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Abstract

Background: Research on orphan crops is often hindered by a lack of genomic resources. With the advent of
affordable sequencing technologies, genotyping an entire genome or, for large-genome species, a representative
fraction of the genome has become feasible for any crop. Nevertheless, most genotyping-by-sequencing (GBS)
methods are geared towards obtaining large numbers of markers at low sequence depth, which excludes their
application in heterozygous individuals. Furthermore, bioinformatics pipelines often lack the flexibility to deal with
paired-end reads or to be applied in polyploid species.

Results: UGbS-Flex combines publicly available software with in-house python and perl scripts to efficiently call
SNPs from genotyping-by-sequencing reads irrespective of the species’ ploidy level, breeding system and availability of
a reference genome. Noteworthy features of the UGbS-Flex pipeline are an ability to use paired-end reads as input, an
effective approach to cluster reads across samples with enhanced outputs, and maximization of SNP calling.
We demonstrate use of the pipeline for the identification of several thousand high-confidence SNPs with high
representation across samples in an F3-derived F2 population in the allotetraploid finger millet. Robust high-density
genetic maps were constructed using the time-tested mapping program MAPMAKER which we upgraded to run
efficiently and in a semi-automated manner in a Windows Command Prompt Environment. We exploited comparative
GBS with one of the diploid ancestors of finger millet to assign linkage groups to subgenomes and demonstrate the
presence of chromosomal rearrangements.

Conclusions: The paper combines GBS protocol modifications, a novel flexible GBS analysis pipeline, UGbS-Flex,
recommendations to maximize SNP identification, updated genetic mapping software, and the first high-density maps
of finger millet. The modules used in the UGbS-Flex pipeline and for genetic mapping were applied to finger millet, an
allotetraploid selfing species without a reference genome, as a case study. The UGbS-Flex modules, which can be run
independently, are easily transferable to species with other breeding systems or ploidy levels.
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Background
Efficient genotyping methods, whether used for mapping
or population genetic studies, must be simple and reli-
able, and provide the allele composition at thousands or
more of polymorphic loci that cover the entire genome
[1]. Despite the recent advances in sequencing technolo-
gies, whole genome sequencing is still not cost effective
for large-genome species, especially when multiple-fold
coverage needs to be achieved of several hundred
individuals. Several reduced representation methods
based on selective sequencing of restriction fragments
have been developed to simultaneously conduct
high-throughput marker discovery and genotyping [2–
4]. We collectively refer to these methods as ‘genoty-
ping-by-sequencing’ (GBS). To keep sequencing costs
low, there is typically a trade-off between marker
number and sequencing depth. As a result,
genotyping-by-sequencing data sets often have large
amounts of missing data and low sequence coverage at
each locus [2, 5, 6]. Imputations can be used to infer
missing genotypes [7]. Low sequence depth, however, is
highly problematic when analyzing diversity panels in
outcrossing species, and biparental backcross, F1 (in out-
crossing species) and F2 populations where sufficient se-
quence depth at each locus is a prerequisite to
unambiguously differentiate homozygous and heterozy-
gous alleles. We therefore implemented several modifi-
cations to the experimental GBS protocol developed by
Elshire et al. [2] and Poland et al. [8], and tested their ef-
fect on reducing the GBS fragment pool and providing
more even read coverage across pooled samples for
high-confidence imputation free single nucleotide poly-
morphism (SNP) identification.
Analysis of GBS reads is fairly straightforward if whole

genome sequence data is available to which the GBS
reads can be aligned. Pipelines for reference-based GBS
analysis include TASSEL-GBS [9, 10], Fast-GBS [11] and
Stacks [12]. Pipelines such as TASSEL-UNEAK [5],
Stacks [12] and GBS-SNP-CROP [13] can generate a de
novo GBS reference from the experimental data and are
aimed at the analysis of GBS data from species without
reference genomes. Most pipelines are geared towards
single-end sequencing data from diploid organisms.
Finger millet, Eleusine coracana (L.) Gaertn. subsp.

coracana, is an inbreeding allotetraploid (AABB) cereal
belonging to the subfamily Chloridoideae with a haploid
genome size of 1.7 Gb [14]. Despite being an important
food security crop for Eastern Africa and parts of south-
ern India, it has persistently been neglected by the inter-
national research community. The wild progenitor of
finger millet, E. coracana subsp. africana, originated by
hybridization between E. indica (AA genome) and an
unknown B-genome species. The timing of the allopoly-
ploidization event is not known. To date, only a single

linkage map has been generated of finger millet consist-
ing of 332 loci, mostly detected by restriction fragment
length polymorphism (RFLP) markers and single strand
conformation polymorphic expressed sequenced tags
[15, 16]. The map was generated in an F2 population de-
rived from a cross between a wild accession, MD-20,
and a cultivated accession, Okhale-1. Based on similarity
between RFLP fragment sizes in the A-genomes of E.
indica and E. coracana, linkage groups were allocated to
subgenomes [15]. The linkage map was also used to es-
tablish gross comparative relationships between the fin-
ger millet and rice genomes [16]. There is a need for
high-density SNP maps of finger millet to assist with
trait analyses and planned genome sequencing efforts.
Even with less than 10,000 markers, construction of an

accurate linkage map is extremely challenging, in par-
ticular when dealing with less than perfect data sets such
as, for example, obtained in F3-reconstituted F2 popula-
tions. Traditional software like MAPMAKER [17, 18]
and JoinMap [19, 20] use maximum likelihood based
three-point and multi-point analyses which provide
highly accurate marker ordering but are highly memory-
and time-intensive for large data sets. To deal with large
marker numbers, software packages such as MSTmap
[21] and Lep-Map [22] based on the traveling salesman
principle have been developed. Map generation is fast,
but marker ordering is more sensitive to genotyping er-
rors. To be able to take advantage of MAPMAKER’s
high accuracy for ordering large marker sets, we modi-
fied the original MAPMAKER package to run efficiently
in a Windows Command Prompt Environment and de-
veloped in-house python scripts to automate several
steps of the MAPMAKER mapping process. The map-
ping pipeline was applied to generate a new high-density
genetic map of finger millet comprised of several thou-
sand high-quality SNP markers.
Our paper thus provides a modified GBS protocol, a

new pipeline (UGbS-Flex) for analysis of paired-end GBS
data suitable for application in species with different
ploidy levels, breeding systems and polymorphism levels,
irrespective of the availability of a reference genome se-
quence. We also provide a comprehensive solution for
post-GBS data analysis, and a high-density genetic map of
finger millet with new information on the organization of
the allotetraploid finger millet genome.

Methods
Plant materials and DNA extraction
The F2 mapping population was generated from a cross
between E. coracana subsp. africana accession MD-20
and E. coracana subsp. coracana accession Okhale-1
[15]. One hundred and thirty-four F2:3 families with a
minimum of 15 plants per F3 family plus the parents
were grown in the greenhouse at UGA under day/night
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temperatures in the range 26–30 °C. KNE 796, an acces-
sion for which whole genome sequencing is ongoing,
and E. indica accessions Ei-0, Ei-2 and Ei-5, collected in
the wild in Kenya, were grown under the same condi-
tions. All germplasm was obtained in compliance with
national and international accords on export/import of
seeds for research purposes. DNA was extracted using a
modified CTAB method adapted from Doyle and Doyle
[23] from leaves bulk-harvested for each F3 family from
eight weeks old seedlings. DNA concentrations were
measured on a Nanodrop (Thermo Scientific) and sam-
ples were diluted to 50 ng/μl. The quality of the DNA
was assessed on a 0.8% agarose gel.

GBS sample preparation
Two-hundred nanogram of high-molecular-weight DNA
was digested with a cocktail of either PstI/MspI, PstI/
NdeI or PstI/MspI +ApeKI. Digestions were done in vol-
umes of 30 μl with 4 U PstI-HF and 8 U MspI in NEB
CutSmart buffer for PstI/MspI digestions, 4 U PstI, 8 U
MspI and 4 U ApeKI in NEB-buffer 3.1 for PstI/MspI
plus ApeKI digestions, and 4 U PstI-HF and 4 U NdeI in
NEB CutSmart buffer for PstI/NdeI digestions. Samples
were incubated for 2 h at 37 °C. This was followed by an
additional 2-h incubation at 75 °C for reaction mixtures
comprising the enzyme ApeKI. Samples without ApeKI
were incubated at 75 °C for 20 min to inactivate the re-
striction enzymes.
Twenty microliter restriction digest was mixed with

1 μl barcoded PstI adapter (stock: 0.1 μM), 1.5 μl com-
mon MspI or NdeI Y-adapter (stock: 10 μM), 4 μl 10X
T4-DNA ligase buffer and 200 U T4 DNA ligase (NEB)
in a total volume of 40 μl. The common Y-adaptor and
barcoded adapters were as described by Poland et al. [8].
Ligation was conducted at 22 °C for 2 h. Following
ligation, fragments smaller than 300 bp were removed
by incubating the samples with 0.7 volumes of Sera-Mag
SpeedBeads (GE Healthcare Life Sciences) prepared ac-
cording to Rohland and Reich [24] at room temperature
for 5 min. The beads were separated from the super-
natant using a magnetic stand and washed three times
with 200 μl freshly prepared 70% ethanol. DNA was
eluted from the air-dried beads with 40 μl 10 mM
Tris.HCl (pH 8.0).
Three microliter of the resulting eluate was added to a

cocktail of 16 μl H2O, 5 μl 5X Taq master mix (NEB),
0.5 μl of a forward primer specific to the barcoded
adaptor (stock: 10 μM) and 0.5 μl of a reverse primer
with homology to the common adaptor (stock: 10 μM).
PCR amplification was done for each sample separately
using an initial denaturation at 95 °C for 30 s, 16 cycles
of denaturation at 95 °C for 30 s, primer annealing at
62 °C for 20 s and fragment elongation at 68 °C for 15 s,
followed by a final fragment elongation step at 68 °C for

5 min. Eight microliters of PCR product were checked
on a 1.5% agarose gel. The DNA concentration of each
GBS library was measured on a Qubit 2.0 using a Qubit™
dsDNA HS assay kit. Only GBS libraries with concentra-
tions > 5.0 ng/μl were sequenced. Thirty nanograms of
each GBS library were pooled. The number of samples
pooled depended on the sequencing platform used; we
aimed to obtain two million reads per sample. Primers,
dNTP and small DNA fragments were removed from
the pooled DNA with 0.7 volumes of AMPure Beads or
Sera-Mag SpeedBeads. Pooled GBS libraries (100 ng)
were sequenced on an Illumina NextSeq platform with
paired-end 150 bp reads. The parents and 115 F2:3 sam-
ples were sequenced as part of the same sequencing run.
An additional three and 26 F2:3 samples were sequenced
as part of two separate NextSeq runs. Ten samples were
sequenced in duplicate from independently generated li-
braries to ensure consistency across libraries and runs.

GBS analysis pipeline with optional de novo generation of
a reference
The full UGbS-Flex pipeline is described below. All
in-house perl and python scripts used in the UGbS-Flex
pipeline with information on their use are provided
under ‘Programs and Scripts’ on http://research.frankli-
n.uga.edu/devoslab/. Detailed information on how to
apply the UGbS-Flex pipeline is given in Additional file 1:
Data S1 and Additional file 2: Figure S1.

Preprocessing of the reads
The read quality was checked with ‘FastQC’ v. 0.11.4 [25].
Reads were split by barcode using the module ‘Process_-
Radtags’ within the ‘Stacks’ program [12] with option –r
(rescue barcodes and RAD-tags). Forward reads passed
the filter if they carried both the barcode and the PstI re-
striction site. Because the first few bases of the reverse
reads were low quality in some Illumina NextSeq sequen-
cing runs, no selection was carried out for the restriction
site of the second enzyme (MspI or NdeI) in the reverse
reads. ‘FASTX_trimmer’ from the ‘FASTX Toolkit’ pack-
age (http://hannonlab.cshl.edu/fastx_toolkit/) was used to
remove (1) the restriction sites, (2) the last 5 bp (typically)
of each read that were more likely to contain errors (or,
for lower quality runs, all bases at the 3′ end of a read
with FastQC quality scores lower than 20) and (3) an
additional 0 (for a 10 bp barcode) to 5 bases (for a 5 bp
barcode) at the 3′ end of the forward read to make all
reads the same length. Identical read length is a prerequis-
ite of the ‘Stacks’ program [12] used in the generation of a
de novo reference from the GBS reads.

De novo generation of a GBS reference
To facilitate handling of paired-end reads during the
generation of a GBS reference, overlapping forward and
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reverse reads were merged using ‘Flash’ [26]. From the
non-overlapping read files, we removed any reads that
were shorter than the expected (trimmed) size by run-
ning python script ‘EL.1.2.py’. If a reverse read was re-
moved, the corresponding forward read was also
removed, and vice versa. The ‘EL.1.2.py’ script then re-
verse complemented the non-overlapping reverse reads
within the remaining read pairs and artificially joined
them to the 3′ end of the corresponding forwards reads.
No Ns were added at the junction of the forward read
and the reverse complemented reverse read. Because
read clustering by ‘ustacks’ [12] requires reads of equal
length, ‘EL.1.2.py’ also extended merged overlapping
reads at the 3′ end with ‘As’ to make them the same
length as the joined non-overlapping reads. The
A-extended overlapping fragments are typically common
to all samples, and hence the polyA tracts do not gener-
ate polymorphisms. Reads within each sample were clus-
tered using the ‘ustacks’ module (options: -m 2 -M 1 -N
1) within the ‘Stacks’ program [12]. The ‘cstacks’ module
within Stacks (options: -b 1 -n 1) was used to generate a
set of representative tags by clustering the read stacks
obtained from ‘ustacks’ across the two parents and
117 F2 progeny. Only a subset of the F2 samples was in-
cluded in the ‘cstacks’ analysis due to the high memory
requirements for running ‘cstacks’ with large numbers of
samples. We also tested and validated an alternative
approach, referred to as ‘across-sample ustacks’
(‘ASustacks’) to replace ‘cstacks’. Using in-house python
scripts, consensus sequences generated in each sample
by ‘ustacks’ were extracted, given a unique name includ-
ing a sample identifier, and placed in an artificial fastq
file by adding a sequence quality line consisting of Es to
each consensus sequence. The ‘ustacks’ module was then
applied to this file using parameters comparable to those

applied in ‘cstacks’. The minimum number of reads re-
quired to form a stack (−m) was set at 1. An overview of
the steps involved in the generation of a GBS reference
using the UGbS-Flex pipeline is shown in Fig. 1.

Filtering of the GBS representative tags to generate a
reference
Two filtering steps were conducted on the representative
tags identified across samples by either ‘cstacks’ or
‘ASustacks’ (Fig. 1). Firstly, representative tags that were
present in less than a user-defined percentage of samples
(50 and 70% in this study) in the ‘cstacks’ output were
removed using the in-house perl script ‘FCT.pl’. This fil-
tering step has been integrated into the ‘ASustacks’ mod-
ule. Secondly, we removed representative tags that had
similarity levels to another representative tag equal to or
higher than a user-defined percentage (98% in this
study). To achieve this, a blastn all-against-all analysis of
the consensus tags was conducted (e-value threshold:
10e− 5). For tags with ≥98% homology, only a single tag
was retained using python script ‘Ref_98.py’. The repre-
sentative tags remaining were used as the GBS reference.

SNP/indel calling and filtering
Preprocessed reads were aligned against the GBS ref-
erence using Bowtie 2 v. 2.2.0 with default parameters
[27]. If a whole genome reference sequence is avail-
able, de novo generation of a GBS reference can be
omitted and trimmed reads are aligned against the
reference genome. For SNP/indel calling, we tested
both the ‘Unified Genotyper (GATK v. 3.4.0)’ (param-
eters –dcov 1000, −glm BOTH) and ‘Haplotype Caller
(GATK v. 3.4.0)’ (parameters –genotyping_mode
DISCOVERY –stand_emit_conf 10 –stand_call_conf 30 –
minPruning 1 –emitRefConfidence GVCF) modules

Fig. 1 Schematic overview showing use of the UGbS-Flex pipeline to generate a GBS reference
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within the GATK suite [28]. Indels were treated the same
as SNPs and, for simplicity, we use the term ‘SNPs’ to
cover both SNPs and indels. Raw SNPs were filtered
within GATK to only retain biallelic SNPs with an allele
frequency between 10 and 90%. We also removed adjacent
SNPs (scripts ‘SNPs_ISL.pl’ and ‘Rm_adj_SNPs.pl’) be-
cause some of these were artefacts caused by misalign-
ments at the junction of the forward and reverse reads.
The allelic depth (AD) information provided in the GATK
.vcf file was then used to score the allelic status of the
SNPs at each locus (script ‘SNP_genotyper.py’). Loci with
a total AD < 8 were scored as missing data points (−). Loci
with an ADref(erence allele)/ADalt(ernate allele) ratio ≥ 10 were
scored as A (homozygous for the Parent 1 allele), ADref/
ADalt ≤ 0.10 as B, 10 > ADref/ADalt > 4 as D (ambiguous A
or heterozygous (H)) and 0.25 > ADref/ADalt > 0.1 as C
(ambiguous B or H). Loci with other ratios were scored as
H. For F2 populations generated from two inbred parents,
as was the case for finger millet, all SNPs that were not
homozygous for different alleles in the parents were re-
moved (script ‘SNP_selectByParent.py’). SNPs that were
missing in more than 30% of the samples or had an A/B
ratio < 10% or > 90% were also removed. This was done
manually in Excel. Similarly, samples with more than 30%
of missing data were removed.

Comparison of the UGbS-flex and GBS-SNP-CROP pipelines
To compare the performance of the UGbS-Flex and
GBS-SNP-CROP [13] pipelines, the raw sequence data
from 48 tetraploid kiwiberry genotypes used by Melo et al.
[13] were downloaded from NCBI (SRR2296676). Guided
by the fastQC report, we trimmed the forward and reverse
reads to 121 bp. The parameters used for ‘ustacks’ were –
m 2 –M 2 –N 4, and for ‘ASustacks’–m 1 –M 2 –N 4. We
selected the same missing data threshold (25%) and se-
quencing depth for SNP scoring as Melo and colleagues
[13]. The H-threshold was set at 4.

Genetic mapping
Reducing the dataset by consolidating SNPs located in the
same GBS tag
Information at SNP loci that were located within the
same GBS reference tag and were in linkage disequilib-
rium was consolidated to further improve the robustness

of the mapping scores (function included in ‘SNP_geno-
typer.py’). If loci within a representative tag were scored
as a combination of ‘A’, ‘D’ and ‘-’, the consolidated score
was ‘A’ (Table 1). Similarly, a combination of ‘B’, ‘C’ and
‘-’ was consolidated as ‘B’, and a combination of ‘H’,‘C’, ‘D’
and ‘-‘ as H. If all loci in a GBS representative tag were
scored as ‘-’, ‘C’ or ‘D’, those scores were retained. Con-
flicting scores (A and B, A and C, A and H, B and H,
and B and D) were flagged (‘F’) and treated as missing
data for map generation.

Reducing the dataset by removing cosegregating markers
To generate a set of high-quality non-redundant
markers for genetic map construction, each SNP marker
was given a penalty score for the presence of a ‘C’ or ‘D’
(penalty = 1) or a missing data point (penalty = 2). Using
the in-house python script ‘SNP_cosegregation.py’, the
mapping scores of all SNP markers were compared in an
all-against-all analysis with a greedy algorithm. SNP
markers with the same multilocus genotypes were iden-
tified, and the marker with the smallest penalty score in
each set was selected for mapping.

Construction of genetic maps
To construct the genetic maps, we removed all SNPs
that had missing data in more than 20% of the progeny.
The set of SNP markers was split into linkage groups
using MSTmap [21]. Initial map orders were established
with MST map and checked for double recombination
events using MAPMAKER (adapted from [18]; adapted
version available from http://research.franklin.uga.edu/
devoslab/). Markers with more than a defined number
(four in this study) of double recombination events were
removed. The process of MSTmap mapping and check-
ing of double recombination events was repeated until
the number of double recombination events between
each marker and its flanking markers was ≤4. The corre-
sponding MSTmap maps were used as starting points
for map generation using MAPMAKER (adapted from
[18]; adapted version available from http://research.
franklin.uga.edu/devoslab/).
Because the MAPMAKER version used was limited to

ordering ~ 100 markers due to inherent program limita-
tions, MSTmap maps with more than 100 markers were

Table 1 Schematic representation of the approach used to consolidate SNPs within the same GBS reference tag

S1b S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

SNP1a – Bc – C D A B H A B H A

SNP2a A – – – – D C C A D A A

SNP3a – – H – – A C D C B A B

After consolidation A B H C D A B H – – – –
aSNP1, SNP2 and SNP3 are SNPs located on the same GBS tag
bS1 to S12 represent different situations
cA, B, H, C, D and – are genotypic scores
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split into smaller subgroups of 60 to 100 markers. Sub-
groups overlapped by 40 markers. Genetic maps were con-
structed for each of the subgroups using the ‘order’ and ‘try’
commands. Subgroup maps were merged based on com-
mon marker orders in the overlapping segments. Each link-
age group was split again into subgroups of < 100 markers,
and marker orders were further adjusted using the
‘ripple’ command. ‘Try’ and ‘ripple’ were done in a
semi-automated manner using the scripts ‘try.py’ and
‘ripple.py’, respectively. Final marker orders were
merged across subgroups. Genetic map distances (in
Kosambi) were obtained using the ‘map’ command with
‘error detection on’ in MAPMAKER. Map orders were
scrutinized manually and, if necessary, further adjusted.
Markers with the same multi-locus genotype were
added to the map as cosegregating with their represen-
tative marker. Finally, we placed markers with ambigu-
ous orders (not separated by clear recombination
events) in bins.

Identifying a and B genome linkage groups
Reads from three E. indica accessions (AA genome)
were aligned against the GBS reference tags using Bow-
tie 2 v. 2.2.9 with default parameters [27]. Presence
(present in at least two of the three E. indica accessions
analyzed) and absence (absent from all three E. indica
accessions analyzed) of mapped GBS tags in the E.
indica genome were charted along the length of the gen-
etic map using Excel scatterplots. Linkage groups with E.
indica tags along their entire length were allocated to
the A genome and those that were largely devoid of E.
indica tags were allocated to the B-genome.

Results
Efficiency of different enzyme combinations in generating
polymorphic markers
We tested two two-enzyme combinations (PstI/MspI
and PstI/NdeI) and one three-enzyme combination
(PstI/MspI + ApeKI) on three finger millet accessions for
their efficiency in generating largely overlapping frag-
ment pools that, when sequenced, yielded SNPs that
were present in all three accessions at a depth of at least
8×. All samples were sequenced (paired-end 150 bp) on
an Illumina NextSeq platform. The number of reads ob-
tained for each of the nine sample/enzyme combinations
(three accessions, three enzyme combinations) is given
in Additional file 3: Table S1. To estimate the effect of
read depth on the de novo generation of a GBS refer-
ence, we analyzed subsets of 0.2 million (M), 0.5 M,
1 M, 2 M and 3 M paired-end reads for each accession/
enzyme combination with our newly developed
UGbS-Flex pipeline (Fig. 1). The smaller read numbers
were subsets of the larger read sets.

For the enzyme combinations PstI/MspI and PstI/MspI
plus ApeKI, as expected, the number of GBS tags that
were common to all three accessions tested increased with
increasing total read numbers, reaching a plateau around
2 M reads (Additional file 3: Table S1 ‘By Enzyme
Combination’). For the enzyme combination PstI/NdeI,
however, the number of common GBS tags increased from
0.2 M to 1 M total reads, but then decreased when total
read numbers were increased from 1 M to 3 M. To test
whether this was an artefact generated by the ‘cstacks’ [12]
module, which clusters reads across samples, we devel-
oped the script ‘across-sample ustacks’ (‘ASustacks’).
‘ASustacks’ generated an artificial fastq file from each sam-
ple’s ‘ustacks’ output and these files were used as input for
‘ustacks’. The ‘ASustacks’ approach yielded similar num-
bers of reference tags as ‘cstacks’ except for read numbers
≥1 M in enzyme combination PstI/NdeI. We now saw the
expected increase in common GBS tags with increasing
read numbers across all enzyme combinations. More than
97% of GBS reference tags that were identified with
‘cstacks’ were also found in the reference generated using
‘ASustacks’. Interestingly, the read depth of the GBS refer-
ence tags that were identified by both ‘cstacks’ and
‘ASustacks’ was significantly lower than the read depth of
the GBS reference tags that were uniquely identified by
‘ASustacks’ (Additional file 4: Table S2). This suggests that
high read depth hampered the performance of ‘cstacks’,
possibly because a higher read depth led to a higher abso-
lute presence of SNPs caused by PCR or sequencing errors
in allelic reads. The ‘cstacks’ module may have eliminated
these clusters as likely consisting of repetitive DNA. We
conducted a blastn analysis of all finger millet reference
tags that were identified by ‘ASustacks’ in the subset of
3 M reads in the PstI/NdeI digested samples against the
repeat-masked rice (Oryza sativa) genome. Blastn hits
were identified (e-value threshold of e-5) for 30% of the
tags that were common to ‘cstacks’ and ‘ASustacks’, and
for 37% of the tags that were uniquely identified by ‘ASu-
stacks’. This shows that the tags eliminated by ‘cstacks’
were not enriched for repeats. To further validate the
‘ASustacks’ approach, we compared read clusters gener-
ated by ‘cstacks’ and ‘ASustacks’ in GBS data from DNA of
a set of 96 diverse foxtail lily lines belonging to different
Eremurus species digested with PstI/MspI. Foxtail lily has
an ~ 7.9 Gb (1C) genome (I. Leitch, pers. comm.). The
number of tags that were common to at least 50% of the
lines based on ‘cstacks’ and ‘ASustacks’ was 376 and 3552,
respectively, with 98% of ‘cstacks’ clusters being present in
the ‘ASustacks’ output. In addition to yielding higher num-
bers of reference tags, the ‘ASustacks’ approach was com-
putationally much less intensive than ‘cstacks’.
To estimate the effect of the different enzymes on re-

ducing the fragment pool for sequencing, we compared
the number of polymorphic GBS tags that were present
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in all three accessions tested and the number of SNPs
identified across the three enzyme combinations (Table 2;
Additional file 3: Table S1 ‘By Read Number’). Minimum
read depth for SNP scoring was 8×. The use of a third
enzyme greatly decreased the number of GBS reference
tags and hence the number of SNPs identified but,
contrary to our expectations, only marginally increased
SNP read depth (Table 2). The percentage of ApeKI sites
in the PstI/MspI read set was some two-fold higher than
in the PstI/MspI +ApeKI read set, and comparable to
that found in the GBS reference tags (Additional file 5:
Table S3). In the triple digest, however, ApeKI-contain-
ing reads were highly underrepresented in the GBS
reference compared to the reads (Additional file 5:
Table S3). This suggests that ApeKI-containing reads in
the triple digests could not be clustered. They likely
originated during the adapter-ligation step through ran-
dom ligation of ApeKI fragments from different gen-
omic regions. The highest number of polymorphic
SNPs present at a minimum read depth of 8× in each
of the three accessions tested was obtained with en-
zyme combination PstI/MspI for read numbers ≥1 M
and with PstI/NdeI when the number of fragments se-
quenced per sample was ≤500,000 (Additional file 3:
Table S1 ‘By Read Number’).

Generation of a GBS reference in the MD-20 x Okhale-1
mapping population
A total of 278,880,767 paired-end reads were obtained
across 146 samples (SRA Study SRP136342). Genotypic
scores of duplicated samples were merged using the
rules applied to SNP consolidation. Approximately 2% of
SNPs disagreed between duplicated samples and were
entered as missing data. The average and median read
number per sample was 1,910,142 and 1,317,595,

respectively. One sample with less than 600,000 reads
was removed from the analysis. The number of repre-
sentative GBS tags that were present in at least 50% of
the samples (hereafter referred to as Ref50) following
‘cstacks’ analysis was 34,960 (Table 3). This number
decreased to 16,725 for tags present in at least 70% of
the samples (Ref70). Following removal of representative
tags with ≥98% homology, 28,579 tags remained in the
Ref50 reference (Ref50_98) and 15,397 in the Ref70 ref-
erence (Ref70_98).

SNP calling
Trimmed reads were aligned against the generated
Ref50, Ref50_98, Ref70 and Ref70_98 GBS references
and the alignments were used for SNP calling. Both
GATK’s Unified Genotyper and Haplotype Caller were
employed and their outputs compared. The number of
reference GBS tags that carried SNPs for each SNP
caller/alignment combination is given in Table 3. The
number of SNP-containing GBS tags common to differ-
ent references and to different SNP callers is shown in
Fig. 2 and Additional file 6: Figure S2. For construction
of the genetic maps, the SNPs identified with Unified
Genotyper and Haplotype Caller against the references
Ref50_98 and Ref70_98 were pooled, yielding a total of
17,245 SNPs distributed over 7307 tags. Consolidation of
the SNPs located on the same tag to one consensus SNP
per tag reduced the number of SNPs (tags) to 7125. A
total of 182 tags was removed because they carried SNPs
with conflicting genotypic scores in 20% or more of the
progeny. High numbers of conflicting scores across
SNPs located on the same GBS tag is likely caused by
alignment of both A and B genome reads to the same
GBS reference tag.

Table 2 Summary statistics obtained for each of the three enzyme combinations for a subset of 1 M reads

Enzyme
combination

Accession Total read
number

Number of
stacks (tags)
within samplesa

Number of
stacks (tags)
common to
all samplesb

Number of
polymorphic
tagsc

Number of
polymorphic
SNPsc

Average depth
of scored SNPs

PstI/MspI KNE 796 5,720,433 83,082 22,191 15.20

MD-20 5,418,738 64,382 4440 4515 15.64

Okhale-1 7,738,023 73,903 17.21

PstI/MspI + ApeKI KNE 796 3,466,582 50,189 12,249 16.57

MD-20 4,474,070 37,619 2475 2509 20.90

Okhale-1 5,586,989 45,829 19.65

PstI/NdeI KNE 796 6,647,185 39,406 12,392 32.28

MD-20 4,269,463 35,218 3232 3305 28.66

Okhale-1 5,851,494 37,551 34.76
aDetermined using ‘ustacks’
bGBS tags that are common to all three accessions were selected from the ‘ASustacks’ output; if two or more tags had a level of homology ≥98%, only a single
tag was retained
cOnly SNPs at a read depth ≥ 8× were scored
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Comparison of UGbS-flex and GBS-SNP-CROP pipelines
Using the same dataset and, to the extent possible, same
thresholds as reported by Melo and colleagues [13],
UGbS-Flex yielded, before filtering, a total of 86,810
SNPs compared to 56,598 reported by Melo and
colleagues for GBS-SNP-CROP (Additional file 7:
Table S4). After filtering, the total number of SNPs
retained from the UGbS-Flex pipeline was 50,139 com-
pared to 21,318 by GBS-SNP-CROP (Additional file 7:
Table S4). The SNP number reported for the
GBS-SNP-CROP pipeline is when a single accession with
the most abundant read number was used in the gener-
ation of a reference. When all 48 accessions were used,
the total number of filtered SNPs obtained by
GBS-SNP-CROP was 14,712. We used all 48 accessions to
generate a reference with UGbS-Flex.

Genetic mapping
Because some of the distorted markers caused spurious
linkages, we initially removed all markers with segregation
ratios that deviated from 1:2:1 (A:H:B). We also removed
cosegregating markers to reduce marker load during map
construction. After the initial map generation, three
groups of distorted markers that linked together at high
LOD scores and extended the preliminary maps were
re-added to the dataset to generate the final maps. The
maps consisted of a total of 3772 SNP markers organized
in 18 linkage groups with the number of markers per link-
age group varying from 39 (51 cM) to 301 (240 cM)
(Figs. 3, 4 and 5, Table 4, Additional file 8: Table S5). After

integrating the cosegregating markers, the total number of
markers mapped was 4453 (Additional file 9: Table S6).
The number of recombination bins per chromosome var-
ied from 25 to 120 (Additional file 8: Tables S5 and
Additional file 9: Table S6). The sequences of the mapped
GBS tags and the SNP positions in these tags are provided
in Additional file 9: Table S6.

Allocating linkage groups to a and B subgenomes
For approximately 13% of the mapped E. coracana GBS
tags, corresponding GBS reads were identified in all
three E. indica accessions analyzed. An additional 14%
of mapped tags were represented in two of the three an-
alyzed E. indica accessions and 18% were present in only
a single E. indica accession. Excel scatterplots showing
the distribution of GBS tags absent from all three E.
indica accessions and present in at least two of the three
E. indica accessions in each of the 18 E. coracana link-
age groups are shown in Fig. 6. Chromosomes within
seven of the nine homoeologous groups were unambigu-
ously assigned to the A or B subgenome. A/B transloca-
tions were identified for homoeologous groups 6 and 9.

Discussion
Optimization of the GBS technology
We tested several modifications to the experimental
GBS protocol developed by Elshire et al. [2] and Poland
et al. [8]. The aim was to reduce the fragment pool for
sequencing and to provide more even read coverage
across pooled samples to increase read depth at each
locus and SNP representation across samples. A reduc-
tion in the number of fragments that will be sequenced
can be attained by preventing the addition of Illumina
sequencing adapters to a subset of the DNA fragments
during the PCR step. This can be achieved using primers
with one or more selective bases as applied in Tunable
GBS (tGBS®, Data2Bio, ISU Research Park, Iowa) or by
cutting PCR-amplifiable fragments with a restriction en-
zyme. We pioneered the latter approach in finger millet,
an inbreeding tetraploid species. DNA of three acces-
sions was either double digested with the enzyme com-
bination PstI/MspI or PstI/NdeI, or triple digested by
adding ApeKI to the PstI/MspI digest. PstI and NdeI are
6-bp cutters, MspI is a 4-bp cutter and ApeKI is a 5-bp
cutter. PstI, NdeI and ApeKI are sensitive to CNG
methylation. No adapters were ligated to sites generated
by the third enzyme. While employing a third enzyme

Table 3 Number of SNPs identified with different combinations of SNP callers and GBS references

Unified Genotyper (GATK) Haplotype Caller (GATK)

Ref50 Ref50_98 Ref70 Ref70_98 Ref50 Ref50_98 Ref70 Ref70_98

No. of GBS tags 34,960 28,579 16,725 15,397 34,960 28,579 16,725 15,397

No. of SNPs 2358 5534 3939 4477 1766 4593 3413 3934

Fig. 2 Venn-diagram showing the number of unique and common
SNPs identified using GATK’s Unified Genotyper and Haplotype Caller
in combination with GBS references Ref50_98 and Ref70_98
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Fig. 3 High-density genetic maps of finger millet (homoeologous groups 1, 2 and 3). Marker names are on the right-hand side, centiMorgan
(Kosambi) distances on the left-hand side. For readability, only the first marker of each marker bin is represented on the map. Locations of all
markers are available from Additional file 9: Table S6
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Fig. 4 High-density genetic maps of finger millet (homoeologous groups 4, 5 and 6). Marker names are on the right-hand side, centiMorgan
(Kosambi) distances on the left-hand side. For readability, only the first marker of each marker bin is represented on the map. Locations of all
markers are available from Additional file 9: Table S6
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Fig. 5 High-density genetic maps of finger millet (homoeologous groups 7, 8 and 9). Marker names are on the right-hand side, centiMorgan
(Kosambi) distances on the left-hand side. For readability, only the first marker of each marker bin is represented on the map. Locations of all
markers are available from Additional file 9: Table S6

Table 4 Number of markers and map length of each of the nine A and nine B genome linkage groups

1 2 3 4 5 6 7 8 9

A Number of markers 301 259 292 162 295 260 204 183 122

Map length (cM) 239.8 191.5 200.7 108.1 197.2 177.3 163.2 131.6 102.8

B Number of markers 148 112 295 198 289 251 39 183 179

Map length (cM) 188.6 85.4 167.1 144 195.5 173.7 50.5 131.4 131.8
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did reduce the fragment pool significantly, random
ligation between fragments that originated from different
parts of the genome during the adapter-ligation step re-
sulted in chimeric fragments. These fragments were se-
quenced but did not align within or across accessions.
Use of a three-enzyme mix therefore did not provide an
advantage over a double digest. A third enzyme could
likely be employed more effectively after ligation of the
adapters, but this would require an additional step in the
GBS protocol. The use of NdeI, a 6-bp cutter, in the
double digest was advantageous for low read numbers
(500,000 or less) because a smaller fragment pool
allowed more fragments to be sequenced that were com-
mon across samples to a depth of at least 8×. For target
read numbers in the range of 1 M to 2 M per sample

and SNP scoring at a minimum read depth of 8×, we
recommend the use of PstI/MspI. The PstI/MspI com-
bination generated a larger fragment pool than PstI/NdeI
but this fragment pool remained sufficiently small that
many fragments that were common across samples were
sequenced to the desired 8× depth. Obtaining more than
2 M reads was not cost-effective for fragment pools gen-
erated by PstI/MspI (Additional file 3: Table S1).
We added two size selection steps to our protocol.

Fragments smaller than 300 bp were removed after
ligation of the adapters to the DNA fragments using
Sera-Mag SpeedBeads. During the PCR step, the dur-
ation of the primer elongation step was kept to 15 s
which largely limited amplification to fragments shorter
than 800 bp. In addition, we incorporated a modification

Fig. 6 Scatterplots showing presence/absence in E. indica (AA genome) of GBS tags mapped in E. coracana (AABB genome). Linkage group
designations are given on the right-hand side of each graph. GBS tags are ordered by map position (distance in cM). Tags that were present in at
least two of the three E. indica accessions analyzed were placed at position ‘2’ on the Y-axis. Tags that were absent from all three E. indica accessions
analyzed were placed at position ‘0’ on the Y-axis. GBS tags located on the B-genome of E. coracana are absent from E. indica. GBS tags on the A-genome
of E. coracana are predominantly present (conserved tag) but can be absent from E. indica (polymorphism at restriction site, tag not amplified due to a
large insertion, or tag not sequenced)
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to obtain a more even read number across pooled sam-
ples. In the original protocol [2], samples were pooled
before the PCR step. Elshire and colleagues initially
noted large variation in read numbers between samples
which they attributed to inconsistent pipetting by the li-
quid handling system and rectified by adjustments to the
system [2]. We also saw significant variation in read
numbers between samples within a pool. While we
aimed to obtain two million reads per sample, read
numbers varied from 103,000 to close to 13 million in
our early GBS experiments (Fig. 7). Variation in pipet-
ting, which was done manually, might have been one
contributing factor, but variation between samples in the
efficiency of adapter ligation also likely played a role. We
therefore PCR amplified samples individually, and mea-
sured the DNA concentration on a Qubit fluorometer
before pooling equal amounts of DNA. Samples with a
DNA concentration less than 5 ng/μl were discarded as
they resulted in low read numbers even after adjusting
the amount of sample added to the pool. Furthermore,
these samples could generally not be rescued by redoing
only the PCR step but had to be redone from the start,
indicating that the problem lay either in the digestion or
adapter-ligation step. Introduction of this modification
greatly narrowed the range of read numbers obtained
(Fig. 7). While this approach increased the cost of sam-
ple preparation, it allowed ‘bad samples’ to be identified
pre-sequencing and, as such, represented a cost-saving
at the sequencing end.

Generation of a GBS reference
We wanted a GBS protocol and analysis pipeline that
would provide several thousand robust SNP markers in
a variety of species, irrespective of the breeding system,
ploidy level, polymorphism level and availability of a
whole-genome sequence. To maximize the chances of
finding SNP variation in species with unknown or low

levels of variation, we opted to sequence the reduced
representation libraries from both ends (2 × 150 bp on a
NextSeq). Furthermore, the longer paired-end reads
were more likely to identify orthologous sequences in
related species, and availability of comparative
information is key to the study of orphan crops with few
genetic and genomic resources. While a few pipelines
(e.g. TASSEL-GBS [10], STACKS [12]) were available
when we initiated our analyses that could build a gen-
omic reference from the GBS tags, none could deal with
paired-end reads or had been developed for data from
polyploid species. These shortcomings were recently ad-
dressed with the publication of the GBS-SNP-CROP
pipeline [13]. We present an alternative pipeline,
UGbS-Flex, that can generate a GBS reference from
paired-end data from inbreeding diploids as well as out-
crossing allopolyploids. This intuitive and flexible pipe-
line consists of publicly available software packages and
in-house perl and python scripts to cover data analysis
from read processing to SNP scoring (Fig. 1). Each
UGbS-Flex module can be run independently.
Much of the UGbS-Flex pipeline development was done

with GBS sequencing data generated in an F2 population
of finger millet. However, we have successfully used the
UGbS-Flex pipeline for the analysis of GBS data generated
in diversity panels in finger millet and foxtail lily, and in
mapping populations in seashore paspalum, an outcross-
ing diploid, and switchgrass, an outcrossing tetraploid. To
facilitate working with paired-end data, we merged over-
lapping sequences, and considered non-overlapping
paired-end reads as contiguous sequences. We then
grouped reads by similarity within samples using the
‘ustacks’ module from the STACKs package [12] and
across samples using either ‘cstacks’ or the novel
‘ASustacks’ approach. The latter applies ‘ustacks’ to a file
that comprises consensus sequences for per sample read
clusters from all samples. Because the ‘ASustacks’ ap-
proach is more efficient in terms of computing resources
and numbers of identified GBS reference tags, it has been
integrated in the UGbS-Flex pipeline for analysis of re-
duced representation sequencing data generated using
methylation-sensitive restriction enzymes and hence
enriched for low copy sequences.
Optimal ‘ustacks’ and ‘cstacks/‘ASustacks’ parameters

are dependent on the breeding system, ploidy, and poly-
morphism level of the species under investigation. For
example, in an inbreeding species, most loci are homo-
zygous, and stacks within an accession should be built
with reads containing no or only a single mismatch. Use
of very stringent conditions in the stack building within
inbreeding individuals will promote separation of para-
logs and, in polyploids, of homoeologous loci. In out-
crossing polyploid species, however, stacks within
accessions need to be generated that comprise

Fig. 7 Box-and-whisker plot showing the read number distribution
across pooled samples before optimization and after optimization of
the GBS protocol
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homo-alleles but not homoeo-alleles. Finding the opti-
mal parameters to achieve this can be challenging, in
particular in highly polymorphic polyploids, and needs
to be done empirically. Similar considerations need to be
taken into account when generating stacks across acces-
sions. For finger millet, we allowed a 1 bp mismatch
both for clustering within samples and across samples.
Polymorphism levels in finger millet are relatively low,
and because we were working with an F2 population, al-
lelic variation within and between samples was similar.
The ‘cstacks’/‘ASustacks’ outputs were filtered to re-
tain only those consensus sequences that were present
in a specified percentage of the samples, and these
sequences were used as a reference. This step limits
downstream identification of SNPs with large amounts
of missing data.

SNP calling
Quality-trimmed reads were aligned to the GBS refer-
ence using Bowtie 2 [27]. SNPs were called using GATK
[28]. The fact that the GBS reference consisted of
paired-end reads that were artificially joined but were
physically separated in the genome did not affect the
bowtie alignment nor the SNP calling. The only excep-
tion was when a deletion was present in an allele relative
to the allele used in the GBS reference. Because alleles
are sequenced to a fixed length on Illumina platforms
(e.g. 150 bp), the presence of a, for example, 2-bp dele-
tion polymorphism in the region sequenced practically
means that sequence information will be generated for
an additional 2 bp at the 3’end of reads for alleles with
the deletion compared to alleles without the deletion. If
the corresponding GBS reference tag lacks the deletion,
there will be an alignment gap at the location of the de-
letion and the ‘extra’ 2 bps sequenced will extend be-
yond the junction point where the forward and reverse
reads were artificially joined in the GBS reference. This
leads to SNP artifacts (Additional file 10: Figure S3).
Because adjacent SNPs were removed as part of our SNP

filtering protocol, only spurious SNPs caused by single
base pair deletions remained in our dataset. The SNP fre-
quency immediately flanking the junction between the for-
ward and reverse reads was two-to three-fold higher than
the SNP frequency across the rest of the read (Fig. 8). Dis-
carding the SNPs at these two positions reduced overall
SNP numbers by approximately 2.5%.
We tested both GATK’s Haplotype Caller and Unified

Genotyper for calling SNPs. Unified Genotyper identified
some 17% more SNPs than Haplotype Caller (Table 3).
On average, 25% of the SNPs identified with Unified
Genotyper were not identified by Haplotype Caller
(Fig. 2, Additional file 6: Figure S2). Conversely, some 12%
of SNPs identified with Haplotype Caller were not identi-
fied by Unified Genotyper. These comparisons were made
on filtered data sets, and hence concerned robust SNPs.
The percentage of SNPs uniquely identified by Unified
Genotyper and Haplotype Caller that were incorporated
in the genetic maps and hence were validated, was very
similar (41.3% vs 40.1% for Ref50_98 and 47.5% vs 40.8%
for Ref70_98). This indicates that, at least in our dataset,
the high sensitivity/aggressiveness of Unified Genotyper in
calling SNPs did not increase the false positive rate. For
comparison, the percentage of SNPs identified by both
SNP callers that were incorporated in the genetic maps
was 56% for Ref50_98 and 55.4% for Ref70_50. Freebayes
[29], a haplotype-based SNP caller, also yielded a lower
number of SNPs than Unified Genotyper when tested on
the parents of the mapping population. Although we did
not validate the SNPs identified by Freebayes, the number
of SNPs identified in common with Unified Genoty-
per and the percentage of common SNPs mapped
suggest that the lower SNP detection rate in Free-
bayes would have resulted in a lower percentage of
mappable polymorphisms.
The threshold number of samples in which each repre-

sentative GBS tag had to be present in order to be in-
cluded in the GBS reference also greatly affected the
number of identified SNPs, although the trend was

Fig. 8 SNP distribution across PstI/MspI GBS tags for which forward and reverse reads were joined artificially during the GBS reference generation
in three finger millet accessions (KNE 796, MD-20 and Okhale-1). Red bars flank the junction between forward and reverse reads
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opposite to what we expected (Table 3). To our surprise,
we identified fewer SNPs, after filtering, when a repre-
sentative tag was selected to be present in at least 50%
of the samples (Ref50) compared to at least 70% (Ref70),
despite the fact that more reference tags were present in
the Ref50 compared to the Ref70 reference. We hypoth-
esized that, although the Ref70 reference carried fewer
tags, more loci were represented by only a single allele.
If alleles from the same locus (e.g. Parent 1 allele and
Parent 2 allele) formed separate stacks during the clus-
tering performed by ‘ustacks’, both would be included in
the GBS reference. Reads from the same locus in hetero-
zygous individuals would align to either the allele 1 GBS
reference tag or the allele 2 GBS reference tag during
the bowtie alignment, and be scored as two homozygous
loci in GATK. To test this hypothesis, we removed tags
that were potentially allelic to another tag. When a GBS
tag had more than 98% homology to another tag follow-
ing a blast-all-against-all analysis, only one of the tags
was included in the GBS reference. Removing allelic tags
from Ref50 (referred to as Ref50_98) resulted in the call-
ing of 136% new SNPs, while less than 2% of SNPs were
lost (Additional file 6: Figure S2). As expected, SNP gain
was significantly smaller (15%) when allelic tags were re-
moved from Ref70 (referred to as Ref70_98), but still
greatly outpaced SNP loss (1%) (Additional file 6: Figure
S2). SNP discovery now followed the expected trend
with approximately 24% higher SNP numbers being
identified with Ref50_98 compared to Ref70_98 (Fig. 2).
Interestingly, only 75% of the SNPs identified with
Ref70_98 were detected with Ref50_98. The percentage
of SNPs uniquely found by only a single reference was
25 and 39% for Ref70_98 and Ref50_98, respectively.
This suggest that a substantially improved reference
could be obtained and SNP calling maximized by com-
bining the tags in both GBS references.
The UGbS-Flex pipeline compares favorably to

GBS-SNP-CROP [13], which can also use paired-end
reads as input. Using the same filtering criteria, the
number of SNPs identified by UGbS-Flex was more than
3-fold that identified by GBS-SNP-CROP when the ref-
erence in both pipelines was generated with all 48 acces-
sions. Interestingly, more heterozygotes were identified
by GBS-SNP-CROP than UGbS-Flex. While a larger per-
centage of the SNPs identified by GBS-SNP-CROP than
UGbS-Flex (99.9% vs 73.7%) had read depths ≥20, it
seems unlikely that the read depth explains the differ-
ence in the calling of homozygotes vs heterozygotes be-
tween the two pipelines because of the stringent criteria
used in SNP calling. As per Melo and colleagues [13], to
score a SNP locus as homozygote required a minimum
read depth of 11 when the secondary allele count was
zero, and a minimum read depth of 48 when the second-
ary allele count was one. Because kiwiberry is a

tetraploid, it is likely that some of the heterozygote SNPs
are variants between homoeo-alleles rather than
homo-alleles. The parameters used to cluster reads may
have separated homoeologs from homologs at a higher
frequency in UGbS-Flex than in GBS-SNP-CROP.

Construction of a high-density genetic map
We had previously constructed a 332-loci genetic map
in an F2 population generated from a cross between the
wild E. coracana subsp. africana acc. MD-20 and the
cultivated E. coracana subsp. coracana acc. Okhale-1
using restriction fragment length polymorphism (RFLP),
simple sequence repeat (SSR) and expressed sequenced
tag (EST) markers [15, 16]. The same population was
used here to generate a high-density genetic map. The
decision to use a three-enzyme combination (PstI/MspI
plus ApeKI) for GBS of the mapping population pre-
dated data availability on the relative efficiency of differ-
ent enzyme combinations in generating polymorphic
markers. The choice of enzyme combination does not
affect map quality, only marker number. Because DNA
from individual F2 plants was no longer available, we
used DNA extracted from bulked F2:3 families for map-
ping. The drawback of this was that the mapping data
was not quite as clean as when genotyping actual F2
plants, especially in heterozygous regions that under-
went recombination or displayed segregation distortion.
Mapping programs such as MSTmap [21] and Lep-Map
[22] are based on the traveling salesman principle (TSP)
and can very quickly generate maps with large numbers
of markers. However, because marker ordering relies on
two-point linkage information, TSP mapping programs
are more affected by missing data and provide less ro-
bust genetic maps than programs such as MAPMAKER
[17] that use multipoint analyses [30] (Additional file 11:
Figure S4). Furthermore, C (ambiguous B or H) and D
(ambiguous A or H) values could be incorporated in
MAPMAKER, but had to be converted to missing data
points in MSTmap. We therefore used a hybrid approach
in which we identified linkage groups and did the initial
marker ordering with MSTmap. Using the MSTmap
marker orders, we generated maps in MAPMAKER with
the option ‘error detection on’ to identify markers with
high levels of genotypic errors. These markers were re-
moved from further analyses. We then used the MSTmap
marker orders to select overlapping marker groups for
fine-scale ordering using three/multipoint analyses in
MAPMAKER. The version of MAPMAKER employed
(available from http://research.franklin.uga.edu/devoslab/)
had been modified to run efficiently in a Windows
Command Prompt Environment and to handle larger
numbers of markers than the original MAPMAKER ver-
sion [18]. Despite the modifications, marker ordering was
still limited to groups of approximately 100 markers due
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to inherent software limitations. The ‘try’ and ‘ripple’ com-
mands in MAPMAKER were semi-automated with
in-house developed python scripts. Because the overlap-
ping segments were selected based on the initial marker
orders defined by MSTmap, incorrect placement of one or
more markers in the MST map could affect the final
MAPMAKER-generated map. Recombination events in
the final maps were therefore scrutinized manually and, if
necessary, potentially problematic map regions were rea-
nalyzed. Two blocks of markers, one on linkage group 2A
and one on 2B, were removed because they were flanked
on either side by a large number of recombination events.
Following the manual assignment of markers to recom-
bination bins and addition of the cosegregating markers,
we obtained a robust map consisting of 4453 SNP markers
organized in 18 linkage groups (Figs. 3, 4 and 5;
Additional file 9: Table S6).

The finger millet genetic map and its characteristics
The 18 E. coracana linkage groups were labeled 1 to 9
with the suffix A or B to designate whether they origi-
nated from the A or B subgenome (Figs. 3, 4 and 5;
Additional file 9: Table S6). Linkage group designations
were the same as in Dida et al. [15] as determined by
the incorporation of a subset of the markers from the
map generated by Dida and colleagues into the high
density GBS map. The assignment of each linkage group
to a subgenome had previously been achieved by identi-
fying a small number of RFLP markers for each linkage
group that were conserved in size between E. indica, the
A genome progenitor of E. coracana, and the presumed
A genome of E. coracana [15]. The GBS data generated
in E. indica provided us with an opportunity to scan the
entire length of each linkage group for the presence of
A-genome markers. A-genome linkage groups were ex-
pected to carry E. indica GBS tags along their entire
length, while B-genome linkage groups should be devoid
of such tags. We observed the expected pattern in seven
of the nine homoeologous linkage groups (Fig. 6). Inter-
estingly, in homoeologous groups 6 and 9, the presence/
absence pattern of E. indica GBS tags indicated the pres-
ence of a reciprocal translocation between homoeolo-
gous chromosomes. Visual examination of the group 9
recombination data (Additional file 8: Table S5) showed
a number of progeny that carried recombination events
in both the A and B homoeologs at the putative trans-
location breakpoint leading to cross-shaped maps which
had been split at high LOD scores during our mapping
analysis. This suggests that the group 9 translocation
was present in only one of the two mapping parents.
Chromosomes that are heterozygous for a translocation
undergo pairing in a cross-type configuration. Depend-
ing on how the chromosomes segregate (and assuming
no cross-overs take place), progeny can either carry full

copies of the A and B genome chromosomes or a
chromosome complement that carries deletions/duplica-
tions for regions of the translocated chromosome. One
progeny (progeny 151 in Additional file 8: Table S5) in-
deed lacked all A-genome markers located within the
translocated region and five progeny (16, 56, 125, 131,
148) lacked the B-genome markers, indicating that these
regions were deleted in those progeny. Further analysis
showed that read numbers were approximately double
in the corresponding B-genome region in progeny 151
and in the corresponding A-genome region in progenies
16, 56, 125, 131 and 148, indicating that the absence of a
region was compensated for by an extra copy of the
homoeologous region in those progeny (Fig. 9). While
deletion of a chromosomal region would likely be
deleterious in a diploid species, the presence of homoeo-
logous chromosomes in an allopolyploid largely buffers
against the negative effects caused by chromosomal
deletions. Progeny with apparent recombination events
in homoeologous A and B chromosomes, or with a de-
leted region were not identified for chromosomes 6A
and 6B. It is possible that the 6A/6B rearrangement oc-
curred early in polyploid evolution and is present in
both parents. Identification of a heterozygous transloca-
tion through the comparison with E. indica depends on
whether the cross-shaped maps were split into two
non-translocated chromosomes or into two translocated
chromosomes. We therefore scrutinized the other
homoeologous groups for cross-shaped linkages and de-
letions, and uncovered an interstitial rearrangement in
homoeologous group 2. The two interstitial marker
blocks that we removed during the map construction,
because they were flanked on either side by a large num-
ber of recombination events, were regions that had
undergone an interstitial translocation in one of the par-
ents. At this point, we do not know whether the 9A/9B
and 2A/2B rearrangements occurred in the cultivated or
wild parent. In allopolyploids, pairing is typically con-
trolled genetically and limited to homologous chromo-
somes [31, 32]. Removal of the pairing control locus can
lead to chromosomal rearrangements, including homo-
eologous translocations [33, 34]. Finger millet has been
reported to display disomic inheritance [35, 36] but the
mechanism of pairing control is not known. An analysis
of the pairing behavior is needed to determine whether
homoeologous pairing control is suppressed in either of
the parents.

Conclusions
We provide a detailed analysis of the effect of param-
eter and module changes in the GBS methodology, ref-
erence generation and SNP calling that were aimed at
maximizing the discovery of high confidence SNPs with
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minimal missing data. The newly developed UGbS-Flex
pipeline provides a useful addition to the currently
available tools for GBS data analysis, in particular for
genotyping of heterozygous and polyploid individuals
from paired-end sequencing reads in the absence of a
whole-genome reference. The UGbS-Flex pipeline was
applied here to identify high confidence SNPs that were
subsequently used to generate the first high-density
genetic map of finger millet, Eleusine coracana. Map
robustness was achieved by applying multipoint marker
ordering. We demonstrated that cross-species applica-
tion of GBS is feasible between closely related species
and, when applied between an allopolyploid and one of
the diploid genome donors, can be used to identify the
subgenome origin of linkage groups and the occurrence
of translocations between homoeologous chromosomes.
Finger millet, an inbreeding allopolyploid species with
few genomic resources was used here as a case study,
but applicability of the UGbS-Flex pipeline to other
species, including the outcrossing tetraploid switch-
grass has been successfully achieved.

Additional files

Additional file 1: Data S1. System requirements and UGbS-Flex
commands for GBS reference generation, SNP calling and further SNP
processing. (PDF 165 kb)

Additional file 2: Figure S1. The ‘Bcraw’ folder comprises the raw
sequencing files for individual samples. After trimming, the trimmed
sequence files are placed in the ‘BCpc’ folder. Using files in the ‘BCpc’

folder as input, all files with equal-length reads are placed in ‘BCfin’ folder.
The ‘ASU’ folder holds the ASU method results for all files present in the
‘BCfin’ folder. The ASU results are used to generate a reference; the
filtered reference is placed in the ‘Ref’ folder. The trimmed sequences in
the ‘BCpc’ folder are aligned (with Bowtie) against the reference files in
the ‘Ref’ folder; alignments are used for SNP calling (using GATK); all
results are stored in the ‘SNP’ folder. The ‘Process’ number corresponds to
the step number in Additional file 1: Data S1. (PPTX 52 kb)

Additional file 3: Table S1A. Summary statistics obtained for each of
the three enzyme combinations for subsets of reads; Entries are grouped
by read number. Table S1B. Summary statistics obtained for each of the
three enzyme combinations for subsets of reads; Entries are grouped by
enzyme combination. (XLSX 29 kb)

Additional file 4: Table S2. Average read depth (across three
accessions tested) of GBS reference tags common to all three accessions
in the PstI/NdeI fragment pool. (DOCX 13 kb)

Additional file 5: Table S3. Number and percentage of ApeKI sites
present in PstI/MspI and PstI/MspI + ApeKI digests. (DOCX 12 kb)

Additional file 6: Figure S2. Comparison of the number of SNPs
identified using different SNP callers (UG = Unified Genotyper;
HC=Haplotype Caller) and different GBS references (Ref50: tags
present in ≥50% of the samples; Ref70: tags present in ≥70% of the
samples; Ref50_98: tags present in ≥50% of the samples and only
1 tag retained for tags with ≥98% homology; Ref70_98: tags present in
≥70% of the samples and only 1 tag retained for tags with ≥98% homology.
(PPTX 7261 kb)

Additional file 7: Table S4. Comparison of SNPs identified by UGbS-Flex
and GBS-SNP-CROP. (XLSX 9 kb)

Additional file 8: Table S5. Genotypic data for the MD-20 x Okhale-1
population. (XLSX 2444 kb)

Additional file 9: Table S6. Genetic maps comprising all markers.
(XLSX 717 kb)

Additional file 10: Figure S3. Effect of the presence of a deletion in a
sample relative to the GBS reference allele. A gapped alignment is
formed and the 3′ end extends beyond the junction of the forward and
reverse reads in the GBS reference resulting in the calling of a SNP at

Fig. 9 Box-and-whisker plots showing the read depth distribution at SNP positions along the length of the translocated (9AB and 9BA) and non-
translocated regions (9AA and 9BB) in chromosomes 9A and 9B of five selected progeny. Progenies 16 and 56 carry a chromosome complement
in which the 9BA region is absent and two copies of the 9AB region are present. Progeny 94 and 114 carry complete A and B genomes. Progeny
151 carries a chromosome complement in which the 9AB region is absent and two copies of the 9BA region are present
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that position. The Integrative Genomics Viewer (Robinson et al. 2011,
Nature Biotechnology 29: 24–26; Thorvaldsdóttir et al. 2013, Briefings in
Bioinformatics 14: 178–192) was used for visualization. (PPTX 75 kb)

Additional file 11: Figure S4. Comparison of genetic maps generated
using MSTmap (left-hand side) and MAPMAKER (right-hand side). Nearly
65% of markers were reordered in MAPMAKER compared to MSTmap
maps. The markers that occupied a different relative position in the two
maps are connected by a line. (PPTX 170 kb)
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