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Abstract

The Quasi-likelihood information criterion (QIC)which results from
utilizing Kullbacks I-divergence as the targeted discrepancy is widely
used in the GEE framework to select the best correlation structure and
the best subset of predictors. We investigated the inference properties
of QIC in variable selection with focus on its consistency, sensitivity
and sparsity. We established through numerical simulations that QIC
had high sensitivity but low sparsity. Its type I error rate was ap-
proximately 30% which implied fairly high chances of selecting over-fit
models. On the other side,it had low under-fitting probabilities. The
statistical power of QIC was established to be high hence rejecting any
given false null hypothesis is essentially guaranteed for sufficiently large
N even if the effect size is small.

Mathematics Subject Classification: 62J12, 62F07, 62F15

Keywords: Quasi-Likelihood Information Criteria, Generalized Estimat-
ing Equations, Consistency, Sparsity, Sensitivity

1 Introduction

Let f0(y|θ0) be the true generating model, f(y|θk) be the candidate model and
f(y|θ̂k) be the fitted model. Further if we let Ψ be the family of candidate
models,then model selection seeks to search among a collection of classes Ψ =
[Ψ(K1)...Ψ(KL)] for the fitted model f(y/θ̂k), k ∈ {1...KL} which serves as
the best approximation of f0(y|θ0).
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Akaike [2], observed that the model selected should be generalizable, a
good-fit and parsimonious. According to Burham and Anderson [6] and Kon-
ishi and Kitagawa [7] striving for generalizability is one of the main model
selection objectives since a generalizable model will be capable of predicting
future observations with a high degree of certainty. The goodness-of-fit prin-
ciple requires that the fitted model conforms to the data used to construct
it while the principle of parsimony requires that the simplest model that ad-
equately fits the data be preferred. However, model selection should strike
a balance between goodness-of-fit and parsimony (Koniski and Kitagwa [7]).
Burham and Anderson [6] further posit that under-fitting and over-fitting are
pertinent in determining the quality of a model. Under-fit models may lead
to biased estimates and poor predictive performance while over-fit models will
lead to results with high variability.

Fan and Li [3] observed that a good model selection criteria should be
asymptotically consistent i.e. should identify the correct model asymptoti-
cally with probability one provided the corrrect model is included in the set
of candidate models. Dziak [4] observes that, for consistent model selection,
two properties are required: sensitivity and sparsity. Sensitivity implies that
the model selection criteria retains all variables that should be retained with a
probability approaching one while sparsity implies that the model selection cri-
teria deletes all variables that should be deleted, with probability approaching
one.

2 Model Selection in Generalized Estmating

Equations

Let yit(i = 1, ..., n) be a sequence of binary responses taken on n subjects at
time points t=1,...,m and Xit = (xi1, ..., xim)T be the m×p matrix of covariates
for the ith subject (i=1,...,n). If yi has any distribution from the exponential
family,then according to Liang and Zeger(1986)its probability density function,
or probability mass function, can be written as:

fY (y; θ;φ) = exp{yθ − b(θ)
a(φ)

+ c(y, φ)} (1)

where θ is the natural or canonical parameter of the distribution, φ is the scale
or dispersion parameter and a(.), b(.) and c(.) are known functions. Consid-
ering the first and second moments of yit to be E(yit = µit and V ar(yit) = σ2

it,
then; µit = b

′
(θit) and σ2

it = σ2(µit) = b
′′
(θit)a(φ). If Yi ∼ Binomial(m,π)

with m>0, then φ=1, E(Yi) = mπ and V ar(Yi) = mπ(1 − π). Further, if we

let y 7→ y
m

so that my ∼ Binomial(m,π), y = 0, 1
m
, ..., 1, then; b′(θ) = eθ

1+eθ

and b′′(θ)a(φ) = eθ

m(1+eθ)2
= π(1−π)

m
= µ(1−µ)

m



Inference properties of QIC in the selection of covariates for GEE 151

Definition 2.1 Suppose that we have independent observations Yi(i=1......n)
from n subjects and for each subject i, m observations are made such that Yit
denote the tth response (t = 1, 2, .....m) and Xit={Xit1, Xit2......Xitp}τ denote a
p × 1 vector of covariates associated with Yit where (.)τ denotes transpose.
Let Yi =[yi1, ....yim]τ denote the response vector for the ith subject and Xi

= [Xτ
i1, ....X

τ
im]τ be the m × p corresponding covariates matrix. Further, if

E(Yit) = µit such that g(µit) = ηit = Xτ
itβ, where β =[β1...βp]

τ is a p×1 vector
of regression parameters and Xit is the ith row of Xi; var(Yit/Xit) = φv(µit),
where v(.) is a known variance function of µit and φ is a scale parameter which
may need to be estimated by φ̂ = 1

N−p
∑n

i=1

∑m
t=1 e

2
it where N =

∑n
i=1m and p

is covariates dimensionality and if an m×m working correlation matrix R(α)
is assumed for each Yit and is assumed to be a fully specified h × 1 vector of
unknown parameters, α=[α1...αh]

τ such that the corresponding working covari-

ance matrix for Yit is given as Vi = φA
1
2
i Ri(α)A

1
2
i where Ai is a m×m diagonal

matrix with g(µit) as the tth diagonal element and Ri(α) is an m×m working
correlation matrix that depends on the correlation parameter α, then, according
to Liang and Zeger [5] the method of generalized estimating equations (GEE)
is appropriate for modeling Yi. The quasi-likelihood GEE parameter estimates
of β could be obtained by solving the following system utilizing iteratively re-
weighted least squares method:

U(β̂, Ri, ℘i) =
n∑
i=1

Dτ
i V
−1
i (yi − µi) = 0 (2)

Di = dµi
dβτ

which is the first derivative of the response mean with respect to the

regression parameters. ℘i ≡ (Yi, Xi), i=1,2....n indicates the data at hand.
Since the GEE depend on both β and correlation parameters α and have no
closed-form solution, iterative two-stage estimation procedure of β and the nui-
sance parameters (α and φ ) is required. (yi − µi) is a residual vector which
measures deviations of observed responses of the ith subject from its mean.

Solving (2) yields the quasi-likelihood-based estimator of β̂. Under mild regu-
larity conditions

√
n(β̂G−β)→ N(0, VLZ) i.e. β̂ is

√
n-consistent for β : β̂ → β

as n→∞. VLZ is a covariance matrix based on the sandwich estimator given
by:

VLZ = B−1M̂LZB
−1 (3)

Where B = 1
n

∑n
i=1D

τ
i V
−1
i Di and M̂LZ = 1

n

∑n
i=1D

τ
i V
−1
i Cov(Yi)V

−1
i Di. If

(Vi) is correctly specified, VLZ reduces to
∑n

i=1D
τ
i V
−1
i Di which is referred to

as model-based variance estimator [1].
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2.1 Quasi-Likehood Information Criteria(QIC) and Vari-
able Selection in GEE

QIC was proposed by Pan [8] as a modification of AIC [2] for use in the
GEE framework in the selection of the covariates for the mean structure. QIC
was based based on quasi-likelihood function under independent correlation
structure and is Mathematically defined as

QICR = −2Q(β̂(R); I, ℘) + 2tr(Ω̂I V̂r) (4)

Where ΩI is the model-based variance estimator under the independence work-
ing correlation structure given as:

Ω̂I = E0{−
d2Q(β; I, ℘

dβdβτ
}/β=β0 =

n∑
i=1

Dτ
i V
−1
i Di (5)

Where Di = dµi
dβ̂τ

and

V̂r = Ω̂ICΩ̂I (6)

Where C =
∑n

i=1D
τ
i V
−1
i (Yi − µi)(Yi − µi)τV −1i Di is the robust or sandwich

variance estimator under the working correlation structure R and tr(Ω̂I V̂r) is
the trace of the product of the two matrices i.e the sum of the diagonal elements
of the matrix and is considered a measure of total variability or spread.

2.2 Inference Properties of QIC in the selection of Co-
variates for GEEs

To formally state some of these inference properties investigated, let Qn(p) be
the quasi-likelihood of a model with p parameters based on a sample size n
and Qn(p0) be the quasi-likelihood of the model with p0 correct parameters. If
p > p0, the model with p parameters is nested in the model with p0 parameters
so that Qn(p0) is obtained by setting p− p0 parameters in the larger model to
constants which can be assumed to be zero without loss of generality. Models
in which p < p0 are mis-specified and the models with with p ≥ p0 are correctly
specified or over-specified.

Based on QIC, the general form of the model selection criteria can be
expressed in the form:

QICn(p) = −2Qn(p) +
ϕ

n
trace(Θ) (7)

where ϕ
n

= 2 and Θ = Ω̂I V̂r. Using the general form, the model is selected
that corresponds to

p̂ = argminp≤mQICn(p) (8)



Inference properties of QIC in the selection of covariates for GEE 153

If p < p0, then the model with p parameters is mis-specified so that

Plimn−→∞ln(Qn(p) < Plimn−→∞ln(Qn(p0)) (9)

Hence from (7), (9) and limn−→∞
ϕ
n

= 0 it follows that;

Limn−→∞Pr[QICn(p0) ≥ QICn(p)] = Limn−→∞Pr[−2ln(Qn(p0)) + p0
ϕ

n
trace(Θ)

≥ −2ln(Qn(p)) + p
ϕ

n
trace(Θ)]

= Limn−→∞Pr[Qn(p)− ln(Qn(p0)]

≤ 0.5(p0 − p)
ϕ

n
trace(Θ)] = 0 (10)

so that,

limn−→∞Pr[p̂ < p0] ≤ limn−→∞P [QICn(p0) ≥ QICn(p)forsomep < p0

≤
∑
p<p0

limn−→∞Pr[QICn(p0) ≥ QICn(p)] = 0 (11)

For p > p0, it follows from the likelihood ratio test that;

2(ln(Qn(p))− ln(Qn(p0))
−→
d Xp−p0 ∼ χ2

p−p0 (12)

In the QIC case,

Qn(p0)−Qn(p) = 2(ln(Qn(p))−ln(Qn(p0)−(p−p0)
ϕ

n
trace(Θ)

−→
d Xp−p0−(p−p0)

ϕ

n
trace(Θ)

(13)
hence;

limn−→∞Pr[QICn(p0) > QICn(p)] = Pr[Xp−p0 > (p− p0)
ϕ

n
trace(Θ) > 0]

(14)
Therefore it follows that:

i if limn−→∞Pr(p̂ ≥ p0) −→ 1 and limn−→∞Pr(p̂ > p0) > 0, then QIC will
be inferred to over-fit in which case it will include all the p0 parameters
plus some spurious ones i.e. p0 ⊂ p̂. Pr(p̂ ≥ p0) is the type 1 error rate
of the model selection criteria.

ii if limn−→∞Pr(p̂ < p0) = 1 but limn−→∞Pr(p̂ < p0) > 0, then QIC
will be inferred to under-fit in which case it will exclude some important
variables from the selected model i.e.p0  p̂. Pr(p̂ < p0) is the type II
error rate (β). The values of (1-β) represents the power of the test.

iii if limn−→∞Pr(p̂ = p0) = 1 but limn−→∞(p̂ > p0) = 0 and limn−→∞(p̂ <
p0) = 0 , then QIC will be inferred to strongly consistent in selecting the
true model i.e. it will almost surely select the true model.
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iv if limn−→∞Pr(p̂ = p0) −→ 1 but limn−→∞(p̂ > p0) −→ 0 and limn−→∞(p̂ <
p0) −→ 0 , then QIC will be inferred to be weakly consistent in select-
ing the true model i.e. it will select the true model with probabilities
converging to one.

2.3 Simulation Design

In the numerical simulation we determine the consistency, over-fitting, under-
fiiting, sensitivity and sparsity of QIC in selecting the true GEE model. We
considered a model with four covariates x1, x2, x3 and x4. The binary response
yit has the conditional expectation µit:

µit = E{yit|X1,it, X2,it, X3,it, X4,it} (15)

µit can be connected with the covariates through:

logit(µit) = β0 + β1X1,it + β2X2,it + β3X3,it + β4X4,it (16)

where i ∈ {1...n} and t ∈ {1...m}. {β0, β1, β2}={0.25,−0.25,−0.25} and
βp = 0[p 6= 1, 2]. This implies that the model with X1,it and X2,it is the true
model. x1it ∼ N(0, 1); x2it ∼ Bernoulli(0.5) and {x3, x4} ∼ Uniform[0, 1].
The true correlation structure R0 was assumed to be AR-1 α ∈ (0.2, 0.5).
The simulation studies were based on 2k factorial design. The narrow model
included the intercept term and x1 and the final model is selected from the
narrow model combined with the other 23 candidate models. The Simulation
results were based on 1,000 replications and the performance of QIC was based
on how many times it chose the true data generating model, type I(α) and type
II(β) error rates and the power of the test (1− β).

3 Numerical Results On the Selection of the

True Model

The results in table 1 show that QIC’s selection rates of the true model increase
as the sample size increases. Likewise, increasing the number of measurements
per subject and the level of within-subject correlation results to increased
proportion of selection of the true model. The type I error rates which are the
over-fitting probabilities of QIC are shown in Table 2 indicate that for both
α = 0.2 and α = 0.5, m=3, 6 and 9 and for n in the range, 20 ≤ n ≤ 200, the
range of type I error rate is ≈ 30% . However, it is noticeable that the type I
error rate is higher for smaller sample sizes and seems to diminish as the the
sample size increases but seems not to approach zero. The Type I error rate
of at least 30% indicates fairly high chances of QIC selecting over-fit models
by wrongly including covariates whose coefficients are zero.
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The high type I error rates implies reduced risk of type II error hence
increased statistical power of QIC i.e. increased ability to make the correct
inclusion of the important variables in the selected model. These are illustrated
in table 3 and indicate that the type II error rates are about 30% for small
samples, but quickly diminish to zero as the sample size increases. This implies
that for small samples QIC has some chances of under-fitting at the rate of
about 30%. For n ≥ 50, QIC has little or no chances of under-fitting. The
power test results show that the power of the test increases with n, so that
rejecting any given false null hypothesis is essentially guaranteed for sufficiently
large n even if the effect size is small. This makes QIC good in predictive
modeling.

4 Theoretical Results

Proposition 4.1 Let Mc = {m1,m2....mp} be the set of all p candidate
models. We can partition Mc into two sets: M+ set of over-specified models i.e.
candidate models that include the true model, i.e.M+ = {m ∈ Mc/m∗ ⊂ m}
and M− = Mc \ (M+), the set of under-specified models. If we let m denote
the model selected by QIC then;

i Pr(m = M+) > 0. i.e. the probability of QIC selecting over-fit models is
greater than zero.

ii Pr(m = M+) - Pr(m = M−) > 0 i.e. Over-fitting probability is greater
than the under-fitting probability.

iii Pr(m = M−)→ 0 as n→∞.

iv Pr(m = m∗) −→ 1 as n−→ ∞. This implies that, with probability
approaching one, the QIC procedure selects the correct data generating
model. However, this consistency is dependent on Pr(m = M+) i.e.
Pr{(m = m∗) −→ 1}|Pr(m=M+)−→0 as n−→∞.

Proposition 4.2 If we partition β∗ the true value of β into truly non-
zero(NZ) and truly zero (Z) coefficients as follows: NZ = {j : βj 6= 0} and
Z = {j : βj = 0}. Further, if we let βNZ denote the vector of non-zero
coefficients and βZ denote the vector of zero coefficients. Then;

i Pr {∃j ∈ NZ : β̂j = 0} = o(1) i.e. there exists β̂NZ, a sequence of
solutions of GEE model such that non-zero coefficients are included in
the model selected by QIC with probability approaching one(sensitivity).

ii Pr(βZ = β∗Z) 9 1 as n→ ∞ i.e. QIC is not sparse.
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5 Conclusion

We established that QIC had high sensitivity i.e. it included all the important
variables in the final model selected but had low sparsity i.e. did not delete all
the non-important variables with probability one. Hence, the study established
that QIC had some realistic chances of selecting over-fit models. This is also
attributed to the high type I error rate of about 30%. Likewise, QIC had a high
statistical power which resulted from the low type II error rate hence rejecting
any given false null hypothesis is essentially guaranteed for sufficiently large
samples even if the effect size is small making QIC good in predictive modeling.
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Table 1: Proportion of True Model Selection.
20 30 50 100 200

m=3 30.8 42.3 55.2 66.3 66.5
α = 0.2 m=6 37.6 51.7 62.8 64.2 68.0

m=9 41.2 53.4 64.7 68.0 67.7
m=3 36.0 46.3 55.5 66.3 70.5

α = 0.5 m=6 41.7 53.5 58.3 68.5 71.9
m=9 46.2 57.3 64.0 70.3 72.1

Table 2: Model selection summary by QIC. Type I Error Rate.
20 30 50 100 200

m=3 o.345 0.325 0.336 0.328 0.335
α = 0.2 m=6 0.428 0.362 0.346 0.358 0.320

m=9 0.465 0.418 0.344 0.320 0.323
m=3 0.465 0.418 0.344 0.320 0.323

α = 0.5 m=6 0.369 0.343 0.377 0.330 0.295
m=9 0.486 0.414 0.358 0.297 0.278

Table 3: Model selection summary by QIC. Type II Error and Statistical
Power.

20 30 50 100 200
m=3 β 0.34 0.25 0.11 0.01 0.00

1-β 0.66 0.75 0.89 0.99 1.00
α = 0.2 m=6 β 0.20 0.12 0.03 0.00 0.00

1-β 0.80 0.88 0.97 1.00 1.00
m=9 β 0.12 0.05 0.01 0.00 0.00

1-β 0.88 0.95 0.99 1.00 1.00
m=3 β 0.27 0.19 0.07 0.01 0.00

1-β 0.73 0.81 0.97 0.99 1.00
α = 0.5 m=6 β 0.13 0.04 0.01 0.00 0.00

1-β 0.87 0.96 0.99 1.00 1.00
m=9 β 0.05 0.01 0.00 0.00 0.00

1-β 0.95 0.99 1.00 1.00 1.00
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