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Abstract

A closed densely defined operator H, on a Banach space X , whose
spectrum is contained in R and satisfies

∥∥(z − H)−1
∥∥ ≤ c

〈z〉α
|�z|β ∀ z �∈ R with 〈z〉α :=

√
|z|2 + 1 (1)

for some α , β ≥ 0; c > 0, is said to be of (α, β) − type R (notation
introduced in [10]). For (α, α + 1)− type R operators we constructed
an A-functional calculus in a more general Banach space setting (where
A is the algebra of smooth functions on R that decay like (

√
1 + x2)β

as |x| → ∞, for some β < 0. This algebra is fully characterized in [9]).
We then show that our functional calculus coincides with C0-functional
calculus for an unbounded operator acting on a Hilbert space.

Mathematics Subject Classification: 47A60
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1 The definition

Let A be the algebra of smooth functions on R that decay like (
√

1 + x2)β

as |x| → ∞, for some β < 0. This algebra is fully characterized in [9]. Next
let H be (α, α + 1) − type R operator (introduced in [10]). The motiva-
tion for our definition of f(H) comes from two ideas. Firstly, a version of
Hörmander’s concept of almost analytic extensions [6, 7], as contained in the
following definition.

Definition 1.1 Given f ∈ A and n ≥ 0, an almost analytic extension of
f to C is

f̃ϕ,n(x, y) :=

n∑
r=0

f (r)(x)(iy)r

r!
ϕ(x, y) (2)

:=

{
f(x) +

n∑
r=1

f (r)(x)(iy)r

r!

}
ϕ(x, y)

where

ϕ(x, y) = τ

(
y

〈x〉
)

with 〈x〉 :=
√
x2 + 1 (3)

and τ is non-negative C∞
c (R) function such that τ(s) =

{
1, |s| < 1
0, |s| > 2.

The second idea in our definition of f(H) comes from the
Helffer and Sjöstrand [5] integral formula,

f(H) := −1

π

∫
�

∂f

∂z̄
(z −H)−1dxdy (4)

for a suitable function and operator H .

Lemma 1.2 Let f ∈ A, then
∣∣∣ ∂∂z̄
f̃ϕ,n(x, y)

∣∣∣ = O(|y|n) as |y| → 0 for a fixed x.

Moreover we can find c′ ∈ R such that∣∣∣∣ ∂∂z̄ f̃ϕ,n(x, y)

∣∣∣∣ ≤ c′ |y|n as z → x ∈ R.
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Proof.

∂

∂x
(f̃ϕ,n(z)) =

n∑
r=0

f (r+1)(x)(iy)r

r!
ϕ(x, y) +

n∑
r=0

f (r)(x)(iy)r

r!
ϕx(x, y)

and
∂

∂y
(f̃ϕ,n(z)) =

n∑
r=1

f (r)(x)i(iy)r−1

(r − 1)!
ϕ(x, y) +

n∑
r=0

f (r)(x)(iy)r

r!
ϕy(x, y)

thus
∂

∂z
(f̃ϕ,n(z)) =

1
2

(
∂f̃ϕ,n

∂x
+ i

∂f̃ϕ,n

∂y

)
(z)

=
1
2

(
n∑

r=0

f (r)(x)(iy)r

r!

)
(ϕx + iϕy)(z) +

1
2
f (n+1)(x)

(iy)n

n!
ϕ(z) (5)

Now,

supp (ϕx + iϕy) ⊆
{

(x, y) : 1 ≤ |y|
〈x〉 ≤ 2

}
= {(x, y) : 〈x〉 ≤ |y| ≤ 2 〈x〉} (6)

⊂ {(x, y) : 1 ≤ |y| ≤ 2 〈x〉}.
Therefore ϕx + iϕy vanishes on the strip Ω := {(x, y) : −1 ≤ y ≤ 1}. So∣∣∣∣ ∂∂z (f̃ϕ,n(x, y))

∣∣∣∣ =
1

2

∣∣f (n+1)(x)
∣∣ |y|n
n!

for (x, y) ∈ Ω

= Mx |y|n

With Mx =
|f(n+1)(x)|

2n!
. Thus,

∣∣∣∂∂z
f̃ϕ,n(x, y)

∣∣∣ = O(|y|n) as |y| → 0 for a fixed
x.

Moreover, since f ∈ A we can find some β < 0 and c′ > 0 such that

Mx =

∣∣f (n+1)(x)
∣∣

2n!

≤ c′ 〈x〉β−n−1 for all (x, y) ∈ Ω

≤ c′

< ∞
since 〈x〉β−n−1 ≤ 1 for all x ∈ R. Therefore

∣∣∣ ∂∂z
(f̃ϕ,n(x, y))

∣∣∣ ≤ c′ |y|n as

z → x ∈ R. �

Lemma 1.3 If ϕ(x, y) := τ
(

y
〈x〉

)
with τ , a non-negative C∞

c (R) function such

that τ(s) =

{
1, |s| < 1
0, |s| > 2,

then |(ϕx + iϕy)(x, y)| ≤ K
〈x〉 for some K > 0.
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Proof.

|ϕx(x, y)| =

∣∣∣∣ ∂∂xτ
(
y

〈x〉
)∣∣∣∣

=

∣∣∣∣τ ′( y

〈x〉
)
· ∂
∂x

(y 〈x〉−1)

∣∣∣∣
≤

∣∣∣∣−yτ ′( y

〈x〉
)
〈x〉−2

∣∣∣∣ .
Also

ϕy(x, y) =
∂

∂y
τ

(
y

〈x〉
)

= τ ′
(
y

〈x〉
)
· ∂
∂y

(y 〈x〉−1)

= τ ′
(
y

〈x〉
)
〈x〉−1 .

Therefore, since τ ′ is bounded on R, we can set K := 3 sups∈� |τ ′(s)|
to obtain,

|(ϕx + iϕy)(x, y)| ≤ K

3

[ |y|
〈x〉2 +

1

〈x〉
]

≤ K

3

[
2 〈x〉
〈x〉2 +

1

〈x〉
]

(using (6))

≤ K

〈x〉 .

�

Theorem 1.4 Let n > α ≥ 0, f ∈ A and H be of (α, α + 1) − type R .
Then the integral

f(H) := −1

π

∫
�

∂f̃

∂z̄
(z −H)−1dxdy (7)

is norm convergent and defines an operator in B(X ) with

‖f(H)‖ ≤ cα ‖f‖n+1 for some cα > 0. (8)

Proof. Suppose ‖(z −H)−1‖ ≤ c 〈z〉α
|�z|α+1 for all z /∈ R (hypothesis). We will

use the notation (x, y) = x+ iy := z.

We observe that by (5), ∂f̃
∂z̄

is continuous and hence the integrand is norm
continuous for z �∈ R.
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Further,

(A) supp (ϕ) ⊆ {(x, y) : τ

(
y

〈x〉
)
> 0}

⊆
{

(x, y) :
|y|
〈x〉 ≤ 2

}
= {(x, y) : 0 ≤ |y| ≤ 2 〈x〉}
=: V

(B) supp (ϕx + iϕy) ⊆
{

(x, y) : 1 ≤ |y|
〈x〉 ≤ 2

}
= {(x, y) : 〈x〉 ≤ |y| ≤ 2 〈x〉}
=: U.

(C) For z ∈ [supp (ϕ) ∪ supp (ϕx + ϕy)] \ R,

∥∥(z −H)−1
∥∥ ≤ c

〈z〉α
|�z|α+1

≤ c

(
1 + |x|2 + 4 〈x〉2)α/2

|y|α+1

≤ c5α/2 〈x〉α
|y|α+1 .

(D) |(ϕx + iϕy)(x, y)| ≤ K
〈x〉 for some K > 0, Lemma 1.3.

Also, since ϕ is bounded, let M := supz∈� {|ϕ(z)|}.
Therefore, using the expansion (5) and the estimates above, we have

‖f(H)‖ ≤ c5
α
2

2π

∫ ∞

−∞

∫ ∞

−∞

(
n∑

r=0

∣∣∣f (r)(x)
∣∣∣ |y|r K

〈x〉χU (z) + M
∣∣∣f (n+1)(x)

∣∣∣ |y|n χV (z)

)
〈x〉α
|y|α+1 dxdy

=
c5

α
2

2π

∫ ∞

−∞

∫ ∞

−∞

(
n∑

r=0

|f r(x)| |y|r−α−1 K 〈x〉α−1 χU (z)+

+M
∣∣∣f (n+1)(x)

∣∣∣ |y|n−α−1 〈x〉α χV (z)
)

dxdy.

Integrating with respect to y yields the bound

‖f(H)‖ ≤ c′5
α
2

π

∫ ∞

−∞

(
n∑

r=0

|f r(x)|
[
|y|r−α

]2〈x〉
〈x〉

· 〈x〉α−1 +
∣∣∣f (n+1)(x)

∣∣∣ [|y|n−α
]2〈x〉
0

· 〈x〉α
)

dx

= cα

∫ ∞

−∞

(
n∑

r=0

∣∣∣f (r)(x)
∣∣∣ 〈x〉r−1 +

∣∣∣f (n+1)
∣∣∣ 〈x〉n) dx

= cα ‖f‖n+1 with cα :=
c5α/22n−α

π
· max{K, M}.
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�
Similar integrals to that in (4) play a central role in the theory of uniform

algebras, Gamelin [4].

It may seem from the computation above that our definition of f(H) de-
pends implicitly on the cut-off function ϕ and n. However we will prove shortly
that f(H) is independent of both ϕ and n, provided n > α.

Lemma 1.5 If F ∈ C∞
c (C) and F (z) = O(|y|β) as y → 0 for some β > α+1,

then

−1

π

∫
�

∂F

∂z̄
(z −H)−1dxdy = 0. (9)

Proof. Let F have support in {z = (x, y) : |x| < N and |y| < N} and define
Ωδ for small δ > 0 to be the region {z = (x, y) : |x| < N and δ < |y| < N} (see
figure 1).

Figure 1: Close up on the support of F by compact regions.
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A := −1

π

∫
�

∂F

∂z̄
(z −H)−1dxdy

= − lim
δ → 0

1

π

∫
Ωδ

∂F

∂z̄
(z −H)−1dxdy

= lim
δ → 0

i

2π

∫
∂Ωδ

F (z)(z −H)−1dz (Green’s Theorem)

= lim
δ → 0

i

2π

8∑
r=1

∫
Lr

F (z)(z −H)−1dz

= lim
δ → 0

i

2π

(∫
L1

F (z)(z −H)−1dz +

∫
L5

F (z)(z −H)−1dz

)
since [supp (F )] ∩ [(∪4

r=2Lr

) ∪ (∪8
r=6Lr

)]
= ∅.

Now for (x, y) ∈ L1 ∪ L5 ⊂ C \ R,∥∥(z −H)−1
∥∥ ≤ c

〈z〉α
|�z|α+1 = c

(1 + |x|2 + δ2)α/2

δα+1
≤ c

2α/2 〈N〉α
δα+1

.

Therefore

‖A‖ ≤ c2α/2 〈N〉α lim
δ → 0

∫ N

−N

{|F (x+ iδ)| + |F (x− iδ)|}δ−α−1dx = 0,

since by hypothesis the integrand is O(δβ−α−1). �

Theorem 1.6 The operator f(H) is independent of n and the cut-off function
ϕ defined in (3), provided n > α.

Proof. C∞
c (R) is dense in A with respect to each norm ‖.‖n+1 [9, Lemma 1.5].

This result together with (8) imply that it is sufficient to prove this for f ∈ C∞
c .

If f ∈ C∞
c (R) while ϕ1 and ϕ2 are cut-off functions define in terms of say

τ1 and τ2, let

Ω1 :=

{
(x, y) :

|y|
〈x〉 < ε1

}
for some ε1 > 0

= {(x, y) : −ε1 〈x〉 < y < ε1 〈x〉}
⊆ {z : ϕ1(z) = 1}.

Similarly let

Ω2 := {(x, y) : −ε2 〈x〉 < y < ε2 〈x〉} for some ε2 > 0

⊆ {z : ϕ2(z) = 1}.
Now set Ω := Ω1 ∩ Ω2

= {(x, y) : −ε 〈x〉 < y < ε 〈x〉} with ε := min{ε1, ε2}
�= ∅.
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Then for z ∈ Ω,

f̃ϕ1,n(z) − f̃ϕ2,n(z) =

n∑
r=0

f (r)(x)(iy)r

r!
[ϕ1(z) − ϕ2(z)]

= 0 since ϕ1(z) = ϕ2(z) = 1 for all z ∈ Ω.

This exceeds the hypothesis of lemma 1.5, so invoking lemma 1.5, we have
f̃ϕ1,n(H) = f̃ϕ2,n(H). That is f̃ϕ,n(H) is independent of ϕ.

On the other hand, if m > n > α then

f̃ϕ1,m(z) − f̃ϕ1,n(z) =

(
m∑

r=0

f (r)(x)(iy)r

r!
−

n∑
r=0

f (r)(x)(iy)r

r!

)
ϕ1(z)

=

m∑
r=n+1

f (r)(x)(iy)r

r!
ϕ1(z)

=: yn+1K(z) (some bounded K : C → C)

and since n+ 1 > α + 1 we invoke Lemma 1.5 to conclude that
f̃ϕ1,m(H) = f̃ϕ1,n(H). That is f̃ϕ,n(H) is independent of n. �

Henceforth we will assume that the condition of theorem 1.6 holds and
write f̃ instead of f̃ϕ,n unless a specific cut-off function or n is needed for some
purpose which will be stated.

2 The homomorphism A � f �→ f(H) ∈ B(X )

In this paper, support of f will be understood to be the set

supp (f) := {x ∈ R : f(x) �= 0}.

Thus supp
(
f̃
)

is a closed set.

Theorem 2.1 Let H be an operator of (α, α+ 1)− type R for some α ≥ 0.
If f ∈ C∞

c (R) has support disjoint from σ(H), then f(H) = 0.

Proof. By regularity of C, we can find an open set G with supp
(
f̃
)
⊂ G

and G ∩ σ(H) = ∅. Since by hypothesis, supp
(
f̃
)

is compact, there exists a

finite set of smooth curves, {Υr}m
r=1 ‘enclosing’ supp

(
f̃
)

in G. Thus if we put
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Γ := ∪m
r=1Υr, and D := insΓ then

f(H) = −1

π

∫
�

∂f̃(z)

∂z̄
(z −H)−1dz

= −1

π

∫
D

∂f̃(z)

∂z̄
(z −H)−1dz

=
i

2π

∫
Γ

f̃(z)(z −H)−1dz (Green’s Theorem)

=
i

2π

m∑
r=1

∫
Υr

f̃(z)(z −H)−1dz

= 0 since f̃(z) = 0 for all z ∈ Υr r = 1, 2, . . . , m

�

Corollary 2.2 Let H be an operator of (α, α+1)− type R for some α ≥ 0.
If f ∈ A has support disjoint from σ(H) then f(H) = 0.

Proof. Follows from theorem 2.1, inequality (8) and density of C∞
c (R) in A

[9, lemma 1.5]. �

Theorem 2.3 If f, g ∈ A and H is of (α, α + 1) − type R then

(fg)(H) = f(H)g(H).

Proof. We first assume that f and g lie in C∞
c (R). Let K := supp

(
f̃
)

and

L := supp (g̃) so that K and L are compact subsets of C and write

f(H) = −1

π

∫
�

∂f̃

∂z̄
(z −H)−1dxdy, z =: x+ iy

and g(H) = −1

π

∫
�

∂f̃

∂w̄
(w −H)−1dudv, w =: u+ iv

Then f(H)g(H) =
1

π2

∫ ∫
K×L

∂f̃

∂z̄

∂g̃

∂w̄
(z −H)−1(w −H)−1dxdydudv.1

Using resolvent equation,

(z −H)−1(w −H)−1 = (z − w)−1(w −H)−1 − (z − w)−1(z −H)−1,

we may expand f(H)g(H) as

1K × L := {(k, l) : k ∈ K, l ∈ L}
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f(H)g(H) =
1
π2

∫ ∫
K×L

∂f̃

∂z̄

∂g̃

∂w̄

[
(z − w)−1(w − H)−1 − (z − w)−1(z − H)−1

]
dxdydudv

=
−1
π

∫
K×L

(
∂g̃

∂w̄
(w − H)−1−1

π

∫
K

∂f̃

∂z̄
(z − w)−1dxdy

)
dudv

−−1
π

∫
K×L

(
∂f̃

∂z̄
(z − H)−1−1

π

∫
L

∂g̃

∂w̄
(z − w)−1dudv

)
dxdy

But

−1

π

∫
K

∂f̃

∂z̄
(z − w)−1dxdy = −1

π

∫
�

∂f̃

∂z̄
(z − w)−1dxdy

= f̃(w) (Cauchy-Green Theorem).

Also

1

π

∫
L

∂g̃

∂w̄
(z − w)−1dudv = −1

π

∫
�

∂g̃

∂w̄
(w − z)−1dudv

= g̃(z) (Cauchy-Green Theorem).

These lead to the identity

f(H)g(H) = − 1
π

∫
K×L

∂g̃(w)
∂w̄

(w − H)−1f̃(w)dudv +
−1
π

∫
K×L

∂f̃(z)
∂z̄

g̃(z)(z − H)−1dxdy

= − 1
π

∫
K×L

∂g̃(z)
∂z̄

(z − H)−1f̃(z)dxdy +
−1
π

∫
K×L

∂f̃(z)
∂z̄

g̃(z)(z − H)−1dxdy

= − 1
π

∫
K×L

{
f̃(z)

∂g̃(z)
∂z̄

+
∂f̃(z)

∂z̄
g̃(z)

}
(z − H)−1dxdy

= − 1
π

∫
K×L

∂(f̃ g̃)(z)
∂z̄

(z − H)−1dxdy.

In order to prove that

fg(H) = −1

π

∫
K×L

∂(f̃ g̃)(z)

∂z̄
(z −H)−1dxdy,

we must prove that

−1

π

∫
�

∂k(z)

∂z̄
(z −H)−1dxdy = 0,

where k(z) := f̃(z)g̃(z)− (̃fg)(z). Since k is of compact support and by Theo-
rem 1.6 and Lemma1.2 may be assumed to satisfy the hypothesis of Lemma 1.5,
this follows by invoking Lemma 1.5.
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Finally, suppose that f, g ∈ A and let φ ∈ C∞
c such that

φ(s) =

{
1, |s| < 1
0, |s| > 2

Set φm(s) := φ(s/m) and fm := φmf, gm := φmg, and hm := φ2
mfg.

Then fm → f , gm → g and hm → fg in the norm ‖.‖p for some p > α. See
proof of [9, Lemma 1.5].
From above we have

hm(H) = fm(H)gm(H) for all m.

We finally use the density of C∞
c (R) in A and (8) to complete the proof. �

Lemma 2.4 Let g ∈ A with g = 0 on [0,∞). If H is of (α, α+ 1)− type R

and σ(H) ⊆ [0,∞) then g(H) = 0.

Proof. For ε ∈ (0,∞), let Hε := ε+H . Then Hε is of (α, α + 1) − type R

(since (α, β)− type R operators are stable under perturbations by reals, [10,
Theorem 3.6] ). But σ(H) ⊂ [0,∞) implies that σ(Hε) ⊂ [ε,∞), and since
supp (g) ⊆ (∞, 0] we must have g(Hε) = 0 by Theorem 2.1.

Now

0 = g(Hε) = −1

π

∫
�

∂

∂w̄
g̃(w)(w − (ε+H))−1dudv

= −1

π

∫
�

∂

∂z̄
g̃(z + ε)(z −H)−1dxdy

= −1

π

∫
�

∂

∂z̄
g̃ε(z)(z −H)−1dxdy

= gε(H)

where z := w− ε and gε := τεg ∈ A (since A is invariant under translations [9,
Lemma 1.2]).

So by (8)

‖gε(H) − g(H)‖ = ‖g(H)‖ ≤ cα ‖gε − g‖n+1 , for some n > α, cα > 0 for all ε > 0.

Suppose gε ∈ Sβε for some βε < 0 and ε ≥ 0, where we set g0 := g. Then
|gε(x)| ≤ cr,ε 〈x〉βε−r for each x ∈ R.

Let β := sup{βε : ε ∈ (0,∞)} < 0 and c := max
0<r≤n

sup
ε∈(0,∞)

{cr,ε} > 0.

β and c exist and are finite, see the proof of [9, Lemma 1.2]. Thus∣∣g(r)
ε (x)

∣∣ 〈x〉r−1 ≤ c 〈x〉β−r 〈x〉r−1 = c 〈x〉β−1
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and the function h(x) = c 〈x〉β−1 is integrable and
∣∣ dr

dxr (gε(x) − g(x))
∣∣ 〈x〉r−1 ≤ h(x)

for each ε. Therefore by dominated convergence theorem we have∫ ∞

0

∣∣g(r)
ε (x) − g(r)(x)

∣∣ 〈x〉r−1 dx→ 0 as ε→ 0,

that is ‖gε − g‖n+1 → 0 as ε→ 0. Thus ‖g(H)‖ = 0. �
Let E : C∞([0,∞)) → C∞(R) be the Seeley’s extension operator [11]. For

f ∈ C∞([0,∞)) such that Ef ∈ A we define f(H) to be Ef(H) where Ef(H)
is given by (7) with appropriate condition on ‖(z −H)−1‖.

Theorem 2.5 If f : [0,∞) → C is such that∣∣∣∣ dr

dxr
f(x)

∣∣∣∣ ≤ cr 〈x〉β−r (10)

for some β < 0, for all r ≥ 0 and for all x ≥ 0; andH is of (α, α+ 1) − type R

with σ(H) ⊆ [0,∞), then f(H) is uniquely determined and

‖f(H)‖ ≤ k ‖f‖+
n+1 , k > 0, whenever n > α.

Proof. Observe that Ef ∈ A, where E is Seeley’s extension operator (Lemma 3.3[9]).
So that
f(H) ≡ Ef(H) is defined and f(H) ∈ B(X ).

Moreover,

‖f(H)‖ = ‖(Ef)(H)‖
≤ cn+1 ‖Ef‖n+1 [(8)]

≤ c′cn+1 ‖f‖+
n+1 ([9, Theorem 3.4])

=: K ‖f‖+
n+1 .

Finally if g ∈ A is another extension of f , set

h := g − Ef ∈ A

which implies h = 0 on [0,∞) and thus by Lemma 2.4

h(H) = 0.

�

Corollary 2.6 Let f, g ∈ C∞([0,∞)) satisfy (10) with H of (α, α + 1) −
type R and σ(H) ⊆ [0,∞). Then

(fg)(H) = f(H)g(H).
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Proof.

(Ef)(t) :=

{ ∑∞
k=0 akφ(bkt)f(bkt), t < 0

f(t), t ≥ 0

and

(Eg)(t) :=

{ ∑∞
k=0 akφ(bkt)g(bkt), t < 0

g(t), t ≥ 0

Thus (Eg)(t)(Ef)(t) :=
{

(
∑∞

k=0 akφ(bkt)g(bkt)) (
∑∞

k=0 akφ(bkt)f(bkt)) , t < 0
g(t)f(t), t ≥ 0.

Clearly

gf satisfies (10) and

E(gf)(t) :=

{ ∑∞
k=0 akφ(bkt)(gf)(bkt), t < 0

g(t)f(t), t ≥ 0.

Thus, (Eg)(t) · (Ef)(t) −E(gf)(t) = 0, t ≥ 0.
Therefore by Lemma 2.4 (Eg)(H) · (Ef)(H) = E(gf)(H).
i.e. g(H) · f(H) = gf(H). �

Remark 2.7 Theorem 2.3 and Corollary 2.6 show that the map

κ : A → B(X )

f �→ f(H)

is an algebra homomorphism. We prove one more result to verify that κ is a
functional calculus.

Theorem 2.8 Let H be an operator of (α, α+ 1)− type R for some α ≥ 0.
If w �∈ R and rw(x) := (w − x)−1 for all x ∈ R then rw ∈ A and

rw(H) = (w −H)−1.

Proof. Clearly rw ∈ A, and without loss of generality, suppose that �w > 0.
For large m > 0 define Ωm := {(x, y) : |x| < m and 〈x〉

m
< |y| < 2m}.

The boundary of Ωm consists of two closed curves, both traversed in the
anti-clockwise direction, see figure 2.

With τ as in definition 1.1, put

ϕ(z) := τ(
λ |y|
〈x〉 )

where λ > 0 is chosen

1. large enough to ensure that w �∈ supp (ϕ).
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Figure 2: Close up on C, over which rw(z) is integrated.

2. so that for each m ≥ 1, |y| < 2〈m〉
λ

≤ 2m, for all (x, y) ∈ Ωm. Thus,
〈1/m〉 ≤ λ. Since 〈1/m〉 < 2 for all m ≥ 1 we may assume that λ ≥ 2.

An application of Green’s Theorem yields

rw(H) = − lim
m → ∞

1

π

∫
Ωm

∂r̃w

∂z̄
(z −H)−1dxdy

= lim
m → ∞

i

2π

∫
∂Ωm

r̃w(z)(z −H)−1dz.

We next show that

lim
m → ∞

∥∥∥∥∫
∂Ωm

{rw(z) − r̃w(z)}(z −H)−1dz

∥∥∥∥ = 0.

∂Ωm consists of four vertical straight lines, two horizontal straight lines
and two curves. The integral is estimated separately on each of these.

1. Vertical lines: Suppose γ1 is the vertical line in the first quadrant. Using
Taylor’s approximation theorem to expand rw(z) at (m, 0), we obtain,
for all z ∈ γ1,

rw(z) =

n∑
s=0

r
(s)
w (m)(iy)s

s!
+R(z;m)
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with R(z;m) := r
(n+1)
w (d)(iy)n+1

(n+1)!
, d = m+ εiy for some ε ∈ (0, 1).

Therefore, for any z ∈ γ1 we have

rw(z) =

n∑
s=0

r
(s)
w (m)(iy)s

s!
+
r

(n+1)
w (d)(iy)n+1

(n+ 1)!

which implies

|rw(z) − r̃w(z)|
≤ |(1 − ϕ(z))rw(z)| + ϕ(z)

∣∣∣∣rw(z) − r̃w(z)
ϕ(z)

∣∣∣∣
= c1χ(z) 〈z〉−1 + ϕ(z)

∣∣∣∣∣
n∑

s=0

r
(s)
w (m)(iy)s

s!
+

r
(n+1)
w (d)(iy)n+1

(n + 1)!
−

n∑
s=0

r(s)
w (m)

(iy)s

s!

∣∣∣∣∣
≤ c1χ(z) 〈z〉−1 + cw

|y|n+1

〈d〉n+2

where χ(z) :=

{
1 if 〈x〉 < λ |y|
0 otherwise.

But z = m+ iy, d = m+ iεy implies 〈z〉 ≥ 〈m〉 and 〈m〉 ≤ 〈d〉. So,

|rw(z) − r̃w(z)| ≤ c1χ(z) 〈m〉−1 + cw
|y|n+1

〈m〉n+2

Also, for z := m+ iy ∈ γ1,
〈m〉
m

≤ |y| ≤ 2m and hence

〈z〉2 = 1 + |m|2 + |y|2
≤ 1 +m2 + 4m2

≤ 5 〈m〉2 .

Therefore

∥∥(z −H)−1
∥∥ ≤ c5α/2 〈m〉α

|y|α+1 for some c > 0. (11)
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Hence∥∥∥∥∫
γ1

{rw(z) − r̃w(z)}(z − H)−1dz

∥∥∥∥
≤ cc15α/2

∫ 2m

〈m〉
λ

〈m〉−1 〈m〉α
yα+1

dy + ccw5α/2

∫ 2m

〈m〉
m

|y|n−α 〈m〉α−n−2 dy

≤ cc15α/2 〈m〉α−1
∫ 2m

〈m〉
λ

λα+1

〈m〉α+1 dy + ccw5α/2 〈m〉α−n−2
∫ 2m

〈m〉
m

|2m|n−α dy

≤ cc15α/2 〈m〉α−1 λα+1

〈m〉α+1

∣∣∣∣2m − 〈m〉
λ

∣∣∣∣+ ccw5α/2 〈m〉α−n−2 |2m|n−α

∣∣∣∣2m − 〈m〉
m

∣∣∣∣
= (m−1)

{
c′1 〈1/m〉−2

∣∣∣∣2 − 〈1/m〉
λ

∣∣∣∣+ c′w 〈1/m〉α−n−2

∣∣∣∣2 − 〈1/m〉
m

∣∣∣∣}
= O(m−1) as m → ∞, provided n > α.

The estimate is valid for all vertical lines.

2. The curves: Let γ2 be the curve in the upper half plane,
i.e γ2 := {(x, y) : y = 〈x〉

m
}.

Since 1
m
〈x〉 < 1

λ
〈x〉 for all m > λ, ϕ(z) = 1 for all z ∈ γ2 and m > λ.

Therefore using Taylor’s approximation at (x, 0) with d := x+ εiy for
some ε ∈ (0, 1) we have,

|rw(z) − r̃w(z)| ≤ |(1 − ϕ(z))rw(z)| + ϕ(z)

∣∣∣∣rw(z) − r̃w(z)

ϕ(z)

∣∣∣∣
= ϕ(z)

∣∣∣∣rw(z) − r̃w(z)

ϕ(z)

∣∣∣∣
≤ cw

r
(n+1)
w (d) |y|n+1

(n+ 2)!

≤ cw
|y|n+1

〈d〉n+2 , z ∈ γ2, m > λ

where 〈d〉 ≥ 〈x〉. Also, for z ∈ γ2,

〈z〉2 = 1 + |x|2 + |y|2

= 〈x〉2 +
〈x〉2
m2

=
〈m〉2
m2

〈x〉2 .
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Hence ‖(z −H)−1‖ ≤ c〈m〉α〈x〉α
mα|y|α+1 for some c > 0 and

∥∥∥∥∫
γ2

{rw(z) − r̃w(z)}(z −H)−1dz

∥∥∥∥ ≤ cωc

∫
γ2

|y|n+1

〈x〉n+2

〈m〉α 〈x〉α
mα |y|α+1dz

= c1

∫
γ2

〈m〉α
mα

〈x〉α−n−2 |y|n−α dz

= c1

∫
γ2

〈m〉α
mα

〈x〉α−n−2 〈x〉n−α

mn−α
dz

= c1
〈m〉α
mn

∫
γ2

〈x〉−2 dz

= O(mα−n) as m → ∞

provided n > α. The estimate here is also valid for the other curve.

3. The horizontal lines Let γ3 be the horizontal line in the upper half plane,

i.e γ3 := {(x, y) : y = 2m}. Now supp (ϕ) ⊂
{

(x, y) : λ|y|
〈x〉 ≤ 2

}
Thus

ϕ(z) = 0 for all z ∈ Ωm with |y| > 2〈m〉
λ

.

So, for z ∈ γ3, ϕ(z) = 0 if 2m > 2〈m〉
λ

, that is λ > 〈1/m〉.
Therefore if we choose m large enough so that λ > 〈1/m〉, then for z ∈ γ3,

|rw(z) − r̃w(z)| = |rw(z)|
≤ c1

〈z〉
=

c1√
1 + |x|2 + |2m|2

≤ c1
〈2m〉 .

Also, for z ∈ γ3,

〈z〉2 = 1 + |x|2 + |y|2
≤ 1 +m2 + 4m2

≤ 5 〈m〉2 .
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Hence ‖(z −H)−1‖ ≤ c5α/2〈m〉α
|2m|α+1 for some c > 0 and∥∥∥∥∫

γ3

{rw(z) − r̃w(z)}(z −H)−1dz

∥∥∥∥ ≤ c1c5
α/2

∫
γ3

1

〈2m〉
〈m〉α

(2m)α+1
dz

≤ cωm
−2 〈1/2m〉−1 〈1/m〉α

∫ m

−m

dx

= 2cωm
−2 〈1/2m〉−1 〈1/m〉αm

= O(m−1) as m → ∞

provided n > α. The estimate here is also valid for the other horizontal
line.

Combining all the cases we obtain

rw(H) =
i

2π
lim

m → ∞

∫
∂Ωm

rw(z)(z −H)−1dz.

The integrand is holomorphic on and inside the part of ∂Ωm in the lower half
plane, so the contribution of that integral is zero by Cauchy’s theorem. The
integrand is meromorphic in the upper half plane with a single pole at z = w.
Therefore

rw(H) = −Resz=w{rw(z)(z −H)−1}
= (w −H)−1

where Resz=wf(z) denotes the residue of f at the pole w. �

Definition 2.9 By a A-functional calculus for an operatorH of (α, α+ 1) − type R

we will mean a continuous linear map κ from A into B(X ) such that

1. κ(fg) = κ(f)κ(g), for all f, g, ∈ A.

2. If w �∈ R then rw ∈ A and κ(rw) = (w − H)−1 ( rw is defined in
Theorem 2.8).

Note that in this definition κ(f) ≡ f(H).

Lemma 2.10 Let f ∈ C0(R), H a closed operator with σ(H) ⊂ R and
λ ∈ R \ {0} such that f−1(λ) �= ∅ and f−1(λ) ∩ σ(H) = ∅. Then there exists
a smooth function φ ∈ C∞(R) and a neighbourhood G of σ(H) such that

φ(t) =

{
0 if t ∈ f−1(λ)
1 if t ∈ G.
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Proof. Let x0 ∈ R be such that f(x0) = λ and d := dist(x0, σ(H)) > 0.
Choose ε0 ∈ R : 0 < ε0 < d. Let G0 be an open set such that

[x0 − ε0, x0 + ε0] ⊂ G0 ⊂ [x0 − d, x0 + d].

We can choose a smooth function ψ0 such that

ψ0(t) =

{
1 if t ∈ [x0 − ε0, x0 + ε]
0 if t ∈ R \G0.

Next, set φ0 := 1 − ψ0, then clearly φ0 is smooth and

φ0(t) =

{
0 if t = x0

1 if t ∈ R \G0.

G0 := (a, b)
Now set Ox0 := (x0 − ε0, x0 + ε0). Similarly choose open sets Ox for each

x ∈ f−1(λ). Since λ �= 0 and f(x) → 0 as |x| → ∞, f−1(λ) is a compact
set and {Ox : x ∈ f−1(λ)} is an open cover for f−1(λ), hence we can find a
finite sub-cover {Oi : i = 1, . . . , m} ⊂ {Ox : x ∈ f−1(λ)}. Corresponding to
each Oi, let φi be the smooth function constructed above. So φi = 1 on Oi,
and φi = 1 on R \ Gi. Finally, put φ :=

∏m
i=1 φi, G := (R ∪m

i=1 Gi)
o ⊃ σ(H),

whence

1. φ is smooth on R.

2. φ ≡ 0 on f−1(λ).

3. φ ≡ 1 on G.

�

Theorem 2.11 (Spectral Mapping Theorem) Let f ∈ A and H is of
(α, α + 1) − type R , then

f(σ(H)) = σ(f(H)).

Proof. Let λ ∈ σ(H) ⊂ R and suppose if possible

f(λ) �∈ σ(f(H)). (12)

Then [f(λ) − f(H)]−1 ∈ B(X ).

If f́λ(x) :=

{
f(λ)−f(x)

λ−x
, x �= λ

f ′(λ), x = λ,

then f́λ ∈ A [9, Theorem 2.6], and
(λ−H)f́λ(H)(i−H)−1 = (f(λ) − f(H))(i−H)−1.
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Thus
(λ−H)f́λ(H)(i−H)−1(i−H)(f(λ) − f(H))−1 =

= (f(λ) − f(H))(i−H)−1(i−H)(f(λ) − f(H))−1

⇐⇒ (λ − H)f́λ(H)(f(λ) − f(H))−1 = I.
Therefore (λ−H)−1 = f́λ(H)(f(λ) − f(H))−1 ∈ B(X ) !!2

This contradicts the choice of λ. Hence (12) is not possible. Thus
f(λ) ∈ σ(f(H)) implies f(σ(H)) ⊆ σ(f(H)).

Conversely, if λ �∈ f(σ(H)) then h(x) := 1
λ−f(x)

is finite for all

x ∈ σ(H). Moreover at each x ∈ σ(H) (and x ∈ G where G is the neigh-
bourhood of σ(H) constructed in lemma 2.10)

h′(x) = [λ− f(x)]−2f ′(x)

= [h(x)]2f ′(x)

h(2)(x) = f (2)(x)[h(x)]2 + 2f ′(x)h(x)[h(x)]2f ′

= f (2)[h(x)]2 + 2[f ′(x)]2[h(x)]3

h(3)(x) = f (3)(x)[h(x)]2 + f (2)(x)2f ′(x)h(x)[h(x)]2f ′(x) +

+2{2f ′(x)f (2)(x)[h(x)]3 + [f ′(x)]2 + 3[h(x)]2[h(x)]2f ′(x)}
= f (3)(x)[h(x)]2 + 6f ′(x)f (2)(x)[h(x)]3 + 6[f ′(x)]3[h(x)]4

...
...

...

h(m)(x) =

m+1∑
k=2

[h(x)]k
r(k)∑
s=1

m∏
i=1

[f (i)(x)]p(s,i)ls

where ls ∈ Z, 1 ≤ r(k) < m, 0 ≤ p(s, i) ≤ m and
∑m

i=1 ip(s, i) = m. Therefore
since f ∈ A, we can find some β < 0 such that

∣∣h(m)(x)
∣∣ ≤

m+1∑
k=2

|h(x)|k
r(k)∑
s=1

m∏
i=1

∣∣f (i)(x)
∣∣p(s,i) |ls|

≤
m+1∑
k=2

|h(x)|k
r(k)∑
s=1

m∏
i=1

[ci 〈x〉β−i]p(s,i) |ls|

≤ 〈x〉β−m
m+1∑
k=2

|h(x)|k bk

≤ c 〈x〉β−m , c > 0, β < 0 (13)

(Here we have used the fact that
∑m

i=1 p(s, i) ≥ 1 and |h|G <∞.)
If φ is the smooth function such that

φ(t) =

{
0 if t ∈ f−1(λ)
1 if t ∈ G

2We denote contradiction by !!
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also constructed in lemma 2.10, set

g(x) := (i− x)−1φ(x)h(x).

Then using (13) and since (x+ c)(w − x)−1q, (q + c)(w − x)−1 ∈ A for q ∈ A

and c, w ∈ C with �w �= 0 [9, Lemma 2.5] we conclude that g ∈ A and

(λ− f(H))g(H)(i−H) = I.

That is, λ − f(H) has an inverse. Therefore, λ �∈ σ(f(H)). Hence
σ(f(H)) ⊆ f(σ(H)). �

3 Extending the functional calculus to C0(R)

Let C0(R) denote the algebra of all continuous functions f : R → C such that
f(x) → 0 as |x| → ∞ with the supremum norm ‖.‖∞. Then A is a dense
sub-algebra of C0(R) [10, Corollary 2.4].

In this section we extend the A-functional calculus to C0(R). For more
general extensions, see DeLaubenfels [1]. First, we have the following prelimi-
naries.

Lemma 3.1 If f ∈ A and H is self-adjoint on Hilbert space H, then ‖f(H)‖ ≤
‖f‖∞.

Proof. First, observe that H is of (0, 1) − type R . Also from (7),

f̄(H) = f(H)∗

in this case. Now choose d ∈ R such that d > ‖f‖∞ and set

g(t) := d−
√(

d2 − |f(t)|2)
then clearly 0 ≤ g ∈ A, and

(d− g(t))2 = d2 − |f(t)|2 , for each t ∈ R.

so

f f̄ − 2dg + g2 = 0 ∈ A.

Thus

f(H)∗ f(H) − dg(H)− dg(H)∗ + g(H)∗ g(H) = 0

implies f(H)∗ f(H) + {d− g(H)}∗ {d− g(H)} = d2.
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If ψ ∈ H, then

‖f(H)ψ‖2 + ‖{d− g(H)}ψ‖2 = d2 ‖ψ‖
and therefore ‖f(H)ψ‖ ≤ d ‖ψ‖ .

�
We are now in a position to describe the A-functional calculus for a self-

adjoint operator in a standard fashion.

Corollary 3.2 If f ∈ A and H is self-adjoint on Hilbert space H, then the
functional calculus

κ : A � f �→ f(H) ∈ B(H)

can be extended to a unique map

κ̃ : C0(R) � f �→ f(H) ∈ B(H)

such that:

1. κ̃ is an algebra homomorphism.

2. f̄(H) = f(H).∗

3. ‖f(H)‖ ≤ ‖f‖∞ .

4. if w ∈ C \ R and rw := (w − s)−1 then rw(H) = (w −H)−1.

Proof. The existence follows from Theorem 2.3, Corollary 2.6,
Theorem 2.8 and Lemma 3.1. So we need only to establish the uniqueness.

Suppose η is another extension of κ to C0(R) and let X ⊆ C0((R) be the
set of f for which κ̃(f) = η(f). Then X is norm closed sub-algebra of C0(R)
which contains rw for all w �∈ R. Thus whenever x, y ∈ R,

x �= y ⇐⇒ rw(x) �= rw(y) for some w /∈ R

Therefore, by Stone - Weierstrass Theorem, X = C0(R). �

Remark 3.3 H is of (0, 1)−type R with the constant c = 1 if and only if iH
is a generator of a one-parameter group of isometries on X [10, Theorem 3.1].
This together with Corollary 3.2 provide a proof to a version of the spectral
theorem for a self-adjoint operator on a Hilbert space, which asserts:

iH generates a uniformly bounded strongly continuous group if and
only if H has a C0(R) functional calculus.
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The most natural infinite dimensional analogue of a diagonalizable matrix
is a scalar operator (short for spectral operator of scalar type in the sense
of Dunford [3, Chapter XVIII]). For an operator H with real spectrum, this
means that there exits a projection-valued measure F such that

Hx =

∫
�

tdF (t)x

with maximal domain.
The class of scalar operators includes (but is not limited to) self-adjoint

operators on a Hilbert space. However on a general Banach space, it is hard
to find a scalar operator. If H is an operator with σ(H) ⊂ R and acting
on a reflexive Banach space X , then H is scalar if and only if iH generates
a uniformly bounded strongly continuous group [8, page 155]. So, via the
spectral theorem, a self-adjoint operator H on a Hilbert space H is scalar if
and only if H has a C0(R) functional calculus. In fact this is true in general.
That is;

an operator acting on a reflexive Banach space is scalar if and only
if it has a C0(R) functional calculus [2, Theorem 6.10].

In the light of the forgoing, it is therefore reasonable to have the following
conjecture:

Conjecture 3.4 A densely define closed linear operator H , acting on a reflex-
ive Banach space X , is scalar if it is of (0, 1) − type R and ‖f(H)‖ ≤ ‖f‖∞
for each f ∈ A.

References

[1] R. DeLaubenfels. Automatic extensions of functional calculi. Studia
Math., 114(3):237–259, 1995.

[2] H. R. Dowson. Spectral Theory of Linear Operators. Academic Press,
New York, 1978.

[3] N. Dunford and J. T. Schwartz. Linear Operators, Part III:Spectral Op-
erators. Pure and Applied Mathematics. Wiley-Interscience, New York,
1971.

[4] T. W. Gamelin. Uniform Algebras. Prentice-Hall, Englewood Cliffs, N.J.,
1969.

[5] B. Helffer and J. Sjöstrand. Equation de Schrödinger Operator avec mag-
netique et equation de Harper, volume 345 of Lecture Notes in Physics.
Springer-Verlag, Berlin, 1989.



760 Paul O. Oleche and John O. Agure
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[7] L. Hörmander. The analysis of linear partial differential operators, vol-
ume 1. Springer-Verlag, Berlin, 1983.

[8] S. Kantorovitz. Spectral Theory of Banach Space Operators, volume 1012
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989.

[9] P. O. Oleche, N. Omolo-Ongati and J. O. Agure. The algebra of smooth
functions of rapid descent. International Journal of Pure and Applied
Mathematics, 52(2):163–176, 2009.

[10] P. O. Oleche, N. Omolo-Ongati and J. O. Agure. Operators with slowly
growing resolvents towards the spectrum. International Journal of Pure
and Applied Mathematics, 51(3):245–357, March 2009.

[11] R. T. Seeley. Extension of C∞ functions defined in a half space. Proc.
Amer. Math. Soc., 15:625–626, 1964.

Received: June, 2009

View publication statsView publication stats

https://www.researchgate.net/publication/266919157

