International Journal of Mathematical Analysis Vol. 13, 2019, no. 6, 283 - 292 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2019.9632

On Numerical Range of Multiplication Operator

Odero Adhiambo Beatrice

Department of Mathematics, Statistics and Computing Rongo University, P.O. Box 103-40404 Rongo, Kenya

J. O. Agure

Department of Pure and Applied Mathematics Maseno University, P.O. Box 333, Maseno, Kenya

F. O. Nyamwala

Department of Mathematics and Physics Moi University, P.O. Box 3900-30100, Eldoret, Kenya

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2019 Hikari Ltd.

Abstract

Let H be an infinite dimensional complex Hilbert space and $A, B \in B(H)$ where B(H) is the C^* -algebra of all bounded linear operators on H. Let $M_{AB}: B(H) \to B(H)$ be a multiplication operator induced by A and B defined by

 $M_{AB}(X) = AXB \tag{1}$

In this paper we show that the numerical range of multiplication operator is given by

$$V(M_{AB/B(B(H))}) = [\bigcup_{U \in U(H)} W(U^*AUB)^-]^- \text{ for all } A, B \in B(H)$$

and U a unitary operator on the algebra B(H) where V is the algebraic numerical range and W is the classical numerical range. The results obtained are an extension of the the work done by Barraa [4].

Mathematics Subject Classification: Primary 47A12, Secondary 47A30, 47B47

Keywords; Numerical range, Multiplication operator and unitary operator

1. Introduction

Multiplication operator

There are various settings for the definition of multiplication operator. Let \mathcal{A} be a unital Banach algebra. The multiplication operator $M_{a,b} : \mathcal{A} \to \mathcal{A}$ is defined by $M_{ab}(x) = axb$ (2)

where $x \in \mathcal{A}$ and $a, b \in \mathcal{A}$ are fixed.

Numerical range

For operators in a Hilbert space H, the notion of numerical range (or field of values) is important in various applications in the study of operators. The numerical range of an operator $T \in B(H)$ is a subset of a complex plane \mathbb{C} defined by

 $W(T) = \{ \langle Tx, x \rangle : ||x|| = 1 \}$. This set is convex but not closed in general.For the multiplication operator we have

$$W(M_{A,B}) = \{ \langle AXBx, x \rangle : x \in H, \|x\| \le 1 \}$$

$$(3)$$

The algebraic numerical range of $a \in \mathcal{A}$ for a unital C^* -algebra \mathcal{A} is defined by;

$$V(a/\mathcal{A}) = \{ f(a) : f \in \mathcal{A}^*, \|f\| = 1 = f(e) \}$$
(4)

which is a closed convex set. Similarly,

$$V(M_{AB/B(H)}) = \{ f(M_{AB}) : f \in B(B(H)^*, ||f|| = 1 = f(AB) \}$$
(5).

If $\mathcal{A} = B(X)$ where B(X) is the algebra of bounded linear operators on a normed space X and $T \in B(X)$ then we have the spatial numerical range of T defined by;

$$V_o(T) = \{ f(Tx) : x \in X, f \in X^* \text{ with } \|f\| = \|x\| = 1 = f(x) \}.$$
(6).

Theorem 1

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on H. Then the numerical range $V(M_{AB})$ is a convex set.

Proof

We need to show that if $\alpha_1, \alpha_2 \in V(M_{AB})$ and $t \in (0, 1)$ then $\alpha = t\alpha_1 + (1 - t)\alpha_2 \in V(M_{AB})$. Let $\alpha_1, \alpha_2 \in V(M_{AB})$ the there exists states f_1 and f_2 such that $\alpha_1 = f_1(M_{AB})$ and $\alpha_2 = f_2(M_{AB})$ where $M_{AB} \in B(B(H))$, $f_1(AB) = 1 = ||f_1||$ and $f_2(AB) = 1 = ||f_2||$. We define f on B(B(H)) by $f(M_{AB}) = tf_1(M_{AB}) + (1 - t)f_2(M_{AB})$. It suffices to show that f is a state by showing that it is linear, positive and its norm is one. f is linear

Let
$$\mu_1, \mu_2 \in \mathbb{C}$$
 and $(M_{AB}) \in B(B(H))$ then

$$f(\mu_1(M_{AB}) + \mu_2(M_{AB})) = tf_1(\mu_1(M_{AB}) + \mu_2(M_{AB})) + (1 - t)f_2(\mu_1(M_{A,B}) + \mu_2(M_{AB})))$$

$$= \{tf_1(\mu_1(M_{AB})) + (1 - t)f_2(\mu_1(M_{AB}))\} + \{tf_1(\mu_2(M_{AB})) + (1 - t)f_2(\mu_2(M_{A,B}))\}\}$$

$$= \{\mu_1(tf_1(M_{AB})) + \mu_1((1 - t)f_2(M_{AB}))\} + \{\mu_2(tf_1(M_{AB}) + \mu_2((1 - t)f_2(M_{AB})))\}$$

$$= \mu_1\{tf_1(M_{AB}) + (1 - t)f_2(M_{AB})\} + \mu_2\{tf_1(M_{AB}) + (1 - t)f_2(M_{AB})\}$$

$$= \mu_1(f(M_{AB})) + \mu_2(f(M_{AB}))$$

$$f \text{ is positive}$$

$$\begin{split} f((AXB)^*AXB) &= tf_1((AXB)^*AXB) + (1-t)f_2((AXB)^*AXB) \ge 0 \text{ Since} \\ f_1((AXB)^*AXB) &= ((AXB)^*AXBx, x) \\ &= (AXBx, AXBx) = \|AXB\|^2 = \|A\|^2 \|B\|^2 \ge 0. \\ \text{Now,} \\ f(AB) &= tf_1(AB) + (1-t)f_2(AB) = t + (1-t) = 1. \\ 1 &= |f(AB)| \le \|f\| |1| = \|f\| \text{ implying that } \|f\| \ge 1. \text{ Also,} \\ |f(AB)| &= |tf_1(AB) + (1-t)f_2(AB)| \\ &\leq |tf_1(AB)| + |(1-t)f_2(AB)| \\ &\leq |tf_1(AB)| + |(1-t)f_2(AB)| \\ &\leq |t\| \|f_1\| + |1-t| \|f_2\| = 1. \text{ Implying that } \|f\| \le 1. \text{ Thus } f \text{ is a state in} \\ B(B(H))^*. \text{ Therefore, } f(M_{AB}) \in V(M_{AB}) \text{ so } V(M_{AB}) \text{ is convex.} \end{split}$$

Theorem 2

 $V(M_{AB/B(B(H))}) = \overline{W(AXB)}$

Proof

Here, it will be shown that $V(M_{AB}) \subseteq \overline{W(AXB)}$ and $\overline{W(AXB)} \subseteq V(M_{AB})$.

Let $\alpha \in \overline{W(AXB)}$ then there exists a sequence $\{x_n\}_{n\geq 1}$ of unit vectors in Hsuch that $\lim_{n\to\infty} \langle AXBx_n, x_n \rangle = \alpha$ and $\lim_{n\to\infty} \|AXBx_n\| = \|AXB\|$ for all $M_{AB} \in B(B(H)).$

We define a functional f on B(B(H)) by $f(AXB) = \lim_{n \to \infty} \langle AXBx_n, x_n \rangle$ so that $f(AXB) = \alpha$

We will show that f is a state.

First, f is linear since if
$$(AXB) \in B(B(H))$$
 and $\lambda, \mu \in \mathbb{C}$ then,
 $f(\lambda(AXB) + \mu(AXB)) = \lim_{n \to \infty} \langle \langle (\lambda(AXB) + \mu(AXB))x_n, x_n \rangle$
 $= \lim_{n \to \infty} \langle \lambda(AXB)x_n, x_n \rangle + \lim_{n \to \infty} \langle \mu(AXB)x_n, x_n \rangle$
 $= \lambda \lim_{n \to \infty} \langle (AXB)x_n, x_n \rangle + \mu \lim_{n \to \infty} \langle (AXB)x_n, x_n \rangle$
 $= \lambda f(AXB) + \mu f(AXB).$

Also, f is positive since

$$f(AXB)^*(AXB) = \lim_{n \to \infty} \langle ((AXB)^*AXB)x_n, x_n \rangle$$

= $\lim_{n \to \infty} \langle AXBx_n, AXBx_n \rangle$
= $\{\lim_{n \to \infty} \|AXBx_n\|\}^2 = \|AXB\|^2 \ge 0.$
Finally, $|f(AXB)| = |\lim_{n \to \infty} \langle AXBx_n, x_n \rangle|$

$$\leq \lim_{n \to \infty} \|AXBx_n\| \|\lim_{n \to \infty} \|x_n\| = \|AXB\|.$$

Thus $||f|| \leq 1$.

Now, $1 = ||f(AB)|| \le ||f|| ||AB|| = ||f||$ so, that $||f|| \ge 1$. Therefore ||f|| = 1and so $\alpha \in V(M_{AB})$. Hence $\overline{W(AXB)} \subseteq V(M_{AB})$ Next we show that $V(AXB) \subseteq \overline{W(AXB)}$ See[1].

Let $\lambda \in V(AXB)$ and λ not in W(AXB) and deduce a contradiction. Therefore, there exists a state $f \in B(B(H))^*$ such that $f(AXB) = \lambda$ and $f((AXB)^*AXB) \geq$ 0. Since W(AXB) is convex, then by rotating M_{AB} , we may assume that $Re W(AXB) \leq Re \lambda - \alpha, \alpha > 0.$

Let $G = \{x \in H : ||x|| = 1 \text{ and } Re \langle AXBx, x \rangle \ge Re \lambda - \frac{\alpha}{2}, \alpha > 0\}$ and $\vartheta = \sup\{||AXBx|| : x \in H\}$. Then $\vartheta < 0$.

The set G is nonempty because if it is not, then for all $x \in H$, ||x|| = 1 we shall have

 $Re\langle AXBx, x \rangle < Re \ \lambda - \frac{\alpha}{2}, \ \alpha > 0.$

But since f is a weak*-limit of convex combinations of vector states for all $\varepsilon > 0$ there exists $N = N(\varepsilon)$ such that for all n > N, $|f_n(AXB) - f(AXB)| < \varepsilon$. Also we can find $M = M(\varepsilon)$ such that for all n > M,

 $|f_n((AXB)^*AXB) - f((AXB)^*AXB)| < \varepsilon.$

Taking $\varepsilon < \frac{\alpha}{2}$ and n > max(N, M) and since

 $f_n(AXB) = \sum_{i=1}^n \alpha_i \omega_{x_i}(AXB) = \sum_{i=1}^n \alpha_i \langle AXBx_i, x_i \rangle \text{ for } 0 \le \alpha_i \le 1 \text{ and}$ $\sum_{i=1}^n \alpha_i = 1 \text{ we have}$

$$Re f_n(x) = Re \sum_{i=1}^n \alpha_i \omega_{x_i}(AXB) = Re \sum_{i=1}^n \alpha_i \langle AXBx_i, x_i \rangle$$
$$= \sum_{i=1}^n \alpha_i Re \langle AXBx_i x_i \rangle \le Re \lambda - \frac{\alpha}{2}.$$

But $f_n(x) > f(AXB) - \varepsilon$ and therefore $Re f_n(x) > Re \lambda - \varepsilon$ which implies that $\varepsilon > \frac{\alpha}{2}$. This is a contradiction.

Now, for all $x_i \in G$, we have that $||AXBx_i|| \leq \vartheta$.

Since $f((AXB)^*AXB) < f_n((AXB)^*AXB) + \varepsilon$ and $0 \le f((AXB)^*AXB$ we obtain

 $0 \leq f((AXB)^*AXB) < f_n((AXB)^*AXB) + \varepsilon = \sum_{i=1}^n \|AXBx_i\|^2 + \varepsilon < \vartheta^2 < 0$ which is also a contradiction. Thus λ not in W(AXB) implies that λ is not in V(AXB). Hence $\lambda \in V(AXB)$ implies that $\lambda \in W(AXB)$ and so $V(AXB) \subseteq W(AXB)$ and since W(AXB) is convex, then $V(AXB) \subseteq \overline{W(AXB)}$.

Main result

Theorem 3

Let H be a complex Hilbert space and B(H) a C^{*}-algebra of all bounded linear operators on H. Then, $V(M_{AB/B(B(H))}) = [\bigcup_{U \in U(H)} W(U^*AUB)^-]^-.$ For all $A, B \in B(H)$ and U a unitary operator. To prove this theorem we use the following Lemma 4

Lemma 4

Let A and B be elements in B(H). Then, $W(AB) \subset V(M_{AB/B(B(H))})$ where $W(AB) = \{\langle ABx, x \rangle\}.$

Proof

Let $\alpha \in W(AB)$ then by definition of the classical numerical range, there exist $x \in H$ with ||x|| = 1 such that; $\alpha = \langle ABx, x \rangle = tr(AB(x \otimes x))$ where tr(.) is a linear form trace. We denote this linear form by $\Psi_{x \otimes x}$ and define it as $\Psi_{x \otimes x}(X) = tr(X(x \otimes x)) = \langle Xx, x \rangle$ on B(B(H)). The linear form is bounded and its norm is equal to one that is; $||\Psi_{x \otimes x}|| = ||x \otimes x|| = 1$. The form $\Psi_{x \otimes x}$ is also a state since $\Psi_{x \otimes x}(I) = tr(x \otimes x) = \langle x, x \rangle = ||x||^2 = 1$ and $\Psi_{x \otimes x}X^*X = tr(X^*X(x \otimes x)) = \langle X^*Xx, x \rangle = \langle Xx, Xx \rangle = ||Xx||^2 \ge 0$. So $\Psi_{x \otimes x}(M_{AB}(I_H) \subset V(M_{AB/B(B(H))})$ and we have that $\Psi_{x \otimes x}(M_{AB}(I_H) = \Psi_{x \otimes x}(AB) = tr(AB(x \otimes x) = \langle ABx, x \rangle = \alpha$. Thus $W(AB) \in W(M_{AB}) \subset V(M_{AB/B(B(H))})$.

Let E be a Banach space. Then $T \in B(E)$ is said to be an isometry if ||Tx|| = ||x|| for all $x \in E$. If T is an invertible isometry, then its inverse T^{-1} is also an isometry therefore,

$$V(TST^{-1}_{|B(E)}) = V(T^{-1}ST_{|B(E)}) = V(S_{|B(E)})$$
(7)

for all $S \in B(E)$. If E = H then T = U and $T^{-1} = U^*$. Thus from equation (7) we have that $V(UAU^*_{|B(H)}) = V(U^*AU_{|B(H)}) = V(A_{|B(H)})$ (8) for all $A \in B(H)$. Given two isometries $U, V \in H$, then

$$V(M_{U^*AU \ V^*BV/B(B(H))}) = V(M_{AB/B(B(H))})$$
for all $A, B \in B(H)$.
$$(9)$$

Now, taking an invertible isometry R_{UV^*} with R_{U^*V} as its inverse, then

 $V(M_{U^*AU \ V^*BV/B(B(H))}) = V(R_{UV^*} \ M_{AB} \ R_{U^*V?B(B(H))}), \text{ and by lemma } 4$ $W(U^*AU \ V^*BV) \subset V(R_{UV^*} \ M_{AB} \ R_{U^*V/B(B(H))}) \text{ and}$ $\bigcup_{U,V \in U(H)} W(U^*AU \ V^*BV) \subset V(M_{AB/B(B(H))}).$

Since the numerical range is closed and the product of two unitaries is also a unitary, then

$$\begin{bmatrix} \bigcup_{U \in U(H)} W(U^*AUB)^- \end{bmatrix}^- \subset V(M_{AB/B(B(H))}) \text{ or } \\ \begin{bmatrix} \bigcup_{V \in U(H)} W(V^*AVB)^- \end{bmatrix}^- \subset V(M_{AB/B(B(H))}). \\ \text{Next we proceed to show the inclusion} \\ V(M_{AB/B(B(H))}) \subset \begin{bmatrix} \bigcup_{U \in U(H)} W(U^*AUB)^- \end{bmatrix}^-. \\ Let \mathcal{A} \text{ be a Banach algebra, then for any } a \in \mathcal{A}; \\ V(a/\mathcal{A}) = \bigcap_{z \in \mathbb{C}} \{\lambda : |\lambda - z| \leq ||a - z||\}. (\text{See [15]}). \\ \text{The norm of multiplication operator is defined by;} \end{cases}$$

 $||M_{AB}|| = Sup\{||M_{AB}(X)|| : ||X|| = 1\}$ = Sup{||AXB|| : X \in B(H), ||X|| \le 1}.

Theorem 5

Let
$$\mathcal{A}$$
 be C^* -algebra, then
 $\|M_{AB}\| = Sup\{\|M_{AB}(U)\| : U \in U(\mathcal{A})\}$
 $= Sup\{\|AUB\| : U \in U(\mathcal{A})$
where $U(\mathcal{A})$ denotes the set of unitaries in \mathcal{A} . (see [11]).
Now, if $\mathcal{A} = B(H)$ then $M_{AB}(U) = AUB$ for all $U \in U(H)$. Therefore,
 $V(M_{AB/B(B(H))}) = \bigcap_{z \in \mathbb{C}} \{\lambda : |\lambda - z| \leq \|M_{A,B} - z\|\}$. But
 $\|M_{AB} - z\| = Sup\{\|(M_{AB} - z)(U)\| : U \in U(H)\}$
 $= Sup\{\|(AUB - z)U\| : U \in U(H)\}.$

Since the unitary $U \in U(H)$ is an isometry, then $||M_{AB} - z|| = Sup\{||U^*AUB - zI_H|| : U \in U(H)\}.$ So if $\mu \in V(M_{AB/B(B(H))})$ then for all $z \in \mathbb{C}$, $\mu \in \{|\lambda - z| \leq ||M_{AB} - zI_{H/B(H)}||\}.$ Taking a fixed $\varepsilon > 0$, there exists U_e such that $||M_{AB} - zI_{H/B(H)}|| < ||U_e^*AU_eB - zI_H|| + \varepsilon$ and by theorem 1.4 we have that, $W(U_e^*AU_e)^- = V(U_e^*AU_eB)$ $= \bigcap_{z \in \mathbb{C}} \{\lambda : |\lambda - z| \leq ||U_e^*AU_eB - zI_H||\}$ and so there exists $\lambda \in W(U_e^*AUB)$ such that $|\mu - \lambda| \leq \varepsilon$. Since ε is arbitrary, $\mu \in [\bigcup_{U \in U(H)} W(U^*AUB)^-]^-$.

References

[1] J. O. Agure, On the convexity of Stampfli's numerical range, *Bull. Austral. Math. Soc.*, **53** (1996), 33-37. https://doi.org/10.1017/s0004972700016695

[2] M. Baraa and V. Muller, [Essential Numerical Range of Operators on Banach Space, Mathematical Institute AVCR, Prague, Czech Republic, 2000.

[3] M. Baraa, Essential Numerical range of Elementary Operators, *Proceedings of the American Mathematical Society*, **133** (6) (2004), 1723-1726.

 [4] M. Baraa, A formula for the numerical Range of Elementary operators, ISRN Mathematical Analysis, 2014 (2014), 4pages. https/doi.org/10.1155/2014/246301

[5] M. Baraa, Formula for the Numerical Range on C*-algebra, Department of Mathematics, Faculty of Sciences Semlalia, Marakesh, Morocco, 2015. arXiv:1504.04569v/

[6] G. Lumer and M. Rosenblum, Linear Operator Equations, Proc. Amer.
 Math. Soc., 10 (1959), 32-41.https://doi.org/10.1090/s0002-9939-1959-0104167-0

[7] G. Lumer, Semi-inner product spaces, Trans. Amer. Math. Soc., 100 (1961), 29-43. https://doi.org/10.1090/s0002-9947-1961-0133024-2

 [8] M. Mathieu, More properties of the product of two derivations of C^{*}algebra, Canad. Math. Bull., 42 (1990), 115-120.
 https://doi.org/10.1017/s0004972700028203

[9] G. Orland, On a class of operators, Proc. Amer. Math. Soc., 15 (1964),
 75-80. https://doi.org/10.1090/s0002-9939-1964-0157244-4

[10] M.E. Rodriguez, The numerical range of an operator, *Pacific Journal of Mathematics*, **32** (3) (1970), 647-650. https://doi.org/10.2140/pjm.1970.32.647

 B. Russo and H.A. Dye, A note on unitary operators in C*-algebras, Duke Mathematical Journal, 33 (1966), 413-416. https://doi.org/10.1215/s0012-7094-66-03346-1

[12] A. Seddik, The numerical range of elementary operators II, Linear Algebra and its Applications, (2001), 239-244. https://doi.org/10.1016/s0024-3795(01)00389-5

[13] A. Seddik, Numerical range of elementary operator, *Integral Equations* and Operator Theory, **43** (2002), 248-252. https://doi.org/10.1007/bf01200256

[14] A. Seddik, On the numerical range and norm of elementary operator, Linear and Multilinear Algebra, 52 (3) (2004), 293-302.
https://doi.org/10.1080/0308108031000122515

[15] J.G. Stampfli and J.P. Willams, Growth conditions and the numerical range in a Banach Algebra, *Tohoku Math. Journal*, **20** (1968), 417-424. https://doi.org/10.2748/tmj/1178243070 [16] J.G. Stampfli, The norm of a derivation, *Pacific Journal of Mathematics*, **33** (3) (1970), 737-747. https://doi.org/10.2140/pjm.1970.33.737

Received: June 25, 2019; Published: July 19, 2019