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Abstract

This paper presents a method of constructing the Zero inflated Pois-

son continuous mixture distributions which have applications in various

fields. The distributions can be formed by either direct integration or

integration of moments of the underlying distributions. The two meth-

ods are presented in sections one and two. In section four, we present

the mixed distributions. We further proved the identities that resulted

when the resultant mixed distributions were equated.
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1 Introduction

In applications involving count data, it is common to encounter the frequency

of observed zeros significantly higher than predicted by the model based on the

standard parametric family of discrete distributions. In such situations, zero-

inflated Poisson and zero-inflated negative binomial distribution have been

widely used in modeling the data, yet other models may be more appropriate

in handling the data with excess zeros, as shown by [2] The consequences of

this is misspecifying the statistical model leading to erroneous conclusions and

bringing uncertainty into research and practice. Therefore the problem is to

identify by constructing other alternatives, to the models already present in

the literature that may be more appropriate for modeling data with excess
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zeros. In their paper, [1], presented a method on how to construct the mixed

poisson distributions explicitly. The paper gives an alternative method where

the distributions can be constructed using the rth moment expectation of the

underlying distribution. The identities that result from the two methods are

also proved. A mixed distribution is constructed when two probability dis-

tributions are mixed. Consider a probability distribution whose parameter is

varying and also has a distribution. Then the integral or summation of these

two distributions forms a mixed probability distribution. In [3], constructed a

Negative Binomial distribution by mixing a Poisson distribution with its pa-

rameter. In this work, the ZIP (Zero- Inflated Poisson) distribution was mixed

with various continuous distributions to construct the ZIP mixture distribu-

tions.

2 Construction of mixed ZIP distribution using moments of the mix-

ing distribution

2.1 General case

Suppose g(λ) is the mixing distribution, then ZIP mixed distribution, which

can be written in terms of the rth moment of the mixing distribution as

=

{
ρ+ (1− ρ)

∑∞
j=0

(−1)j

j!

∫∞
0
λjg(λ)dλ, k=0;

(1− ρ)
∑∞

j=0
(−1j

j!k!

∫∞
0
λj+kg(λ)dλ, k=1, 2, . . . .

(1)

Letj = x, then f(x) can be written as

Pr(Y = x) =

{
ρ+ (1− ρ)

∑∞
x=0

(−1)x

x!
E(Λx), k=0;

(1− ρ)
∑∞

x=0
(−1)x

x!k!
E(Λx+k), k=1, 2, . . . .

(2)

where E(Λr) is the rth moment of the mixing distribution.

3 Construction of the ZIP distributions by direct integration

A random variable Y follows a zero-inflated Mixed Poisson distribution with

mixing distribution having probability density function g if its probability func-

tion is given by;

Prob(Y = k) =

{ ∫∞
0

[
ρ+ (1− ρ)e−λ

]
g(λ)dλ, k=0;∫∞

0

[
(1− ρ) e

−λλk

k!

]
g(λ)dλ, k=1, 2, . . . .

(3)

If we equate equation 4 and equation 5, we get identities. This is so because

the resultant distributions should be identical.
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4 Special cases

4.1 Exponential distribution

For an exponential distribution, the rth moment is

E(Λr) =

∫ ∞
0

λrµ e−µλdλ

= µ

∫ ∞
0

λre−µλdλ

Let

y = µλ, =⇒ λ =
µ

λ
, anddλ =

dy

µ

E(Λr) = µ

∫ ∞
0

(
y

µ

)r
e−y

dy

µ

=
r!

µr

Thus from equation 2, we have

Pr(Y = x) =

{
ρ+ (1− ρ)

∑∞
x=0

(−1)x

x!
x!
µx
, k=0;

(1− ρ)
∑∞

x=0
(−1)x

x!k!
(x+k)!
µx+k

, k=1, 2, . . . .
(4)

From equation 3 we construct the mixed ZIP distribution as follows

Pr(Y = k) =

 ρ+ (1− ρ) µ
(1+µ)

, k=0;

(1− ρ)
(

µ
1+µ

)(
1

1+µ

)k
, k=1, 2, . . . .

(5)

From equation 2 and equation 3, we have the following identities

1.

ρ+ (1− ρ)
∞∑
x=0

(−1)x

x!

x!

µx
= ρ+ (1− ρ)

(
µ

1 + µ

)
2.

(1− ρ)
∞∑
x=0

(−1)x

x!k!

(x+ k)!

µx+k
= (1− ρ)

(
µ

1 + µ

)(
1

1 + µ

)k
Proofs

From the first identity,
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∞∑
x=0

(−1)x

x!

x!

µx
=

∞∑
x=0

(
−1

x

)(
1

µ

)x
=

(
1 +

1

µ

)−1

=
µ

1 + µ

The second identity

Γ(k + 1)

k!µk

∞∑
x=0

(−1)x
(x+ k)!

x!Γ(k + 1)µx
=

Γ(k + 1)

k!µk

∞∑
x=0

(−1)x
(

(x+ k + 1− 1)

x

)
1

µx

=
Γ(k + 1)

k!µk

∞∑
x=0

(
−(k + 1)

x

)(
1

µ

)k+1

=
Γ(k + 1)

k!µk

(
1 +

1

µ

)−(k+1)

=
k!

k!µk

(
µ

1 + µ

)k+1

=

(
µ

1 + µ

)(
1

1 + µ

)k
4.2 Gamma distribution

From equation 5,

Pr(Y = k) =


ρ+ (1− ρ)( β

1+β
)α, k=0;

(1− ρ)

(
α + k − 1

k

)(
β

1+β

)α (
1

1+β

)k
, k=1, 2, . . . .

(6)

The mixed distribution is a ZINB distribution with parameters α, ρ and β
1+β

.

From equation 4, The mixed distribution becomes

Pr(Y = k) =

{
ρ+ (1− ρ)

∑∞
x=0

(−1)x

x!
βα

Γα
Γ(α+x)
βα+x

, k=0;

(1− ρ)
∑∞

x=0
(−1)x

x!k!
βα

Γα
Γ(α+x+k)
βα+x+k

, k=1, 2, . . . .
(7)

Identities

(a)

ρ+ (1− ρ)
∞∑
x=0

(−1)x

x!

βα

Γα

Γ(α + x)

βα+x
= ρ+ (1− ρ)

(
β

1 + β

)α
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(b)

(1− ρ)
∞∑
x=0

(−1)x

x!k!

βα

Γα

Γ(α + x+ k)

βα+x+k
= (1− ρ)

(
α + k − 1

k

)
βα

(1 + β)α+k

Proof;

∞∑
x=0

(−1)x

x!

1

Γα

Γ(α + x)

βx
=

∞∑
x=0

(−1)x
(
α + x− 1

x

)
1

βx

=
∞∑
x=0

(
−α
x

)(
1

β

)α
=

(
1 +

1

β

)−α
=

(
β

1 + β

)α
For the second identity

∞∑
x=0

(−1)x
Γ(α + x+ k)

x!k!Γαβx+k
=

Γ(α + k)

βkk!Γα

∞∑
x=0

(−1)x
Γ(α + x+ k)

x!Γ(α + k)

1

βx+k

=
Γ(α + k)

k!Γα

1

βk

∞∑
x=0

(−1)x
(
α + x+ k − 1

x

)(
1

β

)x
=

Γ(α + k)

k!Γα

1

βk

∞∑
x=0

(
−(α + k)

x

)(
1

β

)α+k

=
Γ(α + k)

k!Γα

1

βk

(
1 +

1

β

)−(α+k)

=

(
α + k − 1

k

)
βαβk

(1 + β)α+k

1

βk

=

(
α + k − 1

k

)(
β

1 + β

)α(
1

1 + β

)k
4.3 Generalized Lindley distribution

The mixed distribution is

Pr(Y = k) =

{
ρ+ (1− ρ) θα+1

(θ+1)α

[
1

(1+θ)α
+ 1

(1+θ)α+1

]
k=0;

(1−ρ)
k!

θα+1

(θ+1)α+k+1

Γ(α+k)
Γ(α+1)

[
α + α+k

1+θ

]
k=1, 2, . . . .

(8)
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which is a Zero-Inflated Generalized Poisson Lindley distribution with two

parameters. Using the method of moments,

Pr(Y = k) =

 ρ+ (1− ρ)
∑∞

x=0
(−1)x

x!
θ1+α

(1+θ)Γ(α+1)

[
αΓ(α+x)
θα+x

+ Γ(α+x+1)
θα+x+1

]
, k=0;

(1− ρ)
∑∞

x=0
(−1)x

x!k!
θ1+α

(1+θ)Γ(α+1)

[
αΓ(α+x+k)
θα+x+k

+ Γ(α+x+k+1)
θα+x+k+1

]
, k=1, 2, . . . .

(9)

Identities

(a)

ρ+ (1− ρ)
∞∑
x=0

(−1)x

x!

θ1+α

(1 + θ)Γ(α + 1)

[
αΓα + x

θα+x
+

Γα + x+ 1

θα+x+1

]

= ρ+ (1− ρ)
θα+1

(1 + θ)

[
1

(1 + θ)α
+

1

(1 + θ)α+1

]
(10)

(b)

(1− ρ)
∞∑
x=0

(−1)x

x!k!

θ1+α

(1 + θ)Γ(α + 1)

[
αΓ(α + x+ k)

θα+x+k
+

Γ(α + x+ k + 1)

θα+x+k+1

]

=
(1− ρ)

k!

θα+1

(1 + θ)Γ(α + 1)

[
αΓ(α + k)

(1 + θ)α+k
+

Γ(α + k + 1)

(1 + θ)α+k+1

]
(11)

Proof;

α

θα

∞∑
x=0

(−1)x
Γ(α+ x)

x!Γ(α+ 1)

1

θx
+

1

θα+1

∞∑
x=0

(−1)x
Γ(α+ x)

x!Γ(α+ 1)

1

θx

=
α

θαα

∞∑
x=0

(−1)x
Γ(α+ x)

x!Γα

1

θx
+

1

θα+1

∞∑
x=0

(−1)x
Γ(α+ x)

x!Γ(α+ 1)

1

θx
(12)

=
1

θα

∞∑
x=0

(−1)x
(
x+ α− 1

x

)(
1

θ

)x
+

1

θα+1

∞∑
x=0

(−1)x
(
x+ α+ 1− 1

x

)(
1

θ

)x
(13)

=
1

θα

∞∑
x=0

(
−α
x

)(
1

θ

)α
+

1

θα+1

∞∑
x=0

(
−(α+ 1)

x

)(
1

θ

)α+1

(14)

=
1

θα

(
1 +

1

θ

)−α
+

1

θα+1
(1 +

1

θ
)−(α+1) (15)

=
1

θα

(
θ

1 + θ

)α
+

1

θα+1

(
θ

1 + θ

)α+1

(16)

=
1

(1 + θ)α
+

1

(1 + θ)α+1
(17)
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Second item

α

θk+α

∞∑
x=0

(−1)x
Γ(x+ α + k)

x!θx
+

1

θα+k+1

∞∑
x=0

(−1)x
Γ(x+ k + α + 1)

x!θx
(18)
(19)

=
αΓ(k + α)

θk+α

∞∑
x=0

(−1)x
Γ(x+ α+ k)

x!Γ(k + α)

1

θx
+

Γ(k + α+ 1)

θα+k+1

∞∑
x=0

(−1)x
Γ(x+ k + α+ 1)

x!Γ(k + α+ 1)

1

θx
(20)

=
αΓ(α+ k)

θk+α

∞∑
x=0

(−1)x
(
x+ k + α− 1

x

)(
1

θ

)x
+

Γ(k + α+ 1)

θα+k+1

∞∑
x=0

(−1)x
(
x+ k + α+ 1− 1

x

)(
1

θ

)x
(21)

=
αΓ(α+ k)

θk+α

∞∑
x=0

(
−(k + α)

x

)(
1

θ

)k+α
+

Γ(k + α+ 1)

θα+k+1

∞∑
x=0

(
−(k + α+ 1)

x

)(
1

θ

)k+α+1

(22)

=
αΓ(α + k)

θk+α

(
1 +

1

θ

)−(k+α)

+
Γ(k + α + 1)

θα+k+1

(
1 +

1

θ

)−(k+α+1)

(23)

=
αΓ(α + k)

θk+α

(
θ

1 + θ

)k+α

+
Γ(k + α + 1)

θα+k+1

(
θ

1 + θ

)k+α+1

(24)

=
αΓ(α + k)

(1 + θ)k+α
+

Γ(k + α + 1)

(1 + θ)α+k+1
(25)

4.4 Lindley distribution

The mixed distribution by direct integration gives

Pr(Y = k) =

 ρ+ (1− ρ) θ2

θ+1

[
1

(1+θ)2
+ 1

1+θ

]
, k=0;

(1− ρ)θ2
[

2+k+θ
(1+θ)k+3

]
, k=1, 2, . . . .

(26)

By the method of moments, we have

Pr(Y = k) =

 ρ+ (1− ρ)
∑∞

x=0
(−1)x

x!
θ2

1+θ

[
Γ(x+2)
θx+2 + Γ(x+1)

θx+1

]
, k=0;

(1− ρ)
∑∞

x=0
(−1x

x!k!
θ2

1+θ

[
Γ(x+k+2)
θx+k+2 + Γ(x+k+1)

θx+k+1

]
, k=1, 2, . . . .

(27)

This implies that we have two identities, i.e

1.

ρ+ (1− ρ)
∞∑
x=0

(−1)x

x!

θ2

1 + θ

[
Γ(x+ 2)

θx+2
+

Γ(x+ 1)

θx+1

]

= ρ+ (1− ρ)
θ2

1 + θ

(
1

(1 + θ)2
+

1

1 + θ

)
(28)
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2.

(1− ρ)

∞∑
x=0

(−1)x

x!k!

θ2

1 + θ

[
Γ(x+ k + 2)

θx+k+2
+

Γ(x+ k + 1)

θx+k+1

]
= (1− ρ)

θ2

1 + θ

[
2 + k + θ

(1 + θ)k+2

]

Proofs;

∞∑
x=0

(−1)x

x!

[
Γ(x+ 2)

θx+2
+

Γ(x+ 1)

θx+1

]
=

Γ2

θ2

∞∑
x=0

(−1)x
Γ(x+ 2)

x!Γ2θx
+

1

θ

∞∑
x=0

(−1)x
(

1

θ

)x
=

1Γ1

θ2

(
1 +

1

θ

)−2

+
1

θ

(
1 +

1

θ

)−1

=
1

(1 + θ)2
+

1

1 + θ

For part (ii)

Γ(k + 2)

θk+2

∞∑
x=0

(−1)x
Γ(x+ k + 2)

Γ(k + 2)x!k!

1

θx
+

Γ(k + 1)

θk+1

∞∑
x=0

(−1)x
Γ(x+ k + 1)

Γ(k + 1)x!

1

θx
(29)

=
Γ(k + 2)

k!θk+2

∞∑
x=0

(−1)x
(
x+ k + 2− 1

x

)(
1

θ

)x
+

Γ(k + 1)

k!θk+1

∞∑
x=0

(−1)x
(
x+ k + 1− 1

x

)(
1

θ

)x
=

Γ(k + 2)

k!θk+2

∞∑
x=0

(
−(k + 2)

x

)(
1

θ

)k+2

+
Γ(k + 1)

k!θk+1

∞∑
x=0

(
−(k + 1)

x

)(
1

θ

)k+1

=
Γ(k + 2)

k!θk+2

(
1 +

1

θ

)−(k+2)

+
Γ(k + 1)

k!θk+1

(
1 +

1

θ

)−(k+1)

=
(k + 1)k!

k!θk+2

(
θ

1 + θ

)k+2

+
Γ(k + 1)

k!θk+1

(
θ

1 + θ

)k+1

=
2 + k + θ

(1 + θ)k+2

5 Discussion

The continuous mixture distributions can be formed by direct integration. This

applies to most distributions since there are no restrictions imposed during in-

tegration. In [4], showed that their is a relationship between the moment of an

underlying distribution and the distribution function of the mixed distribution.

This paper has presented such a relationship by using Exponential, Gamma

with two parameters, Lindley and the Generalized Lindley distributions as the

underlying distributions being mixed with the ZIP distribution. Whether di-

rect integration is used or the method of expectation of moments, the resulting

distributions must be identical but not necessarily the same. We went ahead

and proved identities that resulted by equating mixed distributions formed by

direct integration and those formed through rth moment expectation of the
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mixing distributions.

Conclusion

This work concentrated on purely construction. Since we did not exhaust all

the available continuous distributions, therefore more work can be done by

considering the distributions which we did not use, by using the methods of

construction already used and also other methods can be studied or researched

on. Mixed Poisson distributions exhibit several interesting properties as given

by [1]. These properties include; Identifiability and Shape properties, Infinite

divisibility, Posterior Moments, etc. The study of these properties can form a

good basis of further research on the mixed ZIP distributions constructed in

this work. In this study, we restricted ourselves to continuous mixing distribu-

tion. Discrete or countable mixtures where we have discrete prior distributions

could be of interest to a researcher , thus, research can be carried out on this.
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