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Abstract

This paper follows [1] in the quantitative study of Numerical Ranges
introduced by Stampfli [9]. In particular, we consider a family of mutu-
ally orthogonal projections and investigate how a numerical range can
be related to several other numerical ranges in a closed convex hull. We
then introduce the centre valued range and show that if U is a W ∗-
algebra then for any A in U we can relate the norm of A and distance
of A itself from its centre.
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1 INTRODUCTION

Let H be a Hilbert space, T a bounded linear operator mapping H into H
and B(H) a set of bounded linear operators on H. For any T ∈ B(H) the
numerical range W (T ) is the set

W (T ) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}.
This set is convex, see [6], the classic Toeplitz-Hausdorff Theorem. The fol-
lowing properties of W (T ) are clear.
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• W (αI + βT ) = α + βW (T ), ∀α, β ∈ C
• W (T ∗) = {λ̄ : λ ∈W (T )}
• W (U∗TU) = W (T ) for any unitary operator U

Example 1.1 Let T ∈ B(�2) be defined by Tx = (x2, x3, ..., ). Then W (T ) is
an open disc of radius one, that is

W (T ) = {z : |z| < 1}
Lemma 1.2 Let T be an operator on a two dimensional space. Then W (T )
is an ellipse whose foci are the eigenvalues of T .

See Gustafson and Rao [10] for the proof.
It is clear that B(H) is an algebra if multiplication for any two elements in

B(H) is pointwise defined. We shall also denote the dual of B(H) by B(H)∗.
For any element T ∈ B(H) and identity I ∈ B(H) the algebra numerical range
V (T ) is given by

V (T ) = {f(T ) : f(I) = 1 = ‖f‖}.
Definition 1.3 Let A be a C∗-algebra. The states of A are a class of linear
functionals which maps positive values of an algebra to positive values of the
same algebra.

W (T ) and V (T ) are identical, see [4]. The maximal numerical range of an
operator T ∈ B(H) is the set W0(T ) where

W0(T ) = {λ : 〈Txn, xn〉 � λ, ‖xn‖ = 1, ‖Txn‖ � ‖T‖}.
This set was introduced by Stampfli [9]. If U is a C∗-algebra, for any a ∈ U ,
the maximal numerical range is the set

max V (a) = {f(a) : f(I) = 1 = ‖f‖, f(a∗a) = ‖a‖2}.
It is clear that the maximal numerical range is convex. Stampfli, [9], also
introduced the numerical range Wδ(T ) given by

Wδ(T ) = clos{〈Tx, x〉 : x ∈ H, ‖x‖ = 1, ‖Tx‖ � δ}.
The set Wδ(T ) is nonempty when ‖T‖ > δ. It is also convex, see [2]. Since
B(H) is a unital C∗-algebra and B(H)∗ is its dual, we can also denote the set
of states on B(H) by ξ(B(H)). For T ∈ B(H) we can then define an algebra
numerical range Vδ(T ) by

Vδ(T ) = clos{f(T ) : f(I) = ‖f‖ = 1, f(T ∗T ) > δ2}.
The sets Wδ(T ) and Vδ(T ) are identical, see [2]
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Definition 1.4 An involution on an algebra A is a conjugate linear map A →
A such that (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. An algebra with an
involution is called a ∗-algebra.

A ∗-algebra A together with a complete submultiplicative norm such that
‖a∗‖ = ‖a‖, ∀a ∈ A is called a Banach ∗-algebra. A C∗-algebra is therefore a
Banach ∗-algebra such that ‖a∗a‖ = ‖a‖2 ∀a ∈ A. see Murphy, [8] and Bratteli
and Robinson [3] for more details on C∗-algebra.

Let A and B be ∗-algebra. A mapping π : A �→ B which satisfy the
following condition is called a ∗-morphism

π(αa+ βb) = απ(a) + βπ(b) (1)

π(ab) = π(a)π(b), π(a∗) = π(b)∗. (2)

The name morphism is usually reserved for mappings which only have prop-
erties (1) and (2).

Lemma 1.5 Let A and B be a C∗-algebra and π a ∗-morphism of A into B.
It follows that

• π is positively preserving, that is a � 0 implies π(a) ≥ 0,

• It is continuous and ‖π(a)‖ ≤ ‖a‖, ∀a ∈ A.

Proof. The proof of this can be found in Bratteli and Robinson [3] �

Definition 1.6 A ∗-morphism π from A to B is a ∗-isomorphism if it is one
to one and onto, i.e. if the range of π is equal to B and if element of B is
the image of another element of A. Thus a ∗-morphism π of a C∗-algebra
A onto a C∗-algebra B is a ∗-isomorphism if and only if ker π = {0}, where
ker π = {a ∈ A : π(a) = 0}

Definition 1.7 A representation of an algebra A is defined to be a pair (H, π),
where H is complex Hilbert space and π is a ∗-isomorphism of A into B(H).
The representation (H, π) is said to be faithful if and only if, it is ∗-isomorphism
between A and π(A), that is if and and if ker π = {0}.
Theorem 1.8 Let (H, π) be a representation of a C∗ -algebra A. The repre-
sentation is faithful if and only if it satisfies each of the following equivalent
conditions

• ker π = {0}
• ‖π(a)‖ = ‖a‖, ∀a ∈ A
• π(a) > 0, ∀a ∈ A.
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See Bratteli and Robinson [3] for the proof.

Definition 1.9 If (H, π) is a representation of C∗-algebra A and H1 ⊂ H,
then H1 is said to be invariant or stable under π if π(A)H1 ⊆ H1, ∀A ∈ A.

2 ALGEBRA NUMERICAL RANGE

Now consider a family of mutually orthogonal projections (Pn) ⊂ U with
∑
Pn =

I, I an identity in a C∗-algebra U . Define numerical ranges

V = V

(
U ,

∞∑
n=1

PnaPn

)
=

{
f(

∞∑
n=1

PnaPn) : f ∈ U∗, f(I) = 1 = ‖f‖
}

and
Vn = V (PnUPn, PnaPn) = {f(PnaPn) : f ∈ ε(PnUPn)}

respectively, where ε(PnUPn) = {f ∈ (PnUPn)∗ : f(Pn) = 1 = ‖f‖}. Then the
following will be true.

Theorem 2.1

V = co

( ∞⋃
n=1

Vn

)
.

Here co

( ∞⋃
n=1

Vn

)
is the closed convex hull of the sets Vn’s.

Proof. Let λ ∈ V . Then there is a state f ∈ U such that f(
∑∞

n=1 PnaPn) = λ.

Take δk = f(
∑k

n=1 PnaPn) with limk→∞ δk = λ. For each n = 1, 2, ..., k, define
a functional gn on PnUPn by restricting f to PnUPn, that is

gn(PnaPn) = f(PnaPn).

Clearly gn is positive and linear. Let 0 = tn = f(Pn). Clearly 0 < f(Pn) < 1.
Then gn = 1

tn
× f is a state on PnUPn. So

δk =
k∑

n=1

f(PnaPn) =
k∑

n=1

f(Pn)gn(PnaPn)

and limk→∞ δk = λ, implying that

λ =

∞∑
n=1

f(Pn)gn(PnaPn).
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Since gn(PnaPn) ∈ Vn for all n and considering the sequence

1∑k
n=1 f(Pn)

{f(P1), f(P2), . . . , f(Pk), 0, 0, 0, . . .},

then

lim
k→∞

∑k
n=1 f(Pn)gn(PnaPn∑k

n=1 f(Pn)
=

∑∞
n=1 f(Pn)gn(PnaPn∑∞

n=1 f(Pn)

=

∞∑
n=1

f(Pn)gn(PnaPn ∈
∞⋃

n=1

Vn.

To prove the converse, it is enough to show that co(
⋃∞

n=1 Vn) ⊆ V , since
because V is closed, it follows that co(

⋃∞
n=1 Vn) ⊆ V . So let λ ∈ co(

⋃∞
n=1 Vn).

Then λ =
∑N

i=1 αiλi, where
∑

i αi = 1, αi ≥ 0 for each 0 ≤ i ≤ N ,
(λi)

N
i=1 ⊆

⋃∞
i=1 Vi and there is no loss of generality in assuming that λi ∈ Vi,

∀i = 1, 2, ..., N . Now define g on U by g(x) =
∑N

i=1 αifi(PixPi), then g(I) = 1.
Therefore

g(
N∑

m=1

PmaPm) =
N∑

i=1

αifi(Pi(
N∑

m=1

PmaPm)Pi)

=

N∑
i

αifi(PiaPi)

= λ.

So λ ∈ V as all λi ∈ Vi and therefore co(
⋃∞

n=1 Vn) ⊆ V . This completes the
proof. � Suppose
P is a projection in a C∗-algebra U , such that P < I, where I is the identity
element. Consider PUP and define numerical range for any PaP in PUP by

Vδ(PUP, PaP ) = clos{f(PaP ) : f ∈ ξ(PUP ), f [(PaP )∗(PaP )] ≥ δ2}
and

Vδ(U , PaP ) = clos{f(PaP ) : f ∈ ξ(U), f [(PaP )∗(PaP )] ≥ δ2}.
Then the following theorem will hold

Theorem 2.2 If P < I, then

co[{0}
⋃

Vδ(PUP, PaP )] = Vδ(U , PaP ),

where co[{0}⋃Vδ(PUP, PaP )] is the smallest convex set containing the sets
{0} and Vδ(PUP, PaP ).
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Proof. Proving the inclusion

{f(PaP ) : f ∈ ξ(PUP ), f [(PaP )∗(PaP )] ≥ δ2} ⊂ Vδ(U , PaP ).

is sufficient to imply that Vδ(PUP, PaP )] ⊂ Vδ(PUP, PaP )]. So, take
λ ∈ {f(PaP ) : f ∈ ξ(PUP ), f [(PaP )∗(PaP )] ≥ δ2}. Then there exists a state
f ∈ ξ(PUP ) such that

f(PaP ) = λ, f [(PaP )∗(PaP )] ≥ δ2.

Define g on U by g(x) = f(PxP ). Clearly g is linear. Also

g(x∗x) = f(Px∗xP ) ≥ f [(PxP )∗(PaP )] ≥ δ2.

So g is a positive linear functional and since g(I) = f(P ) = 1 = ‖g‖, we see
that g is a state on U . Since g(a) = f(PaP ) = λ, we conclude that λ is in the
set Vδ(U , PaP ).

Now let ho be a state on (I−P )U(I−P ). Then ho(I − P ) = ‖h‖ = 1. The
identity in (I − P )U(I − P ) is (I − P ). Define h on U by

h(x) = ho[(I − P )x(I − P )].

This functional is positive and linear. Also h(I) = ho(I − P ) = 1 and so
‖h‖ = 1. Therefore h is a state on U and

h(PaP ) = ho[(I − P )(PaP )(I − P )] = 0.

So 0 ∈ Vδ(U , PaP ). Since Vδ(U , PaP ) is convex, it follows that

co[{0}
⋃

Vδ(PUP, PaP )] ⊆ Vδ(U , PaP ).

To prove the converse, it is enough to show that

{f(PaP ) : fξ(PUP ), f [(PaP )∗(PaP )] ≥ δ2} ⊆ Vδ(U , PaP ).

So let λ ∈ Vδ(U , PaP ). Then there exists f ∈ U∗, f(I) = 1 = ‖f‖ such that

f(PaP ) = λ, f [(PaP )∗(PaP )] ≥ δ2.

Define f0 in PUP by retricting f to PUP . Then the functional f0 is positive
and linear. If λ = 0, then we already have

0 ∈ co[{0}
⋃

Vδ(PUP, PaP )].

Suppose λ = 0. Let t = f(P ). Since P < I and since by the Schwartz
inequality

λ2 = |f(PaP )|2 ≤ f(P )f(Pa(Pa)∗).
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So f(P ) > 0. That is, 0 < t < 1. Then 1
t
× fo is a state on PUP . We also see

that
1

t
f [(PaP )∗(PaP )] =

1

t
fo[(PaP )∗(PaP )] ≥ 1

t
δ2 > δ2.

Hence

f(PaP ) = λ = t(
1

t
fo(PaP ) + (1 − t) · 0.

That is
λ ∈ co[{0}

⋃
Vδ(PUP, PaP )].

So
co[{0}

⋃
Vδ(PUP, PaP )] ⊇ Vδ(U , PaP ).

�

3 CENTRE VALUED RANGE

Let U be a C∗−algebra. We recall that the maximal numerical range maxV (a),
for a ∈ U is the set

maxV (a) = {f(a) : f(I) = 1 = ‖f‖, f(a∗a) = ‖a‖}.
If U is a W ∗ − algebra with the centre Z(U), Ω the maximal ideal space of
Z(U), ω any maximal ideal of Z(U), J(ω) is the norm closure of

N∑
i=1

ZiXi, Zi ∈ ω, Xi ∈ U .

The Glimm quotient is defined to be the set U(ω) = U/J(ω). The canonical
map of U into the Glimm quotient U(ω) is a homomorphism of U into the
Glimm Quotient and for any A ∈ U , A(ω) is the canonical image of A. The
following result is due to J. Glimm [5].

Theorem 3.1 If A(ω) is the canonical image of A ∈ U , then

A = sup{‖A(ω)‖ : ω ∈ Ω}.
Proof. Assume thst f is a pure state in U(ω). Then

‖A‖ = ‖A∗A‖
= sup{f(A∗A)}
= sup{f(Aω)∗A(ω))1/2 : ω ∈ Ω}
= sup{‖A∗(ω)A(ω)‖ 1

2 : ω ∈ Ω}
= sup{‖A(ω) : ω ∈ Ω|}.
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� Larsen [7] established that J(ω) is a primitive ideal. It therefore follows
that U(ω) has a faithfull representation πω on some space Hω.

Definition 3.2 Suppose ψ is a continuous linear map from U to its centre
Z(U). Let ψ also have the following properties

• ψ(ZX) = Zψ(X) ∀X ∈ U , Z ∈ Z(U),

• ψ(X∗) = ψ(X)∗, ∀X ∈ U ,

• ‖ψ‖ = 1|ψ(I)|.
We shall let E denote the set of all mappings satisfying the above conditions.

Definition 3.3 The centre valued range is the set

Z(U) − V (A) = {ψ(A) : ψ ∈ E}.

The numerical range of an element πω(A(ω)) is therefore given by

V (πωA(ω))) = {f(πω(A(ω))) : ‖f‖ = 1 = f(πω(I(ω)))},

where I(ω) is an identity in A(ω).

The following theorem shows that the centre valued range Z(U) − V (A) of
A ∈ U is equal to all Z ∈ Z(U) such that Z belongs to the numerical range
implemented by πω(A(ω)) in B(Hω).

Theorem 3.4 Let U be a W ∗-algebra with centre Z(U), A ∈ U , then

Z(U) − V (A) = {Z ∈ Z(U) : Z(ω) ∈ V (πωA(ω)))}.

For the proof of this theorem, see Glimm [5].
The maximal numerical range of πω(A(ω))) in B(Hω) is given by

max V (πω(A(ω))) = {f (πω(A(ω))) : ‖f‖ = 1 = f(πω(I(ω))), f(πω(A(ω))∗πω(A(ω) = ‖πω(A(ω‖2}.

The following theorem establishes the relationship between the maximal
numerical centre valued range and the maximal numerical range.

Theorem 3.5 Let U be a W ∗ − algebra with centre Z(U), A ∈ U . Then

maxZ(U) − V (A) = {Z ∈ Z(U) : Z(ω) ∈ maxV (πωA(ω))}.

For the proof of this theorem see Glimm [5].
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Theorem 3.6 Let U be a W ∗-algebra with centre Z(U).
If 0 ∈ maxZ(U) − V (A), then for any A ∈ U ,

d(A,Z(U)) = ‖A‖.
Proof. Let 0 ∈ maxZ(U) − V (A). Then there exists ψ which satisfies all
those condtions in definition 3.2 such that ψ(A) = 0 and ψ(A∗A)(ω) = ‖A(ω)‖2

since ψ(A) = 0, ψ(A∗) = 0. Now for any Z ∈ Z(U), we have

‖A− Z‖2 = ‖(A− Z)∗(A− Z)‖
≥ ‖ϕ(A∗A− Z∗A−A∗Z + Z∗Z)‖
= ‖ϕ(A∗A+ Z∗Z‖
= sup{|ϕ(A∗A(ω) + ψ(Z∗Z(ω)| : ω ∈ Ω}
≥ supψ(A∗A)(ω) : ω ∈ Ω

= sup{‖A(ω)‖2 : ω ∈ Ω}
= ‖A‖2.

And so we note that

inf{‖A− Z‖ : Z ∈ Z(U)} ≤ ‖A‖.
Hence

d(A,Z(U)) = ‖A‖.
The converse of this is not true. see, Agure [1]. �
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