On Numerical and Centre Values Range

John O. Agure

Department of Mathematics and Applied Mathematics Maseno University P.O. Box 333 Maseno, Kenya johnagure@maseno.ac.ke

Paul O. Oleche

Department of Mathematics and Applied Mathematics Maseno University P.O. Box 333 Maseno, Kenya poleche@maseno.ac.ke

Abstract

This paper follows [1] in the quantitative study of Numerical Ranges introduced by Stampfli [9]. In particular, we consider a family of mutually orthogonal projections and investigate how a numerical range can be related to several other numerical ranges in a closed convex hull. We then introduce the centre valued range and show that if \mathcal{U} is a W^* algebra then for any A in \mathcal{U} we can relate the norm of A and distance of A itself from its centre.

Mathematics Subject Classification: 47A12

Keywords: numerical range, centre valued range, representation, projection, convex hall

1 INTRODUCTION

Let \mathcal{H} be a Hilbert space, T a bounded linear operator mapping \mathcal{H} into \mathcal{H} and $B(\mathcal{H})$ a set of bounded linear operators on \mathcal{H} . For any $T \in B(\mathcal{H})$ the numerical range W(T) is the set

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1 \}.$$

This set is convex, see [6], the classic Toeplitz-Hausdorff Theorem. The following properties of W(T) are clear.

- $W(\alpha I + \beta T) = \alpha + \beta W(T), \quad \forall \alpha, \beta \in \mathcal{C}$
- $W(T^*) = \{\bar{\lambda} : \lambda \in W(T)\}$
- $W(U^*TU) = W(T)$ for any unitary operator U

Example 1.1 Let $T \in B(\ell_2)$ be defined by $Tx = (x_2, x_3, ...,)$. Then W(T) is an open disc of radius one, that is

$$W(T) = \{z : |z| < 1\}$$

Lemma 1.2 Let T be an operator on a two dimensional space. Then W(T) is an ellipse whose foci are the eigenvalues of T.

See Gustafson and Rao [10] for the proof.

It is clear that $B(\mathcal{H})$ is an algebra if multiplication for any two elements in $B(\mathcal{H})$ is pointwise defined. We shall also denote the dual of $B(\mathcal{H})$ by $B(\mathcal{H})^*$. For any element $T \in B(\mathcal{H})$ and identity $I \in B(\mathcal{H})$ the algebra numerical range V(T) is given by

$$V(T) = \{ f(T) : f(I) = 1 = ||f|| \}.$$

Definition 1.3 Let \mathcal{A} be a C^* -algebra. The states of \mathcal{A} are a class of linear functionals which maps positive values of an algebra to positive values of the same algebra.

W(T) and V(T) are identical, see [4]. The maximal numerical range of an operator $T \in B(\mathcal{H})$ is the set $W_0(T)$ where

$$W_0(T) = \{ \lambda : \langle Tx_n, x_n \rangle \rightarrowtail \lambda, \|x_n\| = 1, \|Tx_n\| \rightarrowtail \|T\| \}.$$

This set was introduced by Stampfli [9]. If \mathcal{U} is a C^* -algebra, for any $a \in \mathcal{U}$, the maximal numerical range is the set

$$\max V(a) = \{ f(a) : f(I) = 1 = ||f||, f(a^*a) = ||a||^2 \}.$$

It is clear that the maximal numerical range is convex. Stampfli, [9], also introduced the numerical range $W_{\delta}(T)$ given by

$$W_{\delta}(T) = clos\{\langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1, \|Tx\| \ge \delta\}.$$

The set $W_{\delta}(T)$ is nonempty when $||T|| > \delta$. It is also convex, see [2]. Since $B(\mathcal{H})$ is a unital C^* -algebra and $B(\mathcal{H})^*$ is its dual, we can also denote the set of states on $B(\mathcal{H})$ by $\xi(B(\mathcal{H}))$. For $T \in B(\mathcal{H})$ we can then define an algebra numerical range $V_{\delta}(T)$ by

$$V_{\delta}(T) = clos\{f(T) : f(I) = ||f|| = 1, f(T^*T) > \delta^2\}.$$

The sets $W_{\delta}(T)$ and $V_{\delta}(T)$ are identical, see [2]

Definition 1.4 An involution on an algebra \mathcal{A} is a conjugate linear map $\mathcal{A} \to \mathcal{A}$ such that $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for all $a, b \in \mathcal{A}$. An algebra with an involution is called a *-algebra.

A *-algebra \mathcal{A} together with a complete submultiplicative norm such that $||a^*|| = ||a||, \forall a \in A$ is called a Banach *-algebra. A C*-algebra is therefore a Banach *-algebra such that $||a^*a|| = ||a||^2 \forall a \in \mathcal{A}$. see Murphy, [8] and Bratteli and Robinson [3] for more details on C*-algebra.

Let \mathcal{A} and \mathcal{B} be *-algebra. A mapping $\pi : \mathcal{A} \mapsto \mathcal{B}$ which satisfy the following condition is called a *-morphism

$$\pi(\alpha a + \beta b) = \alpha \pi(a) + \beta \pi(b) \tag{1}$$

$$\pi(ab) = \pi(a)\pi(b), \quad \pi(a^*) = \pi(b)^*.$$
(2)

The name morphism is usually reserved for mappings which only have properties (1) and (2).

Lemma 1.5 Let \mathcal{A} and \mathcal{B} be a C^* -algebra and π a *-morphism of \mathcal{A} into \mathcal{B} . It follows that

- π is positively preserving, that is $a \ge 0$ implies $\pi(a) \ge 0$,
- It is continuous and $\|\pi(a)\| \le \|a\|$, $\forall a \in \mathcal{A}$.

PROOF. The proof of this can be found in Bratteli and Robinson [3] \Box

Definition 1.6 A *-morphism π from \mathcal{A} to \mathcal{B} is a *-isomorphism if it is one to one and onto, i.e. if the range of π is equal to \mathcal{B} and if element of \mathcal{B} is the image of another element of \mathcal{A} . Thus a *-morphism π of a C^* -algebra \mathcal{A} onto a C^* -algebra \mathcal{B} is a *-isomorphism if and only if ker $\pi = \{0\}$, where ker $\pi = \{a \in \mathcal{A} : \pi(a) = 0\}$

Definition 1.7 A representation of an algebra \mathcal{A} is defined to be a pair (\mathcal{H}, π) , where \mathcal{H} is complex Hilbert space and π is a *-isomorphism of \mathcal{A} into $B(\mathcal{H})$. The representation (\mathcal{H}, π) is said to be faithful if and only if, it is *-isomorphism between \mathcal{A} and $\pi(\mathcal{A})$, that is if and and if ker $\pi = \{0\}$.

Theorem 1.8 Let (\mathcal{H}, π) be a representation of a C^* -algebra \mathcal{A} . The representation is faithful if and only if it satisfies each of the following equivalent conditions

- $\ker \pi = \{0\}$
- $\|\pi(a)\| = \|a\|, \forall a \in \mathcal{A}$
- $\pi(a) > 0, \forall a \in \mathcal{A}.$

See Bratteli and Robinson [3] for the proof.

Definition 1.9 If (\mathcal{H}, π) is a representation of C^* -algebra \mathcal{A} and $\mathcal{H}_1 \subset \mathcal{H}$, then \mathcal{H}_1 is said to be invariant or stable under π if $\pi(A)\mathcal{H}_1 \subseteq \mathcal{H}_1, \forall A \in \mathcal{A}$.

2 ALGEBRA NUMERICAL RANGE

Now consider a family of mutually orthogonal projections $(P_n) \subset \mathcal{U}$ with $\sum P_n = I$, I an identity in a C^* -algebra \mathcal{U} . Define numerical ranges

$$V = V\left(\mathcal{U}, \sum_{n=1}^{\infty} P_n a P_n\right) = \left\{f(\sum_{n=1}^{\infty} P_n a P_n) : f \in \mathcal{U}^*, f(I) = 1 = \|f\|\right\}$$

and

$$V_n = V(P_n \mathcal{U} P_n, P_n a P_n) = \{ f(P_n a P_n) : f \in \varepsilon(P_n \mathcal{U} P_n) \}$$

respectively, where $\varepsilon(P_n\mathcal{U}P_n) = \{f \in (P_n\mathcal{U}P_n)^* : f(P_n) = 1 = ||f||\}$. Then the following will be true.

Theorem 2.1

$$V = \overline{co} \left(\bigcup_{n=1}^{\infty} V_n \right)$$

Here $\overline{co}\left(\bigcup_{n=1}^{\infty}V_n\right)$ is the closed convex hull of the sets V_n 's.

PROOF. Let $\lambda \in V$. Then there is a state $f \in \mathcal{U}$ such that $f(\sum_{n=1}^{\infty} P_n a P_n) = \lambda$. Take $\delta_k = f(\sum_{n=1}^k P_n a P_n)$ with $\lim_{k\to\infty} \delta_k = \lambda$. For each n = 1, 2, ..., k, define a functional g_n on $P_n \mathcal{U} P_n$ by restricting f to $P_n \mathcal{U} P_n$, that is

$$g_n(P_n a P_n) = f(P_n a P_n).$$

Clearly g_n is positive and linear. Let $0 \neq t_n = f(P_n)$. Clearly $0 < f(P_n) < 1$. Then $g_n = \frac{1}{t_n} \times f$ is a state on $P_n \mathcal{U} P_n$. So

$$\delta_k = \sum_{n=1}^k f(P_n a P_n) = \sum_{n=1}^k f(P_n) g_n(P_n a P_n)$$

and $\lim_{k\to\infty} \delta_k = \lambda$, implying that

$$\lambda = \sum_{n=1}^{\infty} f(P_n) g_n(P_n a P_n).$$

Since $g_n(P_n a P_n) \in V_n$ for all *n* and considering the sequence

$$\frac{1}{\sum_{n=1}^{k} f(P_n)} \{ f(P_1), f(P_2), \dots, f(P_k), 0, 0, 0, \dots \}$$

then

$$\lim_{k \to \infty} \frac{\sum_{n=1}^{k} f(P_n) g_n(P_n a P_n)}{\sum_{n=1}^{k} f(P_n)} = \frac{\sum_{n=1}^{\infty} f(P_n) g_n(P_n a P_n)}{\sum_{n=1}^{\infty} f(P_n)}$$
$$= \sum_{n=1}^{\infty} f(P_n) g_n(P_n a P_n) \in \bigcup_{n=1}^{\infty} V_n$$

To prove the converse, it is enough to show that $co(\bigcup_{n=1}^{\infty} V_n) \subseteq V$, since because V is closed, it follows that $\overline{co}(\bigcup_{n=1}^{\infty} V_n) \subseteq V$. So let $\lambda \in co(\bigcup_{n=1}^{\infty} V_n)$. Then $\lambda = \sum_{i=1}^{N} \alpha_i \lambda_i$, where $\sum_i \alpha_i = 1$, $\alpha_i \geq 0$ for each $0 \leq i \leq N$, $(\lambda_i)_{i=1}^{N} \subseteq \bigcup_{i=1}^{\infty} V_i$ and there is no loss of generality in assuming that $\lambda_i \in V_i$, $\forall i = 1, 2, ..., N$. Now define g on U by $g(x) = \sum_{i=1}^{N} \alpha_i f_i(P_i x P_i)$, then g(I) = 1. Therefore

$$g(\sum_{m=1}^{N} P_m a P_m) = \sum_{i=1}^{N} \alpha_i f_i(P_i(\sum_{m=1}^{N} P_m a P_m) P_i)$$
$$= \sum_{i=1}^{N} \alpha_i f_i(P_i a P_i)$$
$$= \lambda.$$

So $\lambda \in V$ as all $\lambda_i \in V_i$ and therefore $\overline{co}(\bigcup_{n=1}^{\infty} V_n) \subseteq V$. This completes the proof. \Box Suppose

P is a projection in a C^* -algebra \mathcal{U} , such that P < I, where I is the identity element. Consider $P\mathcal{U}P$ and define numerical range for any PaP in $P\mathcal{U}P$ by

$$V_{\delta}(P\mathcal{U}P, PaP) = clos\{f(PaP) : f \in \xi(P\mathcal{U}P), f[(PaP)^*(PaP)] \ge \delta^2\}$$

and

$$V_{\delta}(\mathcal{U}, PaP) = clos\{f(PaP) : f \in \xi(\mathcal{U}), \ f[(PaP)^*(PaP)] \ge \delta^2\}.$$

Then the following theorem will hold

Theorem 2.2 If P < I, then

$$co[\{0\} \bigcup V_{\delta}(P\mathcal{U}P, PaP)] = V_{\delta}(\mathcal{U}, PaP),$$

where $co[\{0\} \bigcup V_{\delta}(PUP, PaP)]$ is the smallest convex set containing the sets $\{0\}$ and $V_{\delta}(PUP, PaP)$.

PROOF. Proving the inclusion

$$\{f(PaP): f \in \xi(P\mathcal{U}P), f[(PaP)^*(PaP)] \ge \delta^2\} \subset V_{\delta}(\mathcal{U}, PaP).$$

is sufficient to imply that $V_{\delta}(P\mathcal{U}P, PaP) \subset V_{\delta}(P\mathcal{U}P, PaP)$. So, take $\lambda \in \{f(PaP) : f \in \xi(P\mathcal{U}P), f[(PaP)^*(PaP)] \geq \delta^2\}$. Then there exists a state $f \in \xi(P\mathcal{U}P)$ such that

$$f(PaP) = \lambda, f[(PaP)^*(PaP)] \ge \delta^2.$$

Define g on \mathcal{U} by g(x) = f(PxP). Clearly g is linear. Also

$$g(x^*x) = f(Px^*xP) \ge f[(PxP)^*(PaP)] \ge \delta^2.$$

So g is a positive linear functional and since g(I) = f(P) = 1 = ||g||, we see that g is a state on \mathcal{U} . Since $g(a) = f(PaP) = \lambda$, we conclude that λ is in the set $V_{\delta}(\mathcal{U}, PaP)$.

Now let h_o be a state on $(I-P)\mathcal{U}(I-P)$. Then $h_o(I-P) = ||h|| = 1$. The identity in $(I-P)\mathcal{U}(I-P)$ is (I-P). Define h on \mathcal{U} by

$$h(x) = h_o[(I - P)x(I - P)]$$

This functional is positive and linear. Also $h(I) = h_o(I - P) = 1$ and so ||h|| = 1. Therefore h is a state on \mathcal{U} and

$$h(PaP) = h_o[(I - P)(PaP)(I - P)] = 0.$$

So $0 \in V_{\delta}(\mathcal{U}, PaP)$. Since $V_{\delta}(\mathcal{U}, PaP)$ is convex, it follows that

$$co[\{0\} \bigcup V_{\delta}(P\mathcal{U}P, PaP)] \subseteq V_{\delta}(\mathcal{U}, PaP).$$

To prove the converse, it is enough to show that

$$\{f(PaP): f\xi(P\mathcal{U}P), f[(PaP)^*(PaP)] \ge \delta^2\} \subseteq V_{\delta}(\mathcal{U}, PaP).$$

So let $\lambda \in V_{\delta}(\mathcal{U}, PaP)$. Then there exists $f \in \mathcal{U}^*$, f(I) = 1 = ||f|| such that

$$f(PaP) = \lambda, f[(PaP)^*(PaP)] \ge \delta^2.$$

Define f_0 in PUP by retricting f to PUP. Then the functional f_0 is positive and linear. If $\lambda = 0$, then we already have

$$0 \in co[\{0\} \bigcup V_{\delta}(P\mathcal{U}P, PaP)].$$

Suppose $\lambda \neq 0$. Let t = f(P). Since P < I and since by the Schwartz inequality

$$\lambda^2 = |f(PaP)|^2 \le f(P)f(Pa(Pa)^*).$$

So f(P) > 0. That is, 0 < t < 1. Then $\frac{1}{t} \times f_o$ is a state on PUP. We also see that

$$\frac{1}{t}f[(PaP)^{*}(PaP)] = \frac{1}{t}f_{o}[(PaP)^{*}(PaP)] \ge \frac{1}{t}\delta^{2} > \delta^{2}.$$

Hence

$$f(PaP) = \lambda = t(\frac{1}{t}f_o(PaP) + (1-t)\cdot 0$$

That is

$$\lambda \in co[\{0\} \bigcup V_{\delta}(P\mathcal{U}P, PaP)].$$

 So

$$co[\{0\} \bigcup V_{\delta}(P\mathcal{U}P, PaP)] \supseteq V_{\delta}(\mathcal{U}, PaP).$$

3 CENTRE VALUED RANGE

Let \mathcal{U} be a C^* -algebra. We recall that the maximal numerical range max V(a), for $a \in \mathcal{U}$ is the set

$$\max V(a) = \{f(a) : f(I) = 1 = ||f||, f(a^*a) = ||a||\}.$$

If \mathcal{U} is a $W^* - algebra$ with the centre $Z(\mathcal{U})$, Ω the maximal ideal space of $Z(\mathcal{U})$, ω any maximal ideal of $Z(\mathcal{U})$, $J(\omega)$ is the norm closure of

$$\sum_{i=1}^{N} Z_i X_i, \quad Z_i \in \omega, \ X_i \in \mathcal{U}.$$

The Glimm quotient is defined to be the set $\mathcal{U}(\omega) = \mathcal{U}/J(\omega)$. The canonical map of \mathcal{U} into the Glimm quotient $U(\omega)$ is a homomorphism of \mathcal{U} into the Glimm Quotient and for any $A \in \mathcal{U}, A(\omega)$ is the canonical image of A. The following result is due to J. Glimm [5].

Theorem 3.1 If $A(\omega)$ is the canonical image of $A \in \mathcal{U}$, then

$$A = \sup\{\|A(\omega)\| : \omega \in \Omega\}.$$

PROOF. Assume that f is a pure state in $\mathcal{U}(\omega)$. Then

$$||A|| = ||A^*A||$$

= sup{ $f(A^*A)$ }
= sup{ $f(A\omega)^*A(\omega)$)^{1/2} : $\omega \in \Omega$ }
= sup{ $||A^*(\omega)A(\omega)||^{\frac{1}{2}}$: $\omega \in \Omega$ }
= sup{ $||A(\omega) : \omega \in \Omega|$ }.

 \Box Larsen [7] established that $J(\omega)$ is a primitive ideal. It therefore follows that $\mathcal{U}(\omega)$ has a faithfull representation π_{ω} on some space \mathcal{H}_{ω} .

Definition 3.2 Suppose ψ is a continuous linear map from \mathcal{U} to its centre $Z(\mathcal{U})$. Let ψ also have the following properties

- $\psi(ZX) = Z\psi(X) \ \forall X \in \mathcal{U}, \ Z \in Z(\mathcal{U}),$
- $\psi(X^*) = \psi(X)^*, \forall X \in \mathcal{U},$
- $\|\psi\| = 1|\psi(I)|.$

We shall let E denote the set of all mappings satisfying the above conditions.

Definition 3.3 The centre valued range is the set

$$Z(\mathcal{U}) - V(A) = \{\psi(A) : \psi \in E\}.$$

The numerical range of an element $\pi_{\omega}(A(\omega))$ is therefore given by

$$V(\pi_{\omega}A(\omega))) = \{ f(\pi_{\omega}(A(\omega))) : \|f\| = 1 = f(\pi_{\omega}(I(\omega))) \},\$$

where $I(\omega)$ is an identity in $A(\omega)$.

The following theorem shows that the centre valued range $Z(\mathcal{U}) - V(A)$ of $A \in \mathcal{U}$ is equal to all $Z \in Z(\mathcal{U})$ such that Z belongs to the numerical range implemented by $\pi_{\omega}(A(\omega))$ in $B(\mathcal{H}_{\omega})$.

Theorem 3.4 Let \mathcal{U} be a W^* -algebra with centre $Z(\mathcal{U}), A \in \mathcal{U}$, then

$$Z(\mathcal{U}) - V(A) = \{ Z \in Z(\mathcal{U}) : Z(\omega) \in V(\pi_{\omega}A(\omega)) \} \}.$$

For the proof of this theorem, see Glimm [5]. The maximal numerical range of $\pi_{\omega}(A(\omega))$ in $B(\mathcal{H}_{\omega})$ is given by

 $\max V(\pi_{\omega}(A(\omega))) = \{ f(\pi_{\omega}(A(\omega))) : \|f\| = 1 = f(\pi_{\omega}(I(\omega))), f(\pi_{\omega}(A(\omega))^* \pi_{\omega}(A(\omega)) = \|\pi_{\omega}(A(\omega)\|^2 \} \}.$

The following theorem establishes the relationship between the maximal numerical centre valued range and the maximal numerical range.

Theorem 3.5 Let \mathcal{U} be a W^* – algebra with centre $Z(\mathcal{U}), A \in \mathcal{U}$. Then

$$\max Z(\mathcal{U}) - V(A) = \{ Z \in Z(\mathcal{U}) : Z(\omega) \in \max V(\pi_{\omega} A(\omega)) \}.$$

For the proof of this theorem see Glimm [5].

Theorem 3.6 Let \mathcal{U} be a W^* -algebra with centre $Z(\mathcal{U})$. If $0 \in \max Z(\mathcal{U}) - V(A)$, then for any $A \in \mathcal{U}$,

$$d(A, Z(\mathcal{U})) = ||A||.$$

PROOF. Let $0 \in \max Z(\mathcal{U}) - V(A)$. Then there exists ψ which satisfies all those conditions in definition 3.2 such that $\psi(A) = 0$ and $\psi(A^*A)(\omega) = ||A(\omega)||^2$ since $\psi(A) = 0, \psi(A^*) = 0$. Now for any $Z \in Z(\mathcal{U})$, we have

$$\begin{split} \|A - Z\|^2 &= \|(A - Z)^*(A - Z)\| \\ &\geq \|\varphi(A^*A - Z^*A - A^*Z + Z^*Z)\| \\ &= \|\varphi(A^*A + Z^*Z\| \\ &= \sup\{|\varphi(A^*A(\omega) + \psi(Z^*Z(\omega)| : \omega \in \Omega)\} \\ &\geq \sup\psi(A^*A)(\omega) : \omega \in \Omega \\ &= \sup\{\|A(\omega)\|^2 : \omega \in \Omega\} \\ &= \|A\|^2. \end{split}$$

And so we note that

$$\inf\{\|A - Z\| : Z \in Z(\mathcal{U})\} \le \|A\|.$$

Hence

$$d(A, Z(\mathcal{U})) = \|A\|$$

The converse of this is not true. see, Agure [1].

References

- J. O. Agure, On Numerical Ranges and Norms of Derivations, PhD thesis, University of Birmingham, UK (1992)
- [2] J. O. Agure, On the Convexity of Stampflis Numerical Range, Bulletin of Australian Math. Soc. vol.53, (1996), 33-37.
- [3] O. Bratteli and D. W. Robinson, Operator Algebra and Quantum Statistical Mechanics, Springer-Verlag, New York, (1987).
- [4] EL Adawi Taha Mohamed Morsy, On the spectra and Numerical Ranges of various Banach Algebras, University of Birmingham, U.K, (1987).
- [5] J. Glimm, A Stone- Weiestrass Theorem for C^{*}-algebra, Annal of Math., vol. 729, (1960), 216-244.
- [6] P. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, (1982).

- [7] R. Larsen, Functional Analysis, an Introduction, Marcel Decker, (1973).
- [8] G. Murphy, C^{*}-algebra and Operator Theory, Academic Press, San Diego, (1991).
- [9] J.G. Stampfli, The norms of Derivations, Pacific Journal of Math, vol. 33, no.3 (1970), 47-67.
- [10] Gustafson, E. Karl, Rao, and K.M. Duggirala, Numerical range. The field of values of linear operators and matrices., Universitext. New York, NY: Springer. xiv, 189 p. DM 56.00; öS 408.80; sFr 49.50 (1996), 47-67.

Received: June, 2009