of inaccessibility,
time and money constraints. Since sufficient effort should also be given to the
classification scheme to be used (Congalton 1991), we used a classification scheme
that is hierarchical in nature and included every habitat type in the study area
(table 1).

The overall classification accuracy is 89%, which is above the 85% proposed by
Anderson et al. (1976). However, such a non-site-specific accuracy assessment yields
very high accuracy but misleading results when all the errors balance out in a region
(Jensen 1996). To perform classification accuracy assessment correctly, it is necessary
to compare two sources of information: the remote sensing derived classification
map and reference test information. Therefore, an error matrix (table 5) is a standard
method to represent accuracy because the accuracy of each category is clearly
described, along with both the errors of inclusion (commission errors) and errors of
exclusion (omission errors). If we were primarily interested in the ability to classify
just cultivated/fallow/bare land, the producer’s accuracy of this category was
93%, which is quite good. However, only 74% (user’s accuracy) of the areas called
cultivated/fallow/bare land are actually cultivated/fallow/bare land. A careful evalu-
ation of the error matrix reveals that there was confusion when discriminating
cultivated/fallow/bare land from dwarf shrubs/short grassland. Therefore, although
the producer of this map can claim that 93% of the time an area that was
cultivated/fallow/bare land was identified as such, a user of this map will find that
only 74% of the time an area is visited in the field using the map will it actually be
cultivated/fallow/bare land. On the other hand, the producer’s accuracy of forest is
only 62% because there was confusion when discriminating forest from tall grassland,
woody/shrubby grassland and shrubland as shown in the error matrix (table 5).
Even though the producer of this map can claim that only 62% of the time an area
that was forest was identified as such, a user of this map will find that 96% of the
time an area is visited in the field using the map will it actually be forest.

5. Conclusion
The study has provided an assessment of high resolution Landsat TM image for

the purpose of predicting and mapping large mammal species richness. The results
underscore the importance of spatial scales (extent and grain size) in understanding the
relationship between species richness and habitat diversity indices derived using spectral
reflectance. Changes of spatial scales in calculations of habitat diversity indices influence
the strength of correlation with species richness. However, the influence does not change
the direction of the correlation between habitat diversity and species richness.

The study has practical implications for the use of habitat diversity indices derived
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from remotely sensed data for predicting large mammal species richness. The diversity
indices (Shannon-Wiener and Simpson’s) are sensitive both to the number of habitat
types and to grain size, so care must be exercised when defining the nature of the
landscape mosaic which forms the object of study (Haines-Young and Chopping 1996).
Moreover, the strength of association between species richness and habitat diversity
indices varies at different spatial scales. Hence, before starting to manage for high
levels of species richness it is necessary to determine at which spatial scale species
richness and habitat diversity should be protected. The study further reveals that the
association between species richness and habitat diversity indices is strongest at a
relatively intermediate scale (20 km×20km). Thus, protecting the diversity of habitats
at this spatial scale may ensure high levels of species richness in the study area.
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