Norms of Inner Derivations on Norm ideals

J. O. Bonyo

Department of Mathematics and Applied Statistics Maseno University, Box 333 Maseno, Kenya jobbonyo@yahoo.com

J. O. Agure

Department of Mathematics and Applied Statistics Maseno University, Box 333 Maseno, Kenya johnagure@maseno.ac.ke

Abstract

Let B(H) be the algebra of bounded linear operators on a Hilbert space H and \mathfrak{J} be a norm ideal in B(H). We investigate the relationship between the diameter of the numerical range of an operator $A \in B(H)$ and the norm of inner derivation implemented by A on a norm ideal \mathfrak{J} . Further, we consider the applications of S - universality to the above relationship.

Mathematics Subject Classification: Primary 47B47; Secondary 47A12, 47A30

Keywords: inner derivations, norm ideals, S - universal operators

1 Introduction

For $A \in B(H)$, the inner derivation induced by A is the operator Δ_A defined on B(H) by $\Delta_A(X) = AX - XA$, $X \in B(H)$. The norm of an inner derivation Δ_A on H has been computed by J. G. Stampfli [3] as;

$$\|\Delta_A | B(H)\| = 2d(A) \tag{1}$$

where $d(A) = \inf \{ \|A - \lambda\| : \lambda \in \mathbb{C} \}.$

In fact, for any normed algebra, each inner derivation is bounded and $\|\Delta_A\| \leq 2\|A\|$, see [2]. We define multiplication operators L_A and R_A , respectively on

B(H) by $L_A(X) = AX$ and $R_A(X) = XA$, for all $X \in B(H)$. These are called left and right multiplication by A respectively.

The numerical range of $A \in B(H)$ is defined by $W(A) = \{\langle Ax, x \rangle : x \in H, ||x|| = 1\}$ and the numerical radius of A is defined by $\omega(A) = \sup\{|\lambda| : \lambda \in W(A)\}$. The spectrum of an operator A, $\sigma(A)$, consists of those complex numbers λ such that $A - \lambda I$ is not invertible while the spectral radius is given by $r(A) = \sup\{|\lambda| : \lambda \in \sigma(A)\}.$

The relationship between the numerical range and spectra has been studied by several mathematicians, see for instance [4], [8]. Recall that approximate point spectrum of A, $\sigma_{ap}(A)$, consists of those complex numbers λ for which there exists a unit sequence $\{x_n\}_n \subseteq H$ such that $\lim_n ||(A - \lambda)x_n|| = 0$. Since the boundary of $\sigma(A)$ is contained in the $\sigma_{ap}(A)$ [8], $||A|| \in \sigma(A)$ if and only if $||A|| \in \sigma_{ap}(A)$. We also have that $\sigma(A) \subseteq W(A)$ (spectral inclusion) see [4], where the bar denotes the closure. It also turns out in [4] that if $\omega(A) = ||A||$, then r(A) = ||A||. This result together with the spectral inclusion implies that the norm $||A|| \in W(A)$ if and only if $||A|| \in \sigma(A)$.

Section 2 is devoted to the study of inner derivation on norm ideals, where we establish the inequality between the diameter of the numerical range and the norm of inner derivation implemented by $A \in B(H)$ on a norm ideal \mathfrak{J} , while in section 3, we apply the concept of S - universality to the theory of inner derivations on norm ideals.

2 Inner derivation on norm ideals

A (symmetric) norm ideal $(\mathfrak{J}, \|.\|_{\mathfrak{J}})$ in B(H) consists of a proper two-sided ideal \mathfrak{J} together with a norm $\|.\|_{\mathfrak{J}}$ satisfying the following conditions;

- $(\mathfrak{J}, \|.\|_{\mathfrak{J}})$ is a Banach space.
- $||AXB||_{\mathfrak{J}} \leq ||A|| ||X||_{\mathfrak{J}} ||B||$, for all $X \in \mathfrak{J}$ and all operators A and B in B(H)
- $||X||_{\mathfrak{J}} = ||X||$, for X a rank one operator.

For a complete account of the theory of norm ideals, we refer to [9]. Let $(\mathfrak{J}, \|.\|_{\mathfrak{J}})$ be a norm ideal and let $A \in B(H)$. If $X \in \mathfrak{J}$, then $\Delta_A(X) \in \mathfrak{J}$ and $\|AX - XA\|_{\mathfrak{J}} = \|(A - \lambda)X - X(A - \lambda)\|_{\mathfrak{J}} \le 2 \|A - \lambda\| \|X\|_{\mathfrak{J}}$ for all $\lambda \in \mathbb{C}$. Hence $\|\Delta_A(X)\|_{\mathfrak{J}} \le 2d(A) \|X\|_{\mathfrak{J}}$, implying that $\|\Delta_A|\mathfrak{J}\| \le 2d(A)$.

Definition 2.1. An operator $A \in B(H)$ is S - universal if $||\Delta_A|\mathfrak{J}|| = 2d(A)$ for each norm ideal \mathfrak{J} in B(H).

Let K be a non - empty bounded subset of the plane. The diameter of K is defined by $\operatorname{diam}(K) = \sup \{ |\alpha - \beta| : \alpha, \beta \in K \}$.

Lemma 2.2. Let $A \in B(H)$ be non - zero and \mathfrak{J} be an ideal in B(H). If $B \in \mathfrak{J}$ with $Bx_n = y_n$ and $x_n, y_n \in H$ such that $||y_n|| = ||x_n|| = 1 \forall n$, then B is unitary.

Proof. $\langle B^*Bx_n, x_n \rangle = \langle Bx_n, Bx_n \rangle = ||Bx_n||^2 = ||y_n||^2 = ||x_n||^2 = \langle x_n, x_n \rangle = \langle Ix_n, x_n \rangle$. So that $B^*B = I$. Similarly, it is easy to show that $BB^* = I$ which completes the proof.

We proceed to give an alternative proof to the following result due to L. Fialkow [5].

Theorem 2.3. For any operator $A \in B(H)$ and each norm ideal \mathfrak{J} in B(H), diam $(W(A)) \leq ||\Delta_A|\mathfrak{J}||$.

Proof. Since $\|\Delta_A[\mathfrak{J}\| = \sup \{\|\Delta_A(B)\| : B \in \mathfrak{J}, \|B\| = 1\}$, then $\|\Delta_A[\mathfrak{J}\| \ge \|AB - BA\|$ for all $B \in \mathfrak{J}$ with $\|B\| = 1$. Hence $\exists \{x_n\} \subset H$ with $\|x_n\| = 1 \forall n$ such that $\|AB - BA\| \ge \|ABx_n - BAx_n\| \ge \|ABx_n\| - \|BAx_n\|$. But since $|\langle ABx_n, Bx_n \rangle| \le \|ABx_n\| \|Bx_n\| \le \|ABx_n\| \|B\|\|\|x_n\| = \|ABx_n\|$ and $|\langle BAx_n, Bx_n \rangle| \le \|BAx_n\|$, we have $\|\Delta_A[\mathfrak{J}\| \ge \|ABx_n\| - \|BAx_n\| \ge |\langle ABx_n, Bx_n \rangle| - |\langle BAx_n, Bx_n \rangle|$. But $Bx_n = y_n$ with $\|y_n\| = \|x_n\| = 1$. So by Lemma 2.2, $\langle ABx_n, Bx_n \rangle = \langle Ay_n, y_n \rangle$ and $\langle BAx_n, Bx_n \rangle = \langle Ax_n, B^*Bx_n \rangle = \langle Ax_n, x_n \rangle$. Thus from [8], it follows that $\|\Delta_A[\mathfrak{J}\| \ge |\langle Ay_n, y_n \rangle - \langle Ax_n, x_n \rangle| = \{|\alpha - \beta|; \alpha, \beta \in W(A)\}$. This implies that $\|\Delta_A[\mathfrak{J}\| \ge \sup \{|\alpha - \beta|: \alpha, \beta \in W(A)\}$.

Remark 2.4. The following question seems natural; When does equality $\|\Delta_A|\mathfrak{J}\| = diam(W(A))$ hold?

3 Applications to S - universality

The notion of S - universal operators was introduced by L. Fialkow in order to effectively study the extent to which the identity (1) applies, see [5]. Before stating our results in this section, we need some additional preliminaries. We begin by noting that for any operator $A \in B(H)$, the inner derivation Δ_A can also be represented as $\Delta_A = L_A - R_A$.

Let $C_p(H)$ denote the Schatten p - ideal, $1 \leq p \leq \infty$, see for instance [9]. The space $C_p(H)$ consists of the compact operators X such that $\sum_j S_j^p(X) < \infty$, where $\{S_j(X)\}_j$ denotes the sequence of singular values of X. For $X \in C_p(H)$ $(1 \leq p \leq \infty)$, we set $||X||_p = (\sum_j S_j^p(X))^{\frac{1}{p}}$, where, by convention, $||X||_{\infty} = S_1(X)$ is the usual operator norm of X. Then $(C_p(H), ||.||_p)$ is a norm ideal. Moreover, $(C_2(H), ||.||_2)$ is a Hilbert space with inner product defined by $\langle X, Y \rangle = tr(XY^*)$, $(X, Y \in C_2(H))$, where tr stands for the usual trace functional and Y^* denotes the adjoint of Y. We write $\Delta_A | C_2$ instead of $\Delta_A | C_2(H)$ to denote inner derivation on $C_2(H)$. We shall be interested in operators belonging to $C_2(H)$.

The theory of the numerical range and the spectra of inner derivations on norm ideals was studied by several mathematicians, see for instance [5] or [10]. In [10], S. Shaw considered inner derivations acting on subspaces which satisfy axioms like those of norm ideals. In particular, he proved that $\overline{W(\Delta_A|C_2)} = \overline{W(A)} - \overline{W(A)}$. This formed the numerical range analogue of Fialkow's [5] formula for spectra, which states that $\sigma(\Delta_A|C_2) = \sigma(A) - \sigma(A)$. Fialkow's work [5] followed from the work of A. Brown and C. Pearcy [1] who studied the multiplication operators L_A and R_A and established that $\sigma(L_A) = \sigma(R_A) = \sigma(A)$.

The following result is due to Barraa and Boumazgour,

Theorem 3.1. Let $A, B \in B(H)$ be non - zero. Then the equation ||A + B|| = ||A|| + ||B|| holds if and only if $||A|| ||B|| \in \overline{W(A^*B)}$

See [7] for the proof.

The following result will hold,

Theorem 3.2. Let $A \in B(H)$ be S - universal. Then

$$diam(W(A)) = 2||A||.$$

Proof. Since A is S - universal, then $\|\Delta_A|C_2\| = 2d(A)$. But by Stampfli [3], for any $A \in B(H)$, $\|\Delta_A|B(H)\| = 2d(A) = 2\inf_{\lambda \in \mathbb{C}} \|A - \lambda\|$ and by compactness, $\exists \mu \in \mathbb{C}$ such that $\inf_{\lambda \in \mathbb{C}} \|A - \lambda\| = \|A - \mu\|$ ([6]). Hence $\|\Delta_A|C_2\| = 2\|A - \mu\|$. Since $\Delta_A|C_2 = \Delta_{A-\mu}|C_2 = L_{A-\mu}|C_2 - R_{A-\mu}|C_2$, it follows that $\|L_{A-\mu}|C_2 - R_{A-\mu}|C_2\| = 2\|A - \mu\|$. On the other hand, since $\|L_{A-\mu}|C_2\| = \|A - \mu\|$ and $\|R_{A-\mu}|C_2\| = \|A - \mu\|$, it follows that $\|L_{A-\mu}|C_2 - R_{A-\mu}|C_2 - R_{A-\mu}|C_2\| = \|A - \mu\|$ without loss of generality, we may assume that $\mu = 0$ so that $\|L_A|C_2 - R_A|C_2\| = \|L_A|C_2\| + \|R_A|C_2\|$. Then by Theorem 3.1, this is equivalent to

$$||L_A|C_2|||R_A|C_2|| \in \overline{W(-L_{A^*}|C_2R_A|C_2)}.$$

As remarked in the introduction this implies that

$$||L_A|C_2|||R_A|C_2|| \in \sigma(-L_{A^*}|C_2R_A|C_2).$$

But $\sigma(-L_{A^*}|C_2R_A|C_2) = -\sigma(A^*)\sigma(A)$ and $||A||^2 = ||L_{A^*}|C_2|||R_A|C_2||$. So $\exists \alpha, \beta \in \sigma(A)$ such that $||A||^2 = -\overline{\alpha}\beta$.

Since $|\alpha| \leq ||A||$ and $|\beta| \leq ||A||$, one can find $\theta \in \mathbb{R}$ such that $\alpha = ||A||e^{i\theta}$ and $\beta = -||A||e^{i\theta}$. Also since $\sigma(\Delta_A|C_2) = \sigma(A) - \sigma(A)$, it follows that $r(\Delta_A|C_2) = \sigma(A) - \sigma(A)$.

diam($\sigma(A)$). So that $r(\Delta_A | C_2) = \text{diam}(\sigma(A)) \ge |\alpha - \beta| = 2||A||$. By the spectral inclusion, $\sigma(A) \subseteq \overline{W(A)}$ [8], it follows that diam($\sigma(A)$) $\le \text{diam}(W(A))$ and so diam(W(A)) $\ge \text{diam}(\sigma(A)) \ge 2||A||$, that is

$$\operatorname{diam}(W(A)) \ge 2 \|A\|. \tag{2}$$

Conversely, we need to establish the reverse inequality. By definition diam $(W(A)) = \sup \{ |\alpha - \beta| : \alpha, \beta \in W(A) \}$. This implies that $\exists x, y \in H$ with ||x|| = ||y|| = 1 such that $\alpha = \langle Ax, x \rangle$ and $\beta = \langle Ay, y \rangle$. So that $|\alpha - \beta| = |\langle Ax, x \rangle - \langle Ay, y \rangle| \le |\langle Ax, x \rangle| + |\langle Ay, y \rangle| \le 2||A||$. Thus

$$\operatorname{diam}(W(A)) \le 2\|A\|. \tag{3}$$

Now, from equations (3) and (2), we obtain our result.

The following Theorem will therefore answer the question in Remark 2.4 above.

Theorem 3.3. Let $A \in B(H)$ be S - universal and \mathfrak{J} a norm ideal in B(H). Then $diam(W(A)) = ||\Delta_A|\mathfrak{J}||$.

Proof. From Theorem 2.3, it turns out that for any $A \in B(H)$, diam $(W(A)) \leq \|\Delta_A|\mathfrak{J}\|$. Our task therefore is to establish the reverse inequality, that is, diam $(W(A)) \geq \|\Delta_A|\mathfrak{J}\|$. Now, since A is S - universal, then by Theorem 3.2 above, we have diam $(W(A)) = 2\|A\|$ and $\|\Delta_A|B(H)\| = 2d(A) = \|\Delta_A|\mathfrak{J}\|$, see [3]. But B(H) being a normed algebra, it follows that $\|\Delta_A|\mathfrak{J}\| = \|\Delta_A|B(H)\| \leq 2\|A\| = \operatorname{diam}(W(A))$. Hence diam $(W(A)) \geq \|\Delta_A|\mathfrak{J}\|$. This completes the proof.

The following Corollaries are immediate,

Corollary 3.4. If $A \in B(H)$ is S - universal, then $diam(W(A)) = ||\Delta_A|B(H)||$.

Proof. This follows immediately from Theorem 3.3 and the definition of an S - universal operator. \Box

Corollary 3.5. If $A \in B(H)$ is S - universal, then $||\Delta_A|B(H)|| = 2||A||$.

Proof. The proof of this Corollary follows immediately from Theorem 3.3 and the Corollary 3.4 above. \Box

The next result considers the Hilbert - Schmidt class $C_2(H)$ and establishes the necessary and sufficient condition for a non - zero operator $A \in B(H)$ to be S - universal.

The following results hold,

Theorem 3.6. Let $A \in B(H)$ be non - zero. Then $\|\Delta_A|C_2\| = \|\Delta_A|B(H)\|$ if and only if $r(\Delta_A|C_2) = \|\Delta_A|B(H)\|$

Corollary 3.7. For $A \in B(H)$, the following are equivalent:

- 1. A is S universal
- 2. $diam(W(A)) = 2 \inf_{\lambda \in \mathbb{C}} ||A \lambda||$
- 3. $diam(\sigma(A)) = 2 \inf_{\lambda \in \mathbb{C}} ||A \lambda||$

The proofs of the above results can be found in [7]. The necessary and sufficient condition for A to be S - universal follows below,

Theorem 3.8. Let $A \in B(H)$ be non-zero. Then A is S - universal if and only if $r(\Delta_A|C_2) = \omega(\Delta_A|C_2)$.

<u>Proof.</u> We first assume that A is S - universal. Since $\overline{W(\Delta_A|C_2)} = \overline{W(A)} - \overline{W(A)}$, it follows that $\omega(\Delta_A|C_2) = \operatorname{diam}(W(A))$. And because $\sigma(\Delta_A|C_2) = \sigma(A) - \sigma(A)$, we have $r(\Delta_A|C_2) = \operatorname{diam}(\sigma(A))$. Now A is S - universal, so by corollary 3.4 and definition of an S - universal operator, we have $\operatorname{diam}(W(A)) = \|\Delta_A|B(H)\|$ and $\|\Delta_A|B(H)\| = \|\Delta_A|C_2\|$, respectively. Thus

$$\omega(\Delta_A | C_2) = \operatorname{diam}(W(A)) = \|\Delta_A | B(H) \| = \|\Delta_A | C_2 \|.$$
(4)

By Theorem 3.6 due to Barraa and Boumazgour [7], equation (4) becomes

$$\omega(\Delta_A | C_2) = \|\Delta_A | B(H) \| = r(\Delta_A | C_2).$$
(5)

That is $r(\Delta_A | C_2) = \omega(\Delta_A | C_2)$.

Conversely, assume that $r(\Delta_A|C_2) = \omega(\Delta_A|C_2)$. Then since $\omega(\Delta_A|C_2) = \operatorname{diam}(W(A))$ and $r(\Delta_A|C_2) = \operatorname{diam}(\sigma(A))$, we have $\operatorname{diam}(W(A)) = \operatorname{diam}(\sigma(A))$. Thus, by corollary 3.7 above, it follows immediately that A is S - universal. \Box

References

- A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, (1973).
- [3] J. G. Stampfli, The Norm of a Derivation, Pacific Journal Math. 33 (1970), 737-747.
- [4] K. E. Gustafson and D. K. M. Rao, *Numerical range: the field of values of linear operators and matrices*, Springer-Verlag, New York, (1997).
- [5] L. Fialkow, A note on norm ideals and the operator $X \longrightarrow AX XB$, Israel. J. Math. **32** (1979), 331-348.

- [6] M. Barraa and M. Boumazgour, Norm of a derivation and Hyponormal operators, Extracta Mathematicae, Vol.16, Num.2, (2001), 229-233.
- [7] M. Barraa and M. Boumazgour, *Inner derivations and norm equality*, Proceedings of the American Mathematical Society, Vol.130, Num.2, (2001), 471-476.
- [8] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, (1970)
- [9] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, (1960).
- [10] S. Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Soc.Seri.A 36 (1984), 134-142.

Received: September, 2009