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Abstract

Let H be an infinite dimensional complex Hilbert space and A,B ∈ B(H)

where B(H) is the C∗-algebra of all bounded linear operators on H. Let

MAB : B(H) → B(H) be a multiplication operator induced by A and B de-

fined by

MAB(X) = AXB (1)
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In this paper we show that the numerical range of multiplication operator

is given by

V (MAB/B(B(H))) = [
⋃
U∈U(H)W (U∗AUB)−]− for all A,B ∈ B(H)

and U a unitary operator on the algebra B(H) where V is the algebraic nu-

merical range and W is the classical numerical range. The results obtained

are an extension of the the work done by Barraa [4].
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1. Introduction

Multiplication operator

There are various settings for the definition of multiplication operator.

Let A be a unital Banach algebra.The multiplication operator Ma,b : A → A
is defined by

Mab(x) = axb (2)

where x ∈ A and a, b ∈ A are fixed.

Numerical range

For operators in a Hilbert space H, the notion of numerical range (or field

of values) is important in various applications in the study of operators. The

numerical range of an operator T ∈ B(H) is a subset of a complex plane C
defined by

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}. This set is convex but not closed in general.For

the multiplication operator we have
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W (MA,B) = {〈AXBx, x〉 : x ∈ H, ‖x‖ ≤ 1} (3)

The algebraic numerical range of a ∈ A for a unital C∗-algebra A is defined

by;

V (a/A) = {f(a) : f ∈ A∗, ‖f‖ = 1 = f(e)} (4)

which is a closed convex set. Similarly,

V (MAB/B(H)) = {f(MAB) : f ∈ B(B(H)∗, ‖f‖ = 1 = f(AB)} (5).

If A = B(X) where B(X) is the algebra of bounded linear operators on a

normed space X and T ∈ B(X) then we have the spatial numerical range of

T defined by;

Vo(T ) = {f(Tx) : x ∈ X, f ∈ X∗ with ‖f‖ = ‖x‖ = 1 = f(x)}. (6).

Theorem 1

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators

on H.Then the numerical range V (MAB) is a convex set.

Proof

We need to show that if α1, α2 ∈ V (MAB) and t ∈ (0, 1) then

α = tα1 + (1− t)α2 ∈ V (MAB).

Let α1, α2 ∈ V (MAB) the there exists states f1 andf2 such that

α1 = f1(MAB) and α2 = f2(MAB) where MAB ∈ B(B(H)),

f1(AB) = 1 = ‖f1‖ and f2(AB) = 1 = ‖f2‖. We define f on B(B(H)) by

f(MAB) = tf1(MAB) + (1− t)f2(MAB). It suffices to show that f is a state by

showing that it is linear, positive and its norm is one.

f is linear

Let µ1, µ2 ∈ C and (MAB) ∈ B(B(H)) then

f(µ1(MAB) + µ2(MAB)) = tf1(µ1(MAB) + µ2(MAB)) + (1 − t)f2(µ1(MA,B) +

µ2(MAB))

= {tf1(µ1(MAB))+(1−t)f2(µ1(MAB))}+{tf1(µ2(MAB))+(1−t)f2(µ2(MA,B))}
= {µ1(tf1(MAB))+µ1((1−t)f2(MAB))}+{µ2(tf1(MAB)+µ2((1−t)f2(MAB))}
= µ1{tf1(MAB) + (1− t)f2(MAB)}+ µ2{tf1(MAB) + (1− t)f2(MAB)}
= µ1(f(MAB)) + µ2(f(MAB))

f is positive
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f((AXB)∗AXB) = tf1((AXB)∗AXB) + (1− t)f2((AXB)∗AXB) ≥ 0 Since

f1((AXB)∗AXB) = ((AXB)∗AXBx, x)

= (AXBx,AXBx) = ‖AXB‖2 = ‖A‖2‖B‖2 ≥ 0.

Now,

f(AB) = tf1(AB) + (1− t)f2(AB) = t+ (1− t) = 1.

1 = |f(AB)| ≤ ‖f‖|1| = ‖f‖ implying that ‖f‖ ≥ 1. Also,

|f(AB)| = |tf1(AB) + (1− t)f2(AB)|
≤ |tf1(AB)|+ |(1− t)f2(AB)|
≤ |t|‖f1‖+ |1− t|‖f2‖ = 1. Implying that ‖f‖ ≤ 1. Thus f is a state in

B(B(H))∗. Therefore, f(MAB) ∈ V (MAB) so V (MAB) is convex.

Theorem 2

V (MAB/B(B(H))) = W (AXB)

Proof

Here,it will be shown that V (MAB) ⊆ W (AXB) and W (AXB) ⊆ V (MAB).

Let α ∈ W (AXB) then there exists a sequence {xn}n≥1 of unit vectors in H

such that limn→∞〈AXBxn, xn〉 = α and limn→∞‖AXBxn‖ = ‖AXB‖ for all

MAB ∈ B(B(H)).

We define a functional f on B(B(H)) by f(AXB) = limn→∞〈AXBxn, xn〉 so

that f(AXB) = α

We will show that f is a state.

First, f is linear since if (AXB) ∈ B(B(H)) and λ, µ ∈ C then,

f(λ(AXB) + µ(AXB)) = limn→∞〈(λ(AXB) + µ(AXB))xn, xn〉
= limn→∞〈λ(AXB)xn, xn〉+ limn→∞〈µ(AXB)xn, xn〉
= λlimn→∞〈(AXB)xn, xn〉+ µlimn→∞〈(AXB)xn, xn〉
= λf(AXB) + µf(AXB).

Also, f is positive since

f(AXB)∗(AXB) = limn→∞〈((AXB)∗AXB)xn, xn〉
= limn→∞〈AXBxn, AXBxn〉
= {limn→∞‖AXBxn‖}2 = ‖AXB‖2 ≥ 0.

Finally, |f(AXB)| = |limn→∞〈AXBxn, xn〉|
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≤ limn→∞‖AXBxn‖limn→∞‖xn‖ = ‖AXB‖.
Thus ‖f‖ ≤ 1.

Now, 1 = ‖f(AB)‖ ≤ ‖f‖‖AB‖ = ‖f‖ so, that ‖f‖ ≥ 1. Therefore ‖f‖ = 1

and so α ∈ V (MAB). Hence W (AXB) ⊆ V (MAB)

Next we show that V (AXB) ⊆ W (AXB) See[1].

Let λ ∈ V (AXB) and λ not in W (AXB) and deduce a contradiction. There-

fore, there exists a state f ∈ B(B(H))∗ such that f(AXB) = λ and f((AXB)∗AXB) ≥
0. Since W (AXB) is convex, then by rotating MAB, we may assume that

Re W (AXB) ≤ Re λ− α, α > 0.

Let G = {x ∈ H : ‖x‖ = 1 and Re 〈AXBx, x〉 ≥ Re λ− α
2
, α > 0} and

ϑ = sup{‖AXBx‖ : x ∈ H}. Then ϑ < 0.

The set G is nonempty because if it is not, then for all x ∈ H, ‖x‖ = 1 we

shall have

Re〈AXBx, x〉 < Re λ− α
2
, α > 0.

But since f is a weak*-limit of convex combinations of vector states for all ε > 0

there exists N = N(ε) such that for all n > N , |fn(AXB)− f(AXB)| < ε.

Also we can find M = M(ε) such that for all n > M ,

|fn((AXB)∗AXB)− f((AXB)∗AXB)| < ε.

Taking ε < α
2

and n > max(N,M) and since

fn(AXB) =
∑n

i=1 αiωxi(AXB) =
∑n

i=1 αi〈AXBxi, xi〉 for 0 ≤ αi ≤ 1 and∑n
i=1 αi = 1 we have

Re fn(x) = Re
∑n

i=1 αiωxi(AXB) = Re
∑n

i=1 αi〈AXBxi, xi〉
=

∑n
i=1 αiRe 〈AXBxixi〉 ≤ Re λ− α

2
.

But fn(x) > f(AXB) − ε and therefore Re fn(x) > Re λ − ε which implies

that ε > α
2
. This is a contradiction.

Now, for all xi ∈ G, we have that ‖AXBxi‖ ≤ ϑ.

Sincef((AXB)∗AXB) < fn((AXB)∗AXB) + ε and 0 ≤ f((AXB)∗AXB we

obtain

0 ≤ f((AXB)∗AXB) < fn((AXB)∗AXB)+ε =
∑n

i=1 ‖AXBxi‖2+ε < ϑ2 < 0

which is also a contradiction. Thus λ not in W (AXB) implies that λ is not in

V (AXB). Hence λ ∈ V (AXB) implies that λ ∈ W (AXB) and so V (AXB) ⊆
W (AXB) and since W (AXB) is convex, then V (AXB) ⊆ W (AXB).
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Main result

Theorem 3

Let H be a complex Hilbert space and B(H) a C∗-algebra of all bounded linear

operators on H. Then,

V (MAB/B(B(H))) = [
⋃
U∈U(H)W (U∗AUB)−]−.

For all A,B ∈ B(H) and U a unitary operator.

To prove this theorem we use the following Lemma 4

Lemma 4

Let A and B be elements in B(H). Then, W (AB) ⊂ V (MAB/B(B(H))) where

W (AB) = {〈ABx, x〉}.

Proof

Let α ∈ W (AB) then by definition of the classical numerical range, there exist

x ∈ H with ‖x‖ = 1 such that;

α = 〈ABx, x〉 = tr(AB(x⊗ x)) where tr(.) is a linear form trace.

We denote this linear form by Ψx⊗x and define it as

Ψx⊗x(X) = tr(X(x⊗ x)) = 〈Xx, x〉 on B(B(H)). The linear form is bounded

and its norm is equal to one that is;

‖Ψx⊗x‖ = ‖x⊗ x‖ = 1.

The form Ψx⊗x is also a state since

Ψx⊗x(I) = tr(x⊗ x) = 〈x, x〉 = ‖x‖2 = 1 and

Ψx⊗xX
∗X = tr(X∗X(x⊗ x)) = 〈X∗Xx, x〉 = 〈Xx,Xx〉 = ‖Xx‖2 ≥ 0.

So Ψx⊗x(MAB(IH) ⊂ V (MAB/B(B(H))) and we have that

Ψx⊗x(MAB(IH) = Ψx⊗x(AB) = tr(AB(x⊗ x) = 〈ABx, x〉 = α.

Thus W (AB) ∈ W (MAB) ⊂ V (MAB/B(B(H))).

Let E be a Banach space. Then T ∈ B(E) is said to be an isometry if

‖Tx‖ = ‖x‖ for all x ∈ E. If T is an invertible isometry, then its inverse T−1

is also an isometry therefore,

V (TST−1 /B(E)) = V (T−1ST/B(E)) = V (S/B(E)) (7)
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for all S ∈ B(E).

If E = H then T = U and T−1 = U∗. Thus from equation (7) we have that

V (UAU∗ /B(H)) = V (U∗AU/B(H)) = V (A/B(H)) (8)

for all A ∈ B(H).

Given two isometries U, V ∈ H, then

V (MU∗AU V ∗BV/B(B(H))) = V (MAB/B(B(H))) (9)

for all A,B ∈ B(H).

Now, taking an invertible isometry RUV ∗ with RU∗V as its inverse, then

V (MU∗AU V ∗BV/B(B(H))) = V (RUV ∗ MAB RU∗V ?B(B(H))), and by lemma 4

W (U∗AU V ∗BV ) ⊂ V (RUV ∗ MAB RU∗V/B(B(H))) and⋃
U,V ∈U(H)W (U∗AU V ∗BV ) ⊂ V (MAB/B(B(H))).

Since the numerical range is closed and the product of two unitaries is also a

unitary, then

[
⋃
U∈U(H)W (U∗AUB)−]− ⊂ V (MAB/B(B(H))) or

[
⋃
V ∈U(H)W (V ∗AV B)−]− ⊂ V (MAB/B(B(H))).

Next we proceed to show the inclusion

V (MAB/B(B(H))) ⊂ [
⋃
U∈U(H)W (U∗AUB)−]−.

Let A be a Banach algebra, then for any a ∈ A;

V (a/A) =
⋂
z∈C{λ : |λ− z| ≤ ‖a− z‖}.(See [15]).

The norm of multiplication operator is defined by;

‖MAB‖ = Sup{‖MAB(X)‖ : ‖X‖ = 1}
= Sup{‖AXB‖ : X ∈ B(H), ‖X‖ ≤ 1}.

Theorem 5

Let A be C*-algebra, then

‖MAB‖ = Sup{‖MAB(U)‖ : U ∈ U(A)}
= Sup{‖AUB‖ : U ∈ U(A)

where U(A) denotes the set of unitaries in A. (see [11]).

Now, if A = B(H) then MAB(U) = AUB for all U ∈ U(H). Therefore,

V (MAB/B(B(H))) =
⋂
z∈C{λ : |λ− z| ≤ ‖MA,B − z‖}. But

‖MAB − z‖ = Sup{‖(MAB − z)(U)‖ : U ∈ U(H)}
= Sup{‖(AUB − z)U‖ : U ∈ U(H)}.
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Since the unitary U ∈ U(H) is an isometry, then

‖MAB − z‖ = Sup{‖U∗AUB − zIH‖ : U ∈ U(H)}.
So if µ ∈ V (MAB/B(B(H))) then for all z ∈ C,

µ ∈ {|λ− z| ≤ ‖MAB − zIH/B(H)‖}.
Taking a fixed ε > 0, there exists Ue such that

‖MAB − zIH/B(H)‖ < ‖U∗eAUeB − zIH‖+ ε and by theorem 1.4 we have that,

W (U∗eAUe)
− = V (U∗eAUeB)

=
⋂
z∈C{λ : |λ− z| ≤ ‖U∗eAUeB − zIH‖}

and so there exists λ ∈ W (U∗eAUB) such that |µ− λ| ≤ ε.

Since ε is arbitrary, µ ∈ [
⋃
U∈U(H)W (U∗AUB)−]−. �
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