Int. Journal of Math. Analysis, Vol. 4, 2010, no. 15, 727-736

On Numerical and Centre Values Range

John O. Agure
Department of Mathematics and Applied Mathematics
Maseno University
P.O. Box 333 Maseno, Kenya
johnagure@maseno.ac.ke

Paul O. Oleche

Department of Mathematics and Applied Mathematics Maseno University
P.O. Box 333 Maseno, Kenya
poleche@maseno.ac.ke

Abstract

This paper follows [1] in the quantitative study of Numerical Ranges introduced by Stampfli [9]. In particular, we consider a family of mutually orthogonal projections and investigate how a numerical range can be related to several other numerical ranges in a closed convex hull. We then introduce the centre valued range and show that if \mathcal{U} is a W^{*} algebra then for any A in \mathcal{U} we can relate the norm of A and distance of A itself from its centre.

Mathematics Subject Classification: 47A12

Keywords: numerical range, centre valued range, representation, projection, convex hall

1 INTRODUCTION

Let \mathcal{H} be a Hilbert space, T a bounded linear operator mapping \mathcal{H} into \mathcal{H} and $B(\mathcal{H})$ a set of bounded linear operators on \mathcal{H}. For any $T \in B(\mathcal{H})$ the numerical range $W(T)$ is the set

$$
W(T)=\{\langle T x, x\rangle: x \in \mathcal{H},\|x\|=1\} .
$$

This set is convex, see [6], the classic Toeplitz-Hausdorff Theorem. The following properties of $W(T)$ are clear.

- $W(\alpha I+\beta T)=\alpha+\beta W(T), \quad \forall \alpha, \beta \in \mathcal{C}$
- $W\left(T^{*}\right)=\{\bar{\lambda}: \lambda \in W(T)\}$
- $W\left(U^{*} T U\right)=W(T)$ for any unitary operator U

Example 1.1 Let $T \in B\left(\ell_{2}\right)$ be defined by $T x=\left(x_{2}, x_{3}, \ldots,\right)$. Then $W(T)$ is an open disc of radius one, that is

$$
W(T)=\{z:|z|<1\}
$$

Lemma 1.2 Let T be an operator on a two dimensional space. Then $W(T)$ is an ellipse whose foci are the eigenvalues of T.

See Gustafson and Rao [10] for the proof.
It is clear that $B(\mathcal{H})$ is an algebra if multiplication for any two elements in $B(\mathcal{H})$ is pointwise defined. We shall also denote the dual of $B(\mathcal{H})$ by $B(\mathcal{H})^{*}$. For any element $T \in B(\mathcal{H})$ and identity $I \in B(\mathcal{H})$ the algebra numerical range $V(T)$ is given by

$$
V(T)=\{f(T): f(I)=1=\|f\|\} .
$$

Definition 1.3 Let \mathcal{A} be a C^{*}-algebra. The states of \mathcal{A} are a class of linear functionals which maps positive values of an algebra to positive values of the same algebra.
$W(T)$ and $V(T)$ are identical, see [4]. The maximal numerical range of an operator $T \in B(\mathcal{H})$ is the set $W_{0}(T)$ where

$$
W_{0}(T)=\left\{\lambda:\left\langle T x_{n}, x_{n}\right\rangle \mapsto \lambda,\left\|x_{n}\right\|=1,\left\|T x_{n}\right\| \mapsto\|T\|\right\} .
$$

This set was introduced by Stampfli [9]. If \mathcal{U} is a C^{*}-algebra, for any $a \in \mathcal{U}$, the maximal numerical range is the set

$$
\max V(a)=\left\{f(a): f(I)=1=\|f\|, f\left(a^{*} a\right)=\|a\|^{2}\right\}
$$

It is clear that the maximal numerical range is convex. Stampfli, [9], also introduced the numerical range $W_{\delta}(T)$ given by

$$
W_{\delta}(T)=\operatorname{clos}\{\langle T x, x\rangle: x \in \mathcal{H},\|x\|=1,\|T x\| \geqslant \delta\} .
$$

The set $W_{\delta}(T)$ is nonempty when $\|T\|>\delta$. It is also convex, see [2]. Since $B(\mathcal{H})$ is a unital C^{*}-algebra and $B(\mathcal{H})^{*}$ is its dual, we can also denote the set of states on $B(\mathcal{H})$ by $\xi(B(\mathcal{H}))$. For $T \in B(\mathcal{H})$ we can then define an algebra numerical range $V_{\delta}(T)$ by

$$
V_{\delta}(T)=\operatorname{clos}\left\{f(T): f(I)=\|f\|=1, f\left(T^{*} T\right)>\delta^{2}\right\}
$$

The sets $W_{\delta}(T)$ and $V_{\delta}(T)$ are identical, see [2]

Definition 1.4 An involution on an algebra \mathcal{A} is a conjugate linear map $\mathcal{A} \rightarrow$ \mathcal{A} such that $\left(a^{*}\right)^{*}=a$ and $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in \mathcal{A}$. An algebra with an involution is called a ${ }^{*}$-algebra.

A *-algebra \mathcal{A} together with a complete submultiplicative norm such that $\left\|a^{*}\right\|=\|a\|, \forall a \in A$ is called a Banach ${ }^{*}$-algebra. A C^{*}-algebra is therefore a Banach *-algebra such that $\left\|a^{*} a\right\|=\|a\|^{2} \forall a \in \mathcal{A}$. see Murphy, [8] and Bratteli and Robinson [3] for more details on C^{*}-algebra.

Let \mathcal{A} and \mathcal{B} be *-algebra. A mapping $\pi: \mathcal{A} \mapsto \mathcal{B}$ which satisfy the following condition is called a *-morphism

$$
\begin{align*}
\pi(\alpha a+\beta b) & =\alpha \pi(a)+\beta \pi(b) \tag{1}\\
\pi(a b) & =\pi(a) \pi(b), \quad \pi\left(a^{*}\right)=\pi(b)^{*} \tag{2}
\end{align*}
$$

The name morphism is usually reserved for mappings which only have properties (1) and (2).

Lemma 1.5 Let \mathcal{A} and \mathcal{B} be a C^{*}-algebra and π a*-morphism of \mathcal{A} into \mathcal{B}. It follows that

- π is positively preserving, that is $a \geqslant 0$ implies $\pi(a) \geq 0$,
- It is continuous and $\|\pi(a)\| \leq\|a\|, \quad \forall a \in \mathcal{A}$.

Proof. The proof of this can be found in Bratteli and Robinson [3]
Definition $1.6 \mathrm{~A}^{*}$-morphism π from \mathcal{A} to \mathcal{B} is a *-isomorphism if it is one to one and onto, i.e. if the range of π is equal to \mathcal{B} and if element of \mathcal{B} is the image of another element of \mathcal{A}. Thus a ${ }^{*}$-morphism π of a C^{*}-algebra \mathcal{A} onto a C^{*}-algebra \mathcal{B} is a ${ }^{*}$-isomorphism if and only if $\operatorname{ker} \pi=\{0\}$, where $\operatorname{ker} \pi=\{a \in \mathcal{A}: \pi(a)=0\}$

Definition 1.7 A representation of an algebra \mathcal{A} is defined to be a pair (\mathcal{H}, π), where \mathcal{H} is complex Hilbert space and π is a ${ }^{*}$-isomorphism of \mathcal{A} into $B(\mathcal{H})$. The representation (\mathcal{H}, π) is said to be faithful if and only if, it is *-isomorphism between \mathcal{A} and $\pi(\mathcal{A})$, that is if and and if $\operatorname{ker} \pi=\{0\}$.

Theorem 1.8 Let (\mathcal{H}, π) be a representation of a C^{*}-algebra \mathcal{A}. The representation is faithful if and only if it satisfies each of the following equivalent conditions

- $\operatorname{ker} \pi=\{0\}$
- $\|\pi(a)\|=\|a\|, \forall a \in \mathcal{A}$
- $\pi(a)>0, \forall a \in \mathcal{A}$.

See Bratteli and Robinson [3] for the proof.
Definition 1.9 If (\mathcal{H}, π) is a representation of C^{*}-algebra \mathcal{A} and $\mathcal{H}_{1} \subset \mathcal{H}$, then \mathcal{H}_{1} is said to be invariant or stable under π if $\pi(A) \mathcal{H}_{1} \subseteq \mathcal{H}_{1}, \forall A \in \mathcal{A}$.

2 ALGEBRA NUMERICAL RANGE

Now consider a family of mutually orthogonal projections $\left(P_{n}\right) \subset \mathcal{U}$ with $\sum P_{n}=$ I, I an identity in a C^{*}-algebra \mathcal{U}. Define numerical ranges

$$
V=V\left(\mathcal{U}, \sum_{n=1}^{\infty} P_{n} a P_{n}\right)=\left\{f\left(\sum_{n=1}^{\infty} P_{n} a P_{n}\right): f \in \mathcal{U}^{*}, f(I)=1=\|f\|\right\}
$$

and

$$
V_{n}=V\left(P_{n} \mathcal{U} P_{n}, P_{n} a P_{n}\right)=\left\{f\left(P_{n} a P_{n}\right): f \in \varepsilon\left(P_{n} \mathcal{U} P_{n}\right)\right\}
$$

respectively, where $\varepsilon\left(P_{n} \mathcal{U} P_{n}\right)=\left\{f \in\left(P_{n} \mathcal{U} P_{n}\right)^{*}: f\left(P_{n}\right)=1=\|f\|\right\}$. Then the following will be true.

Theorem 2.1

$$
V=\overline{c o}\left(\bigcup_{n=1}^{\infty} V_{n}\right)
$$

Here $\overline{c o}\left(\bigcup_{n=1}^{\infty} V_{n}\right)$ is the closed convex hull of the sets V_{n} 's.
Proof. Let $\lambda \in V$. Then there is a state $f \in \mathcal{U}$ such that $f\left(\sum_{n=1}^{\infty} P_{n} a P_{n}\right)=\lambda$. Take $\delta_{k}=f\left(\sum_{n=1}^{k} P_{n} a P_{n}\right)$ with $\lim _{k \rightarrow \infty} \delta_{k}=\lambda$. For each $n=1,2, \ldots, k$, define a functional g_{n} on $P_{n} \mathcal{U} P_{n}$ by restricting f to $P_{n} \mathcal{U} P_{n}$, that is

$$
g_{n}\left(P_{n} a P_{n}\right)=f\left(P_{n} a P_{n}\right) .
$$

Clearly g_{n} is positive and linear. Let $0 \neq t_{n}=f\left(P_{n}\right)$. Clearly $0<f\left(P_{n}\right)<1$. Then $g_{n}=\frac{1}{t_{n}} \times f$ is a state on $P_{n} \mathcal{U} P_{n}$. So

$$
\delta_{k}=\sum_{n=1}^{k} f\left(P_{n} a P_{n}\right)=\sum_{n=1}^{k} f\left(P_{n}\right) g_{n}\left(P_{n} a P_{n}\right)
$$

and $\lim _{k \rightarrow \infty} \delta_{k}=\lambda$, implying that

$$
\lambda=\sum_{n=1}^{\infty} f\left(P_{n}\right) g_{n}\left(P_{n} a P_{n}\right)
$$

Since $g_{n}\left(P_{n} a P_{n}\right) \in V_{n}$ for all n and considering the sequence

$$
\frac{1}{\sum_{n=1}^{k} f\left(P_{n}\right)}\left\{f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{k}\right), 0,0,0, \ldots\right\}
$$

then

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{\sum_{n=1}^{k} f\left(P_{n}\right) g_{n}\left(P_{n} a P_{n}\right.}{\sum_{n=1}^{k} f\left(P_{n}\right)} & =\frac{\sum_{n=1}^{\infty} f\left(P_{n}\right) g_{n}\left(P_{n} a P_{n}\right.}{\sum_{n=1}^{\infty} f\left(P_{n}\right)} \\
& =\sum_{n=1}^{\infty} f\left(P_{n}\right) g_{n}\left(P_{n} a P_{n} \in \bigcup_{n=1}^{\infty} V_{n}\right.
\end{aligned}
$$

To prove the converse, it is enough to show that $\operatorname{co}\left(\bigcup_{n=1}^{\infty} V_{n}\right) \subseteq V$, since because V is closed, it follows that $\overline{c o}\left(\bigcup_{n=1}^{\infty} V_{n}\right) \subseteq V$. So let $\lambda \in c o\left(\bigcup_{n=1}^{\infty} V_{n}\right)$. Then $\lambda=\sum_{i=1}^{N} \alpha_{i} \lambda_{i}$, where $\sum_{i} \alpha_{i}=1, \alpha_{i} \geq 0$ for each $0 \leq i \leq N$, $\left(\lambda_{i}\right)_{i=1}^{N} \subseteq \bigcup_{i=1}^{\infty} V_{i}$ and there is no loss of generality in assuming that $\lambda_{i} \in V_{i}$, $\forall i=1,2, \ldots, N$. Now define g on U by $g(x)=\sum_{i=1}^{N} \alpha_{i} f_{i}\left(P_{i} x P_{i}\right)$, then $g(I)=1$. Therefore

$$
\begin{aligned}
g\left(\sum_{m=1}^{N} P_{m} a P_{m}\right) & =\sum_{i=1}^{N} \alpha_{i} f_{i}\left(P_{i}\left(\sum_{m=1}^{N} P_{m} a P_{m}\right) P_{i}\right) \\
& =\sum_{i}^{N} \alpha_{i} f_{i}\left(P_{i} a P_{i}\right) \\
& =\lambda
\end{aligned}
$$

So $\lambda \in V$ as all $\lambda_{i} \in V_{i}$ and therefore $\overline{c o}\left(\bigcup_{n=1}^{\infty} V_{n}\right) \subseteq V$. This completes the proof. Suppose P is a projection in a C^{*}-algebra \mathcal{U}, such that $P<I$, where I is the identity element. Consider $P \mathcal{U} P$ and define numerical range for any $P a P$ in $P \mathcal{U} P$ by

$$
V_{\delta}(P \mathcal{U} P, P a P)=\operatorname{clos}\left\{f(P a P): f \in \xi(P \mathcal{U} P), f\left[(P a P)^{*}(P a P)\right] \geq \delta^{2}\right\}
$$

and

$$
V_{\delta}(\mathcal{U}, P a P)=\operatorname{clos}\left\{f(P a P): f \in \xi(\mathcal{U}), f\left[(P a P)^{*}(P a P)\right] \geq \delta^{2}\right\}
$$

Then the following theorem will hold
Theorem 2.2 If $P<I$, then

$$
c o\left[\{0\} \bigcup V_{\delta}(P \mathcal{U} P, P a P)\right]=V_{\delta}(\mathcal{U}, P a P)
$$

where $\operatorname{co}\left[\{0\} \bigcup V_{\delta}(P \mathcal{U} P, P a P)\right]$ is the smallest convex set containing the sets $\{0\}$ and $V_{\delta}(P \mathcal{U} P, P a P)$.

Proof. Proving the inclusion

$$
\left\{f(P a P): f \in \xi(P \mathcal{U} P), f\left[(P a P)^{*}(P a P)\right] \geq \delta^{2}\right\} \subset V_{\delta}(\mathcal{U}, P a P)
$$

is sufficient to imply that $\left.\left.V_{\delta}(P \mathcal{U} P, P a P)\right] \subset V_{\delta}(P \mathcal{U} P, P a P)\right]$. So, take $\lambda \in\left\{f(P a P): f \in \xi(P \mathcal{U} P), f\left[(P a P)^{*}(P a P)\right] \geq \delta^{2}\right\}$. Then there exists a state $f \in \xi(P \mathcal{U} P)$ such that

$$
f(P a P)=\lambda, f\left[(P a P)^{*}(P a P)\right] \geq \delta^{2} .
$$

Define g on \mathcal{U} by $g(x)=f(P x P)$. Clearly g is linear. Also

$$
g\left(x^{*} x\right)=f\left(P x^{*} x P\right) \geq f\left[(P x P)^{*}(P a P)\right] \geq \delta^{2}
$$

So g is a positive linear functional and since $g(I)=f(P)=1=\|g\|$, we see that g is a state on \mathcal{U}. Since $g(a)=f(P a P)=\lambda$, we conclude that λ is in the set $V_{\delta}(\mathcal{U}, P a P)$.

Now let h_{o} be a state on $(I-P) \mathcal{U}(I-P)$. Then $h_{o}(I-P)=\|h\|=1$. The identity in $(I-P) \mathcal{U}(I-P)$ is $(I-P)$. Define h on \mathcal{U} by

$$
h(x)=h_{o}[(I-P) x(I-P)] .
$$

This functional is positive and linear. Also $h(I)=h_{o}(I-P)=1$ and so $\|h\|=1$. Therefore h is a state on \mathcal{U} and

$$
h(P a P)=h_{o}[(I-P)(P a P)(I-P)]=0
$$

So $0 \in V_{\delta}(\mathcal{U}, P a P)$. Since $V_{\delta}(\mathcal{U}, P a P)$ is convex, it follows that

$$
c o\left[\{0\} \bigcup V_{\delta}(P \mathcal{U} P, P a P)\right] \subseteq V_{\delta}(\mathcal{U}, P a P)
$$

To prove the converse, it is enough to show that

$$
\left\{f(P a P): f \xi(P \mathcal{U} P), f\left[(P a P)^{*}(P a P)\right] \geq \delta^{2}\right\} \subseteq V_{\delta}(\mathcal{U}, P a P)
$$

So let $\lambda \in V_{\delta}(\mathcal{U}, P a P)$. Then there exists $f \in \mathcal{U}^{*}, f(I)=1=\|f\|$ such that

$$
f(P a P)=\lambda, f\left[(P a P)^{*}(P a P)\right] \geq \delta^{2}
$$

Define f_{0} in $P \mathcal{U} P$ by retricting f to $P \mathcal{U} P$. Then the functional f_{0} is positive and linear. If $\lambda=0$, then we already have

$$
\left.0 \in \operatorname{co[}[0\} \bigcup V_{\delta}(P \mathcal{U} P, P a P)\right] .
$$

Suppose $\lambda \neq 0$. Let $t=f(P)$. Since $P<I$ and since by the Schwartz inequality

$$
\lambda^{2}=|f(P a P)|^{2} \leq f(P) f\left(P a(P a)^{*}\right)
$$

So $f(P)>0$. That is, $0<t<1$. Then $\frac{1}{t} \times f_{o}$ is a state on $P \mathcal{U} P$. We also see that

$$
\frac{1}{t} f\left[(P a P)^{*}(P a P)\right]=\frac{1}{t} f_{o}\left[(P a P)^{*}(P a P)\right] \geq \frac{1}{t} \delta^{2}>\delta^{2} .
$$

Hence

$$
f(P a P)=\lambda=t\left(\frac{1}{t} f_{o}(P a P)+(1-t) \cdot 0 .\right.
$$

That is

$$
\lambda \in c o\left[\{0\} \bigcup V_{\delta}(P \mathcal{U} P, P a P)\right]
$$

So

$$
c o\left[\{0\} \bigcup V_{\delta}(P \mathcal{U} P, P a P)\right] \supseteq V_{\delta}(\mathcal{U}, P a P) .
$$

3 CENTRE VALUED RANGE

Let \mathcal{U} be a C^{*}-algebra. We recall that the maximal numerical range max $V(a)$, for $a \in \mathcal{U}$ is the set

$$
\max V(a)=\left\{f(a): f(I)=1=\|f\|, f\left(a^{*} a\right)=\|a\|\right\} .
$$

If \mathcal{U} is a W^{*} - algebra with the centre $Z(\mathcal{U}), \Omega$ the maximal ideal space of $Z(\mathcal{U}), \omega$ any maximal ideal of $Z(\mathcal{U}), J(\omega)$ is the norm closure of

$$
\sum_{i=1}^{N} Z_{i} X_{i}, \quad Z_{i} \in \omega, X_{i} \in \mathcal{U}
$$

The Glimm quotient is defined to be the set $\mathcal{U}(\omega)=\mathcal{U} / J(\omega)$. The canonical map of \mathcal{U} into the Glimm quotient $U(\omega)$ is a homomorphism of \mathcal{U} into the Glimm Quotient and for any $A \in \mathcal{U}, A(\omega)$ is the canonical image of A. The following result is due to J. Glimm [5].

Theorem 3.1 If $A(\omega)$ is the canonical image of $A \in \mathcal{U}$, then

$$
A=\sup \{\|A(\omega)\|: \omega \in \Omega\}
$$

Proof. Assume thst f is a pure state in $\mathcal{U}(\omega)$. Then

$$
\begin{aligned}
\|A\| & =\left\|A^{*} A\right\| \\
& =\sup \left\{f\left(A^{*} A\right)\right\} \\
& \left.=\sup \left\{f(A \omega)^{*} A(\omega)\right)^{1 / 2}: \omega \in \Omega\right\} \\
& =\sup \left\{\left\|A^{*}(\omega) A(\omega)\right\|^{\frac{1}{2}}: \omega \in \Omega\right\} \\
& =\sup \{\| A(\omega): \omega \in \Omega \mid\} .
\end{aligned}
$$

Larsen [7] established that $J(\omega)$ is a primitive ideal. It therefore follows that $\mathcal{U}(\omega)$ has a faithfull representation π_{ω} on some space \mathcal{H}_{ω}.

Definition 3.2 Suppose ψ is a continuous linear map from \mathcal{U} to its centre $Z(\mathcal{U})$. Let ψ also have the following properties

- $\psi(Z X)=Z \psi(X) \forall X \in \mathcal{U}, Z \in Z(\mathcal{U})$,
- $\psi\left(X^{*}\right)=\psi(X)^{*}, \forall X \in \mathcal{U}$,
- $\|\psi\|=1|\psi(I)|$.

We shall let E denote the set of all mappings satisfying the above conditions.
Definition 3.3 The centre valued range is the set

$$
Z(\mathcal{U})-V(A)=\{\psi(A): \psi \in E\} .
$$

The numerical range of an element $\pi_{\omega}(A(\omega))$ is therefore given by

$$
\left.V\left(\pi_{\omega} A(\omega)\right)\right)=\left\{f\left(\pi_{\omega}(A(\omega))\right):\|f\|=1=f\left(\pi_{\omega}(I(\omega))\right)\right\}
$$

where $I(\omega)$ is an identity in $A(\omega)$.
The following theorem shows that the centre valued range $Z(\mathcal{U})-V(A)$ of $A \in \mathcal{U}$ is equal to all $Z \in Z(\mathcal{U})$ such that Z belongs to the numerical range implemented by $\pi_{\omega}(A(\omega))$ in $B\left(\mathcal{H}_{\omega}\right)$.

Theorem 3.4 Let \mathcal{U} be a W^{*}-algebra with centre $Z(\mathcal{U}), A \in \mathcal{U}$, then

$$
\left.Z(\mathcal{U})-V(A)=\left\{Z \in Z(\mathcal{U}): Z(\omega) \in V\left(\pi_{\omega} A(\omega)\right)\right)\right\} .
$$

For the proof of this theorem, see Glimm [5].
The maximal numerical range of $\left.\pi_{\omega}(A(\omega))\right)$ in $B\left(\mathcal{H}_{\omega}\right)$ is given by
$\max V\left(\pi_{\omega}(A(\omega))\right)=\left\{f\left(\pi_{\omega}(A(\omega))\right):\|f\|=1=f\left(\pi_{\omega}(I(\omega))\right), f\left(\pi_{\omega}(A(\omega))^{*} \pi_{\omega}\left(A(\omega)=\| \pi_{\omega}\left(A\left(\omega \|^{2}\right\}\right.\right.\right.\right.$.

The following theorem establishes the relationship between the maximal numerical centre valued range and the maximal numerical range.

Theorem 3.5 Let \mathcal{U} be a W^{*} - algebra with centre $Z(\mathcal{U}), A \in \mathcal{U}$. Then

$$
\max Z(\mathcal{U})-V(A)=\left\{Z \in Z(\mathcal{U}): Z(\omega) \in \max V\left(\pi_{\omega} A(\omega)\right)\right\}
$$

For the proof of this theorem see Glimm [5].

Theorem 3.6 Let \mathcal{U} be a W^{*}-algebra with centre $Z(\mathcal{U})$.
If $0 \in \max Z(\mathcal{U})-V(A)$, then for any $A \in \mathcal{U}$,

$$
d(A, Z(\mathcal{U}))=\|A\|
$$

Proof. Let $0 \in \max Z(\mathcal{U})-V(A)$. Then there exists ψ which satisfies all those condtions in definition 3.2 such that $\psi(A)=0$ and $\psi\left(A^{*} A\right)(\omega)=\|A(\omega)\|^{2}$ since $\psi(A)=0, \psi\left(A^{*}\right)=0$. Now for any $Z \in Z(\mathcal{U})$, we have

$$
\begin{aligned}
\|A-Z\|^{2} & =\left\|(A-Z)^{*}(A-Z)\right\| \\
& \geq\left\|\varphi\left(A^{*} A-Z^{*} A-A^{*} Z+Z^{*} Z\right)\right\| \\
& =\| \varphi\left(A^{*} A+Z^{*} Z \|\right. \\
& =\sup \left\{\mid \varphi\left(A^{*} A(\omega)+\psi\left(Z^{*} Z(\omega) \mid: \omega \in \Omega\right\}\right.\right. \\
& \geq \sup \psi\left(A^{*} A\right)(\omega): \omega \in \Omega \\
& =\sup \left\{\|A(\omega)\|^{2}: \omega \in \Omega\right\} \\
& =\|A\|^{2} .
\end{aligned}
$$

And so we note that

$$
\inf \{\|A-Z\|: Z \in Z(\mathcal{U})\} \leq\|A\|
$$

Hence

$$
d(A, Z(\mathcal{U}))=\|A\| .
$$

The converse of this is not true. see, Agure [1].

References

[1] J. O. Agure, On Numerical Ranges and Norms of Derivations, PhD thesis, University of Birmingham, UK (1992)
[2] J. O. Agure, On the Convexity of Stampflis Numerical Range, Bulletin of Australian Math. Soc. vol.53, (1996), 33-37.
[3] O. Bratteli and D. W. Robinson, Operator Algebra and Quantum Statistical Mechanics, Springer-Verlag, New York, (1987).
[4] EL Adawi Taha Mohamed Morsy, On the spectra and Numerical Ranges of various Banach Algebras, University of Birmingham, U.K, (1987).
[5] J. Glimm, A Stone- Weiestrass Theorem for C^{*}-algebra, Annal of Math.,vol.729, (1960), 216-244.
[6] P. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, (1982).
[7] R. Larsen, Functional Analysis, an Introduction, Marcel Decker, (1973).
[8] G. Murphy, C^{*}-algebra and Operator Theory, Academic Press, San Diego, (1991).
[9] J.G. Stampfli, The norms of Derivations, Pacific Journal of Math, vol. 33,no. 3 (1970), 47-67.
[10] Gustafson, E. Karl, Rao, and K.M. Duggirala, Numerical range. The field of values of linear operators and matrices., Universitext. New York, NY: Springer. xiv, 189 p. DM 56.00; öS 408.80; sFr 49.50 (1996), 47-67.

Received: June, 2009

