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ABSTRACT

Rotavirus is the most common cause of severe gastroenteritis infection in infants and
young children, occurring even with very high standard of hygiene. The disease spreads by
contact with infected faeces and might also be transmitted through faecally-contaminated:
food, water and respiratory droplets. Rota teq and Rotarix are the two licensed oral
vaccine intervention for rotavirus. However, it takes time for the development of vaccine-
induced immunity to complete, hence the need to investigate the impact of this time
delay τ on the dynamics of rotavirus. The objectives of the study were: to formulate
a mathematical model for rotavirus incorporating time delay in vaccination; to perform
stability analysis of the model formulated and to simulate the long term effect of time
delay. A mathematical model based on a system of delay differential equation for rotavirus
incorporating time delay in the effects of vaccination was formulated. The disease free
equilibrium has been proved to be both locally and globally stable. The endemic equilibria
is proved to be locally stable whenever τ = 0 and undergoes a Hopf bifurcation if τ > 0.
From the analytical and simulation results, we observe a decrease in rotavirus infection
as result of using vaccine with high efficacy rates and a shorter delay time. Hence we
recommend vaccine with high efficacy rates and a shorter delay time should be introduced
in order to effectively control rotavirus infections. The fundings of this study can be
adopted by policy makers and health practitioners in planning and allocation of resources
towards vaccination strategies for control of rotavirus infection.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Rotavirus is the most common cause of severe gastroenteritis infection in infants and

young children, leading to half of all hospitalized cases in children under five years of age.

It gets its name from the fact that under microscope, the virus resembles a wheel [29].

Seven species of rotavirus, referred to as A, B, C, D, E, F and G have been identified.

Human beings are primarily infected by species A, B and C but most commonly A.

Rotavirus spreads by contact with infected faeces and might also be transmitted through

faecally-contaminated: food, water and respiratory droplets. The incubation period is

about two days. Its symptoms, which may last for eight days include fever, nausea,

vomiting, abdominal cramps and frequently watery diarrhoea. The diagnosis of rotavirus

infection is commonly made clinically, although a rapid antigen stool test is available.

Children between 6 to 24 months of age can be infected with rotavirus several times

during their lives, and infection can occur despite very high standards of hygiene [44] .
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After a single natural infection, 38% of children are protected against any subsequent

rotavirus infection, 77% are protected against rotavirus diarrhoea and 87% are protected

against severe diarrhoea. Re-infection can occur at any age [44]. However, with each

infection immunity develops and this makes subsequent infections less severe [29].

In the United States, rotavirus infection affects approximately 2.7 million children

under five years of age resulting in the hospitalization of 55000 children every year. Over

600,000 children die annually worldwide because of rotavirus infections [37]. In Kenya,

8,000 children die each year due to rotavirus infections [28].

When diarrhoea occurs, essential fluids and salts are lost from the body and must be

quickly replaced. Oral Rehydration Treatment (ORT) which is the administering of fluid

through the mouth, is used to prevent and/or contain the dehydration that is a result of

diarrhoea in combination with continued feeding. This treatment method requires inten-

sive education so that it can be properly administered [33, 44]. This intensive education

program is one of the main reasons why vaccination is being seriously considered over

ORT.

Vaccination is the administration of antigenic material (vaccine) into the body to

stimulate an individual’s immune system to develop adaptive immunity to a pathogen [42].

Rotavirus vaccine is a vaccine used to protect against rotavirus infections. The vaccine

contains a weakened strain of rotavirus. This helps the body to build up immunity to

fight off the disease in the event of an infection. There are two types of rotavirus vaccines

namely Rota teq (pentavalent human bovine reassortant) and Rotarix (Glaxosmithkline

human monvalent) currently licensed for use. Rota teq requires 3 doses and should be

given at the ages of 2 months, 4 months and 6 months respectively. Rotarix only requires
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two doses at 2 months and 4 months. The Canadian Paediatric Society recommends that

all babies between 6 weeks and 32 weeks(8 months) of age be vaccinated against rotavirus

[42]. The American Academy of Paediatrics recommends that the rotavirus vaccine be

included as part of routine immunizations given to infants.

Studies [4, 33] have shown that rotavirus vaccine can prevent about 74% of rotavirus

infections. More importantly, it can prevent approximately 98% of severe infections and

96% of hospitalizations from rotavirus. For example in a hospital in Massachusetts, USA,

over a period two years the number of reported cases of rotavirus infections dropped from

65% to 3% as a result of vaccination [4, 33, 44].

Through analysis and simulation, Onyango et.al [29] proved that vaccination is a very

effective way of controlling rotavirus infection and the study recommends that all new-

borns be vaccinated if possible in order to effectively control rotavirus infection. Five

mathematical models were fitted to rotavirus gastroenteritis (RVGE) data from England

and Wales, as well as evaluate outcomes for short and long term vaccination effects [41].

The models predicted that during initial year after vaccine introduction, the incidence

of severe RVGE would be reduced by 1.8-2.9 times more than expected from direct ef-

fects of the vaccine alone (28 − 50% at 90% coverage). Over a 5 year period following

vaccine introduction, severe RVGE would be reduced only by 1.1-1.7 times more than

expected from direct the effects (54− 90% at90% coverage). The models predicted short

term reductions in the incidence of RVGE that exceeded estimates of the direct effects

consistent with observations from the United States and other countries. Some of the

models predicted that the short term indirect benefits may be offset by a partial shift-

ing of the burden of RVGE to older unvaccinated individuals. The model predictions
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reflect uncertainties about age variation in the risk and reporting of RVGE, while the

duration of natural and vaccine-induced immunity could not be clearly explained [41].

The models mentioned above, based on the framework of Ordinary Differential Equa-

tions are at best approximations with the assumption that future state of the system or

model is independent of the past and is determined entirely by the present. Processes

such as the development of immunity upon the administration of vaccine take time to

complete. Therefore, it is imperative to incorporate such process times or history into

mathematical models of vaccination. These process times are referred to as time delays

or delays. Models incorporating such delays are known as Delay Differential Equations

models. Time delays can greatly affect the dynamics of a system. For example, from the

model in [21] for small time delay the unique endemic equilibrium is locally stable but as

the time delay increases the endemic equilibrium destabilizes and stable limit cycles arise

by Hopf bifurcation.

Mathematical modeling is the art of using mathematical concepts, reasoning, and lan-

guage to explain, explore, and predict the behavior of a system. Mathematical models

can take different forms, including but not limited to dynamical systems, statistical mod-

els or game theoretic models . The most persisting feature of our world and state we meet

in our daily lives is change. Any move, therefore, to comprehend some facets of actuality

includes understanding changes that take place over time. Indeed, the ultimate objective

of mathematical modeling is to predict change and possibly make suggestions that will

effectively enable one to handle such a change [30].

A dynamical system is a set of equations expressing the rate of change of in terms

of the variables and time. Symbolically, if (x1, · · · , xn) are variables, then a dynamical
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system is a set of equations of the form

x′1 =f1(x1, · · · , xn)

...

x′n =fn(x1, · · · , xn).

(1.1)

A non-autonomous dynamical system is an equation of the form

x′ = F (t, x), where F : Rn+1 → Rn. (1.2)

A discrete dynamical system takes the form

x[k + 1] = Fk(x[k]), where Fk : Rn → Rn ∀k ∈ Z, (1.3)

and an autonomous discrete dynamical system takes the form of

x[k + 1] = F (x[k])

where F is a function from Rn → Rn and Z is a discrete time variable. The trajectories

of (1.3) include a sequence of points {xn} that is contained by iterating the map f . If

fn = f◦f◦· · ·◦f denotes the n− folds composition of f , then xn = fn(x0). If f is invertible,

then orbit occur forward and backward in time (n ∈ Z) while if f is not invertible, then

the orbits exist only forward in time [34]. In summary, we define a dynamical system as

a set of equations which express the rates of change of a set of variables with time. The

word “system” in the phrase “dynamical system ” refers to the set of equations explicitly

giving the rates of change of all state variables.

An epidemiological model may be defined as a mathematical formulation that rep-

resents the epidemiology of a disease transmission and its associated processes. It gives

a clear definition of how a disease spreads among groups of human beings and animals.
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It provides an insight into how a disease can be controlled, the duration or extent of an

outbreak and a prediction for both short and long term behaviors of an outbreak. The

usefulness of an epidemic model lie on its ability to study “what if” scenarios and provide

decision-makers with an inferable knowledge of the effects of disease incursions and im-

pact of disease control measures. The processes involved in formulating an epidemiological

model may be defined as shown in Figure 1.1.

Figure 1.1: Description of the processes of an epidemiological model formulation, see [11].

Epidemic modeling contribute to better disease control through:

• reflective analysis of the outbreaks and assessment of different control measures;

• investigation of different strategies in hypothetical outbreaks;

• exploration of the resource requirements of different strategies in hypothetical epi-

demics;

• risk assessment to identify priority areas, those that might be at greater risk to

better target preparedness and surveillance activities;
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• underpinning economic impacts studies;

• provision of realistic schemes for training exercises and communication principles of

epidemiology and disease control;

• provision of tactical support during epidemic through analysis and hypothesis test-

ing.

Models can be used retrospectively or prospectively, see [23, p. 355-381]. Retrospective

use involves fitting mathematical equations to epidemiological data and interpreting these

data quantitatively. Prospective models can either be predictive or explanatory.

1.2 Preliminaries

In this section, certain definitions, theorems and results are used in the development of

the subsequent sections in this thesis. For the following definitions, see (p. 5-14) [40].

Definition 1.2.1 (Equilibrium ). Consider a general autonomous vector field

ẋ = f(x), x ∈ Rn (1.4)

An equilibrium solution of (1.4) is a point x̄ ∈ Rn such that f(x̄) = 0. For nonautonomous

vector field ẋ = f(x, t), the equilibrium point is given as f(x̄, t) = 0.

Definition 1.2.2 (Stability). A point x̄(t) is said to be stable if, given ε > 0, there exists

a δ = δ(ε) > 0 such that, for any other solution y(t) of (1.4) satisfying |x̄(t0)− y(t0)| < δ

(where | · | is a norm on Rn), then |x̄(t)− y(t)| < ε for t > t0, t0 ∈ R.
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Definition 1.2.3 (Asymptotic stability). A point x̄(t) is said to asymptotically stable

if it is stable and for any solution, y(t), of (1.4), there is a constant b > 0 such that, if

|x̄(t0)− y(t)| < b, then

lim
t→∞
|x̄(t)− y(t)| = 0.

Theorem 1.2.4 (Fundamental theorem of algebra). Consider a polynomial with real

coefficients of the form:

p(λ) = a0λ
n + a1λ

n−1 + · · ·+ an−1λ+ an, ai ∈ R, a0 6= 0. (1.5)

Equation (1.5) has exactly n real or complex roots, λ1, λ2, · · · , λn, where repetition of roots

is possible, that is, λi = λj for some i and j., [?, 40].

Theorem 1.2.5 (Descartes’ rule of signs). This rule is used to determine the number of

real zeros of a polynomial function. It tells us that the number of positive real zeros in a

polynomial function f(x) is the same or less than by an even numbers as the numbers of

changes in the sign of the coefficients. The number of negative real zeroes of the f(x) is

the same as the number of changes in sign of the coefficients of the terms of f(-x) or less

than this by an even number, [19].

Consider the sequence of coefficients of (1.5):

an, an−1, · · · , a1, a0.

Let k be the total number of sign changes from one coefficient to the next in the sequence,

then the number of positive real roots of the polynomial is either equal to k or k minus a

positive even integer. (Note: if k = 1, then there is exactly one positive real root.)
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Theorem 1.2.6 (Routh-Hurwitz criterion). This criterion state that a negative trace and

a positive determinant guarantees that eigenvalues of jacobian matrix will have negative

real parts [40]. Given the polynomial, p(λ) = λn + a1λ
n−1 + · · · + an−1λ + an, where

the coefficients ai are real constants, i = 1, 2, · · · , n, define the n Hurwitz matrices using

coefficients ai of the characteristic polynomial:

H1 = (a1), H2 =

 a1 1

a3 a2

 H3 =



a1 1 0

a3 a2 a1

a5 a4 a3


and Hn =



a1 1 0 · · · 0

a3 a2 a1 · · · 0

a5 a4 a3 · · · 0

... ... ... · · · ...

0 0 0 · · · an



,

where aj = 0 if j > n. All roots of the polynomial p(λ) are negative or have negative

real part if and only if the determinant of Hurwitz matrices are positive: det Hj >

0, j = 1, 2, · · · , n. When n = 2, the creteria simplify to det H1 = (a1) > 0 and

det H2 =

 a1 0

0 a2

 = a1a2 > 0 or a1 > 0 and a2 > 0. The Routh-Hurwitz crite-

ria for polynomials of degree n = 2, 3, 4, 5 are summarized below:

n = 2 : a1 > 0 and a2 > 0;

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3;

n = 4 : a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4;

n = 5 : ai > 0, i = 1, 2, 3, 4, 5, a1a2a3 > a2
3 + a2

1a4, and

(a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)2 + a1a
2
5.

Definition 1.2.7 (Positive definite functions). A real-valued, continuously differentiable

function V is positive definite on a neighborhood of the origin ,D, if and for every non-zero

. A function V : D → R is positive semi definite if and only if:
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(i) 0 ∈ D and V (0) = 0;

(ii) V (x) ≥ 0, ∀x in D − {0}.

V is a positive definite function if item (i) holds and V (x) > 0 ∀x in D − {0}.

The function V : D → R is negative definite or negative semi definite in D if −V is

positive definite or positive semidefinite respectively. If V (x) is a quadratic function, that

is V (x) : Rn → R = xTQx, Q ∈ Rn×n, Q = QT . Since Q = QT , its eigenvalues,

λi, i = 1, · · · , n are all real,[?]. Thus,

V (·) is positive definite⇐⇒ λi > 0, ∀i = 1, · · · , n;

V (·) is positive semidefinite⇐⇒ λi ≥ 0, ∀i = 1, · · · , n;

V (·) is negative definite⇐⇒ λi < 0, ∀i = 1, · · · , n;

V (·) is negative semidefinite⇐⇒ λi ≤ 0, ∀i = 1, · · · , n.

Time Delays

The inclusion of time delay terms in differential equations is a concept of modeling systems

of differential equation that is gaining prominence. The delays or lags can represent

gestation times, incubation periods, transport delays, or can simply lump complicated

biological processes together, accounting only for the time required for these processes to

occur. Such models have the advantage of combining a simple, intuitive derivation with

a wide variety of possible behavior regimes for a single system. On the negative side,

these models hide much of the detailed workings of complex biological systems, and it

is sometimes precisely these details which are of interest. Delay models are becoming

more common, appearing in many branches of biological modeling. They have been used
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for describing several aspects of infectious disease dynamics: primary infection [39], drug

therapy [32] and immune response [6], to name a few.

• Basic Properties of Delay Differential Equations

While similar in appearance to ordinary differential equations, delay differential

equations have several features which make their analysis more complicated. Let us

examine an example of the form

ẋ = f(x(t), x(t− τ)) (1.6)

To start with, an initial value problem needs more information than a general prob-

lem for a system without delays. For an ordinary differential system, a unique

solution is determined by an initial point in Euclidean space at an initial time

t0. For a delay differential system, one requires information on the entire interval

[t0, t0 + ε]. Clearly, to know the rate of change at t0, one needs x(t0) and x(t0 + ε),

and for ẋ(t0 + ε), one needs to know x(t0 + ε) and x(t0 + ετ). So, in order for the

initial value problem to make sense, one needs to give an initial function or initial

history, the value of x(t) for the interval [τ, 0]. Each such initial function deter-

mines a unique solution to the delay differential equation. If we require that initial

functions be continuous, then the space of solutions has the same dimensionality as

C([t0 + ετ, t0],R).

1.3 Statement of the problem

It is a common practice in many resource-limited settings that vaccination is done in-

tensely when there is an outbreak. However, it takes time for the development of vaccine-
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induced immunity to complete. It is therefore desirable to investigate the impact of the

time delay on the effectiveness of rotavirus vaccine and consequently its effects on the

dynamics of rotavirus.

1.4 Objectives of the study

The main objective of this study was to develop and analyse a mathematical model in-

corporating time delay on the effectiveness of vaccination impacts on rotavirus infection.

The specific objectives of the study were:

(i) To formulate a mathematical model for rotavirus incorporating time delay in vacci-

nation.

(ii) To prove the existence of both disease free and endemic equilibria.

(iii) To perform stability analysis of the model formulated.

(iv) To simulate the long term effect of time delay in vaccination.

1.5 Significance of the study

It has been observed that rotavirus is the most common cause of severe gastroenteritis

among children under the age of five years. Mathematical models have been used to

underscore the important role vaccination plays in the reduction of rotavirus incidence. By

highlighting the effect of delay in vaccination on the transmission dynamics of rotavirus,
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the findings of this study will help policy makers and health practitioners in planning and

allocation of resources towards vaccination strategies.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The critical analysis of relevant literature begins with a review of the development of

mathematical epidemiology. This is followed by a general review of compartmental math-

ematical models applied to infectious diseases at a population level. Models which are

relevant to this study are explored. The chapter is concluded by outlining the original

chapters of this study, giving their relationship with the previous work, innovations and

contributions to the field of research.

2.2 Development of mathematical epidemi-

ology

The development of mathematical epidemiology dates back to late nineteenth century

and early twentieth century by public-health physicians and biological scientists such

14



as En’ko [9], Hamer, see (p.733-739) [12], Browlee [17], Sir Ross [35], McKendrick and

Kermack [20, 43]. In 1889, En’ko developed a chain binomial model for the spread of

an infection in a susceptible population. The first models of mathematical epidemiology

were developed by Ross and Kermack and Mckendrick. Ross used his model to show

that malaria is spread through mosquito bites [35]. He further observed from his model

that malaria could possibly be controlled by reducing the population of mosquitoes. Ross

model was probably the one that gave birth to the threshold concept which has been

vital in epidemiology ever since. All mathematical models, including those with a high

degree of heterogeneity show this ‘threshold’ behavior. In epidemiological terms, this

threshold is stated as: If the average number of secondary infections caused by a single

infective introduced in a wholly susceptible population is below unity, a disease will die

out, while if it exceeds unity, an epidemic will occur. this threshold was later called a

basic reproduction number, denoted as R0 [13, 27].

Kermack and McKendrick greatly extended the concept of basic reproduction number

in their work on general compartmental model, both for diseases in which recovery result

into permanent immunity and for diseases in which there is possibility of re-infection

[20, 43]. Another important extension of the epidemiology model was done by Dietz and

Schenzle [8] and later on by Bailey [26]. Bailey incorporated an exposed (latent) period

in his model. This is the period in which the infected members of the population do

not infect others. Hamer developed a model with mass-action incidence [12]. This was a

representation of the rate of transmission from infective to susceptible individuals. This

law assumes that the average number of contacts needed to cause an infection per unit

individual in unit time is proportional to population density.
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Continuing from the tradition of Ross, mathematical models that focused on specific

diseases have been developed; see [10, 46] among others. These models have included

basic ideas of importance, for example vaccination, relation between ages, herd immunity

and even treatments. Due to continued outbreaks of new infectious diseases, more new

models are still being developed to take care of these challenges. Recently, HIV models

[22] and Ebola models [1] have been developed among others. These studies [1, 22] have

also developed two other models, that is rotavirus model and co-infection of malaria and

rotavirus model. These two models will greatly help in understanding the behavior of

rotavirus infection.

2.3 Mathematical models of infectious dis-

eases

Infectious diseases remain a leading cause of deaths worldwide with HIV, tuberculosis,

cancer, malaria and recently Ebola being the leading. New pathogens continue to emerge

as shown by the outbreak of SARS in 2003, swine flu in 2009 and MERS CoV in 2013.

Mathematical models are being used to explore the transmissions of these infections and

to analyze the potential impact of control measures being applied. The first mathemat-

ical model was formulated by Bernoulli in 1760 [7]. He used his model to analyze the

effectiveness of vaccinating healthy people against smallpox. In 1906, Hammer formu-

lated and evaluated a discrete time model which he used to explain why measles epidemic

continue to recur in a population [12]. In 1911, Ross developed a differential equation

model for malaria as a host-vector disease [35]. In 1927, Kermack and Mckendrick ex-
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tended Ross’ work and formulated the first compartmental model (SIR), which consists

of system of three coupled nonlinear ordinary differential equations [24]. This model was

simply presented as
dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI,

where t is time, S(t) is susceptible people, I(t) are infected people and R(t) are those who

have recovered. The parameters β is the transmission probability and γ is death/recovery

rate. In 1984, Aron and Schwartz formulated a SEIR model [16]. They used this model to

investigate the role of seasonality in driving cycles in recurrent epidemics by numerically

analyzing the susceptible/exposed/infected/ recovered (SEIR) population. This type of

model is generally given as
dS

dt
= −βSI

dE

dt
= βSI − κE

dI

dt
= κE − γI

dR

dt
= γI,

where β, κ and γ are positive constants.

2.4 Mathematical models of rotavirus

Before the introduction of rotavirus vaccine, rotavirus disease was a common and serial

health problem for children below 5 years. According to WHO estimates of 2013, about

215,000 children aged below 5 years die each year from vaccine preventable rotavirus in-

fections; with the vast majority of these children living in low income countries. In the
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United States, before the vaccine was introduced, almost all children had at least one

rotavirus infection before their 5th birthday. More than 400,000 young children had to

see a doctor for illness caused by rotavirus, more than 200,000 had to go to be admitted

to the emergency wards, 55,000-70,000 had to be hospitalised while 20-60 died [44]. In

2014, it was estimated that 27% of all under-five diarrhoeal disease hospitalizations in

Kenya were caused by rotavirus [33].

The public health impact of rotavirus vaccination has been demonstrated in several

countries and states. In the USA, a measurable decrease was seen in the number of ro-

tavirus gastroenteritis hospitalizations accompanied by a suggested herd-effect protecting

old non-vaccinated children. In Mexico, a decline of up to 50% in diarrheal deaths in

children below 5 years of age was attributed directly to the use of the vaccine. Studies

have shown that rotavirus vaccine can prevent about 74% of rotavirus infections. More

importantly, it can prevent approximately 98% of severe infection and 96% of hospital-

izations from rotavirus. For example in a hospital in Massachusetts over a period of two

years, the number of reported cases of rotavirus infections dropped from 65% to 3% as

result of vaccination [4, 33, 44]. Clinical trials in Africa found that rotavirus vaccines

reduced severe rotavirus disease by more than 60% during the first year of life when

children are at greatest risk of severe rotavirus disease. WHO reiterates that the use of

rotavirus vaccines should be part of comprehensive strategy to control diarrheal disease

with the scaling up of both prevention (promotion of early and exclusive breastfeeding,

hand washing with soap, treated water and improved sanitation) and treatment packages

(lo osmolarity, ORS and Zink) [33, 44]. WHO recommends that rotavirus vaccines should
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be included in all National immunization programs and considered a priority particularly

in countries in South East Asia and Sub-Saharan Africa [44]. Since the introduction of

the rotavirus vaccine, hospitalizations and emergency visits for rotavirus infections have

dropped drastically [4]. Vaccination is the best way to prevent severe rotavirus disease

and the deadly dehydrating diarrhea that it causes.

Studies in Kenya and other African countries [4, 33, 44] show that rotavirus vaccines

are safe, effective against severe rotavirus disease and are cost-effective. The vaccine was

introduced in Kenya’s national immunization program with Global Alliance for Vaccines

and Immunization (GAVI) support. In Kazakhstan, a middle income country, the cost

effectiveness analysis of rotavirus vaccination spanning 20 years by using a synthesis of

dynamic transmission models accounted for the herd protection was performed and found

that vaccination program with 90% coverage would prevent 880 rotavirus deaths and save

an average of 54,784 life years for children below 5 years. Indirect protection account-

ing for 40% and 60% reduction in severe and mild rotavirus gastroenteritis respectively.

Vaccination reduces productivity losses because of lower mortality rates and less work

absenteeism among parents [3].

A mathematical model of a rotavirus infection incorporating vaccination has been de-

veloped and comprehensively analyzed [29]. Through the analysis and simulation, it has

been shown that both the disease-free and endemic equilibria are globally asymptotically

stable. Real data fitted to the model shows that it can be used to predict the nature of

rotavirus infection in a population. Simulation shows that vaccination is a very effective

way of controlling rotavirus infection. It was recommended that all newborns be vacci-

nated if possible in order to effectively control rotavirus infection. The model did not
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predict what will happen between the time the vaccine is administered and the time it

becomes effective.

A model of indirect effects of rotavirus vaccination was developed to project the im-

pact of a vaccination programme on the incidence of rotavirus infection and disease for

five countries in the European Union [41]. With vaccination coverage rates of 70%, 90%

and 95%, the model predicted that in addition to the direct effect of vaccination herd pro-

tection induced a reduction in rotavirus-related gastroenteritis incidence of 25%, 22%,and

20% respectively. It was observed that from countries that have introduced rotavirus vac-

cination, there may be indirect protection for unvaccinated individuals but it is unclear

whether these benefits will extend to long term. The direct and indirect benefits of vac-

cination can only be realized once vaccine protection for vaccinated individual becomes

effective.

Five mathematical models were fitted to rotavirus gastroenteritis (RVGE) data from

England and Wales, as well as evaluate outcomes for short and long term vaccination

effects [41]. The models predicted that during initial year after vaccine introduction, the

incidence of severe RVGE would be reduced 1.8-2.9 times more than expected from direct

effects of the vaccine alone (28 − 50% at 90% coverage). Over a 5 year period following

vaccine introduction, severe RVGE would be reduced only by 1.1-1.7 times more than

expected from direct effects(54 − 90% at90% coverage). The models predicted short

term reductions in the incidence of RVGE that exceeded estimates of the direct effects

consistent with observations from the the United States and other countries. Some of the

models predicted that the short term indirect benefits may be offset by a partial shifting

of the burden of RVGE to older unvaccinated individuals. From this study is it clear
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that the reduction in the incidences of RVGE, due to vaccination, is higher over shorter

time periods than over longer periods. Therefore vaccination should be done as often as

possible to maximize the benefit of both direct and indirect protection.

The number of rotavirus infections tend to be highest under cool dry conditions in

the tropics. In the United States, seasonal rotavirus activity occurs in sequential man-

ner, beginning first in the Southwest from October through December and ending in the

Northeast in April or May. In Kenya rotavirus peak incidences were observed in the

January-March periods, when weather is dry, hot and with low relative humidity [25].

It is recommended that vaccination is to be carried out before these periods for it to be

effective. The dynamics of rotavirus infections were studied using a simple mathemat-

ical model that included the impact of breastfeeding, seasonality and the possibility of

control via vaccination [36]. The study conducted which the dynamic of a regular after

birth vaccine [6 weeks and 32 weeks(8 months)of age] for the child was more effective in

controlling rotavirus disease than a neonatal vaccine.

A SEIRS epidemic disease model with two profitless delays and nonlinear incidence

are proposed and the dynamic of the model under pulse vaccination are analyzed [45]. In

this model, the latent period of the disease is defined as the time delay. A long latent

period of the disease or a long immunity period of the recovery is sufficient condition for

the global attractivity of infection eradication periodic solution. On the contrary, a longer

time delay in vaccination may lead to instability.

A model of Hopf bifurcation in epidemic with a time delay in vaccination was analyzed

[21]. Introduction of a time delay is a destabilizing process in the sense that increasing the

time delay could cause the population to fluctuate. Hopf bifurcation was used to help find
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the existence of a possible region of instability in the neighborhood of a non-zero endemic

equilibrium where the population will survive undergoing regular fluctuations. Using

the time delay as a bifurcation parameter necessary and sufficient conditions for Hopf

bifurcation were examined to occur. For small time delay the unique endemic equilibrium

is locally stable but as the time delay increases the endemic equilibrium destabilizes and

stable limit cycles arise by Hopf bifurcation. Hopf bifurcation may occur if the death rate

from the disease is high compared with the recovery rate so that the chance of an infected

person dying from the disease exceeds 50%. For rotavirus, the death rate is lower than

the recovery rate, it would therefore be necessary to determine the effect of varying the

time delay.

A model of HIV-1 infection with two time delays was mathematically analyzed and

comparison with patient data done [18]. One of the time delay represent the time needed

for infected cells to produce virion after viral entry (intracellular delay) and the other

denotes the time needed for the adaptive immune response to emerge to control viral

replication (immune delay). Through the analysis positivity and boundedness of the solu-

tions, local stability of the infection free and infected steady states and uniform persistence

of the system were proved. The model was used to estimate parameter values which were

fitted to viral load data from 10 patients during primary HIV-1 infection. The delay model

provided better fits to patient data (achieving a smaller error between data and modeling

prediction) as compared to models without delay. Rotavirus infection has vaccines unlike

HIV-1 infection. It is important to investigate effect of delay in vaccination because this

affects the time required for immune system to respond to a viral invasion.
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CHAPTER 3

METHODOLOGY

3.1 Model description and formulation.

A mathematical model based on a system of delay differential equation for rotavirus in-

corporating time delay in the effects of vaccination was formulated. The total human

population size under study, N(t), at any time t is subdivided into distinct classes such

as susceptible S(population capable of becoming infected), Infected I(infectious with ro-

tavirus), vaccinated V(vaccinated population) and recovered R(comprise of those who

have been removed from the scene of infection by such means as infection acquired immu-

nity and death). The total population N(t) = S(t) +V (t) + I(t) +R(t). Assume that the

mass action incidence transmission is defined by βSI, where β is the effective contact rate

for disease transmission and the initial conditions are such that the variables S, V, I, R

remain non-negative for all time t ≥ 0. Since the incubation period is two days [29], we

assume that the probability of survival till the infectious state for the individuals exposed

to rotavirus is unity and therefore exclude the exposure stage. The individuals infected
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with rotavirus include both symptomatic and asymptomatic cases because they are capa-

ble of infecting others [41]. It is possible children can develop some level of immunity to

rotavirus from maternal antibody due to breastfeeding but this immunity does not last

for long hence we consider the effect of vaccination at birth and vaccination of suscepti-

bles [29]. The human population is not assume to be constant, since birth, immigration,

emigration and death occur. Assumed a constant recruitment ρ out of which (1 − ρ)Λ

is into susceptible class and ρΛ is into the vaccinated class. Susceptibles are vaccinated

at the rate γ and the vaccine efficacy which has been shown to wane is assumed to take

place at the rate ω [2]. The parameter 0 ≤ 1 − ε < 1 models the decrease in the risk

of infection as a result of vaccination. Disease mortality takes place at the rate δ and

recovery from infection takes place at the rate κ, it is therefore natural that after a single

natural infection immunity is developed, subsequent infections are less severe [29]. The

population decreases due to natural deaths at a rate µ. Most vaccines take time in the

body to become effective (time delay denoted by τ), this is because immunity has to be

developed to protect the body against infection. These parameter values are summarized

in Table 3.1 below.
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Table 3.1: Parameter values

Parameter Symbol

Recruitment rate into susceptible (1− ρ)Λ

Recruitment rate into vaccination ρΛ

Vaccination rate of susceptible γ

Vaccine efficacy waning rate ω

Expected decrease in the risk of infection ε

Rate of flow into the removed class κ

Transmission rate β

Natural death rate of human µ

Rotavirus induced deaths δ

Rate of vaccination ρ

Delay time in completion of vaccination immunity τ

Recruitment rate of humans Λ
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Figure 3.1: Model Flow Chart

The model is therefore given by the following set of delay differential equations.

dS

dt
= (1− ρ)Λ− βSI − γS + ωV − µS,

dV

dt
= ρΛ + γS − (1− ε)βV (t− τ)I − (ω + µ)V,

dI

dt
= βSI + (1− ε)βV (t− τ)I − (δ + κ+ µ)I,

dR

dt
= κI − µR (3.1)

We set the initial conditions for system (3.1) as

S = S(0) > 0, V = V (0) ≥ 0, I = I(O) ≥ 0, R = R(0) ≥ 0, t = 0

26



3.2 Model analysis

The formulated model was analysed by proving positivity and boundedness of the solu-

tions of the system, deriving the basic reproduction number, establishing the existence of

both the disease free and endemic equilibrium points and finally proving whether these

equilibrium points are both locally and globally stable or there exists a bifurcation point at

any time. Equilibrium point is a constant solution to a differential equation that does not

change with time. The equilibrium points of the system were obtained by setting the right

hand side of the differential equations to zero and solving each variable. These points are

also referred to as steady state solutions. The existence of the equilibrium points (disease

free and endemic) of the model is determined with respect to basic reproduction number,

which is derived using the next generation matrix approach.

3.2.1 Positivity and boundedness of solutions

Model (3.1) describes human population and we therefore show that the associated state

variables are non-negative for all time, t ≥ 0. Using the first equation of the system (3.1),

that is
dS

dt
= (1− ρ)Λ− βSI − γS + ωV − µS,

which can be rearranged as

dS

dt
= (1− ρ)Λ + ωV − (βI + γ + µ)S,

and therefore we can conclude that

dS

dt
≥ −(βI + γ + µ)S. (3.2)
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Separating the variables yields

dS

S
≥ −(βI + γ + µ)dt (3.3)

By integrating the differential inequality (3.3), that is,

∫ S

S0

dS1

S1
≥
∫ t

t0
−(βI + γ + µ)dt1,

we obtain

lnS1 |SS0≥ −(βI + γ + µ)t1 |tt0 (3.4)

Applying the initial condition at t = 0, S = S(0) on (3.4) we get

S(t) ≥ S(0)e−(βI+γ+µ)(t−t(0)) ≥ 0. (3.5)

For I(t):
dI

dt
= βSI + (1− ε)βV (t− τ)I − (δ + κ+ µ)I (3.6)

Factoring out I
dI

dt
= [βS + (1− ε)βV (t− τ)− (δ + κ+ µ)]I. (3.7)

we conclude that
dI

dt
≥ −(δ + κ+ µ)I. (3.8)

Separating the variables yields,

dI

I
≥ −(δ + κ+ µ)dt. (3.9)

Integrating the differential equation (3.9)

∫ I

I0

dI1

I1
≥
∫ t

t0
−(δ + κ+ µ)dt1,
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gives

ln I1 |II0≥ −(δ + κ+ µ)t1 |tt0 . (3.10)

Applying the initial condition t = 0, I = I(0) on (3.10), we get

I(t) ≥ I(0)e−(δ+κ+µ)(t−t(0)) ≥ 0. (3.11)

From the solutions [inequalities ((3.5) and (3.11))] all S(t), V (t), I(t) and R(t) are non

negative for t ≥ 0.

To show that all feasible solutions are uniformly bounded.

We sum up the four equations of the system (3.1).

Since N = S + V + I +R, we have

dN

dt
= dS

dt
+ dV

dt
+ dI

dt
+ dR

dt
, (3.12)

which on substitution of corresponding value from system (3.1) and simplify

dN

dt
= Λ− δI − (µS + µV + µI + µR). (3.13)

Thus
dN

dt
= Λ− δI − µ(S + V + I +R) (3.14)

and therefore
dN

dt
= Λ− µN − δI. (3.15)

It therefore follows that
dN

dt
≤ Λ− µN,

which implies that
dN

dt
+ µN ≤ Λ (3.16)
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and solving c (3.16) by the intergrating factor/separation of variables we get

N(t) ≤ Λ
µ

+N(0)e−µt (3.17)

From inquality (3.17), it can be clearly seen that

0 ≤ N(t) ≤ Λ
µ

+N(0)e−µt (3.18)

where N(0) is the initial population.

Thus as t→∞, we have

0 ≤ N(t) ≤ Λ
µ

(3.19)

Which shows that the solutions of system (3.1) are bounded.

3.2.2 The Disease Free Equilibrium, E0(S0, V 0, I0)

Since the first three equations of system (3.1) do not contain terms in R, therefore we

rewrite system (3.1) as:

dS

dt
= (1− ρ)Λ− βSI − γS + ωV − µS,

dV

dt
= ρΛ + γS − (1− ε)βV (t− τ)I − (ω + µ)V,

dI

dt
= βSI + (1− ε)βV (t− τ)I − (δ + κ+ µ)I, (3.20)

To determine the disease free equilibrium, which is a state at which no rotavirus infection

is present in the population, we equate the right hand side of the system (3.20) to zero

and solve for the variables S0 and V 0 since I0 = 0
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This gives

(1− ρ)Λ− βS0I0 − γS0 + ωV 0 − µS0 = 0

ρΛ + γS0 − (1− ε)βV 0(t− τ)I0 − (ω + µ)V 0 = 0

βS0I0 + (1− ε)βV 0(t− τ)I0 − (δ + κ+ µ)I0, = 0 (3.21)

Solving for S0 and V 0 when I0 and τ are both zero, from the first equation of the system

(3.21), we get

S0 = (1− ρ)Λ + ωV 0

γ + µ
, (3.22)

and from the second equation of the system (3.21), we obtain

S0 = (ω + µ)V 0 − ρΛ
γ

. (3.23)

Equating equations (3.22) and (3.23) and solving for V 0, we get

V 0 = (γ + µρ)Λ
µ(µ+ ω + γ) > 0. (3.24)

Substituting equation (3.24) into equation (3.23) and solving for S0, we get

S0 = ωΛ + (1− ρ)µΛ
µ(ω + γ + µ) > 0. (3.25)

Using equations (3.24) and (3.25), the disease free equilibrium E0, of model (3.20) is then

given as

E0(S0, V 0, I0, ) =
(
ωΛ + (1− ρ)µΛ
µ(ω + γ + µ) ,

(γ + µρ)Λ
µ(µ+ ω + γ) , 0

)
. (3.26)

3.2.3 Existence of Endemic equilibrium (EE) point

In epidemiology, an infection is said to have attained its endemic equilibrium when that

infection is constantly maintained at a baseline level in a geographical area without exter-

nal inputs, such as medication, vaccination among others. In order to prove the existence
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of endemic equilibrium, we first calculate the basic reproduction number of system (3.20)

and use it to test the positivity of I∗ which leads to the positivity of S∗ and V ∗. This

shown in Theorem 3.2.1 below.

The Basic Reproduction Number

The basic reproduction number, denoted as R0, is defined as the average number of

secondary infections caused by a single infectious individual during their entire infectious

lifetime in a fully susceptible population [15]. We define the vaccine reproduction number,

Rv, of the model as the number of secondary rotavirus infections caused by a single

rotavirus infected individual in the presence of vaccination. When no such intervention

is employed, then the basic reproduction number is denoted by R0. When the basic

reproduction number is greater than one, it means that an infectious individual is causing,

on average, more than one new infections and thus the disease invades and persists in the

population. The constant Rv is determined by the method of next generation operator

approach.

The reproduction

Rv = r(FV−1)

is the spectral radius of the matrix ( the largest absolute value of its eigenvalues) (FV−1)

where F is the Jacobian of fj such that fj is the rate of new infections in compartment j

and V is the Jacobian of vj is the rate of transfer of individuals in and out of compartments

by means other than infection. From the model infection class is I.

f=
(
βSI + (1− ε)βV (t− τ)I

)
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F=
(
βS + (1− ε)βV

)

v=
(

(µ+ κ+ δ)I
)

V=
(
κ+ µ+ δ

)

V−1 =
(

1
κ+µ+δ

)
to

FV−1 =
(

β
κ+µ+δ [S + (1− ε)V ]

)
(3.27)

Substitute S and V at DFE from equation (3.26) to get

Rv = β

(κ+ δ + µ

[
(ωΛ + (1− ρ)µΛ
µ(ω + γ + µ) + (1− ε) (γ + µρ)Λ

µ(µ+ ω + γ)

]

Rearranging we get

Rv = β

µ(κ+ δ + µ
)
[
ωΛ + (1− ρ)µΛ + (1− ε)(ρµ+ γ)Λ

(γ + ω + µ)

]
. (3.28)

In the absence of vaccination,

ρ = ω = γ = 0,

and the basic reproduction number becomes,

R0 = βΛ
µ(κ+ δ + µ) (3.29)

Theorem 3.2.1. An endemic equilibrium E∗(S∗, V ∗, I∗) exists provided that Rv > 1

Proof. At an endemic equilibrium state, equation (3.20) becomes

(1− ρ)Λ− βS∗I∗ − γS∗ + ωV ∗ − µS∗ = 0

ρΛ + γS∗ − (1− ε)βV ∗I∗ − (ω + µ)V ∗ = 0

βS∗I∗ + (1− ε)βV ∗I∗ − (δ + κ+ µ)I∗ = 0. (3.30)
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Solving for S∗ from the first equation of system (3.30), we obtain

S∗ = (1− ρ)Λ + ωV ∗

βI∗ + γ + µ
, (3.31)

Solving for V ∗ from the second equation of system (3.30), we obtain

V ∗ = ρΛ + γS∗

(1− ε)β I∗ + ω + µ
. (3.32)

From the third equation of (3.30), we obtain

S∗ = (δ + κ+ µ)− (1− ε)βV ∗
β

. (3.33)

Equating equation (3.31) to equation (3.33) and solving for V ∗, we obtain

V ∗ = (δ + κ+ µ)(βI∗ + γ + µ)− β(1− ρ)Λ
β[ω + (1− ε)(βI∗ + γ + µ)] . (3.34)

Substituting (3.33) into (3.32) and simplifying, we get

V ∗ = βρΛ + γ(δ + κ+ µ)
β(1− ε)(βI∗ + ω + µ+ γ) (3.35)

To obtain I∗, we equate equations (3.34) and (3.35) to obtain

µρβΛ− (1− ε)µρβΛ− (1− ε)γβΛ + (1− ε)γβ(δ + κ+ µ)

I∗ + γµ(δ + κ+ µ)− (1− ε)β2ΛI∗ + (1− ε)β2(δ + κ+ µ)I∗2

+(1− ε)µβ(δ + κ+ µ)I∗ − ωβΛ + ωββ(δ + κ+ µ)16

I∗ + µω(δ + κ+ µ)− µβΛ + µβ(δ + κ+ µ)I∗ + µ2(δ + κ+ µ) = 0,

which can be expressed as

AI∗2 +BI∗ + C = 0, (3.36)

where

A = (1− ε)β2(δ + κ+ µ)

34



B = [γ(1− ε)β(δ + κ+ µ)− (1− ε)β2Λ + (1− ε)µβ(δ + κ+ µ)

+ωβ(δ + κ+ µ) + µβ(δ + κ+ µ)]

C = [µρβΛ− (1− ε)µρβΛ + γµ(δ + κ+ µ)

−ωβΛ + µω(δ + κ+ µ)− µβΛ + µ2(δ + κ+ µ)]

To determine the sign of C we express it as

C = µ[βρΛ + (δ + κ+ µ)(γ + ω + µ)]− βΛ[1− ε)µρ+ (1− ε)γ + ω + µ]. (3.37)

Since Rv = β
µ(δ+κ+µ

[
µ(1−ρ)Λ+ωΛ+(1−ε)Λ(ρµ+γ

(γ+µ+ω

]
> 1, it can be easily seen that βΛ[µ + ω +

(1− ε)µρ+ (1− ε)γ] > µ[βρΛ + (δ + κ+ µ)(γ + ω + µ)]. From equation (3.37), it can be

concluded that C < 0 when Rv > 1. This proves that C < 0, when Rv > 1. We therefore

see that, the only possible signs of equation (3.36) are (+,−,−) and (+,+,−) and by

Descartes Rule of sign change [14], it shows that there is only one positive root of I∗, that

is, I∗ > 0. We therefore conclude that the model has a positive endemic equilibrium.

3.2.4 The Local Stability of Disease Free Equilib-

rium (D.F.E)

Theorem 3.2.2. The disease free equilibrium of model (3.20) is locally asymptotically

stable provided that Rv < 1 and unstable when Rv > 1 for any time delay τ ≥ 0.

Proof. We prove the local stability of the disease free equilibrium of model (3.20) by
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evaluating its Jacobian matrix as given below

JE0 =



−(βI0 + γ + µ) ω −βS0

γ −(1− ε)βI0 − (ω + µ) −(1− ε)βV 0

βI0 (1− ε)βI0 βS0 + (1− ε)βV 0 − (δ + κ+ µ)


(3.38)

Substituting the values of S0, V 0, I0 into equation (3.38) at the disease free equilibrium,

we get;

JE0 =



−(γ + µ) ω −β
[
ωΛ+(1−ρ)µΛ
µ(γ+ω+µ)

]
γ −(ω + µ) −β(1− ε)

[
Λ(ρµ+γ)
µ(γ+ω+µ)

]
0 0 β

[
ωΛ+(1−ρ)µΛ
µ(γ+ω+µ)

]
+ β(1− ε)

[
Λ(ρµ+γ)
µ(γ+ω+µ)

]
− (δ + κ+ µ)


(3.39)

Equation (3.39) can be simplified as

JE0 =



−(γ + µ) ω −β
[
ωΛ+(1−ρ)µΛ
µ(γ+ω+µ)

]
γ −(ω + µ) −β(1− ε)

[
Λ(ρµ+γ)
µ(γ+ω+µ)

]
0 0 β

µ

[
ωλ+µ(1−ρ)Λ+(1−ε)(µρ+γ)Λ

µ+ω+γ

]
− (δ + κ+ µ)


(3.40)

By using Rv, we can rewrite equation (3.40) as

JE0 =



−(γ + µ) ω −β[ωΛ+(1−ρ)µΛ
µ(γ+ω+µ) ]

γ −(ω + µ) −β(1− ε)
[

Λ(ρµ+γ)
µ(γ+ω+µ)

]
0 0 (δ + κ+ µ)(Rv − 1)


(3.41)

This Jacobian matrix has a distinct eigenvalue given by (δ + κ + µ)(Rv − 1), which is

negative if and only if Rv < 1. To determine the nature of other eigenvalues, equation

(3.41) is reduced to a 2× 2 given as−(γ + µ) ω

γ −(ω + µ)

 (3.42)
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We determine local stability by examining the trace and determinant of the block ma-

trix (3.42). The trace of the matrix (3.42) is −(γ + ω + 2µ), which is negative and its

determinant is given by µ(µ + ω + γ) which is positive. It can be clearly seen that the

Routh-Hurwitz condition holds [31]. We therefore conclude that the disease free equilib-

rium is locally asymptotically stable.

This means that if there is a small perturbation on the system, the system will still

return to the disease free equilibrium.

3.2.5 The Global Stability of Disease Free Equilib-

rium

The disease free equilibrium of model (3.20) is globally asymptotically stable ifRv ≤ 1. We

use the technique by Castillo Chavez [5]. We write system (3.20) in the form; dX
dt

=H(X,Z)

dZ
dt

=G(X,Z), G(X, 0) = 0 where X ∈ R2 denotes uninfected compartments (S,V) and

Z ∈ R1 denotes infected compartment (I). The disease free equilibrium is now denoted as

E0
1 = (X0, 0), X0 =

(
ωΛ+(1−ρ)µΛ
µ(ω+γ+µ) ,

(γ+µρ)Λ
µ(µ+ω+γ)

)
The technique stipulates that the following conditions H1 and H2 must be met to

guarantee global asymptotically stability:

H1: For dX
dt

=H(X, 0), X0 is globally asymptotically stable.

H2: G(X,Z) = PZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω,

where X0 is the disease free equilibrium, P = DzG(X, 0) is an M-matrix (the off-

diagonal element of |P | are non-negative) and Ω is the region where the model (3.20) is

biologically feasible.
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Theorem 3.2.3. The disease free equilibrium E0 of system (3.20) is globally stable if

Rv < 1 and unstable whenever Rv > 1, provided that the conditions H1 and H2 above are

satisfied.

Proof. From system (3.20), and taking note that X = (S, V ) and Z = I, we get

H(X, 0) =

(1− ρ)Λ− (γ + µ)S + ωV

ρΛ + γS − (ω + µ)V


and rearranging condition H2 we get

G(X,Z) = PZ − Ĝ(X,Z).

Differentiating the right hand side of equation 3 of system (3.20) with respect to I, we

obtain

P = βS + (1− ε)βV (t− τ)− (δ + κ+ µ).

Therefore

PZ = βSI + (1− ε)βV (t− τ)I − (δ + κ+ µ)I,

and

ĜZ = PZ −GZ

= βSI + (1− ε)βV (t− τ)I − (δ + κ+ µ)I

−(βSI + (1− ε)βV (t− τ)I − (δ + κ+ µ)I)

= 0

Since conditions H1 and H2 are satisfied, the disease free equilibrium is therefore globally

asymptotically stable when Rv < 1 and unstable whenever Rv > 1.

If there is a large perturbation on the system, it will still return to the disease free

equilibrium.
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3.2.6 The Local Stability of Endemic Equilibrium

(E.E.)

The Jacobian matrix at the endemic equilibrium E∗ can be expressed as

J =



a1 a2 a3

a4 a5e
−λτ + a6 a7

a8 a5e
−λτ a9


where,

a1 = −(βI∗ + γ + µ)

a2 = ω

a3 = −βS∗

a4 = γ

a5 = −(1− ε)βI∗

a6 = −(ω + µ)

a7 = (1− ε)βV ∗

a8 = βI∗

a9 = βS∗ + (1− ε)V ∗ − (δ + κ+ µ)

We compute the following determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− a1 a2 a3

a4 λ− [a5e
−λτ + a6] a7

a8 a5e
−λτ λ− a9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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which gives the characteristic equation given as

(λ− a1)(λ− [a5e
−λτ + a6])(λ− a9) = 0, (3.43)

which simplifies to

λ3 +M2λ
2 +M1λ+M0 + (N2λ

2 +N1λ+N0)e−λτ = 0, (3.44)

where

M2 = −(a1 + a6 + a9)

M1 = (a6a9 + a1a6 + a1a9)

M0 = (−a1a6a9)

N2 = −a5

N1 = (a5a9 + a1a5)

N0 = (−a1a5a9).

Multiplying both sides of equation (3.44) by eλτ , we obtain

(λ3 +M2λ
2 +M1λ+M0)eλτ +N2λ

2 +N1λ+N0 = 0 (3.45)

When τ = 0, equation (3.45) can be expressed as

λ3 +M02λ
2 +M01λ+M00 = 0, (3.46)

where

M02 =(M2 +N2)

M01 =(M1 +N1)

M00 =(M0 +N0).
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Based on Routh Hurwitz theorem [38], it can be concluded that all the roots of equation

(3.46) are in the open left half plane if and only if the following condition holds:

C1 : M02 > 0,M00 > 0 and M02M01 > M00. If τ = 0 and C1 holds for equation (3.44)

then the endemic equilibrium is locally asymptotically stable.

For τ > 0, we let λ = iw, for w > 0 be a root of equation (3.45). Substituting λ = iw

into (3.44) we obtain

(−iw3 −M2w
2 + iM1w +M0)((cos(wτ) + i sin(wτ))−N2w

2 + iN1w +N0 = 0 (3.47)

On separating the real and imaginary parts of equation (3.47) we obtain

p1(w) cos(wτ)− p2(w) sin(wτ) = p3(w)

P4(w) sin(wτ) + p5(w) cos(wτ) = p6(w), (3.48)

where

p1(w) = −M2w
2 +M0

P2(w) = M1w − w3

p3(w) = N2w
2 −N0

p4(w) = M0 −M2w
2

p5(w) = M1w − w3

p6(w) = −N1w

Solving equation (3.48), we obtain

cos(wτ) = p01(w)
p00(w)

sin(wτ) = p02(w)
p00(w) , (3.49)
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where

p00 = M2w
4 − (2M0M2 −M2

1 )w2 − w6 +M0 + 2M1w
4

p01 = (M0N2 +N0M2 −M1N1)w2 − (M2N2 −N1)w4 −N0M0

P02 = (M1N2 −N0)w3 −N2w
5 −N0M1w

Squaring and adding the two equations in equation (3.49), we get

p2
01(w) + p2

02(w)− p2
00(w) = 0 (3.50)

Suppose that C2 : equation (3.50) has at least one positive root, w0, then equation (3.46)

will definitely have pure imaginary roots ±iw0. For w0 we obtain the critical value of time

delay as shown below

τ0 = 1
w0

arccos
(
p01(w0)
p00(w0)

)
(3.51)

Differentiating equation (3.45) implicitly with respect to τ we obtain

(
3λ2 + 2M2λ+M1

)
eλτ

dλ

dτ

+
(
λ+ τ

dλ

dτ

)(
λ3 +M2λ

2 +M1λ+M0
)
eλτ

+ (2N2λ+N1) dλ
dτ

= 0, (3.52)

which can be arranged in the form of

(
dλ

dτ

)−1

= Q1(λ)
Q2(λ) −

τ

λ
, (3.53)

where

Q1 =
(
3λ2 + 2M2λ+M1

)
eλτ + 2N2λ+N1

Q2 = λ
(
λ3 +M2λ

2 +M1λ+M0
)
eλτ .
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Taking real component of
(
dλ
dτ

)−1
at τ = τ0, with λ = iw, we have

Re

[
dλ

dτ

]−1

τ=τ0

= BRNR +BINI

N2
R +N2

I

,

where

BR = 3w2 cos τ0w0 − 2M2w
2 cos τ0w0 −M1 sin τ0w0 − 2N2w

2 − τ(w4 cos τ0w0

−M2w
2 cos τ0w0 +M2w

3 sin τ0w0 −M0w sin τ0w0);

BI = 3w3 cos τ0w0 + 2M2w
2 sin τ0w0 −M1w cos τ0w0 −N1w + τ(w4 sin τ0w0

+M2w
3 cos τ0w0 +M2

w sin τ0w0 −M0w cos τ0w0);

NR = −w5 sin τ0w0 +M2w
4 cos τ0w0 +M1w

3 sin τ0w0 −M0 cos τ0w0

NI = w5 cos τ0w0 +M2w
4 sin τ0w0 −M1w

3 cos τ0w0 −M0w
2 sin τ0w0

Observe that if C3 : BRNR + BINI 6= 0 holds, then Re
[
dλ
dτ

]−1

τ=τ0
6= 0. Following the

workings above and the Hopf bifurcation theory in [?], we have the theorem below

Theorem 3.2.4. If conditions C1−C3 hold, then the endemic equilibrium E∗(S∗, V ∗, I∗)

of the system (3.20) is locally asymptotically stable when τ ∈ [0, τ0]; the system undergoes a

Hopf bifurcation at E∗(S∗, V ∗, I∗) when τ = τ0 and a family of periodic solutions bifurcate

from E∗(S∗, V ∗, I∗).
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CHAPTER 4

NUMERICAL SIMILATIONS AND

DISCUSSIONS

Simulations to validate the analytical findings and illustrate the long term dynamics of

system (3.20) have been carried out. The parameter values are the same as the ones used

in [29] with only τ being varied with time as indicated in the figures.
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Parameter Value

Λ 4.109x103people per day

ρ 1.884x 10−3people per day

µ 2.537 x 10−5day−1

δ 4.466 x 10−1day−1

β variable day−1

κ 9.5 x 10−4day−1Estimated

ε 1.0 x 10−3day−1Assumed

ω 2.778 x 10−3day−1

γ 1.884 x 10−3day−1

Figure (4.1) shows that the disease free equilibrium is globally asymptotically stable when

Rv = 0.7692 which is clearly less than unity.

Figure (4.2) shows that the endemic equilibrium E∗(35.7321, 45.5913, 6.3217) is locally

asymptotically stable when τ ∈ [0, τ0 = 31.1725]. This is in line with Theorem 3.2.4.
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Figure 4.1: Simulation of system (3.20) shows the global stability of the disease-free

equilibrium when Rv = 0.7692

In Figure (4.2)(a), we can clearly see that when ε = 0.0127, τ = 5.76 and Rv = 4.5672,

the number of infectives are quite high as compared to Figures (4.2)(b) and (c) when

ε = 0.91855, τ = 1.257, Rv = 1.7261 and ε = 0.4123, τ = 3.1267, Rv = 3.1672 respectively.

This is a proof enough that rotavirus infections can be easily contained by introducing

vaccine with high efficacy rates and a shorter delay time .
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Figure 4.2: The effects of ε on all classes with (a) ε = 0.0127, τ = 5.76 and Rv = 4.5672,

(b) ε = 0.91855, τ = 1.257, RvS = 1.7261 and (c) ε = 0.4123, τ = 3.1267, Rv = 3.1672.

Figure 4.3: Time plots of S, V and I with τ = 36.125 > τ0 = 31.1725

Figure 4.3 that a family of periodic solutions bifurcate at E∗(35.7321, 45.5913, 6.3217).

This phenomenon is also illustrated by Figure 4.4
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Figure 4.4: Bifurcation diagrams of system (3.20) with respect to τ (a)S, (b) V and (c) I
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CHAPTER 5

CONCLUSION AND

RECOMENDATION

5.1 Conclusion

The main objective of this study was to formulate a mathematical model for rotavirus

incorporating time delay in the effects of vaccination. In this work, we have formulated a

mathematical model for rotavirus incorporating time delay in the effects of vaccination.

We have established the existence of both disease free and endemic equilibria. The disease

free equilibrium has been proved to be both locally and globally stable. The endemic

equilibria is proved to be locally stable whenever τ = 0 and undergoes a Hopf bifurcation

if τ > 0. From the analytical and simulation results, we observed that when vaccine

with low efficacy rates and a longer delay time is used there is an outbreak and when

vaccine with high efficacy rates and a shorter delay time rotavirus infections are controlled

effectively. We conclude that vaccine with high efficacy rates and a shorter delay time
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should be introduced in order to effectively control rotavirus infections.

5.2 Recommendations

From the analytical and simulation results, we recommend that policy makers and health

practitioners should plan and allocate vaccine with high efficacy rates and a shorter delay

time in order to effectively control rotavirus infections. As a future work, the endemic

equilibria is proved to be locally stable whenever τ = 0 and undergoes a Hopf bifurcation

if τ > 0. We propose that the directions of Hopf bifurcation derived in this work be

established.
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