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Abstract

In this research project, we seek to address the problem of deciding which finite simple graph is a
prime graph of a finite group. In particular, we only focus on showing which 4-regular graphs can be
prime graphs of some finite solvable group.

Declaration

I, the undersigned, hereby declare that the work contained in this research project is my original work,
and that any work done by others or by myself previously has been acknowledged and referenced
accordingly.

Donnie Munyao Kasyoki, 23 May 2013

i



Contents

Abstract i

1 Introduction 1

2 Review of Group Theory 2

3 Character Theory 5

3.1 Review of Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Characters and Character Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Prime Graphs of Finite Groups 10

4.1 Review of Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Prime Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Important Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Regular Prime Graphs of Finite Groups 17

5.1 Background Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 1-Regular and 2-Regular Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 3-Regular Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 4-Regular Prime Graphs of Finite Solvable Groups . . . . . . . . . . . . . . . . . . . . . 19

6 Conclusion 29

References 31

ii



1. Introduction

The study of character theory has proved to be an important tool in the study of finite groups. It is
widely applied in the classification of simple groups. We can study the structure of finite groups by
studying their character degrees. The study of the character degrees of a finite group by attaching
graphs to them is considered a nice way to study them.

There are two different graphs that can be attached to the character degree set of a group G. The
character degree set of a group G is denoted by c.d.(G). The first graph attached to c.d.(G) is called
the character degree graph denoted by Γ(G). The vertex set is the set c.d.(G) \ {1}. There is an edge
between any two vertices a and b if they are not co-prime. That is gcd(a, b) 6= 1. The other graph
attached to c.d.(G) and which is the center of our discussion is called the prime graph denoted by
4(G) which is the graph defined in 4.1.14.

In most papers, the character degree graph is normally used to refer to the prime graph. Many
scholars have studied the character degree graphs and prime graphs in the past 30 or so years. As a
result, many results have been obtained in this field. For example, in Huppert (1991), Huppert listed
the prime graphs with at most 4 vertices that can arise as 4(G) of some solvable groups G. In Lewis
(2008), Lewis classified the prime graphs of solvable groups with 5 vertices.

In H.P.Tong-Viet (2013b), Hung P. Tong Viet studied the 3-regular graphs which might occur as
prime graphs of some group G. In the same paper, he also conjectured that the only 4-regular graphs
that can arise are the complete graph of order 5 and the 4-regular graph of order 6. This forms the
main agenda of our discussion. We will review the already obtained results, that is, n-regular graphs
that can be prime graphs of some solvable groups for n ≤ 3.
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2. Review of Group Theory

In this essay, G is a finite group unless otherwise stated.

In order to study Character theory of finite groups we need to review some elements of group theory
that will be widely used in this essay. Most of the definitions and results in this chapter can be found
in most group theory texts. Let’s begin by defining a group.

2.1.1 Definition. Let G be a non-empty set. The pair (G, ∗) is called a group if the following
properties hold:

1. g ∗ h ∈ G for all g, h ∈ G

2. (g ∗ h) ∗ k = g ∗ (h ∗ k) for all g, h, k ∈ G

3. There exist e ∈ G such that g ∗ e = e ∗ g for all g ∈ G. The element e is called the identity of
the group.

4. For each g ∈ G, there exist g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e. The element g−1 is called
the inverse of g in G.

We simply write G for a group instead of the pair (G, ∗).

If the number of elements in the group G is finite then we say that G is a finite group. Let’s list
some examples of groups.

2.1.2 Example.

The set of all invertible n× n matrices over a field F together with matrix multiplication is a group.
This group is called the General Linear Group denoted by GL(n, F ).

The set of all n× n matrices whose determinant is 1 together with matrix multiplication is a group.
This group is called Special Linear Group denoted by SL(n, F ).

The set of all integers is a group under addition. The group is denoted by Z.

A subset H of a group G is called a subgroup if its a group on its own right.

Henceforth, we will omit ∗ and denote g ∗ h by gh.

2.1.3 Definition. Let N be a subgroup of a group G. N is called a normal subgroup if

gxg−1 ∈ N, for all x ∈ N and g ∈ G.

We write N C G to mean N is a normal subgroup of G.

2.1.4 Definition. Let G be a group. G is called an abelian group if

hg = gh for all h, g ∈ G

Let H be a subgroup of a group G. The sets Hx and xH for all x ∈ G are subsets of G called the
right coset and the left coset of H in G, respectively. The index |G : H| is the number of left cosets
(or right cosets) of H in G.
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2.1.5 Definition. Let G be a group and N C G. Let

G/N = {Nx|x ∈ G}

be the set of right cosets of N in G. Define the operation ∗ as follows:

Nx ∗Ny = Nxy for all x, y ∈ G.

The pair (G/N, ∗) is called the quotient group of G by N .

The order of the quotient group G/N is given by

|G/N | = |G : N | = |G|
|N |

2.1.6 Definition. Let G be a group. The conjugacy class of an element g ∈ G is the set of elements
conjugate to it. That is

Kg = {xgx−1 |x ∈ G}.

2.1.7 Lemma. A group G is an abelian group if and only if each element g ∈ G is its own conjugacy
class. In particular, the number of conjugacy classes equals the size of the group if and only if the
group is abelian.

Proof. Let G be an abelian group. It follows that gh = hg, for all g, h ∈ G. By post-multiplying both
sides by h−1, we obtain that ghh−1 = hgh−1. This simply implies that g = hgh−1. To prove the
reverse we simply reverse the steps in the proof.

Let G be any group. For any two elements of G, say h and g, an element [h, g] = h−1g−1hg ∈ G is
called the commutator of h and g. The subgroup G′ generated by all the commutators of the elements
of G is called the commutator subgroup or the derived subgroup of G. That is;

G′ = 〈[h, g]|h, g ∈ G〉

We define G = G(0), G′ = G(1) and G(i+1)= (G(i))′.

2.1.8 Definition. Let G be a group. If G(d) = {1} for some integer d ≥ 0, then G is said to be
solvable. The least such d is called the derived length of G denoted by d.l.(G).

Let’s define the Frobenius group. Let H be a nontrivial subgroup of a group G. H is called a
Frobenius complement of G if the following property holds:

H ∩Hg = 1 ∀ g ∈ G \H

where Hg is the conjugate of H under g. That is, Hg = {hg|h ∈ H} and hg = g−1hg.

2.1.9 Definition. A group G is called a Frobenius group if it contains a Frobenius complement H as
a nontrivial subgroup.

The Frobenius kernel of G with respect to H, is N C G defined by

N =

G− ⋃
g∈G

Hg

 ∪ {1}
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2.1.10 Definition. Let G and H be groups. A group homomorphism from G to H is a map
ϕ : G→ H which satisfies:

ϕ(g)ϕ(h) = ϕ(gh) for all g, h ∈ G.

A group G is called a p-group if the order of every element of G is a power of a prime p. A subgroup
P of G is a p-subgroup if it is a p-group.

The following theorem is a basic result found in most group theory text books.

2.1.11 Theorem. Let G be a group. Then G is a p-group if and only if |G| = pn for some positive
integer n.

2.1.12 Definition. Let G be a group and P be the maximal p-subgroup of G. Then P is called a
Sylow p-subgroup of the group G.

2.1.13 Definition. Let G be a group. Let N C G such that |N | is co-prime to a prime p. If |G : N |
is a power of p, then N is called a normal p-complement of G.

2.1.14 Definition. Let G be a finite abelian group. Then G is called elementary abelian if every
non-identity element has order p.

2.1.15 Definition. A p-group G is extraspecial if G′ = Z(G) = Φ(G) is cyclic, where Φ(G) is the
Frattini subgroup of G, that is, the intersection of all maximal subgroups of G. Z(G) denotes the
center of the group defined as

Z(G) = {g ∈ G | gh = hg for all h ∈ G}.

2.1.16 Definition. Let G be a group. Then the exponent of G is the smallest positive integer
exp(G) such that xexp(G) = 1 for all x ∈ G.

2.1.17 Definition. Let G be a group. An automorphism of G is a map σ : G→ G such that σ
satisfies the following conditions:

(a) σ is a bijection and

(b) σ is a homomorphism. That is σ(xy) = σ(x)σ(y) for all x, y ∈ G.

2.1.18 Proposition. Let G be a group and Aut(G) = {σ |σ : G→ G is an isomorphism}. Then
Aut(G) is a group. Aut(G) is called the automorphism group of G.

Let n be an integer. We will denote the set of all integers that divide n by π(n).



3. Character Theory

3.1 Review of Representation Theory

Before considering the prime graphs of finite groups, we first study characters and character degrees.
Let’s start by reviewing the representation theory of finite groups. Representations can be studied via
the use of modules or vector spaces. We won’t go far behind to study modules, algebras and vector
spaces. We will assume that the theory is well understood and thus we will go ahead and use it.

3.1.1 Definition. Let G be a group and F be a field. Let V be a finite dimensional vector space over
F. Then a representation of G over V is a group homomorphism π : G→ GL(V ).

A representation π : G→ GL(V ) ∼= GL(n,C) of a group G defined by

π(g) = I, ∀g ∈ G

where I is the identity in GL(V ), is called the trivial representation.

The degree of the representation is the dimension of the vector space. That is:

deg(π) = dimV

.

A representation π induces a group action of G on V by linear transformations. That is,

π(g1g2)v = (π(g1)π(g2)) v = π(g1) (π(g2)v)

Let W be a subspace of a vector space V and G be a group. Let π be a representation of G on V . W
is said to be π-invariant if π(g)(W ) ⊆W , for all g ∈ G.

3.1.2 Definition. Let π : G→ GL(V ) be a representation of G over V . A subspace W ⊆ V is called
a G-subspace of V if it is π- invariant.

We say that a representation π : G→ GL(V ) is irreducible if V has no proper G-subspace.

3.2 Characters and Character Degrees

3.2.1 Definition. Let π be a representation of a group G. Then the character χ of G afforded by π is
defined by χ(g) = tr (π(g)).

The character afforded by the trivial representation of a group G is called trivial or principle character,
denoted by 1G.

If ρ and σ are two representations of a group G affording characters ϑ and θ respectively, then the
tensor product of the two representations, ρ⊗ σ, afford the character χ given by

χ(g) = ϑ(g)θ(g)

In this essay we will only consider the case in which F = C, the field of complex numbers. We will use
the term character to mean complex character. If χ is a character of G afforded by a representation π,
then the character degree of χ denoted by χ(1) is deg(π).
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3.2.2 The lifting process. Let G be a group and N C G. Let ρ0 be a representation of G/N . The
following properties hold:

ρ0(Ng)ρ0(Nh) = ρ0(Ngh) and

ρ0(N) = I for g, h ∈ G

Let ϑ0 be the character afforded by ρ0. We can use ρ0 to define a representation ρ of G by,

ρ(g) = ρ0(Ng) ∀ g ∈ G.

The character ϑ afforded by ρ is given by

ϑ(g) = ϑ0(Ng)

This process can also be used to define representations as well as characters of the quotient group
G/N given that of G. The process is called the lifting process.

3.2.3 Properties of character degrees. Now let’s study some properties of character degrees of
groups.

We will use a special property of the trace function of matrices to obtain a special property of
characters of a group. If A and B are two matrices,

tr(AB) = tr(BA) ⇒ tr(ABA−1) = tr(B). (3.2.1)

Using equation 3.2.1, given that π is a representation of G affording character χ, then

χ(ghg−1) = tr
(
π(ghg−1)

)
= tr(π(g)π(h)π(g)−1) = tr(π(h)) = χ(h) for all g, h ∈ G. (3.2.2)

We notice that χ is conjugation invariant. Functions satisfying that condition are called class functions.

A character of a group G afforded by π is irreducible if π is. The set of all irreducible characters of a
group G is denoted by Irr(G)

The following two results are considered important properties of irreducible characters.

3.2.4 Theorem. [see Isaacs (2006) Corollary 2.7] Let G be a group. Then the number of irreducible
characters of G is equal to the number of its conjugacy classes and∑

χ∈Irr(G)

χ(1)2 = |G|.

3.2.5 Theorem. [see Isaacs (2006) Corollary 3.11] Let G be a group and χ ∈ Irr(G). Then χ(1)
divides the order of G.

Let π : G→ GL(V ) and ρ : G→ GL(W ) be two representations of a finite group G over V and W
respectively. We say that the two are equivalent if there exist an isomorphism x : V →W such that
for all g ∈ G,

ρ(g) = xπ(g)x−1.

3.2.6 Lemma. Two representations, π and ρ are equivalent if and only if they afford the same
character.
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Notice that if χ is a character of G afforded by a representation π and H is a subgroup of G, then the
restriction χH of χ is a character of H afforded by the restriction πH of π, where,

χH =
∑

ϕ∈Irr(H)

zϕϕ

for some nonnegative integers zϕ.

3.2.7 Definition. Let N C G be a subgroup and ϑ be a class function of N , Then the function ϑg

defined by, ϑg(s) = ϑ(gsg−1), s ∈ N and g ∈ G, is called a conjugate to ϑ in G.

Let G be a group and Irr(G) be the set of all irreducible characters of G. The set of the character
degrees of the irreducible characters of G is denoted by c.d.(G). That is,

c.d.(G) = {χ(1)|χ ∈ Irr(G)}.

Let G and H be two groups and G×H be their direct product. If ϕ ∈ Irr(G) and ϑ ∈ Irr(H), then
their product ϕϑ ∈ Irr(G×H)

In particular, if G×H is the direct product of two groups G and H, then

c.d.(G×H) = {ϕ(1)ϑ(1) |ϕ ∈ Irr(G) and ϑ ∈ Irr(H)}

We also notice that the set ρ(G×H) = ρ(G) ∪ ρ(H).

Here are some results considered important in the study of character theory of finite groups. One of
the most celebrated results in this field of study is the theorem below due to Ito.

3.2.8 Theorem (Ito). [see (Isaacs, 2006) Corollary 12.34] Let G be a solvable group. Then G has a
normal abelian Sylow p-subgroup if and only if p does not divide any element of c.d.(G).

Another result on the structure of a group obtained by studying the character degrees of the
characters of the group is due to Thompson.

3.2.9 Theorem. [See (Thompson, 1970)] If G is a group and p is a prime such that p|χ(1) 6= 1 for
all character χ ∈ Irr(G), then G has a normal p-complement.

The following two result are also very useful in this essay.

3.2.10 Theorem (Gallagher). [see (Isaacs, 2006) Corollary 6.17] Let G be a group with N C G. If
ϑ ∈ Irr(N) is extendible to ϑ0 ∈ Irr(G), then the character ϑ0λ for λ ∈ Irr(G/N) are all of the
irreducible constituents of ϑG. In particular, ϑ(1)λ(1) ∈ c.d.(G) for all λ ∈ Irr(G/N).

3.2.11 Lemma. [See (Wu and Zhang, 2007)] Let G be a nonabelian solvable group. Then either all
the nonlinear irreducible characters of G have the same degree, or, there exists a non-trivial abelian
normal subgroup N of G such that G/N is nonabelian.

The following lemma is useful in proofs of some results considered important in the study of character
degree graphs and prime graphs of groups.
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3.2.12 Lemma. [see (Isaacs, 2006) Lemma 12.3] Let G be a solvable group and N be the unique
minimal normal subgroup of G. Then all nonlinear irreducible characters of G have equal degree r and
one of the following situations holds:

(i) G is a p-group, or

(ii) G is a Frobenius group with an abelian Frobenius complement of order r. Also N is the
Frobenius kernel and is an elementary abelian p-group.

The following theorem will be used together with Lemma 3.2.12.

3.2.13 Theorem. [see (Isaacs, 2006) Theorem 12.4] Let K C G be such that G/K is the Frobenius
group with Frobenius kernel N/K, an elementary abelian p-group. Let χ ∈ Irr(N). Then one of the
following holds.

(i) |G : N |χ(1) ∈ c.d.(G), or

(ii) |N : K| divides χ(1)2.

The following result will be used to prove the succeeding result.

3.2.14 Theorem. [See (Isaacs, 2006) Corollary 11.29] Let N C Gand χ ∈ Irr(G). Let ϕ ∈ Irr(N) be
an irreducible constituent of χN . Then χ(1)/ϕ(1) divides |G : N |.

The following result is an application of Theorem 3.2.13 and Theorem 3.2.14.

3.2.15 Lemma. [See (Lewis, 1998) Lemma 6.2] Let K be a normal subgroup of G such that G/K is
a Frobenius group with kernel N/K an elementary abelian p-group for some prime p. Suppose that
a ∈ c.d.(G) is relatively prime to n = |G : N |. Then one of the following must hold:

(a) na ∈ c.d.(G)

(b) p|a

Proof. For the proof see Lewis (1998).

To prove the existence of a solvable group G that satisfy Proposition 5.4.1, we will require the
following two results.

3.2.16 Theorem. [see Isaacs (2006) Corollary 2.6] A group G is abelian if and only if every
irreducible character is linear. In particular, G is abelian if and only if ρ(G) = ∅.

Proof. The proof is more or less the one in Isaacs (2006). By Lemma 2.1.7, a group G is abelian if
and only if the number of conjugacy classes is equal to the order of G. By Theorem 3.2.4,∑k

i=1 χi(1)2 = |G| where k is the number of conjugacy classes. But χi(1) ≥ 1 for all i. Thus k = |G|
if and only if χi(1) = 1 for all i.

3.2.17 Proposition. For each prime p, there exists a solvable group G such that ρ(G) = {p}
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Proof. We know that every p-group is solvable. Clearly, there exists a nonabelian solvable group G
such that |G| = pm for some m ≥ 3. By Theorem 3.2.16, ρ(G) 6= ∅. By Theorem 3.2.5, we obtain
ρ(G) = {p}. The proof is complete.

It is also important to note the following result.

3.2.18 Theorem. [see (Dolfi, Pacifici, and Sanus, 2008) Theorem 2.1] Let G be a group, and assume
that every element in c.d.(G) \ {1} is a prime number. Then G is solvable.



4. Prime Graphs of Finite Groups

4.1 Review of Graph Theory

Let’s study some graph theory that will used in this essay.

4.1.1 Definition. A graph Γ is a pair (V,E), where V is the set of vertices and E is the set of
unordered pairs of the elements of V .

We say that a pair {x, y} ∈ E if and only if there is an edge between x and y in Γ. For a pair
{x, y} ∈ E, we will simply write xy. For x, y ∈ V , we say that x and y are adjacent if and only if
xy ∈ E. We can also say that x is a neighbour of y.

4.1.2 Definition. Let Γ = (V,E) be a graph. The neighbourhood of a vertex v ∈ V denoted by
N(v), is the set of vertices of Γ to which v is adjacent. That is,

N(v) = {x ∈ V |xv ∈ E}.

The number of neighbours of a vertex in a graph is called the degree of the vertex. Each of the vertices
in a graph could be having different degrees. In the case where all the vertices have the same degree,
we say that the graph is regular and the degree of the graph denoted by d is the degree of the vertices.

4.1.3 Definition. A graph Γ is called k-regular if it is regular of degree k.

A graph with n vertices is said to be of order n.

4.1.4 Definition. Let Γ be a graph of order n. If Γ is such that all the vertices are adjacent, then Γ is
called a complete graph denoted by Kn.

4.1.5 Definition. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be any two graphs. We say that Γ1 and Γ2

are isomorphic if and only if the following two conditions holds:

(a) We can relabel the vertex sets V1 = {u1, . . . , ut} with V2 = {v1, . . . , vs} for some positive
integers s = t ≥ 1 such that (b) holds.

(b) For any i, j ∈ {1, 2, . . . , t}, ui ∈ N(uj) in Γ1 if and only if vi ∈ N(vj) in Γ2. We say that ui
corresponds to vi.

The sequence v1, v2, . . . , vk in a graph Γ = (V,E), for v1, v2, . . . , vk ∈ V , is a path if vivi+1 ∈ E for
i = 1, 2, . . . , k − 1.

A graph is said to be connected if for every pair of the vertices we can find a path between them.

Using the path we can find distance between two vertices of a graph. The distance between two
vertices u and v denoted by ∂(u, v), is the length of the shortest path joining them.

4.1.6 Definition. Let Γ = (V,E) be a connected graph. The diameter of Γ denoted by diam(Γ), is
the maximum distance over all pairs of the vertices.

d = max
x,y∈V

∂(x, y)

10
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4.1.7 Definition. Let Γ = (V,E) be a graph and S be the sequence v0, v1, v2, . . . , vk for
{v0, v1, v2, . . . , vk} ⊂ V . The sequence S is called a cycle denoted by Ck if its edge set contains v0vk
and vivi+1, i = 0, . . . , k − 1 only.

Let Γ = (V,E) be a graph. Let Γ = (V ′, E′) be a graph such that V ′ ⊆ V and E′ ⊆ E. Then Γ′ is
called a subgraph of Γ. A subgraph may be obtained by deleting vertices, edges or both from the
original graph.

4.1.8 Definition. Let Γ be a graph. A subgraph G is called a proper subgraph of Γ if it is not equal
to Γ.

4.1.9 Definition. A subgraph obtained by deleting vertices and the edges attached to the deleted
vertices is called an induced subgraph.

4.1.10 Definition. Let Kr be a complete graph of order r. A graph is said to be Kr-free if it does
not have Kr as an induced subgraph.

4.1.11 Definition. Let Γ = (V,E) be a graph and I ⊂ V such that if x, y ∈ I, then x /∈ N(y). The
subset I of V is called an independent set.

The independent number of a graph Γ denoted by Ind(Γ) is the maximal size of independent sets in a
graph Γ.

A graph Γ is said to be k-colorable if its vertices can be colored using k colors such that if x ∈ N(y),
then x and y are colored using different colors.

4.1.12 Definition. The chromatic number of a graph Γ usually denoted by χ(Γ) is the minimum
number k such that Γ is k-colorable.

Let’s consider the following result due to Brooks,

4.1.13 Theorem. [(Brooks, 1941) Theorem ] Let Γ = (V,E) be a graph such that |V | = n and
maximal degree d ≥ 3. Suppose that Γ is Kd+1-free, then n ≤ Ind(Γ)d.

Proof. For the proof see Brooks (1941).

Now we need to define a special kind of graph associated with the character degree set of a finite
group. Given a finite group G, we can obtain a set of prime numbers ρ(G) which divide some
character degree in the character degree set c.d.(G) of the group G.

4.1.14 Definition. Let G be a group and ρ(G) be the set of primes numbers which divide some
character degree in the character degree set c.d.(G) of the group G. The graph 4(G) whose vertex
set is ρ(G) and the edge set contains unordered pairs {a, b} such that the product ab divides some
character degree in c.d.(G). The graph 4(G) is called the prime graph of the group G.

The following property is considered an important result in graph theory and can also be useful in the
study of prime graphs of odd degree.

4.1.15 Lemma. [See (Diestel, 2000) Proposition 1.2.1] Let Γ be a graph. Then Γ has an even
number of vertices of odd degree.
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As defined in many group theory texts, a permutation is a bijective function from a set to itself. That
is, if X is a nonempty set, then a permutation is a bijective map σ : X → X.

4.1.16 Definition. An automorphism of a graph Γ is a permutation σ on the vertex set V (Γ), such
that uv ∈ E (Γ) if and only if σ(u)σ(v) ∈ E (Γ).

The set of all automorphisms of a graph forms a group called an automorphism group.

4.1.17 Definition. Let Γ be a graph and A be the automorphism group. Γ is said to be vertex
transitive if for any u, v ∈ V (Γ) there exists σ ∈ A such that σ(u) = v.

4.2 Prime Graphs

It is easy to obtain the prime graph of a finite group of small order. Using the program GAP, we can
obtain the character degree set of such groups. The problem is to determine which finite graph could
be a prime graph of a group. This is one of the new subjects of study attracting a lot of academics
interested in the study of structure of finite groups by studying c.d.(G) and 4(G). Famous results
have been obtained concerning the structure of finite groups by simply studying the set of the
character degrees of the group.

Let’s consider some examples of prime graphs. We will use GAP to obtain the set c.d.(G) as well as
the set ρ(G).

4.2.1 Examples of Prime Graphs.

4.2.2 Example. Let G = S7, the symmetric group with 7! elements. Using GAP, we can obtain the
c.d.(G) set.

gap> G:=SymmetricGroup(7);

Sym( [ 1 .. 7 ] )

gap> cd:=List(CharacterDegrees(G),x->x[1]);

[ 1, 6, 14, 15, 20, 21, 35 ]

We obtain that c.d.(G) = {1, 6, 14, 15, 20, 21, 35} and thus the vertex set of ∆(G) is the set
ρ(G) = {2, 3, 5, 7} of 4(G). We can also calculate the edge set using the command below.

gap> List(cd,x->Set(Factors(x)));

[ [ 1 ], [ 2, 3 ], [ 2, 7 ], [ 3, 5 ], [ 2, 5 ], [ 3, 7 ], [ 5, 7 ] ]

This implies that the edge set E of 4(G) is the set {{2, 3}, {2, 7}, {3, 5}, {2, 5}, {3, 7}, {5, 7}}
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7 5

32

Figure 4.1: Prime graph of G = S7

4.2.3 Example. Let G = A8, the alternating group with 8!
2 elements. Again using GAP we obtain the

set c.d.(G).

gap> G:=AlternatingGroup(8);

Alt( [ 1 .. 8 ] )

gap> cd:=List(CharacterDegrees(G),x->x[1]);

[ 1, 7, 14, 20, 21, 28, 35, 45, 56, 64, 70 ]

gap> List(cd,x->Set(Factors(x)));

[ [ 1 ], [ 7 ], [ 2, 7 ], [ 2, 5 ], [ 3, 7 ], [ 2, 7 ], [ 5, 7 ], [ 3, 5 ],

[ 2, 7 ], [ 2 ], [ 2, 5, 7 ] ]

From the above result we obtain that c.d.(G) = {1, 7, 14, 20, 21, 28, 35, 45, 56, 64, 70},
V = ρ(G) = {2, 3, 5, 7} and the edge set E = {{2, 5}, {2, 7}, {3, 5}, {3, 7}, {5, 7}}. Thus we obtain
4(G) as in the graph in figure 4.2 below.

3 5

72

Figure 4.2: Prime graph of G = A8

Let’s consider our last example of a prime graph.

4.2.4 Example. Let G = PSL3(4), the Projective Special Linear group over F4 the finite field with 4
elements. |G| = 20160. Here is how it is constructed in GAP.

gap> G:=PSL(3,4);

Group([ (3,4,5)(7,9,8)(10,14,18)(11,17,20)(12,15,21)(13,16,19),

(1,2,6,7,11,3,10)(4,14,8,15,16,20,13)(5,18,9,19,21,17,12) ])

The character degree set c.d.(G) = {1, 20, 35, 45, 63, 64} of G as given below
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gap> cd:=List(CharacterDegrees(G),x->x[1]);

[ 1, 20, 35, 45, 63, 64 ]

gap> List(cd,x->Set(Factors(x)));

[ [ 1 ], [ 2, 5 ], [ 5, 7 ], [ 3, 5 ], [ 3, 7 ], [ 2 ] ]

The vertex set of 4(G) ρ(G) = {2, 3, 5, 7} with the edge set E = {{2, 5}, {5, 7}, {3, 5}, {3, 7}}.
Thus 4(G) is as shown in Figure 4.3 below.

3

5
2

7

Figure 4.3: Prime graph of G

4.3 Important Results

There have been a few breakthroughs in this field in the last 30 years or so. We will only consider the
most important results from the study of prime graphs to determine the structure of finite groups.

The following result is considered an important result in the study to determine which finite graphs are
prime graphs of some solvable groups. The result is due to Pálfy.

4.3.1 Theorem (Pálfy’s condition). [(Pálfy, 1998) Theorem]

Let G be a solvable group and ρ(G) be the set of primes that divide a character degree χ(1) for some
χ ∈ Irr(G). Let π be a set of primes contained in ρ(G). If |π| ≥ 3, then there exists an irreducible
character whose degree is divisible by two primes from π.

This condition asserts that if we take any three vertices of 4(G) where G is solvable, then at least
two of these primes are adjacent. A more general result for any finite group G was later proved.

4.3.2 Theorem (Moretó -Tiep’s condition). [See (Moretó and Tiep, 2008) Main Theorem] Let G be
a group and π be a set of primes contained in ρ(G). If |π| ≥ 4, then there exists an irreducible
character whose degree is divisible by at least two primes from π.

Let’s consider some classification of prime graphs as in Lewis (2004). Lewis classified prime graphs of
solvable groups with |ρ(G)| = 5.

4.3.3 Theorem. [See Lewis (2004) Main Theorem] The graphs with 5 vertices that arise as 4(G) for
some solvable group G are precisely the graphs with diameter at most 2 that satisfy Theorem 4.3.1
except graphs (1), (2) and possibly (3) of Figure 4.4
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(1) (2) (3)

Figure 4.4: 5-vertex graphs that do not occur

Proof. For the proof see Lewis (2004). In this paper, Lewis only proved the cases for the graph (1)
and (2). For graph (3), we are not able to construct a solvable group with graph (3) as a prime graph.
However, we have not been in a position to show that no such group exists.

4.3.4 Lemma. [See (Lewis, 2004) Lemma 3.2] Let G be a graph of order n. Suppose that no proper
subgraph of G of order n or n− 1 occurs as 4(G) for some solvable group G. Then G is not a prime
graph 4(G) for some solvable group G.

Proof. See Lewis (2004) for the proof of this Lemma.

We claim that the following result holds.

4.3.5 Proposition. Let Γ1 be a prime graph of some solvable group and Γ be the join of Γ1 and a
one vertex graph. Then Γ is also a prime graph of some solvable group.

Proof. We need to show the existence of a solvable group whose prime graph is as described. Let G
and H be two solvable groups whose prime graphs are Γ1 and one vertex graph respectively. By
Lemma 3.2.17, we can obtain a group H such that ρ(H) = {p} and p /∈ ρ(G). We know that the
direct product of solvable groups is also solvable. Thus G×H is also solvable. Define Γ as the prime
graph of G×H. By definition, c.d.(G×H) = {ϕ(1)ϑ(1) |ϕ ∈ Irr(G) and ϑ ∈ Irr(H)}. Also, observe
that ρ(G×H) = ρ(G)∪ ρ(H). Let ρ(G) = {q1, . . . , qs} and ρ(H) = {p}. It is not difficult to see that
the edges in Γ1 also exist in Γ. Now, we need to show that for each qi for i = 1, . . . , s and p, there is
an edge between them. Let qi|ϕ(1) for some ϕ ∈ Irr(G) and p|ϑ(1) for ϑ ∈ Irr(H). By definition,
ϕ(1)ϑ(1) ∈ c.d.(G×H). This implies that for each i, there is an edge between qi and p.

The following result due to M. Lewis and Q. Meng played a role in proving Lemma 4.3.7.

4.3.6 Lemma. [See (Lewis and Meng, 2012) Lemma 2.1] Let G be a solvable group. If 4(G) has at
least 4 vertices, then either 4(G) contains a triangle or 4(G) is a square.

One of the most useful result in this essay is the following result.

4.3.7 Lemma. [See (H.P.Tong-Viet, 2013a) Lemma 2.2] If G is a solvable and 4(G) has no
triangles, then |ρ(G)| ≤ 4.

Proof. The proof is more or less the proof in H.P.Tong-Viet (2013a). Let G be a solvable group. We
only need to show that if |ρ(G)| > 4 then 4(G) must contain a triangle. Let |ρ(G)| ≥ 4. By
Lemma 4.3.6, 4(G) contains a triangle or 4(G) is a square. If 4(G) contains a triangle, then we
are done. If 4(G) is a square, then |ρ(G)| = 4. Thus if |ρ(G)| > 4, then 4(G) must contain a
triangle.
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The following is a more general result for any finite group due to Hung P. Tong-Viet.

4.3.8 Lemma. [see (H.P.Tong-Viet, 2013a) Theorem A] Let G be a group, 4(G) be the prime graph
of G and ρ(G) the set of all prime numbers that divide ϑ(1) for some ϑ ∈ Irr(G). If 4(G) has no
triangle, then |ρ(G)| ≤ 5.



5. Regular Prime Graphs of Finite Groups

In this chapter, we will study the n-regular graphs, for n ≤ 4, which occur as prime graphs of some
solvable groups. We will just review the cases when n ≤ 3. Our main focus is when n = 4.

5.1 Background Results

By Theorem 4.1.13, Theorem 4.3.2 and Theorem 4.3.1, the following result is obtained.

5.1.1 Corollary. [see (H.P.Tong-Viet, 2013b) Lemma 2.3] Let G be a group and 4(G) be its prime
graph. Then the independent number Ind(∆(G)) is at most 3 in general and at most 2 if G is
solvable.

The following result follows from Corollary 5.1.1. We will rely on the result below to come up with an
upper bound in the number of vertices of a 4-regular graph to be a prime graph of a solvable group.

5.1.2 Corollary. [see (H.P.Tong-Viet, 2013b) Corollary 2.4] Let G be a group and 4(G) be the prime
graph of G. Suppose that the maximal degree of 4(G) is d ≥ 3 and 4(G) is Kd+1-free, then
|ρ(G)| ≤ 2d when G is solvable and |ρ(G)| ≤ 3d in general.

In particular, if 4(G) is a connected k-regular graph for some integer k ≥ 3 but it is not Kd+1, then
|ρ(G)| ≤ 2k when G is solvable and |ρ(G)| ≤ 3k in general.

The following two results will be used to narrow down our study of 4-regular graphs which can be
prime graphs of solvable groups.

5.1.3 Lemma. Let G be a solvable group with a prime graph 4(G). If 4(G) is disconnected, then
4(G) contains 2 connected components which are both complete graphs.

Proof. By Theorem 4.3.1, if G is solvable, then 4(G) cannot have more than two connected
components. Let 4(G) contain two connected components A and B. It suffices to show that if one of
the two is not complete then 4(G) is not a prime graph of a solvable group. Suppose A has the
vertex set V (A) = {u1, . . . , uk} where k ≥ 2. If A is not complete, then ∃ur, us ∈ V (A) for some
1 ≤ s, r ≤ k such that ur /∈ N(us). Suppose B has the vertex set V (B) = {v1, . . . , vt} where t ≥ 1.
Now we notice that there is no edge between any two of the vertices ur, us, vi ∈ V (4(G)) for all
i = 1, . . . , t. Thus by Theorem 4.3.1, 4(G) cannot be a prime graph of a solvable group. We are
done.

We will require the following result to prove the succeeding result.

5.1.4 Theorem. [see (Lewis, 2008) Theorem 4.3] Let G be a solvable group and 4(G) be the
associated prime graph with two connected components. Let the size of the vertex set of the two
components be n and N with n ≤ N . Then N ≥ 2n − 1.

5.1.5 Lemma. [(H.P.Tong-Viet, 2013b) Lemma 2.5] Let G be a group and let k ≥ 0 be an integer. If
4(G) is a disconnected k-regular graph, then k = 0.

17
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Proof. For the complete proof see H.P.Tong-Viet (2013b). We will only concentrate on the case when
G is solvable. If 4(G) is connected, then we are done. Suppose that 4(G) is disconnected, by
Lemma 5.1.3, 4(G) contains two connected components which are both complete graphs. Let the
two components be of order n and N such that n ≤ N . By Theorem 5.1.4, N ≥ 2n− 1. But we know
that complete k-regular graphs are unique for some positive integer k. Notice that each component
must be of order k + 1. We obtain that n = N = k + 1, which implies that k + 1 ≥ 2k+1 − 1. By
inspection, we notice that k = 0.

5.2 1-Regular and 2-Regular Graphs

It is easy to see which 1-regular and 2-regular graphs are prime graphs of some solvable groups. By
Theorem 4.3.1 and Lemma 5.1.5, it is clear that no 1-regular and 2-regular graphs with more than 2
and 4 vertices respectively can be prime graphs of some solvable groups. The cases for graphs with 4
vertices and less that can be prime graphs of solvable groups were analysed by Huppert in his paper
Huppert (1991). According to the paper and our analysis, the only 1-regular and 2-regular graphs that
can occur as prime graphs are the graphs shown in Figure 5.1.

Figure 5.1: 1-regular and 2-regular graphs that occur as prime graphs of some solvable groups

5.3 3-Regular Graphs

As in definition 4.1.3, a 3-regular graph is a graph G in which every vertex has degree 3. In a recent
paper by Hung P. Tong-Viet, it was shown that the following result holds.

5.3.1 Proposition. [see (H.P.Tong-Viet, 2013b) Proposition 2.7] Let G be a group and 4(G) be the
prime graph of G. Suppose that 4(G) is a 3-regular graph with |ρ(G)| ≥ 6. then 4(G) is isomorphic
to one of the following graphs.

Figure 5.2: Cubic graph of order 6 with 2 triangles
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Figure 5.3: Cubic graph of order 8 with 4 triangles

Figure 5.4: Cubic graph of order 8 with 2 triangles

Figure 5.5: Cubic graph of order 8 with 1 triangles

Proof. See H.P.Tong-Viet (2013b) for the proof.

In H.P.Tong-Viet (2013b), it is also shown that the following result holds.

5.3.2 Lemma. [see (H.P.Tong-Viet, 2013b) Lemma 3.1] Let G be a group and the prime graph
4(G) be isomorphic to the graph in Figure 5.2. Then G is nonsolvable.

Proof. For the proof see H.P.Tong-Viet (2013b).

From the above results Tong-Viet obtained the following result.

5.3.3 Lemma. [see (H.P.Tong-Viet, 2013b) Theorem 3.2] Let G be a solvable group. If the prime
graph 4(G) is cubic, then 4(G) is isomorphic to K4.

Proof. G is solvable and 4(G) cubic, thus by Lemma 5.1.5, 4(G) is connected. By Corollary 5.1.2,
|ρ(G)| ≤ 6. Thus |ρ(G)| = 4, 5 or 6. By Lemma 4.1.15, it follows that |ρ(G)| 6= 5. If |ρ(G)| = 4 then
we are done. We need to show that |ρ(G)| 6= 6. Suppose |ρ(G)| = 6 then by Proposition 5.3.1, 4(G)
is isomorphic to the graph in Figure 5.2. But by Lemma 5.3.2, G is nonsolvable which is a
contradiction.

5.4 4-Regular Prime Graphs of Finite Solvable Groups

Let us consider the least number of vertices required to form a 4-regular graph. We cannot obtain a
4-regular graph with less than 5 vertices. Our first case is when |ρ(G)| = 5. To obtain a 4-regular
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graph with 5 vertices we require all the vertices to be adjacent to each of the other vertices. This
produces a complete graph of 5 vertices denoted by K5, see Figure 5.6.

Figure 5.6: 4-regular graph of order 5 (K5)

We claim that the following result holds.

5.4.1 Proposition. For each complete graph Km where m is a positive integer, there exists a solvable
group G whose prime graph 4(G) is isomorphic to Km.

Proof. By Proposition 3.2.17 there exists a solvable group G such that ρ(G) = {p} for any prime p.
Now let G = G1× · · · ×Gk, k ≥ 1, the direct product of finite solvable groups Gi’s with ρ(Gi) = {pi}
for distinct primes pi’s. It follows that ρ(G) = {p1, . . . , pk}. Clearly, 4(G) has k vertices. We need
to show that 4(G) is a complete graph. We notice that c.d.(Gi) = {pi, p2i , . . . , p

j
i} for some integer

j ≥ 1 not necessarily the same for each i. To obtain c.d.(G) we multiply every element of c.d.(Gr)
with all the elements in c.d.(Gt) for t 6= r and 1 ≤ r, t ≤ k. Thus for each pair (pn, ps) ∈ ρ(G) we can
find cl ∈ c.d.(G) such that the product pnps|cl for 1 ≤ n, s ≤ k and 1 ≤ l ≤ |c.d.(G)|. In this case,
notice that m = k − 1.

From Proposition 5.4.1 it follows that there is a solvable group G such that 4(G) is the graph in
Figure 5.6.

For the case of |ρ(G)| = 6. Let’s begin by ruling out some of the graphs that cannot be possible prime
graphs. Mostly we will make use of Lemma 4.3.1 and Lemma 4.3.8. We assume that we have a
triangle with vertices p1, p2 and p3.

Let the remaining vertices be q1, q2 and q3. Let all the pi’s be adjacent to one of the qi’s. Then clearly
there is no way to complete the graph to form a 4-regular graph of order 6. Now, let two of the pi’s,
say p1 and p2 be adjacent to one of the qi’s, say q1. It follows that we must have p3 and one of the
other pi’s, say p2 being adjacent to one of the vertices in {q2, q3}, say q3. There is only one way to
complete this graph. We let p1 and p3 be adjacent to q2 and then have the qi’s form a triangle. We
obtain the graph in Figure 5.7
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p1

p2

q3q1

q2

p3

Figure 5.7: 4-regular graph of order 6

5.4.2 Proposition. There exists a solvable group G whose prime graph 4(G) is isomorphic to the
graph in Figure 5.7.

Proof. It suffices to show the existence of groups Gi for i = 1, 2, 3 such that c.d.(G1) = {1, p1, q3},
c.d.(G2) = {1, p2, q2} and c.d.(G3) = {1, p3, q1}. for some distinct primes {pj}3j=1 and {qk}3k=1.

Actually it can be shown that such groups exists. For instance, for the pairs {p1, q3}. If they satisfy
the condition p1|q3 − 1. Let P be an extraspecial group of order q33 and exponent q3. One can show
that P has an automorphism σ of order p1 that centralizes the center of P . If you take G1 to be the
semi direct product of the group generated by σ acting on P , then c.d.(G1) = {1, p1, q3}. For each
such pair there exists a solvable group with such character degree set. Then by Theorem 3.2.18, we
deduce that they must be solvable. The group G = G1 ×G2 ×G3 is solvable and its prime graph
4(G) is isomorphic to the graph in Figure 5.7. The proof is complete.

Let us consider when the cases when |ρ(G)| ≥ 7.

5.4.3 Proposition. There is no solvable group G whose prime graph ∆(G) is a 4-regular graph with
|ρ(G)| ≥ 7.

q1

p1 p2

p3

q2

q3

q4

Figure 5.8: 4-regular graph of order 7 with 7 triangles
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p2 q4
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q3

q2 q1

p3

Figure 5.9: 4-regular graph of order 8 with 2 K4

q1

p1 p2

p3

q2

q3 q4

q5

Figure 5.10: 4-regular graph of order 8 with 8 triangles

q1

p1 p2

p3

q2

q3

q4

Figure 5.11: 4-regular graph of order 7 with 6 triangles
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q2 q3

q4

Figure 5.12: 4-regular graph of order 8 with 6 triangles

q1

p1 p2

p3

q2

q3 q4

q5

Figure 5.13: 4-regular graph of order 8 with 4 triangles

q1

p1 p2

p3

q2

q3 q4

q5

Figure 5.14: 4-regular graph of order 8 with 7 triangles
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p4

p3

p1
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q1

q2

q4

q3

Figure 5.15: Graph Γ, isomorphic to graph in Fig 5.9

Proof. Let G be a solvable group and 4(G) be the associated prime graph. If 4(G) is 4-regular, by
Lemma 5.1.5, the graph should be connected. By Corollary 5.1.2, the cardinality, |V | = |ρ(G)| ≤ 8.
Thus |ρ(G)| = 5, 6, 7 or 8. If |ρ(G)| ≥ 7, then |ρ(G)| = 7 or 8. By Lemma 4.3.8, the prime graph must
contain a triangle. Let 4(G)= G be the graph. We suppose that G contains a triangle {p1, p2, p3}.

Let’s consider the case when G is a 4-regular graph of order 7. Let the remaining vertices be
{q1, q2, q3, q4}. There are two cases.

Case 1. Suppose that some qi, say q1 is adjacent to all the pi’s. Now deg(pi) = 3, ∀i. We now
consider 3 possibilities.

1. Let q2 ∈ N(pi), ∀i, then we have that deg(pi) = 4, ∀i. Clearly there is no way to complete the
graph to be a 4-regular graph with 7 vertices.

2. Let q2 be adjacent to 2 vertices in the set p1, p2, p3 say p1 and p2. Notice that p3 is adjacent to
either q3 or q4. Without loss of generality, let p3 be adjacent to q3 and thus deg(pi) = 4, ∀i.
Again there is no way to complete G to obtain a 4-regular graph of degree 7.

3. Let each pi be adjacent to different qj for j = 2, 3, 4, that is
q2 ∈ N(p1), q3 ∈ N(p2) and q4 ∈ N(p3). This implies that deg(pi) = 4 ∀i. Therefore again we
cannot obtain a 4-regular graph of degree 7.

Case 2. Suppose that there is no j such that qj is adjacent to all the p′is. Then it follows that there
are two of the qj ’s such that each of them is adjacent to two of the pi’s. There are two possibilities:

1. Let two qi’s, say q1 and q4 be adjacent to two vertices in the set {p1, p2, p3}, say p1 and p3.
Then it follows that q2 and q3 are adjacent to p3. Notice that deg(pi) = 4, ∀i. To complete the
graph, we need to have both q2 and q3 being adjacent to both q1 and q4, which gives the graph
in Figure 5.11.

2. Let one of the qi’s, i = 2, 3, 4, 5, say q1 be adjacent to two of the vertices in {p1, p2, p3}, say p1
and p2. Also let p3 and one of {p1, p2}, say p2 be adjacent to q4. There are two possibilities:

(a) We have that p1 and p3 are both adjacent to q3. This implies that deg(pi) = 4, ∀i. Now
there is no way to complete G such that G is a 4-regular graph.

(b) Suppose instead we have p1 and p3 adjacent to q2 and q3 respectively. To complete G , we
need to have q3 being adjacent to q1, q2 and q4 and both q1 and q4 adjacent to q2. Thus
we obtain the graph in Figure 5.8
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Let’s now consider the case when G is a 4-regular graph of order 8. Assume the remaining vertices are
{qi}5i=1

In this case, notice that there must be an edge between one of the qi’s and two of the pi’s. There are
3 cases:

Case 1. Let all the pi’s be adjacent to one of the qi’s, say q1. There are three possibilities:

1. Let all the pi’s be adjacent to q2. We obtain that deg(pi) = 4, ∀i and deg(q1) = deg(q2) = 3.
The other three vertices have degree 0. If we let q3 be adjacent to all the other four qj ’s, we
obtain that deg(qi = 4 for i = 1, 2, 3. Notice that we cannot complete G to obtain a 4-regular
graph of degree 8.

2. Let one of the qi’s, i = 2, 3, 4, 5, say q2 be adjacent to two of the vertices in {p1, p2, p3}, say p1
and p2 and the remaining pi, which is p3, be adjacent to one qi’s for i = 3, 4, 5, say q3. We
obtain that deg(pi) = 4, ∀i, deg(q1) = 3 and deg(q2) = 2. Let q4 be adjacent to all the qj ’s so
that deg(q1) = deg(q4) = 4. We notice that we cannot complete G to make it 4-regular.

3. Let each of the pi’s be adjacent to different qj ’s for j = 3, 4, 5, say p1, p2 and p3 be adjacent to
q3, q4 and q5 respectively. We already have that the degrees of all the pi’s are 4 and that of q1 is
3. Let q2 be adjacent to all the qj ’s. The only possibility to complete the graph G is to have q3
adjacent to both q4 and q5 and q4 be adjacent to q5. Hence we obtain the graph in Figure 5.9.

Case 2. Let two of the vertices in the set {p1, p2, p3}, say p1 and p2 be adjacent to one vertex in the
set {qi}5i=1, say q1 and one of the pi’s for i = 1, 2, say p2 together with p3 be adjacent to one of the
qi’s for i = 2, 3, 4, 5, say q5. Then there are 2 possibilities,

1. Let both p1 and p3 be adjacent to one of the qi’s for i = 2, 3, 4, say q3. There is only one
possibility of completing the graph. Let the remaining of the qi’s, that is q2 and q4 be adjacent
to each other and all the other qi’s. Hence we obtain the graph in Figure 5.14.

2. Let each of p1 and p3 be adjacent to one of the qi’s for i = 2, 3, 4, say q2. We obtain that the
deg(pi) = 4 for all pi’s. There is only one possibility to complete G to obtain a 4-regular graph
of degree 4. Let q3 be adjacent to all the other qi’s to obtain deg(q3) = 4. We complete the
graph by letting q4 ∈ N(q2) and q1 and q5 be adjacent to q2 and q4 respectively. We thus obtain
the graph in Figure 5.10.

Case 3. Let two of the pi’s, say p1 and p2 be adjacent to one of the qi’s, say q1. Also let p3 and one
of {p1, p2}, say p2 be adjacent to q5 and q3 respectively. Then there are 2 possibilities,

1. Let p3 be adjacent to one of {q2, q4}, say q4 and p1 ∈ N(q2). Let q1 be connected to q2 and q5
such that we obtain the degree of all the pi’s and q1 is 4. Then there is only one way to
complete G . If we let q3 be joined to q2, q4 and q5 and q4 be adjacent to q5 and q2 obtaining
the graph in Figure 5.12, or

2. Let each of p1 and p3 be adjacent to one of the vertices in the set {q2, q4}, that is they are not
both adjacent to one of them. Then, we have one way to complete the graph. Let q1 be joined
to q2 and q5. If we connect q2 to q3 and q4 and let q3, q4 and q5 be all adjacent to each other,
we obtain the graph in Figure 5.13
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Claim 1

Graphs in Figures 5.8 and 5.10 cannot be prime graphs of some solvable groups.

Proof. Assume that G is solvable and 4(G) is isomorphic to either the graph in Figure 5.8 or 5.10.
Let K be a maximal normal subgroup of G such that G/K is nonabelian. By Lemma 3.2.12, either of
the following two cases can occur:

(a) G/K is a nonabelian p-group for some prime p. In this case, we show that p is adjacent to every
other vertex in ρ(G), which is impossible. Indeed, let q ∈ ρ(G) \ {p}. Then there exists
ϕ ∈ Irr(G) such that q|ϕ(1). Since G/K is nonabelian, it has a nontrivial character
θ ∈ Irr(G/K). Now if p|ϕ(1), then pq|ϕ(1) hence p and q are adjacent and we are done. So
assume that p - ϕ(1). Then gcd(|G : K|, ϕ(1)) = 1 and thus ϕK ∈ Irr(K). By Theorem 3.2.10,
ϕθ ∈ Irr(G) and thus pq|ϕ(1)θ(1) ∈ c.d.(G), so p and q are adjacent. Therefore, p is adjacent
to every vertex in ρ(G) \ {p} as wanted.

(b) G/K is a Frobenius group with Frobenius kernel N/K. We know that N/K is an elementary
abelian p-group for some prime p and |G : N | = n ∈ c.d.(G) with gcd(p, n) = 1. Furthermore, if
θ ∈ Irr(N), then either nθ(1) ∈ c.d.(G) or p|θ(1).

Observe that the graphs in Figure 5.8 and 5.10 have no complete square so that |π(χ(1))| ≤ 3
for every χ ∈ Irr(G). In particular, |π(n)| ≤ 3.

We observe that for each possibility of p (whether p ∈ ρ(G) or not) and each possibility of π(n),
we can find a pair of vertices u and v such that u, v are adjacent in 4(G),
u /∈ π(n), π(n) * {u, v}, and finally {p, u, v} and {u, v, r} are not triangles in 4(G), where
r ∈ π(n) \ {u, v}.
Notice that we only need to show that the above property holds in the graph in Figure 5.8. It
also suffices to show that it is true when |π(n)| = 3. Consider, p = q1, r = p3 and
π(n) = {p1, p2, p3}. If we take two vertices not in π(n), say {q3, q4} such that there is an edge
between them. Clearly, q1, q3 and q4 do not form a triangle. Since the graphs considered in this
case are both vertex transitive, with proper choice of π(n), the property is true for each p and r
chosen.

Let χ ∈ Irr(G) such that uv |χ(1) and let θ ∈ Irr(N) be an irreducible constituent of χN .
Clearly u | θ(1) since gcd(u, |G : N |) = 1. Moreover, p - θ(1), otherwise p |χ(1) which implies
that {p, u, v} is a triangle. Therefore, f := nθ(1) ∈ c.d.(G). Now if v ∈ π(n), then ruv | f and
if v /∈ π(n), then v | θ(1) so that ruv | f . In both cases, {r, u, v} is a triangle in 4(G). This
contradiction completes the proof.

Claim 2.

There is no solvable group G such that the prime graph 4(G) is isomorphic to the graph in
Figure 5.9.

Proof. Notice that graph Γ is isomorphic to the graph in Figure 5.9. To show that the graph in
Figure 5.9 cannot be a prime graph of some solvable group, it suffices to show that graph Γ does not
occur as a prime graph of some solvable group.
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We claim that if G is a group with ∆(G) isomorphic to Γ, then G′ = G′′. Let’s prove by
contradiction. Suppose G′ 6= G′′, then G/G′′ is a nonabelian solvable group. Let K be a maximal
normal subgroup of G such that G/K is a minimal nonabelian solvable group.

By Lemma 3.2.12, either of the following cases hold:

(a) G/K is a nonabelian p-group for some prime p. Also, G/K has an irreducible character
ϑ ∈ Irr(G/K) with ϑ(1) = pa for some positive integer a.

We can show that in this case, p is connected to any other prime in ρ(G) \ {p}.We know that
for every q ∈ ρ(G), there exists ϕ ∈ Irr(G) such that q|ϕ(1).

Now, if p |ϕ(1), then it follows that pq ∈ E(Γ) and we are done.

Now, suppose p - ϕ(1), then ϕK ∈ Irr(K). By Theorem 3.2.10, ϕϑ ∈ Irr(G) and thus
pq |ϕ(1)ϑ(1). Hence, pq ∈ E(Γ), we are done.

Notice that in graph Γ there is no vertex connected to all the other 7 vertices and hence we
obtain a contradiction.

(b) G/K is a Frobenius group with Frobenius kernel N/K, an elementary abelian p-group for some
prime p. Let |G : N | = n. Notice that n ∈ c.d.(G) and gcd(n, p) = 1. By Theorem 3.2.13, we
have that, for every ϑ ∈ Irr(N), either nϑ(1) ∈ c.d.(G) or p |ϑ(1). Clearly, Γ does not contain a
subgraph isomorphic to K5 and thus, for every χ ∈ Irr(G), |π(χ(1))| ≤ 4. Notice that Γ
contains only 2 complete subgraphs K4 with vertices {pi}4i=1 and {qj}4j=1 together with the
remaining edges pkqk for k = 1, 2, 3, 4.

Now, since n ∈ c.d.(G), |π(n)| ≤ 4 and thus |π(n) ∪ {p}| ≤ 5. This implies that there is some
index 1 ≤ ` ≤ 4 such that p /∈ {p`, q`} and π(n) * {p`, q`}. Hence, there exists
r ∈ π(n) \ {p`, q`}. Now, let χ ∈ Irr(G) such that p`q` |χ(1). Considering graph Γ, we notice
that π(χ(1)) = {p`, q`}. Let θ ∈ Irr(N) be an irreducible constituent of χN . Since θ(1) |χ(1),
we deduce that p - θ(1). Hence, nθ(1) ∈ c.d.(G). But in Γ, the triangle {r, p`, q`} does not
occur. Hence, we obtain a contradiction.

Thus, we conclude that G′ = G′′. If G is solvable, then it follows that G′ = G′′ = 1. This implies that
G is abelian. This is not possible since ρ(G) = 8. Hence, Γ cannot be a prime graph of some solvable
group.

Claim 3.

There is no solvable group G such that the prime graph 4(G) is isomorphic to the graphs in
Figures 5.11-5.14.

Proof. By Theorem 4.3.1, for any three vertices in 4(G) of a solvable group G, then at least two of
these vertices must be adjacent.

Now consider the set π = {q1, p2, q4} in Figure 5.11. There is no edge between any two of the three
vertices contained in π. Similarly, for the graph in Figure 5.12, take π = {q1, p3, q3}. For the graph in
Figure 5.13 we take π = {q2, p2, q5} the same condition applies. Finally for the graph in Figure 5.14,
we take π = {q3, q1, q5} and we are done.
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Following all the claims, we are now through with the proof.

5.4.4 Corollary. Let G be a solvable group with prime graph ∆(G). If 4(G) is 4-regular, then
|ρ(G)| ≤ 6.

Proof. The proof follows directly from Proposition 5.4.1, Proposition 5.4.2 and Proposition 5.4.3.



6. Conclusion

It has always been a challenge in the study of prime graphs of finite groups to determine which finite
graphs can be prime graphs of solvable groups. In this essay, our main aim was to single out which
4-regular graphs can be prime graphs of solvable groups.

By showing the existence of a solvable group G such that ρ(G) = {p} for a prime p, we were able to
show that for every complete graph Km of m vertices, there exists a solvable group G such that
4(G) is isomorphic to Km. We have also showed that there is a solvable group whose prime graph is
the graph in Figure 5.7.

We have also shown that given any graph Γ which is a prime graph of a solvable group, then the join
of Γ and a one vertex graph is a prime graph of some solvable group.

So far we don’t know of any solvable group G such that 4(G) is isomorphic to graph (3) of
Figure 4.4. It has not been proved that no such group exists either.

We were also able to show that as suspected the only 4-regular graphs that can be prime graphs of
some solvable groups are graphs of order less than 6. In particular, there are only two such graphs.
The complete graph with 5 vertices and the graph of order 6.

As stated in H.P.Tong-Viet (2013b), it is conjectured that the only k-regular graphs that can be prime
graphs of solvable groups are the complete graph of order k + 1 and the graph of order k + 2 when k
is even. For k ≥ 5 and odd the complete graph of order k + 1 is the only graph that can occur.
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