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Abstract – Measuring the complexity of species in (semi) 
natural environments is time consuming and expensive. In 
this paper we summarise remote sensing techniques developed 
for mapping and monitoring biodiversity of herbivores and 
vegetation. In particular, methods involving interannual 
variation of NDVI with respect to mammal and bird species 
richness in Kenya will be described. We show it is possible to 
predict species richness at a regional scale using NDVI 
derived from NOAA satellites, and that these relationships are 
unimodal. Further work relating species richness to climate 
parameters showed that these relationships are also unimodal. 
We also show that climate parameters are better predictors of 
species richness than NDVI alone.  
 

I. INTRODUCTION 
 
Biological diversity is defined as the variability among living 
organisms from all sources including inter alia, terrestrial, 
marine, and other aquatic ecosystems, and the ecological 
complexes of which they are part; this includes diversity within 
species, between species, and of ecosystems. As the living world 
is mostly considered in terms of species, biological diversity is 
commonly used as a synonym of species diversity, in particular of 
'species richness', which is the number of species in a site or 
habitat (Groombridge, 1992). Explaining patterns of species 
diversity at the species level is one of the most complex problems 
in ecology because diversity is usually the outcome of many 
contributing factors whose relative importance varies with spatial 
and temporal scale (Diamond, 1988).  
 
The relationship between diversity and productivity has been the 
subject of a longstanding debate in ecology. The productivity 
hypothesis predicts that when resources are abundant and reliable, 
species become more specialized, allowing more species per unit 
area. In the last decade NDVI has been related to the distribution 
of both plant and animal species diversity. Walker et a!. (1992) 
correlated plant species richness to aggregated NDVI in 
California, while Jorgensen and Nohr (1996) related bird diversity 
to landscape diversity and biomass availability in the Sahel. 
However, empirical evidence shows that higher productivity can 
be either negatively or positively correlated with species richness. 
In fact, in many systems a unimodal pattern is found, with highest 
species richness at intermediate levels of productivity; above the 
point of central tendency species richness decreases as 
productivity increases, while below the point of central tendency 
species richness increases as productivity increases (Grime, 
1979). A number of explanations of this apparent paradox have 
appeared (Rosenzweig and Abramsky, 1993), but no single theory 
has been accepted by ecologists. NDVI has been related to NPP at 
broad spatial scales (Box et aI., 1989; Prince, 1991). The chain of 
relationships from NDVI to NPP and NPP to species richness 
encouraged us to investigate whether a relationship could be 
established between NDVI and species richness. 
 

Various studies have shown that NDVI integrates the influence of 
climatic variables and other environmental factors (Cihlar et a!., 
1991). This suggests that NDVI is a better predictor of NAPP and, 
compared with climatic indices, may reveal a stronger 
relationship with species diversity. Since NDVI integrates the 
influence of climatic variables and environmental factors such as 
soil fertility, it is hypothesized that NDVI would better predict 
species diversity than would climatic variables. 
 
Spatial heterogeneity is another popular hypothesis use to explain 
pattern of species richness (Stoms and Estes, 1993). The 
heterogeneity hypothesis states that diverse ecosystems support 
richer assemblages of biological species compared with simple 
ecosystems (Podolsky, 1994). The within-region variability of 
NDVI values, for instance defined as the standard deviation of 
maximum NDVI, should relate to the heterogeneity of habitats, 
and have a positive relationship with species richness of mammals 
and plants. 
 
NDVI is based on the spectral properties of green vegetation 
contrasting with its soil background. This index has been found to 
provide a strong vegetation signal and good spectral contrast from 
most background materials. NDVI is a measure derived by 
dividing the difference between near-infrared and red reflectance 
measurements by their sum. NDVI provides an effective measure 
of photosynthetically active biomass (Tucker and Sellers, 1986). 
NDVI has been shown to be well correlated with climate 
variables including rainfall and evapotranspiration in a wide range 
of environmental conditions (Justice et a/., 1986; Cihlar et a/., 
1991). NDVI may therefore be considered to represent the 
integration of climatic variables at a given location and time 
(Anyamba and Eastman, 1996). 
National Oceanic and Atmospheric Administration (NOAA) 
AVHRR data have been used to document interannual variation in 
vegetation in Sub-Saharan Africa (Tucker et al., 1986). Although 
the AVHRR-NDVI data are normally of low spatial resolution (1 
km at best, but more typically 7.6 km), they possess a remarkably 
high temporal resolution. Images are commonly dekadal (every 
ten days) or monthly; they thus provide a very effective source for 
the examination of intra- and interannual climatic variations 
(Anyamba and Eastman, 1996). Yearly variations in vegetation 
can take the form of changes in the spatial distribution of plant 
growth (Tucker et al., 1986), or may involve differences in 
species dominance from year to year (Pitt and Heady, 1978). 
 
The interannual variation of the maximum NDVI can be used to 
assess whether vegetation cover over a number of years is 
actually stable in an area, or highly variable. For example, 
calculating the standard deviation for a number of years describes 
the variability of vegetation cover for an AVHRR-NDVI image 
pixel. Pixels with high standard deviations correspond to areas 
with large variations in vegetation composition and growth. Such 
areas are likely to have diverse habitats that may support richer 
assemblages of species (Podolsky, 1994). However, there are 
numerous examples of communities with high species diversity in 



environments with large variation in vegetation composition and 
growth which are unpredictable, unstable or frequently disturbed 
(Huston, 1994).  
 
The aim of this work is firstly to evaluate whether climate-based 
or remote sensing based productivity indices better predict species 
richness. The second aim is to examine the relationships between 
the species richness of vascular plants and large mammals with 
interannually integrated maximum NDVI variables at a landscape 
scale. This article summarizes recent work by Said et al. (2003) as 
well as Oindo and Skidmore (2002). 
 

II. METHODS 
 
The study area is East Africa - covering Kenya (569,260 km2), 
Tanzania (886,220 km2) and Uganda (207,950 km2). It is situated 
approximately between longitudes 12° South and 6° North and 
latitude 29° West and 42° East. The great diversity of ungulates is 
one of the most noticeable features of the East African region. 
Out of 95 ungulate species found in Africa, 55 are found within 
this sub-region. 
 
The vegetation of East Africa is highly heterogeneous, with great 
variability in structure and productivity. The productivity is 
greatly influenced by the spatial and seasonal distribution of 
precipitation and temperature. The range of precipitation varies 
between and within the three countries. Uganda has a range of 
900 to 1300 mm, Tanzania 600 to 1300 mm, and Kenya 200 to 
1300 mm.  
 
A number of data sets were compiled for these studies. Lack of 
space precludes a description of the methods used, but interested 
readers are referred to Said et al (2003) and Oindo and Skidmore 
(2002). The following data sets were generated at a regional scale 
(1 km pixel): herbivore data on 55 species (Boitoni et al, 1999); 
climatic, soils and land cover data from the ACTS database 
(ACTS, 1994); solar radiation; multidate AVHRR imagery used 
to calculate NDVI generated from the African Data 
Dissemination Service (ADDS) and Global Inventory Monitoring 
and Modelling (GIMMS).  
 

III. RESULTS 
 
Figure 1 shows the relationship between species richness and four 
indices of environmental productivity for 55 ungulate mammal 
species in East Africa.  The relationship between species richness 
and NDVI and rainfall is unimodal. The relationship between 
species richness and rainfall/potential evapotranspiration is linear 
and negative. 

Figure 1: relationship between species richness and four indices 
of environmental productivity for 55 ungulate mammal species in 
East Africa 
 
A similar unimodal pattern can be seen in data from Kenya at a 
district level (Narok district), for all mammals with a body mass 
greater than 4 kg observed by aircraft (Figure 2). Figure 2(a) 
shows mammal species richness against integrated maximum 
average NDVI, while 2b shows the coefficient of variation.  
 

 
Figure 2: 
 
Continuing the exploration of species richness with vegetation 
data sets (instead of mammals), it can be seen that plant species 
richness is also related to mean NDVI and the coefficient of 
variation of NDVI, but exhibits a negative curvilinear 
relationship.  
 



 
 
Figure 3:  
 
We then explored the relationship between mean NDVI and 
rainfall and uncovered a positive curvilinear relationship (NDVI = 
-0.7725 + 0.1613Ln(P), p < 0.0001, r2 = 0.87, n = 69), with an 
asymptote beyond 1300 mm rainfall.  
 
Table 1 summarizes the results of the statistical analysis 
(regression r2) between species richness and four environmental 
factors related to net primary production, for 55 mammal species 
across East Africa. The analysis was undertaken for the whole 
range of rainfall data (200-1300mm), as well as 2 subsets of the 
rainfall data (less than 1000 mm as well as 1000-1300 mm). The 
strongest correlates were rainfall and NDVI with 69% and 55% in 
the variance of species richness explained respectively. Climate 
variable (precipitation) is a better explanatory variable for species 
richness than NDVI, having consistently a higher r2 value.  Note 
that non-significant (ns) results from low sample numbers in table 
1. 
 

 200 – 1300 
mm 

< 1000 
mm 

1000-
1300 mm 

Precipitation r2 = 0.69 r2 = 0.77 r2 = ns 
Temperature r2 = 0.47 r2 = 0.66 r2 =0.21 
Potential 
evapotranspiration 

r2 = 0.44 r2 = 0.56 r2 = 0.45 

NDVI r2 = 0.55 r2 = 0.67 r2 = ns 
 
Table 1: r2 between mammalian species richness and four 
environmental factors related to net primary production 
 

IV. DISCUSSION 
 
The results from this study reveal that the remotely sensed index 
was not a better predictor of species richness than integrated 
climatic indices (Table1 1). This is contrary to our initial 
expectation and contradicts established literature (Nicholson et 
aI., 1990; Walker et al., 1992; Stoms and Estes, 1993; Los, 
1998b). The climatic model was more predictive than NDVI in 
areas with a rainfall range between 200 and 1300 mm; for the 
drier part of the rainfall gradient (<1000 mm) the difference was 
not significant. The difference in variance explained by the two 
models was investigated by reviewing the literature that related 
NDVI and climatic variables to NAPP. This observation is 
supported by a number of studies relating species richness to 
NDVI. Most of these studies have reported lower correlations 
between plant or mammalian species richness and NDVI (see 
Walker et al., 1992; Oindo et aI., 2000; Oindo and Skidmore, 

2002; this study) than those studies using climatic variables as 
proxy for productivity (refer to Prins and Olff, 1998; Olff et aI., 
2002). 
 
The species richness in East Africa is best described as unimodal 
in pattern (refer to Figures 1 - 3). The strongest single factor that 
best predicated ungulate species richness was rainfall. Contrary to 
expectations that high productive areas would have high species 
richness (energy limitation theory - see Wright, 1983), ungulates 
were highest at the intermediate productivity level. The pattern is 
consistent with studies on variations in richness (plants and 
animals) as functions of productivity that show species richness 
reaches its maximum at intermediate productivity levels (see 
Grime, 1973; Huston, 1980; Rosenzweig and Abramsky, 1993; 
Prins and Olff, 1998; Huston, 1999; Olff et aI., 2002). The hump-
shaped curve of the species richness-productivity relationship 
appears to be composed of at least two phases: the positive 
(Kenya) and negative slopes (Tanzania and Uganda) that make up 
the two sides of the hump-shaped curve, with maximum species 
richness occurring in both Kenya and Tanzania. 
 
Furthermore, why do maximum levels of species richness of 
mammals occur at intermediate levels of productivity (maximum 
average NDVI)? One possibility is that under conditions of low 
primary productivity in natural ecosystems, there is not much 
habitat or resource heterogeneity - the landscape is uniformly 
barren. As productivity rises, the average variety of micronutrient 
combinations in fertile soils increases (Rosenzweig and 
Abramsky, 1993). This leads to a more diverse community of 
plants that can support a greater number of herbivore species. But 
go beyond a certain point on the productivity gradient and the 
habitat heterogeneity that support mammalian diversity declines 
(Rosenzweig and Abramsky, 1993). This leads to Hence the 
scarcity and low quality of graminaceous resource in forest gaps 
result in decrease of species richness of mammals (Prins and Olff, 
1998). For further discussion and results please refer to Said et al. 
2003 as well as Oindo and Skidmore (2002). 
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