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Abstract

In this paper, we give a characterization of scalar operators. In
particular we show that a densely defined closed linear operator H acting
on a reflexive Banach space X is scalar if it is of (0, 1) type R and
‖ f(H) ‖≤‖ f ‖∞ for f in the algebra of smooth functions U .
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1 Introduction

Suppose H is a closed densely defined operator on a Banach space X, whose
spectrum is contained in R and there exist a C > 0 such that

‖ (z − H)−1 ‖≤ C
< z >α

| Iz |α+1
(1)
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for all z ∈ iR and some (α, α + 1) ≥ 0 then H is of (α, α + 1) type R [1].
Here, < z >:=

√
1+ | z |2 and Iz denotes the imaginary part of z.

A special case is a Hermitian operator on a Hilbert space. Scalar operators
with real spectrum is called a pseudo-hermitian operator. In Hilbert space,
abounded linear operator S is a pseudo-hermitian if and only if the group
‖ eitS ‖≤ M < ∞ for all t ∈ R [8].
If X is a reflexive Banach space then an operator T ∈ B(X) is scalar spec-
tral if it admits an integral representation with respect to countably additive
projection valued measure or equivalently if it admits a C(σ(T )) functional
calculus [6]. In particular, if T acts on a Hilbert space H, then T admits
C(R) functional calculus if it is Hermitian. Generally, an operator acting on
a reflexive Banach space is scalar if and only if it has a Co(R) functional cal-
culus [5]. According to [10], If T is an operator with σ(T ) ⊂ R and acting
on a reflexive Banach space X, then T is scalar if and only if iH generates
a uniformly bounded strongly continuous group. In [7], a functional calculus
is given for a closed densely defined linear operators on a Banach space with
σ(H) ⊆ R satisfying the resolvent estimate and for functions from weighted
sobolev spaces. Here the calculus used is based on almost analytic extension to
C of infinitely differentiable functions defined on R and the Helffer-Sjostrand
formula [9]. Such calculus defines an algebra homomorphism. We now con-
sider an intermediate topology C∞

c (R) ⊂ U ⊆ C(R) such that (α, α + 1) type
R operators admits U functional calculus. Here C∞

c (R) is the space of smooth
functions of compact support. For detailed information see [2].
For any f ∈ U the norm is defined as;

‖ f ‖n:=

n∑
r=0

∫
| f (r)(x) |< x >r−1 dx (2)

where

| f (r)(x) |:=| dr

dxr
f(x) |≤ cr < x >β−r (3)

for all x, β ∈ R and cr > 0.
It is shown in [2] that U is an algebra under pointwise multiplication.
The definition of f(H) for f ∈ U originates from the version of Helffer and
Sjöstrand [9] integral formula. Using this and the abstract result from [3],
we show that a densely defined closed linear operator H acting on a reflexive
Banach space X is scalar if it is of (0, 1) type R and ‖ f(H) ‖≤‖ f ‖∞
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2 The U functional Calculus

The materials in this section has been taken from [3] and [4].
For any f ∈ U and n ≥ 0 an almost analytic extension of f to C is defined;

f̃(x + iy) :=

n∑
r=0

f (r)(x)(iy)r

r!
τ

( y

< x >

)
(4)

where τ is a C∞
c (R) function such that τ(s) = 1 if | s |≤ 1 and τ(s) ≥ 2.

It follows that for f ∈ U , | ∂
∂z

f̃(x, y) |= O(| y |n) as | y |→ 0 for a fixed x.
Moreover we can find c′ ∈ R such that

| ∂

∂z
f̃(x, y) |≤ c′(| y |n) (5)

as z → x ∈ R. If κ is a map such that κ : U → B(X) then

f → f(H) := −1

π

∫
�

∂f̃

∂z
(z − H)−1dxdy (6)

and it is proved in [3], that for n > α ≥ 0

• f(H) is norm convergent with ‖ f(H) ‖≤ Cα ‖ f ‖n+1 for some Cα > 0
and doesn’t depend on τ ;

• the mapping extends to a bounded algebra homomorphism;

• if f ∈ U and f = 0 on a neighbourhood of σ(H) then f(H) = 0;

• if z ∈ iR then 1
z− ∈ U and f( 1

z−) = (z − H)−1

For an operator H of (α, α + 1)-type R, we associate each element f ∈ U with
an operator f(H) ∈ B(X) given by (6)
In order to state our results, we need the following theorems and corollaries;

Theorem 2.1 Let H be a bounded operator with σ(H) ⊆ R, and
‖ eiHt ‖≤ C(1+ | t |)α where α is a non negative integer. Then H is of
(α, α + 1) type R

Proof. see[1]

corollary 2.2 If α = 0 then H is of (0, 1) type R and ‖ eiHt ‖≤ C < ∞.
In particular H is a pseudo hermitian operator, and so it is a scalar operator.

Theorem 2.3 H is a generator of a Co-contraction semi-group if and only
if H is closed, densely defined and for each λ > 0, λ ∈ ρ(H) and
‖ (λ − H)−1 ‖≤ λ−1
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Proof. see[1]

corollary 2.4 If iH is a generator of a group of isometries {T (t)} then
for all λ ∈ iR with real λ �= 0, λ ∈ ρ(iH) and

(λ − iH)−1 =

{ ∫ ∞
0

T (t)e−λtdt, if Rλ > 0;
− ∫ ∞

0
T (t)e−λtdt, if Rλ < 0;

Theorem 2.5 If H is a Hermitian operator on a Hilbert space H, then H is
of (0, 1) type R

The proof of this theorem follows from the fact that since H is a Hermitian
operator then obviously its spectrum is in R and so the resolvent set of H ;
ρ(H) := {z ∈ iR : z − H : D(H) → X is bijective and
(z − H)−1 ∈ B(X)}. In particular ‖ (z − H)−1 ‖≤ C| Iz |−1 by (1); thus for
all z ∈ ρ(H), R(z, H) := (z − H)−1 is a normal operator.

Theorem 2.6 If H is of (α, α + 1)-type R for some α > 0, then H admits
C∞

o (R) functional calculus.
Proof. see [1]

Theorem 2.7 If f ∈ U and H is Hermitian on a Hilbert space H, then

‖ f(H) ‖≤‖ f ‖∞ .

Proof. See[3]

3 Main Results

Theorem 2.8 H is of (0, 1)-type R with the constant C = 1 if and only if iH
is a generator of a one parameter group of isometries on X.
Proof.
Suppose H is of (0, 1)-type R with C = 1, then from corollary (2.2), H is a
Pseudo-Hermitian operator, and hence a scalar operator. It follows from (1)
and (Theorem 2.1) that H is a generator of a one parameter group of isometries
and so iH also generates a group of isometries. Since iH generates a group
of isometries it follows that iH is densely defined. Also from corollary(2.4);
we have that for λ > 0; (λ − iH)−1f is the Laplace transform of T (t) = eitHf
given for f in the domain of iH. It follows from theorem (2.1) that T (t) is a
bounded operator. Conversely, suppose iH densely defined and theorem (2.1)
holds, then T (t) is a semigroup. From the uniform boundedness, (T (t)t≥0) is
uniformly bounded on compact intervals. From corollary(2.4) and density of
D(iH), imply that (T (t)) is strongly continuous. Hence iH is a generator of
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one parameter group T .

Theorem 2.9 A densely defined linear operator H acting on a reflexive
Banach space X, is scalar if it is of (0, 1)-type R and ‖ f(H) ‖≤‖ f ‖∞ for
each f ∈ U

Proof. Let H be an operator acting on Hilbert space H and σ(H) ⊆ R, then
H is A Pseudo Hermitian Operator. By theorem (2.5) it is of (0,1)-type R and
by theorem (2.6) it is a scalar operator. Also iH generates a one parameter
group by theorem 2.8, hence H admits a functional calculus given by (6). Since
(6) is continuous by (1) and (5), the resolvent set is bounded. From theorem
(2.7) we see that (6) converges absolutely. Since H is Hermitian, it follows
by Riesz representation theorem that for f ∈ U there exist a complex Borel
measure μ on σ(H) such that

f(H) =

∫
σ(H)

f(z)μdz

and this completes the proof.
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