International Journal of Mathematical Analysis
Vol. 13, 2019, no. 6, 283-292
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ijma.2019.9632

On Numerical Range of Multiplication Operator

Odero Adhiambo Beatrice
Department of Mathematics, Statistics and Computing
Rongo University, P.O. Box 103-40404 Rongo, Kenya
J. O. Agure
Departmant of Pure and Applied Mathematics
Maseno University, P.O. Box 333, Maseno, Kenya
\section*{F. O. Nyamwala}
Department of Mathematics and Physics
Moi University, P.O. Box 3900-30100, Eldoret, Kenya

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2019 Hikari Ltd.

Abstract

Let H be an infinite dimensional complex Hilbert space and $A, B \in B(H)$ where $B(H)$ is the C^{*}-algebra of all bounded linear operators on H. Let $M_{A B}: B(H) \rightarrow B(H)$ be a multiplication operator induced by A and B defined by

$M_{A B}(X)=A X B$

In this paper we show that the numerical range of multiplication operator is given by
$V\left(M_{A B / B(B(H))}\right)=\left[\bigcup_{U \in U(H)} W\left(U^{*} A U B\right)^{-}\right]^{-}$for all $A, B \in B(H)$
and U a unitary operator on the algebra $B(H)$ where V is the algebraic numerical range and W is the classical numerical range. The results obtained are an extension of the the work done by Barraa [4].

Mathematics Subject Classification: Primary 47A12, Secondary 47A30, 47B47

Keywords; Numerical range, Multiplication operator and unitary operator

1. Introduction

Multiplication operator

There are various settings for the definition of multiplication operator.
Let \mathcal{A} be a unital Banach algebra. The multiplication operator $M_{a, b}: \mathcal{A} \rightarrow \mathcal{A}$ is defined by
$M_{a b}(x)=a x b$
where $x \in \mathcal{A}$ and $a, b \in \mathcal{A}$ are fixed.

Numerical range

For operators in a Hilbert space H, the notion of numerical range (or field of values) is important in various applications in the study of operators. The numerical range of an operator $T \in B(H)$ is a subset of a complex plane \mathbb{C} defined by
$W(T)=\{\langle T x, x\rangle:\|x\|=1\}$. This set is convex but not closed in general.For the multiplication operator we have
$W\left(M_{A, B}\right)=\{\langle A X B x, x\rangle: x \in H,\|x\| \leq 1\}$
The algebraic numerical range of $a \in \mathcal{A}$ for a unital C^{*}-algebra \mathcal{A} is defined by;
$V(a / \mathcal{A})=\left\{f(a): f \in \mathcal{A}^{*},\|f\|=1=f(e)\right\}$
which is a closed convex set. Similarly,
$V\left(M_{A B / B(H)}\right)=\left\{f\left(M_{A B}\right): f \in B\left(B(H)^{*},\|f\|=1=f(A B)\right\}\right.$
If $\mathcal{A}=B(X)$ where $B(X)$ is the algebra of bounded linear operators on a normed space X and $T \in B(X)$ then we have the spatial numerical range of T defined by;
$V_{o}(T)=\left\{f(T x): x \in X, f \in X^{*}\right.$ with $\left.\|f\|=\|x\|=1=f(x)\right\}$.

Theorem 1

Let H be a Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. Then the numerical range $V\left(M_{A B}\right)$ is a convex set.

Proof

We need to show that if $\alpha_{1}, \alpha_{2} \in V\left(M_{A B}\right)$ and $t \in(0,1)$ then
$\alpha=t \alpha_{1}+(1-t) \alpha_{2} \in V\left(M_{A B}\right)$.
Let $\alpha_{1}, \alpha_{2} \in V\left(M_{A B}\right)$ the there exists states f_{1} and f_{2} such that
$\alpha_{1}=f_{1}\left(M_{A B}\right)$ and $\alpha_{2}=f_{2}\left(M_{A B}\right)$ where $M_{A B} \in B(B(H))$,
$f_{1}(A B)=1=\left\|f_{1}\right\|$ and $f_{2}(A B)=1=\left\|f_{2}\right\|$. We define f on $B(B(H))$ by $f\left(M_{A B}\right)=t f_{1}\left(M_{A B}\right)+(1-t) f_{2}\left(M_{A B}\right)$. It suffices to show that f is a state by showing that it is linear, positive and its norm is one.
f is linear
Let $\mu_{1}, \mu_{2} \in \mathbb{C}$ and $\left(M_{A B}\right) \in B(B(H))$ then
$f\left(\mu_{1}\left(M_{A B}\right)+\mu_{2}\left(M_{A B}\right)\right)=t f_{1}\left(\mu_{1}\left(M_{A B}\right)+\mu_{2}\left(M_{A B}\right)\right)+(1-t) f_{2}\left(\mu_{1}\left(M_{A, B}\right)+\right.$ $\left.\mu_{2}\left(M_{A B}\right)\right)$
$=\left\{t f_{1}\left(\mu_{1}\left(M_{A B}\right)\right)+(1-t) f_{2}\left(\mu_{1}\left(M_{A B}\right)\right)\right\}+\left\{t f_{1}\left(\mu_{2}\left(M_{A B}\right)\right)+(1-t) f_{2}\left(\mu_{2}\left(M_{A, B}\right)\right)\right\}$
$=\left\{\mu_{1}\left(t f_{1}\left(M_{A B}\right)\right)+\mu_{1}\left((1-t) f_{2}\left(M_{A B}\right)\right)\right\}+\left\{\mu_{2}\left(t f_{1}\left(M_{A B}\right)+\mu_{2}\left((1-t) f_{2}\left(M_{A B}\right)\right)\right\}\right.$
$=\mu_{1}\left\{t f_{1}\left(M_{A B}\right)+(1-t) f_{2}\left(M_{A B}\right)\right\}+\mu_{2}\left\{t f_{1}\left(M_{A B}\right)+(1-t) f_{2}\left(M_{A B}\right)\right\}$
$=\mu_{1}\left(f\left(M_{A B}\right)\right)+\mu_{2}\left(f\left(M_{A B}\right)\right)$
f is positive
$f\left((A X B)^{*} A X B\right)=t f_{1}\left((A X B)^{*} A X B\right)+(1-t) f_{2}\left((A X B)^{*} A X B\right) \geq 0$ Since
$f_{1}\left((A X B)^{*} A X B\right)=\left((A X B)^{*} A X B x, x\right)$
$=(A X B x, A X B x)=\|A X B\|^{2}=\|A\|^{2}\|B\|^{2} \geq 0$.
Now,
$f(A B)=t f_{1}(A B)+(1-t) f_{2}(A B)=t+(1-t)=1$.
$1=|f(A B)| \leq\|f\||1|=\|f\|$ implying that $\|f\| \geq 1$. Also,
$|f(A B)|=\left|t f_{1}(A B)+(1-t) f_{2}(A B)\right|$
$\leq\left|t f_{1}(A B)\right|+\left|(1-t) f_{2}(A B)\right|$
$\leq|t|\left\|f_{1}\right\|+|1-t|\left\|f_{2}\right\|=1$. Implying that $\|f\| \leq 1$. Thus f is a state in $B(B(H))^{*}$. Therefore, $f\left(M_{A B}\right) \in V\left(M_{A B}\right)$ so $V\left(M_{A B}\right)$ is convex.

Theorem 2

$$
V\left(M_{A B / B(B(H))}\right)=\overline{W(A X B)}
$$

Proof

Here, it will be shown that $V\left(M_{A B}\right) \subseteq \overline{W(A X B)}$ and $\overline{W(A X B)} \subseteq V\left(M_{A B}\right)$.
Let $\alpha \in \overline{W(A X B)}$ then there exists a sequence $\left\{x_{n}\right\}_{n \geq 1}$ of unit vectors in H such that $\lim _{n \rightarrow \infty}\left\langle A X B x_{n}, x_{n}\right\rangle=\alpha$ and $\lim _{n \rightarrow \infty}\left\|A X B x_{n}\right\|=\|A X B\|$ for all $M_{A B} \in B(B(H))$.
We define a functional f on $B(B(H))$ by $f(A X B)=\lim _{n \rightarrow \infty}\left\langle A X B x_{n}, x_{n}\right\rangle$ so that $f(A X B)=\alpha$
We will show that f is a state.
First, f is linear since if $(A X B) \in B(B(H))$ and $\lambda, \mu \in \mathbb{C}$ then,

$$
\begin{aligned}
f(\lambda(A X B) & +\mu(A X B))=\lim _{n \rightarrow \infty}\left\langle(\lambda(A X B)+\mu(A X B)) x_{n}, x_{n}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle\lambda(A X B) x_{n}, x_{n}\right\rangle+\lim _{n \rightarrow \infty}\left\langle\mu(A X B) x_{n}, x_{n}\right\rangle \\
& =\lambda \lim _{n \rightarrow \infty}\left\langle(A X B) x_{n}, x_{n}\right\rangle+\mu \lim _{n \rightarrow \infty}\left\langle(A X B) x_{n}, x_{n}\right\rangle \\
& =\lambda f(A X B)+\mu f(A X B) .
\end{aligned}
$$

Also, f is positive since

$$
\begin{aligned}
f(A X B)^{*}(A X B) & =\lim _{n \rightarrow \infty}\left\langle\left((A X B)^{*} A X B\right) x_{n}, x_{n}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle A X B x_{n}, A X B x_{n}\right\rangle \\
& =\left\{\lim _{n \rightarrow \infty}\left\|A X B x_{n}\right\|\right\}^{2}=\|A X B\|^{2} \geq 0 .
\end{aligned}
$$

Finally, $|f(A X B)|=\left|\lim _{n \rightarrow \infty}\left\langle A X B x_{n}, x_{n}\right\rangle\right|$

$$
\leq \lim _{n \rightarrow \infty}\left\|A X B x_{n}\right\| l i m_{n \rightarrow \infty}\left\|x_{n}\right\|=\|A X B\|
$$

Thus $\|f\| \leq 1$.
Now, $1=\|f(A B)\| \leq\|f\|\|A B\|=\|f\|$ so, that $\|f\| \geq 1$. Therefore $\|f\|=1$ and so $\alpha \in V\left(M_{A B}\right)$. Hence $\overline{W(A X B)} \subseteq V\left(M_{A B}\right)$
Next we show that $V(A X B) \subseteq \overline{W(A X B)}$ See[1].
Let $\lambda \in V(A X B)$ and λ not in $W(A X B)$ and deduce a contradiction. Therefore, there exists a state $f \in B(B(H))^{*}$ such that $f(A X B)=\lambda$ and $f\left((A X B)^{*} A X B\right) \geq$
0 . Since $W(A X B)$ is convex, then by rotating $M_{A B}$, we may assume that
$\operatorname{Re} W(A X B) \leq \operatorname{Re} \lambda-\alpha, \alpha>0$.
Let $G=\left\{x \in H:\|x\|=1\right.$ and $\left.\operatorname{Re}\langle A X B x, x\rangle \geq R e \lambda-\frac{\alpha}{2}, \alpha>0\right\}$ and $\vartheta=\sup \{\|A X B x\|: x \in H\}$. Then $\vartheta<0$.
The set G is nonempty because if it is not, then for all $x \in H,\|x\|=1$ we shall have
$\operatorname{Re}\langle A X B x, x\rangle<\operatorname{Re} \lambda-\frac{\alpha}{2}, \alpha>0$.
But since f is a weak*-limit of convex combinations of vector states for all $\varepsilon>0$ there exists $N=N(\varepsilon)$ such that for all $n>N,\left|f_{n}(A X B)-f(A X B)\right|<\varepsilon$.
Also we can find $M=M(\varepsilon)$ such that for all $n>M$,
$\left|f_{n}\left((A X B)^{*} A X B\right)-f\left((A X B)^{*} A X B\right)\right|<\varepsilon$.
Taking $\varepsilon<\frac{\alpha}{2}$ and $n>\max (N, M)$ and since
$f_{n}(A X B)=\sum_{i=1}^{n} \alpha_{i} \omega_{x_{i}}(A X B)=\sum_{i=1}^{n} \alpha_{i}\left\langle A X B x_{i}, x_{i}\right\rangle$ for $0 \leq \alpha_{i} \leq 1$ and $\sum_{i=1}^{n} \alpha_{i}=1$ we have
$\operatorname{Re} f_{n}(x)=\operatorname{Re} \sum_{i=1}^{n} \alpha_{i} \omega_{x_{i}}(A X B)=R e \sum_{i=1}^{n} \alpha_{i}\left\langle A X B x_{i}, x_{i}\right\rangle$

$$
=\sum_{i=1}^{n} \alpha_{i} R e\left\langle A X B x_{i} x_{i}\right\rangle \leq R e \lambda-\frac{\alpha}{2}
$$

But $f_{n}(x)>f(A X B)-\varepsilon$ and therefore $R e f_{n}(x)>R e \lambda-\varepsilon$ which implies that $\varepsilon>\frac{\alpha}{2}$. This is a contradiction.
Now, for all $x_{i} \in G$, we have that $\left\|A X B x_{i}\right\| \leq \vartheta$.
Since $f\left((A X B)^{*} A X B\right)<f_{n}\left((A X B)^{*} A X B\right)+\varepsilon$ and $0 \leq f\left((A X B)^{*} A X B\right.$ we obtain
$0 \leq f\left((A X B)^{*} A X B\right)<f_{n}\left((A X B)^{*} A X B\right)+\varepsilon=\sum_{i=1}^{n}\left\|A X B x_{i}\right\|^{2}+\varepsilon<\vartheta^{2}<0$ which is also a contradiction. Thus λ not in $W(A X B)$ implies that λ is not in $V(A X B)$. Hence $\lambda \in V(A X B)$ implies that $\lambda \in W(A X B)$ and so $V(A X B) \subseteq$ $W(A X B)$ and since $W(A X B)$ is convex, then $V(A X B) \subseteq \overline{W(A X B)}$.

Main result

Theorem 3

Let H be a complex Hilbert space and $B(H)$ a C^{*}-algebra of all bounded linear operators on H. Then,
$V\left(M_{A B / B(B(H))}\right)=\left[\bigcup_{U \in U(H)} W\left(U^{*} A U B\right)^{-}\right]^{-}$.
For all $A, B \in B(H)$ and U a unitary operator.
To prove this theorem we use the following Lemma 4

Lemma 4

Let A and B be elements in $B(H)$. Then, $W(A B) \subset V\left(M_{A B / B(B(H))}\right)$ where $W(A B)=\{\langle A B x, x\rangle\}$.

Proof

Let $\alpha \in W(A B)$ then by definition of the classical numerical range, there exist $x \in H$ with $\|x\|=1$ such that;
$\alpha=\langle A B x, x\rangle=\operatorname{tr}(A B(x \otimes x))$ where $\operatorname{tr}($.$) is a linear form trace.$
We denote this linear form by $\Psi_{x \otimes x}$ and define it as
$\Psi_{x \otimes x}(X)=\operatorname{tr}(X(x \otimes x))=\langle X x, x\rangle$ on $B(B(H))$. The linear form is bounded and its norm is equal to one that is;
$\left\|\Psi_{x \otimes x}\right\|=\|x \otimes x\|=1$.
The form $\Psi_{x \otimes x}$ is also a state since
$\Psi_{x \otimes x}(I)=\operatorname{tr}(x \otimes x)=\langle x, x\rangle=\|x\|^{2}=1$ and
$\Psi_{x \otimes x} X^{*} X=\operatorname{tr}\left(X^{*} X(x \otimes x)\right)=\left\langle X^{*} X x, x\right\rangle=\langle X x, X x\rangle=\|X x\|^{2} \geq 0$.
So $\Psi_{x \otimes x}\left(M_{A B}\left(I_{H}\right) \subset V\left(M_{A B / B(B(H))}\right)\right.$ and we have that
$\Psi_{x \otimes x}\left(M_{A B}\left(I_{H}\right)=\Psi_{x \otimes x}(A B)=\operatorname{tr}(A B(x \otimes x)=\langle A B x, x\rangle=\alpha\right.$.
Thus $W(A B) \in W\left(M_{A B}\right) \subset V\left(M_{A B / B(B(H))}\right)$.
Let E be a Banach space. Then $T \in B(E)$ is said to be an isometry if $\|T x\|=\|x\|$ for all $x \in E$. If T is an invertible isometry, then its inverse T^{-1} is also an isometry therefore,
$V\left(T S T^{-1}{ }_{/ B(E)}\right)=V\left(T^{-1} S T_{/ B(E)}\right)=V\left(S_{/ B(E)}\right)$
for all $S \in B(E)$.
If $E=H$ then $T=U$ and $T^{-1}=U^{*}$. Thus from equation (7) we have that
$V\left(U A U^{*}{ }_{/ B(H)}\right)=V\left(U^{*} A U_{/ B(H)}\right)=V\left(A_{/ B(H)}\right)$
for all $A \in B(H)$.
Given two isometries $U, V \in H$, then
$V\left(M_{U^{*} A U \quad V^{*} B V / B(B(H))}\right)=V\left(M_{A B / B(B(H))}\right)$
for all $A, B \in B(H)$.
Now, taking an invertible isometry $R_{U V^{*}}$ with $R_{U^{*} V}$ as its inverse, then
$V\left(M_{U^{*} A U V^{*} B V / B(B(H))}\right)=V\left(R_{U V^{*}} M_{A B} R_{U^{*} V ? B(B(H))}\right)$, and by lemma 4
$W\left(U^{*} A U V^{*} B V\right) \subset V\left(R_{U V^{*}} M_{A B} R_{U^{*} V / B(B(H))}\right)$ and
$\bigcup_{U, V \in U(H)} W\left(U^{*} A U V^{*} B V\right) \subset V\left(M_{A B / B(B(H))}\right)$.
Since the numerical range is closed and the product of two unitaries is also a unitary, then
$\left[\bigcup_{U \in U(H)} W\left(U^{*} A U B\right)^{-}\right]^{-} \subset V\left(M_{A B / B(B(H))}\right)$ or
$\left[\bigcup_{V \in U(H)} W\left(V^{*} A V B\right)^{-}\right]^{-} \subset V\left(M_{A B / B(B(H))}\right)$.
Next we proceed to show the inclusion
$V\left(M_{A B / B(B(H))}\right) \subset\left[\bigcup_{U \in U(H)} W\left(U^{*} A U B\right)^{-}\right]^{-}$.
Let \mathcal{A} be a Banach algebra, then for any $a \in \mathcal{A}$;
$V(a / \mathcal{A})=\bigcap_{z \in \mathbb{C}}\{\lambda:|\lambda-z| \leq\|a-z\|\}$.(See [15]).
The norm of multiplication operator is defined by;

$$
\begin{aligned}
\left\|M_{A B}\right\| & =\operatorname{Sup}\left\{\left\|M_{A B}(X)\right\|:\|X\|=1\right\} \\
& =\operatorname{Sup}\{\|A X B\|: X \in B(H),\|X\| \leq 1\} .
\end{aligned}
$$

Theorem 5

Let \mathcal{A} be C^{*}-algebra, then
$\begin{aligned}\left\|M_{A B}\right\| & =\operatorname{Sup}\left\{\left\|M_{A B}(U)\right\|: U \in U(\mathcal{A})\right\} \\ & =\operatorname{Sup}\{\|A U B\|: U \in U(\mathcal{A})\end{aligned}$
where $U(\mathcal{A})$ denotes the set of unitaries in \mathcal{A}. (see [11]).
Now, if $\mathcal{A}=B(H)$ then $M_{A B}(U)=A U B$ for all $U \in U(H)$. Therefore,
$V\left(M_{A B / B(B(H))}\right)=\bigcap_{z \in \mathbb{C}}\left\{\lambda:|\lambda-z| \leq\left\|M_{A, B}-z\right\|\right\}$. But
$\left\|M_{A B}-z\right\|=\operatorname{Sup}\left\{\left\|\left(M_{A B}-z\right)(U)\right\|: U \in U(H)\right\}$
$=\operatorname{Sup}\{\|(A U B-z) U\|: U \in U(H)\}$.

Since the unitary $U \in U(H)$ is an isometry, then
$\left\|M_{A B}-z\right\|=\operatorname{Sup}\left\{\left\|U^{*} A U B-z I_{H}\right\|: U \in U(H)\right\}$.
So if $\mu \in V\left(M_{A B / B(B(H))}\right)$ then for all $z \in \mathbb{C}$,
$\mu \in\left\{|\lambda-z| \leq\left\|M_{A B}-z I_{H / B(H)}\right\|\right\}$.
Taking a fixed $\varepsilon>0$, there exists U_{e} such that
$\left\|M_{A B}-z I_{H / B(H)}\right\|<\left\|U_{e}^{*} A U_{e} B-z I_{H}\right\|+\varepsilon$ and by theorem 1.4 we have that, $W\left(U_{e}^{*} A U_{e}\right)^{-}=V\left(U_{e}^{*} A U_{e} B\right)$

$$
=\bigcap_{z \in \mathbb{C}}\left\{\lambda:|\lambda-z| \leq\left\|U_{e}^{*} A U_{e} B-z I_{H}\right\|\right\}
$$

and so there exists $\lambda \in W\left(U_{e}^{*} A U B\right)$ such that $|\mu-\lambda| \leq \varepsilon$.
Since ε is arbitrary, $\mu \in\left[\bigcup_{U \in U(H)} W\left(U^{*} A U B\right)^{-}\right]^{-}$.

References

[1] J. O. Agure, On the convexity of Stampfli's numerical range, Bull. Austral. Math. Soc., 53 (1996), 33-37. https://doi.org/10.1017/s0004972700016695
[2] M. Baraa and V. Muller, [Essential Numerical Range of Operators on Banach Space, Mathematical Institute AVCR, Prague, Czech Republic, 2000.
[3] M. Baraa, Essential Numerical range of Elementary Operators, Proceedings of the American Mathematical Society, 133 (6) (2004), 1723-1726.
[4] M. Baraa, A formula for the numerical Range of Elementary operators, ISRN Mathematical Analysis, 2014 (2014), 4pages.
https/doi.org/10.1155/2014/246301
[5] M. Baraa, Formula for the Numerical Range on C*-algebra, Department of Mathematics, Faculty of Sciences Semlalia, Marakesh, Morocco, 2015. arXiv:1504.04569v/
[6] G. Lumer and M. Rosenblum, Linear Operator Equations, Proc. Amer. Math. Soc., 10 (1959), 32-41.https://doi.org/10.1090/s0002-9939-1959-0104167-0
[7] G. Lumer, Semi-inner product spaces, Trans. Amer. Math. Soc., 100 (1961), 29-43. https://doi.org/10.1090/s0002-9947-1961-0133024-2
[8] M. Mathieu, More properties of the product of two derivations of C^{*} algebra, Canad. Math. Bull., 42 (1990), 115-120.
https://doi.org/10.1017/s0004972700028203
[9] G. Orland, On a class of operators, Proc. Amer. Math. Soc., 15 (1964), 75-80. https://doi.org/10.1090/s0002-9939-1964-0157244-4
[10] M.E. Rodriguez, The numerical range of an operator, Pacific Journal of Mathematics, 32 (3) (1970), 647-650. https://doi.org/10.2140/pjm.1970.32.647
[11] B. Russo and H.A. Dye, A note on unitary operators in C*-algebras, Duke Mathematical Journal, 33 (1966), 413-416. https://doi.org/10.1215/s0012-7094-66-03346-1
[12] A. Seddik, The numerical range of elementary operators II, Linear Algebra and its Applications, (2001), 239-244. https://doi.org/10.1016/s0024-3795(01)00389-5
[13] A. Seddik, Numerical range of elementary operator, Integral Equations and Operator Theory, 43 (2002), 248-252. https://doi.org/10.1007/bf01200256
[14] A. Seddik, On the numerical range and norm of elementary operator, Linear and Multilinear Algebra, 52 (3) (2004), 293-302.
https://doi.org/10.1080/0308108031000122515
[15] J.G. Stampfli and J.P. Willams, Growth conditions and the numerical range in a Banach Algebra, Tohoku Math. Journal, 20 (1968), 417-424. https://doi.org/10.2748/tmj/1178243070
[16] J.G. Stampfli, The norm of a derivation, Pacific Journal of Mathematics, 33 (3) (1970), 737-747. https://doi.org/10.2140/pjm.1970.33.737

Received: June 25, 2019; Published: July 19, 2019

