
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338502698

Shell structure of the SU (N ) generator spectrum: interpretation as spin

angular momentum operators

Preprint · January 2020

DOI: 10.13140/RG.2.2.27713.10087

CITATIONS

0
READS

56

1 author:

Some of the authors of this publication are also working on these related projects:

The Test of Polarization States of a Semi-Classical Optical Parametric Oscillator View project

Joseph Akeyo Omolo

Maseno University

28 PUBLICATIONS   53 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Joseph Akeyo Omolo on 10 January 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/338502698_Shell_structure_of_the_SU_N_generator_spectrum_interpretation_as_spin_angular_momentum_operators?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/338502698_Shell_structure_of_the_SU_N_generator_spectrum_interpretation_as_spin_angular_momentum_operators?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Test-of-Polarization-States-of-a-Semi-Classical-Optical-Parametric-Oscillator?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joseph_Omolo?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joseph_Omolo?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Maseno_University?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joseph_Omolo?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joseph_Omolo?enrichId=rgreq-56009f01684da0c30afdca19591c1a01-XXX&enrichSource=Y292ZXJQYWdlOzMzODUwMjY5ODtBUzo4NDU3NDAyODA2NTU4NzJAMTU3ODY1MTYwNDMwMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf
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Abstract

We have established that SU(N) symmetry group generators occur in a spectrum with a
quantum structure composed of N − 1 configuration shells each containing a definite number of
symmetric and antisymmetric pairs of generators specified by quantum numbers l = 1, ..., N − 1
; m = 0, 1, ..., l. Interpreting the generators as spin angular momentum operators brings the gen-
erator spectrum to a form precisely similar to the spectrum of orbital angular momentum states
composed of orbital configuration shells containing definite numbers of orbital states specified
by orbital and magnetic quantum numbers l = 0, 1, ..., n− 1 ; m = 0,±1, ...,±l in the nth-energy
level of an atom, thus revealing that the quantum state space of an SU(N) symmetry group
corresponds directly to the quantum state space of the nth-energy level of an atom. Within each
configuration shell containing specified generators in the SU(N) generator spectrum, we have
determined the associated quadratic and Fubini-Veneziano spin angular momentum operators to
general order, which we have finally used to obtain the corresponding universal SU(N) quadratic
and Fubini-Veneziano spin operators. Basic algebraic relations of the resulting Cartan-Weyl
generators have been determined explicitly for general SU(N) symmetry groups. Considering
applications to gauge field theories, we easily establish that SU(N) gauge fields have quantum
structure corresponding directly to the SU(N) generator spectrum. We have provided elaborate
explanations of the important implications of the expanded algebraic properties and quantum
structure of the SU(N) generator spectrum to the existing SU(N) gauge field theories.

1 Introduction

In two recent articles [1 , 2], we presented an exact mathematical method for determining SU(N)
symmetry group generators and established that the generators occur in a spectrum composed of
N − 1 state transition subspaces each containing a definite number of specified generators, similar to
the electronic state configuration shells in the energy level spectrum of an atom. In particular, in [2]
where we developed the SU(N) generator spectrum property, we identified the N − 1 state transition
subspaces as focal state transition spaces (FSTS).

The SU(N) symmetry group is defined in an N -dimensional (integer N = 2, 3, 4, ....) state space
spanned by N mutually orthonormal state vectors |n⟩ , n = 1, 2, 3, ...., N , which we call group basis
vectors, defined as column matrices, i.e., N × 1 matrices, with entries 0 in all rows except entry 1 in
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the n-th row according to

|1⟩ =



1
0
0
.
.
.
0


; |2⟩ =



0
1
0
.
.
.
0


; |3⟩ =



0
0
1
.
.
.
0


; ..... ; |N − 1⟩ =



0
0
0
.
.
.
1
0


; |N⟩ =



0
0
0
.
.
.
1


(1a)

satisfying orthonormalization relation
⟨n|m⟩ = δnm (1b)

The SU(N) symmetry group generators are determined as tensor products of pair-wise coupled group
basis vectors defined in hermitian symmetric and antisymmetric forms within the respective focal
state transition spaces. We established in [2] that a focal state transition space characterized by a
group basis vector denoted by FSTS-|m⟩, m = 2, 3, ..., N , contains 2m − 1 traceless non-diagonal
and diagonal symmetric and antisymmetric generators determined explicitly as N × N matrices as
presented in the generator spectra of the SU(2) , SU(3) , SU(4) , SU(5) symmetry groups as examples.

In the present article, we follow the orbital shell interpretation suggested in [2] to provide a com-
plete shell structure of the general SU(N) generator spectrum, which includes the N−1 non-traceless
diagonal symmetric generators defined within each of the N−1 focal state transition spaces FSTS-|m⟩
of the spectrum and then proceed by taking a weighted sum of these N − 1 non-traceless diagonal
symmetric generators to determine the N × N identity matrix IN of the SU(N) symmetry group,
thus allowing us to reduce the general SU(N) generator spectrum to the standard SU(N) genera-
tor spectrum composed of the identity matrix and the standard N2 − 1 traceless non-diagonal and
diagonal symmetric and antisymmetric generators. The emerging picture suggests a reinterpretation
of the focal state transition spaces FSTS-|m⟩ as generator configuration shells containing definite
numbers of specified generators. This is now a comprehensive quantum structure in which each of the
N−1 configuration shells in an SU(N) generator spectrum is specified by a quantum number l taking
N − 1 values l = 1, ..., N − 1 and contains a definite number of generators determined in symmetric
and antisymmetric pairs specified by a quantum number m taking l + 1 values m = 0, 1, ..., l. The
emerging quantum structure of an SU(N) generator spectrum is similar to the quantum structure of
an (orbital) angular momentum state spectrum composed of orbital state configuration shells spec-
ified by orbital angular momentum quantum number l = 0, ..., n − 1 containing definite numbers of
orbital angular momentum states specified by magnetic quantum number m = 0,±1,±2, ...,±l in
the nth-energy level of an atom, leading to an important physical picture that an SU(N) generator
spectrum corresponds precisely to the orbital angular momentum state spectrum in an atomic energy
level, as we describe in detail in section 4 below.

For clarity, we have chosen to develop the quantum structure and algebraic properties of an
SU(N) generator spectrum in three interrelated stages. The purpose here is to open up our minds
to the general composition of an SU(N) generator spectrum, which, in addition to the familiar
N2 − 1 traceless generators denoted in the Gell-Mann basis by λ1, λ2, ..., λN2−1, also contains N − 1
non-traceless diagonal symmetric generators arising from the basic algebraic definition of SU(N)
generators. In this respect, we also note that, except for the presentation given in [3], the common
understanding of SU(N) generators as presented in the wider physics literature generally ignores the
N ×N identity matrix of the group. These issues become clear in the present work.
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In section 2, we present a general method for enumerating and determining SU(N) symmetry
group generators in the Gell-Mann basis specified by quantum numbers l = 1, ..., N−1 , m = 0, 1, ..., l.
The underlying algebraic property is that SU(N) symmetry group generators are determined as pairs
of hermitian symmetric and antisymmetric pair-wise tensor products of the group state basis vectors
|1⟩ , |2⟩ , ... , |N⟩. The resulting generator spectrum is then composed of the standard N2−1 traceless
symmetric and antisymmetric generators, plus the N−1 non-traceless diagonal symmetric generators,
all distributed in N − 1 configuration shells l = 1, ..., N − 1 each containing 2(l + 1) symmetric and
antisymmetric generators, which constitute a general SU(N) generator spectrum. Hence, according
to the basic algebraic definition of generators stated above, the general SU(N) generator spectrum
contains a total of N2 − 1 +N − 1 = (N − 1)(N + 2) basic generators.

In section 3, we reduce the general generator spectrum to the familiar standard SU(N) generator
spectrum by taking an appropriately weighted sum of the N − 1 non-traceless diagonal symmetric
generators to form an N × N identity matrix, which we identify as the identity generator. Each of
the N − 1 shells l = 1, ..., N − 1 in the standard SU(N) generator spectrum now contains 2l + 1
traceless symmetric and antisymmetric generators, but the spectrum is now extended to include an
l = 0 shell (0th-shell) containing the single (2 × 0 + 1 = 1) identity generator. Hence, the standard
SU(N) generator spectrum has N configuration shells l = 0, 1, ..., N − 1, each containing 2l + 1
standard generators including the identity generator, giving a total of (N2 − 1) + 1 = N2 generators.
The property that each shell specified by quantum number l = 0, 1, ..., N − 1 contains 2l + 1 brings
the quantum structure of the standard SU(N) generator spectrum into direct correspondence with
the quantum structure of orbital angular momentum state spectrum in an atomic nth-energy level
composed of configuration shells each containing 2l+1 (l = 0, 1, ..., n− 1) orbital angular momentum
states.

Section 4 contains the main results of the present work. We begin by refining the correspondence of
the SU(N) generator spectrum to the spectrum of orbital angular momentum states in the nth-energy
level of an atom noted in section 3 in a precise form, leading to a reinterpretation of SU(N) symmetry
group generators as spin angular momentum operators. The SU(N) generators in the Gell-Mann basis
are now enumerated and determined as symmetric and antisymmetric pairs of spin operators specified
by quantum numbers l , m in each of the N − 1 configuration shells l = 1, ..., N − 1, in one-to-one
correspondence with orbital angular momentum states similarly specified by a corresponding pair of
quantum numbers l , m defined in similar manner. The 2l+1 traceless generators in the lth-shell are
interpreted as components of a (2l + 1)-component lth-shell spin angular momentum vector, which
we square to determine a quadratic spin operator. The generators raised to even and odd powers
take simple forms which we use to introduce lth-shell quadratic and Fubini-Veneziano spin operators
of general order. Universal SU(N) quadratic Casimir and Fubini-Veneziano spin operators of general
order are easily determined. Finally, we identify an extended Cartan-Weyl basis, which we use to
generate basic algebraic relations for general SU(N) symmetry groups.

In section 5, we make some critical observations on the physical implications of the expanded
algebraic space and quantum structure of the SU(N) generator spectrum on the existing and new
models of SU(N) gauge field theories of elementary particle interactions. This section provides an
important algebraic foundation for reviewing the physical content of existing SU(N) gauge field
theories such as SU(2)× U(1) , SU(3)c , SU(3)c × SU(2)L × U(1)Y , SU(5)GUT , among others.
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2 Configuration shell structure in the general SU(N) gener-

ator spectrum

As in [1 , 2], we adopt the standard Gell-Mann notation λ for SU(N) symmetry group generators, but
now we reinterpret theN−1 focal state transition spaces (FSTS) in the generator spectrum introduced
in [2] as configuration shells containing definite numbers of generators specified by quantum numbers
l = 1, ..., N − 1 , m = 0, 1, ..., l, which now provides a well defined quantum picture. In this quantum
picture, a general SU(N) generator spectrum is composed of N − 1 configuration shells specified
by a shell quantum number l taking N − 1 integer values l = 1, ..., N − 1. A configuration shell
specified by a quantum number l, referred to as the lth-shell, contains a definite number 2(l + 1) of
specified generators occurring as hermitian non-diagonal or diagonal symmetric-antisymmetric pairs.
Each generator in the lth-shell is specified by the shell number l and a symmetric-antisymmetric
generator pair quantum number m taking l + 1 values m = 0, 1, ..., l. Specifically, in the Gell-Mann
notation λ, the lth-shell specified by l = 1, ..., N − 1, contains 2l hermitian non-diagonal generators
occurring as l symmetric-antisymmetric pairs (λl2+2m , λl2+2m+1) specified by the shell quantum
number l and the symmetric-antisymmetric pair quantum number m = 0, 1, ..., l−1, plus 2 hermitian
diagonal generators occurring as 1 symmetric-antisymmetric pair (λl2+2l , I l2+2l) specified by the shell
quantum number l and the symmetric-antisymmetric pair quantum number m = l. The quantum
number specification of the symmetric-antisymmetry generator pairs in each of the N − 1 shells
l = 1, ..., N − 1 enumerates all the standard traceless non-diagonal and diagonal SU(N) generators in
the Gell-Mann basis in the expected serial order λ1, λ2, ..., λN2−1 as we demonstrate below in worked
examples.

There are 2l traceless non-diagonal symmetric and antisymmetric generators, 1 traceless diagonal
antisymmetric generator and 1 non-traceless diagonal symmetric generator, making the specified
total of 2(l+1) symmetric and antisymmetric generators in the lth-shell. The l traceless non-diagonal
symmetric and antisymmetric generator pairs (λl2+2m , λl2+2m+1) specified by the l pair quantum
numbers m = 0, 1, ..., l − 1 are determined as non-diagonal tensor products of the pair-wise coupled
state basis vectors |m+ 1⟩ and |l + 1⟩ obtained in hermitian form

l = 1, ..., N − 1 ; m = 0, 1, ..., l − 1

λl2+2m = |m+ 1⟩⟨l + 1|+ |l + 1⟩⟨m+ 1| ; λl2+2m+1 = −i( |m+ 1⟩⟨l + 1| − |l + 1⟩⟨m+ 1| ) (2ai)

The traceless diagonal antisymmetric generator and its non-traceless diagonal symmetric partner
occur atm = l as the last antisymmetric and symmetric pair (λl2+2l , I l2+2l) determined as normalized
superpositions of diagonal tensor products of the pair-wise coupled state basis vectors |m + 1⟩ and
|l + 1⟩ obtained in hermitian form

l = 1, ..., N − 1 ; m = l

λl2+2l =
1√

1
2
l(l + 1)

l−1∑
m=0

( |m+ 1⟩⟨m+ 1| − |l + 1⟩⟨l + 1| )

I l2+2l =
1√

1
2
l(l + 1)

l−1∑
m=0

( |m+ 1⟩⟨m+ 1|+ |l + 1⟩⟨l + 1| ) (2aii)

We note that in the algebraic method of enumerating and determining generators as symmetric-
antisymmetric pairs in equations (2ai)-(2aii), non-diagonal symmetric generators are enumerated as
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λl2+2m, while their partner antisymmetric generators are enumerated as λl2+2m+1 for m = 0, ..., l−1 as
specified in equation (2ai), but for the diagonal symmetric-antisymmetric pair specified by m = l, we
have reorganized the enumeration for the traceless diagonal antisymmetric generator as λl2+2l as given
in equation (2aii) to agree with the standard Gell-Mann notation, while for the partner non-traceless
diagonal symmetric generator, we have introduced an appropriate notation I l2+2l, which will prove
convenient in the determination and algebraic interpretation of the N ×N identity matrix IN as an
identity generator of a standard SU(N) symmetry group in the next section.

Using equations (2ai)-(2aii), we run through all the l + 1 values of the symmetric-antisymmetric
generator pair quantum number m = 0, 1, ..., l to enumerate and determine in explicit forms all the
2(l + 1) symmetric and antisymmetric generators λ2

l , λl2+1, λl2+2, ..., λl2+2l, I l2+2l in the lth-shell of a
general SU(N) generator spectrum as presented below, where we have used abbreviation PRST-|l+1⟩
for the principal state basis vector which characterizes the lth-shell :

Generators in the lth-shell of a general SU(N) spectrum : N − 1 shells, l = 1, ..., N − 1

lth − shell : PRST − |l + 1⟩



m = 0 : λl2 = |1⟩⟨l + 1|+ |l + 1⟩⟨1|
λl2+1 = −i( |1⟩⟨l + 1| − |l + 1⟩⟨1| )

m = 1 : λl2+2 = |2⟩⟨l + 1|+ |l + 1⟩⟨2|
λl2+3 = −i( |2⟩⟨l + 1| − |l + 1⟩⟨2| )

........

........

........

m = l − 1 : λl2+2(l−1) = |l⟩⟨l + 1|+ |l + 1⟩⟨l|
λl2+2l−1 = −i( |l⟩⟨l + 1| − |l + 1⟩⟨l| )

m = l : λl2+2l =
1√

1
2
l(l+1)

∑l−1
m=0 |m+ 1⟩⟨m+ 1| − |l + 1⟩⟨l + 1|

I l2+2l =
1√

1
2
l(l+1)

∑l−1
m=0 |m+ 1⟩⟨m+ 1|+ |l + 1⟩⟨l + 1|

(2b)

In the Gell-Mann basis, the generators expressed in tensor product forms are evaluated in explicit
N ×N matrix forms using the definitions of the SU(N) symmetry group basis vectors |1⟩ , |2⟩ , ... ,
|N⟩ given in equation (1a), which we present in the general SU(2) , SU(3) , SU(4) , SU(5) generator
spectra as examples in the next subsection.

2.1 Shell structure of the general SU(2) , SU(3) , SU(4) , SU(5) generator
spectra

Let us now give examples to enumerate and determine generators in the configuration shells of the
general generator spectra of the SU(2) , SU(3) , SU(4) and SU(5) symmetry groups which have been
generally used in formulating gauge theories of particle interactions in quantum field theory. The
general generator spectrum of each symmetry group SU(2) , SU(3) , SU(4) , SU(5) is composed of
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N − 1 shells, specified by shell numbers l = 1, ..., N − 1. All the 2(l+ 1) symmetric and antisymmet-
ric generators in each shell are enumerated and determined explicitly by setting the shell quantum
numbers l = 1, ..., N − 1 as appropriate in the tensor product forms given in equation (2b) and using
the definitions of group basis vectors |1⟩ , |2⟩ , ... , |N⟩ given in equation (1a) to evaluate the tensor
products in N × N matrix forms. Since each of the N − 1 shells contains 2(l + 1) generators, the
total number of symmetric and antisymmetric generators in a general SU(N) generator spectrum
is obtained as

∑N−1
l=1 2(l + 1) = (N − 1)(N + 2), composed of the familiar

∑N−1
l=1 (2l + 1) = N2 − 1

traceless non-diagonal and diagonal symmetric-antisymmetric generators λ1 , λ2 , ... , λN2−1 and the
N − 1 non-traceless diagonal symmetric generators I3 , ... , IN2−1 introduced in the present work as
we determine below for the SU(2) , SU(3) , SU(4) and SU(5) symmetry groups. For each symmetry
group, we have presented the calculations in full detail in the equally useful operator forms, skipping
only the straightforward evaluations of the tensor products giving the matrix forms.

2.1.1 General SU(2) generator spectrum

N = 2 : no. of shells = 1 : shell numbers l = 1

group basis vectors : |1⟩ =
(
1
0

)
; |2⟩ =

(
0
1

)
(2ci)

The general SU(2) generator spectrum is composed of 2−1 = 1 configuration shell specified by l = 1.
This single 1st-shell contains 1 + 1 = 2 pairs of symmetric and antisymmetric generators specified by
pair numbers m = 0, 1. The m = 0 pair are enumerated and determined by setting l = 1 in equation
(2b) as λ1 = |1⟩⟨2| + |2⟩⟨1| , λ2 = −i( |1⟩⟨2| − |2⟩⟨1| ), while the m = 1 pair are enumerated and
determined by setting l = 1 in the last pair in equation (2b) as λ3 = 1√

1
2
1(1+1)

(
∑1−1

m=0 |m + 1⟩⟨m +

1| − |2⟩⟨2| ) = |1⟩⟨1| − |2⟩⟨2| , I3 = 1√
1
2
1(1+1)

(
∑1−1

m=0 |m + 1⟩⟨m + 1| + |2⟩⟨2| ) = |1⟩⟨1| + |2⟩⟨2|. We

use the definitions of the SU(2) group basis vectors given in equation (2ci) above to evaluate the
tensor products explicitly as 2 × 2 matrices. The (2 − 1)(2 + 2) = 4 symmetric and antisymmetric
generators λ1, λ2, λ3, I3 contained in the single 1st-shell of the general SU(2) generator spectrum are
presented below, where the principal group basis vector characterizing the 1st-shell is abbreviated as
PRST-|1 + 1⟩=PRST-|2⟩.

General SU(2) generator spectrum : single shell, l = 1

1st − shell : PRST − |2⟩


m = 0 : λ1 =

(
0 1
1 0

)
; λ2 =

(
0 −i
i 0

)
m = 1 : λ3 =

(
1 0
0 −1

)
; I3 =

(
1 0
0 1

)
(2cii)
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2.1.2 General SU(3) generator spectrum

N = 3 : no. of shells = 2 : shell numbers l = 1 , 2

group basis vectors : |1⟩ =

 1
0
0

 ; |2⟩ =

 0
1
0

 ; |3⟩ =

 0
0
1

 (2di)

The general SU(3) generator spectrum is composed of 3 − 1 = 2 configuration shells specified by
l = 1 , 2.

The 1st-shell contains 1+1 = 2 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1 ; the m = 0 pair are enumerated and determined by setting l = 1 in equation (2b)
as λ1 = |1⟩⟨2|+ |2⟩⟨1| , λ2 = −i( |1⟩⟨2|−|2⟩⟨1| ), while the m = 1 pair are enumerated and determined
by setting l = 1 in the last pair in equation (2b) as λ3 =

1√
1
2
1(1+1)

(
∑1−1

m=0 |m+ 1⟩⟨m+ 1| − |2⟩⟨2| ) =

|1⟩⟨1| − |2⟩⟨2| , I3 = 1√
1
2
1(1+1)

(
∑1−1

m=0 |m+ 1⟩⟨m+ 1|+ |2⟩⟨2| ) = |1⟩⟨1|+ |2⟩⟨2|.

The 2nd-shell contains 2+1 = 3 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1, 2 ; the m = 0 pair are enumerated and determined by setting l = 2 in equation
(2b) as λ4 = |1⟩⟨3|+ |3⟩⟨1| , λ5 = −i( |1⟩⟨3|− |3⟩⟨1| ), the m = 1 pair are enumerated and determined
by setting l = 2 in the second pair in equation (2b) as λ6 = |2⟩⟨3|+ |3⟩⟨2| , λ7 = −i( |2⟩⟨3| − |3⟩⟨2| ),
while the m = 2 pair are enumerated and determined by setting l = 2 in the last pair in equation
(2b) as λ8 =

1√
1
2
2(2+1)

(
∑2−1

m=0 |m+ 1⟩⟨m+ 1| − |3⟩⟨3| ) = 1√
3
( ( |1⟩⟨1| − |3⟩⟨3| ) + ( |2⟩⟨2| − |3⟩⟨3| ) )

, I8 = 1√
1
2
2(2+1)

(
∑2−1

m=0 |m + 1⟩⟨m + 1| + |3⟩⟨3| ) = 1√
3
( ( |1⟩⟨1| + |3⟩⟨3| ) + ( |2⟩⟨2| + |3⟩⟨3| ) ). We

use the definitions of the SU(3) group basis vectors given in equation (2di) above to evaluate the
tensor products explicitly as 3 × 3 matrices. The (3 − 1)(3 + 2) = 10 symmetric and antisymmetric
generators λ1, λ2, λ3, I3, ..., λ8, I8 contained in the 2 shells of the general SU(3) generator spectrum
are presented below, where the principal group basis vectors characterizing the 1st and 2nd shells are
abbreviated as PRST-|1 + 1⟩=PRST-|2⟩ and PRST-|2 + 1⟩=PRST-|3⟩, respectively.

General SU(3) generator spectrum : 2 shells, l = 1, 2

1st − shell : PRST − |2⟩



m = 0 : λ1 =

 0 1 0
1 0 0
0 0 0

 ; λ2 =

 0 −i 0
i 0 0
0 0 0


m = 1 : λ3 =

 1 0 0
0 −1 0
0 0 0

 ; I3 =

 1 0 0
0 1 0
0 0 0


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2nd − shell : PRST − |3⟩



m = 0 : λ4 =

 0 0 1
0 0 0
1 0 0

 ; λ5 =

 0 0 −i
0 0 0
i 0 0


m = 1 : λ6 =

 0 0 0
0 0 1
0 1 0

 ; λ7 =

 0 0 0
0 0 −i
0 i 0


m = 2 : λ8 =

1√
3

 1 0 0
0 1 0
0 0 −2

 ; I8 =
1√
3

 1 0 0
0 1 0
0 0 2


(2dii)

2.1.3 General SU(4) generator spectrum

N = 4 : number of shells = 3 : shell numbers l = 1, 2, 3

group basis vectors : |1⟩ =


1
0
0
0

 ; |2⟩ =


0
1
0
0

 ; |3⟩ =


0
0
1
0

 ; |4⟩ =


0
0
0
1

 (2ei)

The general SU(4) generator spectrum is composed of 4 − 1 = 3 configuration shells specified by
l = 1, 2, 3.

The 1st-shell contains 1+1 = 2 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1 ; the m = 0 pair are enumerated and determined by setting l = 1 in equation (2b)
as λ1 = |1⟩⟨2|+ |2⟩⟨1| , λ2 = −i( |1⟩⟨2|−|2⟩⟨1| ), while the m = 1 pair are enumerated and determined
by setting l = 1 in the last pair in equation (2b) as λ3 =

1√
1
2
1(1+1)

(
∑1−1

m=0 |m+ 1⟩⟨m+ 1| − |2⟩⟨2| ) =

|1⟩⟨1| − |2⟩⟨2| , I3 = 1√
1
2
1(1+1)

(
∑1−1

m=0 |m+ 1⟩⟨m+ 1|+ |2⟩⟨2| ) = |1⟩⟨1|+ |2⟩⟨2|.

The 2nd-shell contains 2+1 = 3 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1, 2 ; the m = 0 pair are enumerated and determined by setting l = 2 in equation
(2b) as λ4 = |1⟩⟨3|+ |3⟩⟨1| , λ5 = −i( |1⟩⟨3|− |3⟩⟨1| ), the m = 1 pair are enumerated and determined
by setting l = 2 in the second pair in equation (2b) as λ6 = |2⟩⟨3|+ |3⟩⟨2| , λ7 = −i( |2⟩⟨3| − |3⟩⟨2| ),
while the m = 2 pair are enumerated and determined by setting l = 2 in the last pair in equation
(2b) as λ8 =

1√
1
2
2(2+1)

(
∑2−1

m=0 |m+ 1⟩⟨m+ 1| − |3⟩⟨3| ) = 1√
3
( ( |1⟩⟨1| − |3⟩⟨3| ) + ( |2⟩⟨2| − |3⟩⟨3| ) ) ,

I8 =
1√

1
2
2(2+1)

(
∑2−1

m=0 |m+ 1⟩⟨m+ 1|+ |3⟩⟨3| ) = 1√
3
( ( |1⟩⟨1|+ |3⟩⟨3| ) + ( |2⟩⟨2|+ |3⟩⟨3| ) ).

The 3rd-shell contains 3+1 = 4 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1, 2, 3 ; the m = 0 pair are enumerated and determined by setting l = 3 in equation
(2b) as λ9 = |1⟩⟨4|+ |4⟩⟨1| , λ10 = −i( |1⟩⟨4|−|4⟩⟨1| ), the m = 1 pair are enumerated and determined
by setting l = 3 in the second pair in equation (2b) as λ11 = |2⟩⟨4|+ |4⟩⟨2| , λ12 = −i( |2⟩⟨4|− |4⟩⟨2| ),
the m = 2 pair are enumerated and determined by setting l = 3 in the third pair (not indicated) in
equation (2c) as λ13 = |3⟩⟨4|+ |4⟩⟨3| , λ14 = −i( |3⟩⟨4|− |4⟩⟨3| ), while the m = 3 pair are enumerated
and determined by setting l = 3 in the last pair in equation (2b) as λ15 = 1√

1
2
3(3+1)

(
∑3−1

m=0 |m +
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1⟩⟨m + 1| − |4⟩⟨4| ) = 1√
6
( ( |1⟩⟨1| − |4⟩⟨4| ) + ( |2⟩⟨2| − |4⟩⟨4| ) ) + ( |3⟩⟨3| − |4⟩⟨4| ) ) , I15 =

1√
1
2
3(3+1)

(
∑3−1

m=0 |m+1⟩⟨m+1|+|4⟩⟨4| ) = 1√
6
( ( |1⟩⟨1|+|4⟩⟨4| )+( |2⟩⟨2|+|4⟩⟨4| ) )+( |3⟩⟨3|+|4⟩⟨4| ) ).

We use the definitions of the SU(4) group basis vectors given in equation (2ei) above to evaluate the
tensor products explicitly as 4 × 4 matrices. The (4 − 1)(4 + 2) = 18 symmetric and antisymmetric
generators λ1, λ2, λ3, I3, ..., λ15, I15 contained in the 3 shells of the general SU(4) generator spectrum
are presented below, where the principal group basis vectors characterizing the 1st , 2nd and 3rd shells
are abbreviated as PRST-|1+1⟩=PRST-|2⟩ , PRST-|2+1⟩=PRST-|3⟩ and PRST-|3+1⟩=PRST-|4⟩,
respectively.

General SU(4) generator spectrum : 3 shells, l = 1, 2, 3

1st − shell : PRST − |2⟩



m = 0 : λ1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ; λ2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0



m = 1 : λ3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ; I3 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



2nd − shell : PRST − |3⟩



m = 0 : λ4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ; λ5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0



m = 1 : λ6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ; λ7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0



m = 2 : λ8 =
1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 ; I8 =
1√
3


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 0


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3rd − shell : PRST − |4⟩



m = 0 : λ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ; λ10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0



m = 1 : λ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 ; λ12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0



m = 2 : λ13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 ; λ14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0



m = 3 : λ15 =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 ; I15 =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3


(2eii)

2.1.4 General SU(5) generator spectrum

N = 5 : number of shells = 4 : shell numbers l = 1, 2, 3, 4

group basis vectors : |1⟩ =


1
0
0
0
0

 ; |2⟩ =


0
1
0
0
0

 ; |3⟩ =


0
0
1
0
0

 ; |4⟩ =


0
0
0
1
0

 ; |5⟩ =


0
0
0
0
1

 (2fi)

The general SU(5) generator spectrum is composed of 5 − 1 = 4 configuration shells specified by
l = 1, 2, 3, 4.

The 1st-shell contains 1+1 = 2 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1 ; the m = 0 pair are enumerated and determined by setting l = 1 in equation (2b)
as λ1 = |1⟩⟨2|+ |2⟩⟨1| , λ2 = −i( |1⟩⟨2|−|2⟩⟨1| ), while the m = 1 pair are enumerated and determined
by setting l = 1 in the last pair in equation (2b) as λ3 =

1√
1
2
1(1+1)

(
∑1−1

m=0 |m+ 1⟩⟨m+ 1| − |2⟩⟨2| ) =

|1⟩⟨1| − |2⟩⟨2| , I3 = 1√
1
2
1(1+1)

(
∑1−1

m=0 |m+ 1⟩⟨m+ 1|+ |2⟩⟨2| ) = |1⟩⟨1|+ |2⟩⟨2|.

The 2nd-shell contains 2+1 = 3 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1, 2 ; the m = 0 pair are enumerated and determined by setting l = 2 in equation
(2b) as λ4 = |1⟩⟨3|+ |3⟩⟨1| , λ5 = −i( |1⟩⟨3|− |3⟩⟨1| ), the m = 1 pair are enumerated and determined
by setting l = 2 in the second pair in equation (2b) as λ6 = |2⟩⟨3|+ |3⟩⟨2| , λ7 = −i( |2⟩⟨3| − |3⟩⟨2| ),
while the m = 2 pair are enumerated and determined by setting l = 2 in the last pair in equation
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(2b) as λ8 =
1√

1
2
2(2+1)

(
∑2−1

m=0 |m+ 1⟩⟨m+ 1| − |3⟩⟨3| ) = 1√
3
( ( |1⟩⟨1| − |3⟩⟨3| ) + ( |2|⟨2| − |3⟩⟨3| ) ) ,

I8 =
1√

1
2
2(2+1)

(
∑2−1

m=0 |m+ 1⟩⟨m+ 1|+ |3⟩⟨3| ) = 1√
3
( ( |1⟩⟨1|+ |3⟩⟨3| ) + ( |2⟩⟨2|+ |3⟩⟨3| ) ).

The 3rd-shell contains 3+1 = 4 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1, 2, 3 ; the m = 0 pair are enumerated and determined by setting l = 3 in equation
(2b) as λ9 = |1⟩⟨4|+ |4⟩⟨1| , λ10 = −i( |1⟩⟨4|−|4⟩⟨1| ), the m = 1 pair are enumerated and determined
by setting l = 3 in the second pair in equation (2b) as λ11 = |2⟩⟨4|+ |4⟩⟨2| , λ12 = −i( |2⟩⟨4|− |4⟩⟨2| ),
the m = 2 pair are enumerated and determined by setting l = 3 in the third pair (not indicated) in
equation (2c) as λ13 = |3⟩⟨4|+ |4⟩⟨3| , λ14 = −i( |3⟩⟨4|− |4⟩⟨3| ), while the m = 3 pair are enumerated
and determined by setting l = 3 in the last pair in equation (2b) as λ15 = 1√

1
2
3(3+1)

(
∑3−1

m=0 |m +

1⟩⟨m + 1| − |4⟩⟨4| ) = 1√
6
( ( |1⟩⟨1| − |4⟩⟨4| ) + ( |2⟩⟨2| − |4⟩⟨4| ) ) + ( |3⟩⟨3| − |4⟩⟨4| ) ) , I15 =

1√
1
2
3(3+1)

(
∑3−1

m=0 |m+1⟩⟨m+1|+|4⟩⟨4| ) = 1√
6
( ( |1⟩⟨1|+|4⟩⟨4| )+( |2⟩⟨2|+|4⟩⟨4| ) )+( |3⟩⟨3|+|4⟩⟨4| ) ).

The 4th-shell contains 4+1 = 5 pairs of symmetric and antisymmetric generators specified by pair
numbers m = 0, 1, 2, 3, 4 ; the m = 0 pair are enumerated and determined by setting l = 4 in equation
(2b) as λ16 = |1⟩⟨5|+|5⟩⟨1| , λ17 = −i( |1⟩⟨5|−|5⟩⟨1| ), the m = 1 pair are enumerated and determined
by setting l = 4 in the second pair in equation (2b) as λ18 = |2⟩⟨5|+ |5⟩⟨2| , λ19 = −i( |2⟩⟨5|− |5⟩⟨2| ),
the m = 2 pair are enumerated and determined by setting l = 4 in the third (not indicated) pair in
equation (2b) as λ20 = |3⟩⟨5|+ |5⟩⟨3| , λ21 = −i( |3⟩⟨5| − |5⟩⟨3| ), the m = 3 pair are enumerated and
determined by setting l = 4 in the fourth pair (not indicated) in equation (2b) as λ22 = |4⟩⟨5|+ |5⟩⟨4| ,
λ23 = −i( |4⟩⟨5|−|5⟩⟨4| ), while the m = 4 pair are enumerated and determined by setting l = 4 in the
last pair in equation (2b) as λ24 =

1√
1
2
4(4+1)

(
∑4−1

m=0 |m+1⟩⟨m+1|− |5⟩⟨5| ) = 1√
10
( ( |1⟩⟨1|− |5⟩⟨5| )+

( |2⟩⟨2| − |5⟩⟨5| ) ) + ( |3⟩⟨3| − |5⟩⟨5| ) ) + ( |4⟩⟨4| − |5⟩⟨5| ) ) , I24 = 1√
1
2
4(4+1)

(
∑4−1

m=0 |m + 1⟩⟨m +

1|+ |5⟩⟨5| ) = 1√
10
( ( |1⟩⟨1|+ |5⟩⟨5| ) + ( |2⟩⟨2|+ |5⟩⟨5| ) ) + ( |3⟩⟨3|+ |5⟩⟨5| ) ) + ( |4⟩⟨4|+ |5⟩⟨5| ) ).

We use the definitions of the SU(5) group basis vectors given in equation (2fi) above to evaluate the
tensor products explicitly as 5 × 5 matrices. The (5 − 1)(5 + 2) = 28 symmetric and antisymmetric
generators λ1, λ2, λ3, I3, ..., λ24, I24 contained in the 4 shells of the general SU(5) generator spectrum
are presented below, where the principal group basis vectors characterizing the 1st , 2nd , 3rd and 4th

shells are abbreviated as PRST-|1+1⟩=PRST-|2⟩ , PRST-|2+1⟩=PRST-|3⟩ , PRST-|3+1⟩=PRST-|4⟩
and PRST-|4 + 1⟩=PRST-|5⟩, respectively.

General SU(5) generator spectrum : 4 shells, l = 1, 2, 3, 4

1st − shell : PRST − |2⟩



m = 0 : λ1 =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; λ2 =


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



m = 1 : λ3 =


1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; I3 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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2nd − shell : PRST − |3⟩



m = 0 : λ4 =


0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; λ5 =


0 0 −i 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0



m = 1 : λ6 =


0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; λ7 =


0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0



m = 2 : λ8 =
1√
3


1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0

 ; I8 =
1√
3


1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0



3rd − shell : PRST − |4⟩



m = 0 : λ9 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 ; λ10 =


0 0 0 −i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0



m = 1 : λ11 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 ; λ12 =


0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0



m = 2 : λ13 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 ; λ14 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0



m = 3 : λ15 =
1√
6


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 0

 ; I15 =
1√
6


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 0


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4th−shell : PRST −|5⟩



m = 0 : λ16 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ; λ17 =


0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0



m = 1 : λ18 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 ; λ19 =


0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0



m = 2 : λ20 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 ; λ21 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 i 0 0



m = 3 : λ22 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 ; λ23 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0



m = 4 : λ24 =
1√
10


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4

 ; I24 =
1√
10


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 4


(2fii)

The SU(2) , SU(3) , SU(4) , SU(5) generator spectra which we have enumerated and determined
explicitly in the Gell-Mann basis in equations (2cii) , (2dii) , (2eii) , (2fii) display the property
that a general SU(N) generator spectrum is composed of the standard N2 − 1 hermitian symmetric
and antisymmetric traceless generators λ1, λ2, ..., λN2−1 plus N −1 hermitian non-traceless symmetric
generators I l2+2l , l = 1, ..., N − 1. According to the basic algebraic method for enumerating and
determining generators in non-diagonal and diagonal symmetric and antisymmetric pairs given in
equations (2ai) , (2aii), the generators I l2+2l are the symmetric partners of the standard N − 1
traceless diagonal antisymmetric generators λl2+2l , l = 1, ..., N − 1 as displayed in the SU(2) , SU(3)
, SU(4) , SU(5) spectra in equations (2cii) , (2dii) , (2eii) , (2fii). It is then clear that the N − 1
hermitian non-traceless symmetric generators I l2+2l , l = 1, ..., N −1 are part of the general generator
spectrum of an SU(N) symmetry group, which cannot just be ignored without proper mathematical
or physical justification.

In the next section, we demonstrate how the non-traceless symmetric generators I l can be summed
up into the identity matrix to reduce the general SU(N) generator spectrum to the familiar standard
SU(N) generator spectrum, while in section 4 where we reinterpret the SU(N) generators as spin
angular momentum operators, we restore the generators I l2+2l back into the SU(N) generator spec-
trum, noting that they satisfy Cartan subalgebra and therefore identify them as Cartan generators in
an extended Cartan-Weyl basis.
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3 Configuration shell structure in the standard SU(N) gen-

erator spectrum

The enumeration of the general SU(N) generator spectrum which we have developed here differs
significantly from standard descriptions, which consider only the N2 − 1 traceless symmetric and
antisymmetric N ×N matrices λ1 , λ2 , λ3 , ... , λN2−2 , λN2−1, composed of N(N − 1) non-diagonal
and N−1 diagonal matrices, as the standard generators of an SU(N) symmetry group. The algebraic
property we have applied here for enumerating and determining SU(N) symmetry group generators as
non-diagonal and diagonal hermitian symmetric-antisymmetric pairs according to the formula given
in equations (2ai)-(2aii) identifies and includes the N−1 non-traceless diagonal symmetric generators
I l2+2l as the symmetric partners of the traceless diagonal antisymmetric generators λl2+2l in each shell
l = 1, ..., N − 1 of a general SU(N) generator spectrum.

To reduce the unfamiliar general SU(N) generator spectrum determined in general form in equa-
tions (2a)-(2b) to the standard SU(N) generator spectrum, we apply an important algebraic property
that the N−1 non-traceless diagonal symmetric generators I l2+2l can be combined as a weighted sum
to form the N ×N identity matrix IN of the SU(N) symmetry group according to

1

N − 1

N−1∑
l=1

√
1

2
l(l + 1) I l2+2l = IN ; N ≥ 2 ; IN = N ×N identity matrix (3a)

We may then drop the N − 1 non-traceless diagonal symmetric generators I l2+2l from the respective
N−1 shells as specified in equation (2c) and effectively represent them by the resultant group identity
matrix IN , which we identify as an identity generator λ0 determined as

λ0 = IN ⇒ λ0 =
1

N − 1

N−1∑
l=1

√
1

2
l(l + 1) I l2+2l ; N ≥ 2 (3b)

Considering that the N − 1 non-traceless diagonal symmetric generators I l2+2l, l = 1, ..., N − 1 are
absorbed in the definition of the identity matrix IN and therefore replacing them with the identity
generator λ0 = IN reduces the general SU(N) generator spectrum in equation (2b) to a standard
SU(N) generator spectrum composed of the familiar N2 − 1 traceless generators in the Gell-Mann
basis λ1 , λ2 , λ3 , ... , λN2−2 , λN2−1 and the identity generator λ0.

Due to its unique algebraic property that it is non-traceless and commutes with all the other
N2 − 1 traceless generators, the identity generator λ0 is placed in a separate shell, which we classify
as the 0th-shell, for consistency in the enumeration of the definite numbers of specified generators in
each of the N − 1 + 1 = N configuration shells of the resulting standard SU(N) generator spectrum.

Dropping the non-traceless diagonal symmetric generator I l2+2l from the lth-shell of the general
SU(N) generator spectrum in equation (2b) and introducing the 0th-shell containing the identity
generator λ0 = IN , we obtain the expected standard SU(N) generator spectrum presented here in
the general form:
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Generators in the lth-shell of a standard SU(N) spectrum : N shells, l = 1, ..., N − 1

0th−shell : PRST−|1⟩ m = 0 : λ0 = IN

lth− shell, l ̸= 0 : PRST −|l+1⟩



m = 0 : λl2 = |1⟩⟨l + 1|+ |l + 1⟩⟨1|
λl2+1 = −i( |1⟩⟨l + 1| − |l + 1⟩⟨1| )

m = 1 : λl2+2 = |2⟩⟨l + 1|+ |l + 1⟩⟨2|
λl2+3 = −i( |2⟩⟨l + 1| − |l + 1⟩⟨2| )

........

........

........

m = l − 1 : λl2+2(l−1) = |l⟩⟨l + 1|+ |l + 1⟩⟨l|
λl2+2l−1 = −i( |l⟩⟨l + 1| − |l + 1⟩⟨l| )

m = l : λl2+2l =
1√

1
2
l(l+1)

∑l−1
m=0 |m+ 1⟩⟨m+ 1| − |l + 1⟩⟨l + 1|

(3c)

The quantum structure of a standard SU(N) generator spectrum is composed of N shells specified
by a quantum number l taking N integer values l = 0, 1, ..., N−1. In each of the N shells specified by
a quantum number l, the generators are distributed as symmetric-antisymmetric pairs specified by a
symmetric-antisymmetric generator pair quantum number m taking l+1 integer values m = 0, 1, ..., l.
Since the symmetric partner of the antisymmetric diagonal generator λl2+2l , l ̸= 0, is contained
in the identity generator λ0 in the 0th-shell, each of the N shells specified by a quantum number
l = 0, 1, ..., N − 1 contains 2l + 1 generators as demonstrated in the standard SU(N) generator
spectrum in equation (3c) above. The total number of generators in the standard SU(N) generator
spectrum is therefore obtained as

∑N−1
l=0 (2l+1) = N2, consisting of the single (1) identity generator λ0

and the familiar N2−1 traceless non-diagonal and diagonal symmetric and antisymmetric generators
λ1 , λ2 , ... , λN2−1. We note that the enumeration of the N2 − 1 traceless non-diagonal and diagonal
symmetric and antisymmetric generators λ1 , λ2 , ... , λN2−1, together with the N×N identity matrix
IN , as a complete set of SU(N) generators has also been presented in general form in [3], but without
the quantum structure which we have developed here and earlier in [2].

Using the explicit forms of the N − 1 non-traceless generators I l2+2l, l = 1, ..., N − 1 already
determined in the general SU(2) , SU(3) , SU(4) , SU(5) generator spectra in equations (2cii) ,
(2dii) , (2eii) , (2fii) to determine the respective identity generators λ0 according to the definition
in equation (3b), we take account of the explicit forms of the N2 − 1 traceless generators λ1 , λ2 , ...
, λN2−1 already determined in equations (2cii) , (2dii) , (2eii) , (2fii), to present the shell structure
of the standard SU(2) , SU(3) , SU(4) , SU(5) generator spectra as examples below.

3.1 Shell structure of the standard SU(2) generator spectrum

N = 2 : no. of shells = 2 : shell numbers l = 0 , 1

The group basis vectors |1⟩ , |2⟩ are defined in equation (2ci).
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Using equation (3b) with the non-traceless generator I3 already determined in equation (2cii), we
determine the SU(2) identity generator λ0 in the form

λ0 = I3 =
(
1 0
0 1

)
(3di)

which taken together with the 22 − 1 = 3 generators λ1, λ2, λ3 already determined in equation (2cii)
constitute the standard SU(2) generator spectrum presented below for ease of reference.

Standard SU(2) generator spectrum : 2 shells, l = 0, 1

0th − shell : PRST − |1⟩ : m = 0 λ0

1st − shell : PRST − |2⟩
{
m = 0 : λ1 ; λ2

m = 1 : λ3

(3dii)

3.2 Shell structure of the standard SU(3) generator spectrum

N = 3 : no. of shells = 3 : shell numbers l = 0, 1, 2

The group basis vectors |1⟩ , |2⟩ , |3⟩ are defined in equation (2di).
Using equation (3b) with the non-traceless generators I3 , I8 already determined in equation (2dii),

we determine the SU(3) identity operator λ0 in the form

λ0 =
1

2
( I3 +

√
3 I8 ) =

 1 0 0
0 1 0
0 0 1

 (3ei)

which taken together with the 32−1 = 8 generators λ1, λ2, λ3, ......, λ7, λ8 already determined in equa-
tion (2dii) constitute the standard SU(3) generator spectrum presented below for ease of reference.

Standard SU(3) generator spectrum : 3 shells, l = 0, 1, 2

0th − shell : PRST − |1⟩ : m = 0 λ0

1st − shell : PRST − |2⟩
{
m = 0 : λ1 ; λ2

m = 1 : λ3

2nd − shell : PRST − |3⟩


m = 0 : λ4 ; λ5

m = 1 : λ6 ; λ7

m = 2 : λ8

(3eii)
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3.3 Shell structure of the standard SU(4) generator spectrum

N = 4 : number of shells = 4 : shell numbers l = 0, 1, 2, 3

The group basis vectors |1⟩ , |2⟩ , |3⟩ , |4⟩ are defined in equation (2ei).
Using equation (3b) with the non-traceless generators I3 , I8 , I15 already determined in equation

(2eii), we determine the SU(4) identity operator λ0 in the form

λ0 =
1

3
( I3 +

√
3 I8 +

√
6 I15 ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3fi)

which taken together with the 42 − 1 = 15 generators λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, ....., λ13, λ14, λ15 al-
ready determined in equation (2eii) constitute the standard SU(4) generator spectrum presented
below for ease of reference.

The standard SU(4) generator spectrum : 4 shells, l = 0, 1, 2, 3

0th − shell : PRST − |1⟩ : m = 0 λ0

1st − shell : PRST − |2⟩
{
m = 0 : λ1 ; λ2

m = 1 : λ3

2nd − shell : PRST − |3⟩


m = 0 : λ4 ; λ5

m = 1 : λ6 ; λ7

m = 2 : λ8

3rd − shell : PRST − |4⟩


m = 0 : λ9 ; λ10

m = 1 : λ11 ; λ12

m = 2 : λ13 ; λ14

m = 3 : λ15

(3fii)

3.4 Shell structure of the standard SU(5) generator spectrum

N = 5 : number of shells = 5 : shell numbers l = 0, 1, 2, 3, 4

The group basis vectors |1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩ are defined in equation (2fi).
Using equation (3b) with the non-traceless generators I3 , I8 , I15 , I24 already determined in

equation (2fii), we determine the SU(5) identity generator λ0 in the form

λ0 =
1

4
( I3 +

√
3 I8 +

√
6 I15 +

√
10 I24 ) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (3gi)
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which taken together with the 52 − 1 = 24 generators λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, ....., λ22, λ23, λ24 al-
ready determined in equation (2fii) constitute the standard SU(5) generator spectrum presented
below for ease of reference.

The standard SU(5) generator spectrum : 5 shells, l = 0, 1, 2, 3, 4

0th − shell : PRST − |1⟩ : m = 0 λ0

1st − shell : PRST − |2⟩
{
m = 0 : λ1 ; λ2

m = 1 : λ3

2nd − shell : PRST − |3⟩


m = 0 : λ4 ; λ5

m = 1 : λ6 ; λ7

m = 2 : λ8

3rd − shell : PRST − |4⟩


m = 0 : λ9 ; λ10

m = 1 : λ11 ; λ12

m = 2 : λ13 ; λ14

m = 3 : λ15

4th − shell : PRST − |5⟩



m = 0 : λ16 ; λ17

m = 1 : λ18 ; λ19

m = 2 : λ20 ; λ21

m = 3 : λ22 ; λ23

m = 4 : λ24

(3gii)

These SU(2) , SU(3) , SU(4) , SU(5) examples clearly display a complete shell structure of a standard
SU(N) generator spectrum. Each shell specified by a quantum number l = 0, 1, ..., N − 1 contains a
definite number 2l + 1 generators specified by the symmetric-antisymmetric generator pair quantum
number m = 0, 1, ..., l. This quantum structure of a standard SU(N) generator spectrum is similar to
the orbital angular momentum state spectrum in the nth-energy level in an atom where each orbital
state configuration shell specified by orbital angular momentum quantum number l = 0, 1, ..., n − 1
contains a definite number 2l+1 of orbital angular momentum states specified by magnetic quantum
number m = 0,±1,±2, ...,±l.

An important mismatch which emerges between the quantum structure of the SU(N) generator
spectrum and the quantum structure of the orbital angular momentum state spectrum in the nth-
energy level of an atom is that, in the Gell-Mann basis where the generators are enumerated serially as
λ1, λ2, ..., λN2−1 displayed in the spectra in equations (3dii) , (3eii) , (3fii) , (3gii), the specification
by the quantum numbers l , m is lost once the quantum numbers are used in the enumeration
formulae in equations (2ai) , (2aii) to generate the serial numbering of the Gell-Mann matrices. To
maintain explicit specification of the generators by the quantum numbers l , m, we take advantage
of the formulae for enumerating and determining the generators as symmetric and antisymmetric
pairs in equations (2ai) , (2aii) to reinterpret the generators in the Gell-Mann basis as spin angular
momentum operators, composed of hermitian conjugate spin state raising and lowering operators
specified by quantum numbers l , m. This reinterpretation of the generators in the Gell-Mann basis
as spin angular momentum basis explicitly specified by the quantum numbers l , m ensures that the
SU(N) generator spectrum corresponds precisely to the orbital angular momentum state spectrum
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also specified by a corresponding pair of quantum numbers l , m taking similar values in the nth-energy
level of an atom as we now establish in the next section.

4 Shell structure of the SU(N) generator spectrum in spin

angular momentum interpretation

The algebraic property that generators in a standard SU(N) generator spectrum are specified by
a configuration shell quantum number l = 0, 1, ..., N − 1 and a symmetric-antisymmetric genera-
tor pair quantum number m = 0, 1, ..., l similar to the specification of orbital angular momentum
states by an orbital shell quantum number l = 0, 1, ..., n − 1 and a magnetic quantum number
m = −l,−(l − 1), ..., 0, 1, ..., l − 1, l in the nth-energy level in an atom provides motivation to seek
a precise correspondence between an SU(N) symmetry group generator spectrum and an atomic
nth-energy level orbital angular momentum state spectrum.

An atomic energy level specified by a principal quantum number n, normally referred to as the
nth-energy level, is composed of n orbital state configuration shells specified by an orbital angular
momentum quantum number l taking n values l = 0, 1, ..., n − 1. Each orbital shell specified by an
orbital quantum number l contains 2l + 1 orbital angular momentum states, each described by a
spherical harmonic function Y m

l specified by orbital shell quantum number l and a magnetic quantum
number m taking 2l + 1 integer values m = −l,−(l − 1), ..., 0, 1, ..., (l − 1), l.

Noting that the specifications of the configuration shell quantum numbers l in both SU(N) gen-
erator and atomic nth-energy level orbital state spectra are precisely consistent, we harmonize the
specifications of the SU(N) symmetric-antisymmetric generator pair and the atomic magnetic quan-
tum numbers, m, by considering that in the atomic orbital state spectrum, the single l = 0 , m = 0
state Y 0

0 takes a symmetrically neutral unit value obtained as

l = 0 ; m = 0 : Y 0
0 = 1 (4a)

while the remaining 2l orbital states Y m
l , l ̸= 0, specified by m = ∓1, ...,∓l can be reinterpreted as l

conjugate pairs ( Y −m
l , Y m

l ), now specified by l values of the magnetic quantum number m = 1, ..., l
according to the standard relation [4]

Y −m
l = (−1)mY m∗

l ; m = 1, ..., l (4b)

Taking the single symmetrically neutral orbital state Y 0
0 in equation (4a) and the l conjugate pairs

Y ±m
l related according to equation (4b) together, we now redefine the atomic magnetic quantum

number m as a conjugate orbital state pair quantum number taking l + 1 values m = 0, 1, ..., l
including the unit state Y 0

0 , which is now precisely consistent with the specification of the SU(N)
symmetric-antisymmetric generator pair quantum number m also taking l + 1 values m = 0, 1, ..., l
including the identity generator λ0.

To achieve complete harmony in the comparison of the shell structures of the spectra of SU(N)
generators and atomic nth-energy level orbital angular momentum states, we reorganize the notation
for the atomic orbital angular momentum states Y 0

0 , Y ±m
l in the equivalent form Y00 , Y

±
lm according

to the redefinitions

Y00 = Y 0
0 ; Y +

lm = Y m
l ; Y −

lm = Y −m
l ⇒ Y −

lm = (−1)mY +∗
lm ; m = 1, ..., l (4c)

We now redefine the SU(N) generators and introduce an appropriate notation specified by the quan-
tum numbers l , m corresponding directly to the specification and notation of the atomic orbital
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angular momentum states Y00 , Y ±
lm. Such a redefinition of SU(N) generators is easily achieved in

the spin angular momentum basis, where we follow the formulae for enumerating and determining
SU(N) generators in symmetric-antisymmetric pairs in equations (2ai) , (2aii) to introduce hermitian
conjugate spin angular momentum state raising and lowering operators S±

lm defined by

l = 1, ..., N − 1 ; m = 0, 1, ..., l − 1

S+
lm = |m+ 1⟩⟨l + 1| ; S−

lm = |l + 1⟩⟨m+ 1| ; S−
lm = (S+

lm)
† (5ai)

Using the SU(N) symmetry group basis state vector orthonormality relation given in equation (1b),
noting

m = 0, ..., l − 1 ⇒ l + 1 > m+ 1 ; ⟨m+ 1|l + 1⟩ = 0 ; ⟨l + 1|m+ 1⟩ = 0 (5aii)

we obtain the algebraic relations

S+ 2
lm = 0 ; S− 2

lm = 0 ; S+
lmS

−
lm = |m+ 1⟩⟨m+ 1| ; S−

lmS
+
lm = |l + 1⟩⟨l + 1| (5aiii)

The SU(N) generators in the Gell-Mann basis λ0, λ1, λ2, ..., λN2−1 are now interpreted as hermi-
tian spin angular momentum operators specified by quantum numbers l , m. In particular, the
non-diagonal symmetric-antisymmetric generator pair (λl2+2m , λl2+2m+1) enumerated and deter-
mined according to the formula in equation (2ai) is now interpreted as the non-diagonal symmetric-
antisymmetric hermitian spin operator pair (σx

lm , σy
lm) determined according to equation (2ai) in the

form
l = 1, ..., N − 1 ; m = 0, 1, ..., l − 1 : λl2+2m = σx

lm ; λl2+2m = σy
lm

σx
lm = |m+ 1⟩⟨l + 1|+ |l + 1⟩⟨m+ 1| ; σy

lm = −i( |m+ 1⟩⟨l + 1| − |l + 1⟩⟨m+ 1| ) (5bi)

while the diagonal symmetric-antisymmetric generator pair (λl2+2l , I l2+2l) enumerated and deter-
mined according to the formula in equation (2aii) is now interpreted as the diagonal symmetric-
antisymmetric generator hermitian spin operator pair (σz

l , σ0
l ) determined according to equation

(2aii) in the form

l = 1, ..., N − 1 ; m = l : λl2+2l = σz
l ; I l2+2l = σ0

l

σz
l =

1√
1
2
l(l + 1)

l−1∑
m=0

σz
lm ; σz

lm = |m+ 1⟩⟨m+ 1| − |l + 1⟩⟨l + 1|

σ0
l =

1√
1
2
l(l + 1)

l−1∑
m=0

Ilm ; Ilm = |m+ 1⟩⟨m+ 1|+ |l + 1⟩⟨l + 1| (5bii)

It follows from the definitions in equations (5ai) , (5aii) , (5bi) , (5bii) that the non-diagonal generators
σx
lm , σy

lm and the diagonal generators are expressed in terms of the spin state raising and lowering
operators S±

lm in the form
l = 1, ..., N − 1 ; m = 0, 1, ..., l − 1

σx
lm = S+

lm+S−
lm ; σy

lm = −i( S+
lm−S−

lm ) ⇒ S±
lm = Sx

lm±i Sy
lm ; Sx

lm =
1

2
σx
lm ; Sy

lm =
1

2
σy
lm (5biii)
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σz
l =

1√
1
2
l(l + 1)

l−1∑
m=0

σz
lm ; σz

lm = S+
lmS

−
lm − S−

lmS
+
lm

σ0
l =

1√
1
2
l(l + 1)

l−1∑
m=0

Ilm ; Ilm = S+
lmS

−
lm + S−

lmS
+
lm (5biv)

For completeness, we introduce Sz
l , S0

l defined by

l = 1, ..., N − 1 ; m = l : Sz
l =

1

2
σz
l ; S0

l =
1

2
σ0
l (5bv)

We interpret the 2l traceless non-diagonal generators σx
lm , σy

lm (enumerated by m = 0, 1, ..., l − 1)
and the single traceless diagonal generator σz

l (enumerated by m = l) as components of a (2l + 1)-
component lth-shell spin angular momentum vector σ⃗l defined by

σ⃗l = ( σx
l0 , σy

l0 , σx
l1 , σy

l1 , ... , σx
l l−1 , σy

l l−1 , σz
l ) ; l = 1, ..., N − 1 (5ci)

which leads to the introduction of an lth-shell quadratic spin angular momentum operator σ2
l obtained

as

σ2
l = σ⃗l · σ⃗l =

l−1∑
m=0

((σx
lm)

2 + (σy
lm)

2) + (σz
l )

2 (5cii)

Using σx
lm , σy

lm from equation (5biii) gives

(σx
lm)

2 + (σy
lm)

2 = 2( S+
lmS

−
lm + S−

lmS
+
lm ) (5ciii)

which we substitute into equation (5cii) and introduce σz
l = 2Sz

l to obtain the form

σ2
l = 4

(
l−1∑
m=0

1

2
( S+

lmS
−
lm + S−

lmS
+
lm ) + (Sz

l )
2

)
(5civ)

We can express σ2
l in the form

σ2
l = 4S2

l ; S2
l =

l−1∑
m=0

1

2
( S+

lmS
−
lm + S−

lmS
+
lm ) + (Sz

l )
2 (5cv)

after using equations (5biii) , (5biv) to redefine the lth-shell spin angular momentum vector σ⃗l as Sl

according to

Sl =
1

2
σ⃗l ⇒ Sl = ( Sx

l0 , S
y
l0 , S

x
l1 , S

y
l1 , ... , S

x
l l−1 , S

y
l l−1 , S

z
l ) ; S2

l = Sl ·Sl =
1

4
σ2
l (5cvi)

To introduce some higher order spin operators, we use the algebraic relations obtained in equations
(5aii) , (5aiii) , (5biii) , (5biv) to obtain the following algebraic relations

Ilm = S+
lmS

−
lm + S−

lmS
+
lm ; [S±

lm , Ilm] = 0 ; I k
lm = Ilm ; k = 1, 2, 3, ... (6a)

(σx
lm)

2 = Ilm ; [ σx
lm , Ilm ] = 0 ⇒ (σx

lm)
2k = Ilm ; (σx

lm)
2k+1 = σx

lm
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(σy
lm)

2 = Ilm; [ σy
lm , Ilm ] = 0 ⇒ (σy

lm)
2k = Ilm; (σy

lm)
2k+1 = σy

lm ; k = 1, 2, 3, ... (6b)

We can now use these general algebraic properties of the SU(N) generators in the spin angular
momentum basis to introduce generalizations of the lth-shell quadratic spin angular momentum σ2

l

to higher order spin operators. Noting that the lth-shell quadratic spin angular momentum operator
σ2
l as defined in equation (5cii) is an even-power spin operator, we introduce generalizations to lth-

shell even-power spin operator Ql:2n and odd-power spin operator Fl:2n+1 of n
th-order, n = 0, 1, 2, 3, ...

defined by

Ql:2n =
l−1∑
m=0

((σx
lm)

2n + (σy
lm)

2n) + (σz
l )

2n ; n = 0, 1, 2, 3, ... (7ai)

Fl:2n+1 =
l−1∑
m=0

((σx
lm)

2n+1 + (σy
lm)

2n+1) + (σz
l )

2n+1 ; n = 0, 1, 2, 3, ... (7aii)

Using equation (6b) and substituting equations (5biii) , (5biv) , (5bv) , (5ciii) as appropriate, we
obtain

(σx
lm)

2n + (σy
lm)

2n = 2Ilm = 2(S+
lmS

−
lm + S−

lmS
+
lm) (7bi)

(σx
lm)

2n+1 + (σy
lm)

2n+1 = σx
lm + σy

lm = αS+
lm + α∗S−

lm ; α = 1− i =
√
2 e−iπ

4 (7bii)

(σz
l )

2n = 22n(Sz
l )

2n ; (σz
l )

2n+1 = 22n+1(Sz
l )

2n+1 (7biii)

which we substitute into equations (7ai) and (7aii) as appropriate to express the even-power and
odd-power spin operators in the form

Ql:2n = 22n
(

l−1∑
m=0

1

22n−1
(S+

lmS
−
lm + S−

lmS
+
lm) + (Sz

l )
2n

)
; n = 0, 1, 2, 3, ... (7ci)

Fl:2n+1 = 22n+1

(
l−1∑
m=0

1

22n+1
(αS+

lm + α∗S−
lm) + (Sz

l )
2n+1

)
; n = 0, 1, 2, 3, ... (7cii)

Setting n = 1 in equation (7ci), we obtain the lth-shell even-power spin operator of 1st-order, Ql:2,
taking the form

n = 1 : Ql:2 = 4

(
l−1∑
m=0

1

2
(S+

lmS
−
lm + S−

lmS
+
lm) + (Sz

l )
2

)
⇒ Ql:2 = σ2

l (7d)

which we identify as the lth-shell quadratic spin angular momentum operator σ2
l obtained in equation

(5civ). We therefore identify the general lth-shell even-power spin operator Ql:2n in equation (7ci) as
the lth-shell quadratic spin angular momentum operator of nth-order.

Similarly, we set n = 0 in equation (7cii) to obtain the lth-shell odd-power spin operator of
0th-order, Fl:1, taking the form

n = 0 : Fl:1 =
l−1∑
m=0

(αS+
lm + α∗S−

lm) + σz
l ; α = 1− i =

√
2 e−iπ

4 (7e)

after reintroducing 2Sz
l = σz

l . We observe that the lth-shell odd-power spin operator of 0th-order,
Fl:1, obtained here in equation (7e) takes a form precisely similar to the form of the Fubini-Veneziano
momentum operator [5]. We therefore identify this lth-shell odd-power spin operator of 0th-order, Fl:1

as a Fubini-Veneziano spin angular momentum operator, which does not seem to have been determined
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elsewhere in the earlier literature on Lie, Kac-Moody or Virasoro algebras that we are aware of. In
general, we now identify the lth-shell odd-power spin operator Fl:2n+1 in equation (7cii) as the lth-shell
Fubini-Veneziano spin angular momentum operator of nth-order.

For ease of evaluation of the general even-power and odd-power second parts, (Sz
l )

2n , (Sz
l )

2n+1,
of the lth-shell quadratic and Fubini-Veneziano spin angular momentum operators Ql:2n , Fl:2n+1 of
nth-order, n = 0, 1, 2, 3, ..., in equations (7ci) , (7cii), we express the lth-shell diagonal generator Sz

l

and similarly the diagonal generator S0
l and the quadratic spin angular momentum operator σ2

l in
terms of diagonal projection operators Il , Il+1 defined within the lth-shell as

Il =
l−1∑
m=0

|m+1⟩⟨m+1| ; Il+1 =
l∑

m=0

|m+1⟩⟨m+1| = Il+|l+1⟩⟨l+1|; |l+1⟩⟨l+1| = Il+1−Il (8a)

Using the definitions of σz
lm , Ilm given in equation (5bii), we express

l−1∑
m=0

σz
lm = Il−l |l+1⟩⟨l+1| = (1+l) Il−l Il+1 ;

l−1∑
m=0

Ilm = Il+l |l+1⟩⟨l+1| = (1−l) Il+l Il+1 (8b)

which we substitute into equation (5bii) and reorganize to obtain

Sz
l =

1

2
σz
l : Sz

l =
1√
2

 √
l + 1

l
Il −

√
l

l + 1
Il+1



S0
l =

1

2
σ0
l : S0

l =
1√
2

 1− l√
l(l + 1)

Il +

√
l

l + 1
Il+1

 (8c)

Substituting S+
lmS

−
lm + S−

lmS
+
lm = Ilm into equation (5civ) and using equation (8b), we express

σ2
l = 2 ( (1− l) Il + l Il+1 ) + 4(Sz

l )
2 (8d)

Using Sz
l from equation (8c) and noting

I2l = Il ; I2l+1 = Il+1 ; IlIl+1 = Il+1Il = Il ⇒ [ Il , Il+1 ] = 0 (8e)

we obtain

(Sz
l )

2 =
1

2

(
1− l

l
Il +

l

l + 1
Il+1

)
(8f)

which we substitute into equation (8d) and reorganize as appropriate to express the quadratic spin
angular momentum operator σ2

l in the form

σ2
l = 2

(
(l + 1)2 − 1

l + 1
Il+1 − l2 − 1

l
Il

)
(8g)

Finally, we note that the property that the diagonal projection operators Il , Il+1 commute according
to equation (8e) allows application of binomial expansions of Sz

l , S0
l , σ2

l in equations (8c) , (8g)
raised to any power in repeated multiplication, which are easily reorganized to obtain the general
forms

k = 0, 1, 2, 3, ...
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(Sz
l )

k =

(
1√
2

)k


√ l + 1

l
−
√

l

l + 1

k

−

√ l

l + 1

k
 Il +

√ l

l + 1

k

Il+1

 (8hi)

(S0
l )

k =

(
1√
2

)k


 1− l√

l(l + 1)
+

√
l

l + 1

k

−

√ l

l + 1

k
 Il +

√ l

l + 1

k

Il+1

 (8hii)

(σ2
l )

k = 2k

 (1− l2

l
+

(l + 1)2 − 1

l + 1

)k

−
(
(l + 1)2 − 1

l + 1

)k
 Il +

(
(l + 1)2 − 1

l + 1

)k

Il+1


(8hii)

We observe that Ql:2n , Fl:2n+1 in equations (7ci) , (7cii) can be expressed in terms of the diagonal
projection operators Il , Il+1 by setting k to even and odd integer values k = 2n , k = 2n + 1,
n = 0, 1, 2, 3, ..., respectively. In particular, Ql:2n in equation (7ci) can be expressed entirely in terms
of Il , Il+1 by substituting S+

lmS
−
lm + S−

lmS
+
lm = Ilm and using

∑l−1
m=0 Ilm = (1 − l) Il + l Il+1 from

equation (8b).
In the set of equations (5ai)-(5biv) , (5civ) , (7ci)-(7cii), we have used the quantum numbers

l = 1, ..., N − 1 , m = 0, 1, ..., l to enumerate and determine the 2l + 1 traceless symmetric and
antisymmetric generators σx

lm , σy
lm , σz

l , the single non-traceless symmetric generator σ0
l and the

corresponding quadratic and Fubini-Veneziano spin angular momentum operators of nth-order, Ql:2n

, Fl:2n+1, n = 0, 1, 2, 3, ..., contained in the lth-shell, l = 1, ..., N − 1, of an SU(N) generator spectrum
in the spin angular momentum basis.

Using equations (5ai) , (5bii)-(5biii) and (7ci)-(7cii), noting that σ2
l = Ql:2 , Fl:1 are contained in

the respective nth-order forms Ql:2n , Fl:2n+1, we run through all the l+1 values of the symmetric and
antisymmetric generator pair quantum number m = 0, 1, ..., l to enumerate and determine the explicit
forms of all the 2(l+1) symmetric and antisymmetric generators in the spin angular momentum basis
(σx

l0 , σy
l0) , (σx

l1 , σy
l1) , ... , (σx

l l−1 , σy
l l−1) , (σz

l , σ0
l ), together with the corresponding quadratic

and Fubini-Veneziano spin angular momentum operators of nth-order, Ql:2n , Fl:2n+1, n = 0, 1, 2, 3, ...,
in the lth-shell of a general SU(N) generator spectrum as presented below, where we have used
abbreviation PRST-|l + 1⟩ for the principal state basis vector of the lth-shell :
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Generators in the lth-shell of a general SU(N) spectrum in spin angular momentum ba-
sis : N − 1 shells, l = 1, ..., N − 1

N ≥ 2 : l = 1, ..., N − 1 ; m = 0, 1, ..., l

lth − shell : PRST − |l + 1⟩



m = 0 : σx
l0 = S+

l0 + S−
l0 ; σy

l0 = −i( S+
l0 − S−

l0 )

m = 1 : σx
l1 = S+

l1 + S−
l1 ; σy

l1 = −i( S+
l1 − S−

l1 )
........
........
........

m = l − 1 : σx
l l−1 = S+

l l−1 + S−
l l−1 ; σy

l l−1 = −i(S+
l l−1 − S−

l l−1)

m = l : σz
l = 1√

1
2
l(l+1)

∑l−1
m=0 σ

z
lm ; σ0

l = 1√
1
2
l(l+1)

∑l−1
m=0 Ilm

Ql:2n = 22n
( ∑l−1

m=0
1

22n−1 (S
+
lmS

−
lm + S−

lmS
+
lm) + (Sz

l )
2n
)

Fl:2n+1 = 22n+1
( ∑l−1

m=0
1

22n+1 (αS
+
lm + α∗S−

lm) + (Sz
l )

2n+1
)

(9a)

As examples, we present the general SU(2) , SU(3) , SU(4) , SU(5) generator spectra in the
spin angular momentum basis, including the respective lth-shell quadratic and Fubini-Veneziano spin
angular momentum operators of nth-order, Ql:2n , Fl:2n+1, n = 0, 1, 2, 3, ..., below.

SU(2)

General SU(2) generator spectrum : single shell, l = 1

1st − shell : PRST − |2⟩


m = 0 : σx

10 = S+
10 + S−

10 ; σy
10 = −i(S+

10 − S−
10)

m = 1 : σz
1 ; σ0

1 ; Q1:2n ; F1:2n+1

(9b)

SU(3)

General SU(3) generator spectrum : 2 shells, l = 1, 2

1st − shell : PRST − |2⟩


m = 0 : σx

10 = S+
10 + S−

10 ; σy
10 = −i(S+

10 − S−
10)

m = 1 : σz
1 ; σ0

1 ; Q1:2n ; F1:2n+1

2nd − shell : PRST − |3⟩



m = 0 : σx
20 = S+

20 + S−
20 ; σy

20 = −i(S+
20 − S−

20)

m = 1 : σx
21 = S+

21 + S−
21 ; σy

21 = −i(S+
21 − S−

21)

m = 2 : σz
2 ; σ0

2 ; Q2:2n ; F2:2n+1

(9c)
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SU(4)

General SU(4) generator spectrum : 3 shells, l = 1, 2, 3

1st − shell : PRST − |2⟩


m = 0 : σx

10 = S+
10 + S−

10 ; σy
10 = −(S+

10 − S−
10)

m = 1 : σz
1 ; σ0

1 ; Q1:2n ; F1:2n+1

2nd − shell : PRST − |3⟩



m = 0 : σx
20 = S+

20 + S−
20 ; σy

20 = −i(S+
20 − S−

20)

m = 1 : σx
21 = S+

21 + S−
21 ; σy

21 = −i(S+
21 − S−

21)

m = 2 : σz
2 ; σ0

2 ; Q2:2n ; F2:2n+1

3rd − shell : PRST − |4⟩



m = 0 : σx
30 = S+

30 + S−
30 ; σy

30 = −i(S+
30 − S−

30)

m = 1 : σx
31 = S+

31 + S−
31 ; σy

31 = −i(S+
31 − S−

31)

m = 2 : σx
32 = S+

32 + S−
32 ; σy

32 = −i(S+
32 − S−

32)

m = 3 : σz
3 ; σ0

3 ; Q3:2n ; F3:2n+1

(9d)

SU(5)

General SU(5) generator spectrum : 4 shells, l = 1, 2, 3, 4

1st − shell : PRST − |2⟩


m = 0 : σx

10 = S+
10 + S−

10 ; σy
10 = −i(S+

10 − S−
10)

m = 1 : σz
1 ; σ0

1 ; Q1:2n ; F1:2n+1

2nd − shell : PRST − |3⟩



m = 0 : σx
20 = S+

20 + S−
20 ; σy

20 = −i(S+
20 − S−

20)

m = 1 : σx
21 = S+

21 + S−
21 ; σy

21 = −i(S+
21 − S−

21)

m = 2 : σz
2 ; σ0

2 ; Q2:2n ; F2:2n+1

3rd − shell : PRST − |4⟩



m = 0 : σx
30 = S+

30 + S−
30 ; σy

30 = −i(S+
30 − S−

30)

m = 1 : σx
31 = S+

31 + S−
31 ; σy

31 = −i(S+
31 − S−

31)

m = 2 : σx
32 = S+

32 + S−
32 ; σy

32 = −i(S+
32 − S−

32)

m = 3 : σz
3 ; σ0

3 ; Q3:2n ; F3:2n+1
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4th − shell : PRST − |5⟩



m = 0 : σx
40 = S+

40 + S−
40 ; σy

40 = −i(S+
40 − S−

40)

m = 1 : σx
41 = S+

41 + S−
41 ; σy

41 = −i(S+
41 − S−

41)

m = 2 : σx
42 = S+

42 + S−
42 ; σy

42 = −i(S+
42 − S−

42)

m = 3 : σx
43 = S+

43 + S−
43 ; σy

43 = −i(S+
43 − S−

43)

m = 4 : σz
4 ; σ0

4 ; Q4:2n ; F4:2n+1

(9e)

The generators are determined in explicit forms using the definitions of the spin state raising and
lowering operators S±

lm in equation (5ai) for l = 1, ..., N − 1 , m = 0, 1, ..., l in each case.

4.1 The SU(N) identity, Casimir and Fubini-Veneziano spin operators

Having enumerated and determined SU(N) generators, including the general quadratic and Fubini-
Veneziano spin angular momentum operators of nth-order in the spin angular momentum basis defined
within the N − 1 configuration shells, we now complete the specification of the algebraic structure by
determining the universal symmetry group operators, namely, the SU(N) identity operator, Casimir
and Fubini-Veneziano spin angular momentum operators.

4.1.1 The SU(N) identity operator

We identify the lth-shell non-traceless symmetric diagonal generator σ0
l defined in equation (5bii) as

the lth-shell part of the SU(N) identity operator IN , which is the N ×N identity matrix, determined
as a weighted sum of the N − 1 parts from the N − 1 shells specified by l = 1, ..., N − 1 using the
algebraic relation following from equation (5bii) in the form√

1

2
l(l + 1) σ0

l =
l−1∑
m=0

Ilm ⇒
N−1∑
l=1

√
1

2
l(l + 1) σ0

l =
N−1∑
l=1

l−1∑
m=0

Ilm (10a)

which on using the relation
N−1∑
l=1

l−1∑
m=0

Ilm = (N − 1)IN (10b)

provides the SU(N) identity operator IN defined in the spin angular momentum basis in the form

IN =
1

N − 1

N−1∑
l=1

√
1

2
l(l + 1) σ0

l (10c)

noting that the SU(N) identity operator IN , generally evaluated as an N ×N matrix, takes the basic
operator form

IN =
N∑
k=1

|k⟩⟨k| (10d)
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4.1.2 The SU(N) quadratic Casimir spin angular momentum operators

We identify the lth-shell quadratic spin angular momentum operator σ2
l determined in final form in

equation (5civ) as the lth-shell part of the SU(N) quadratic Casimir spin angular momentum operator
QN determined as a sum of the lth-shell parts σ2

l from the N − 1 shells specified by l = 1, ..., N − 1
in the form

QN =
N−1∑
l=1

σ2
l (11a)

which on substituting S+
lmS

−
lm+S−

lmS
+
lm = Ilm from equation (5biv) into equation (5civ) takes the form

QN = 4

(
N−1∑
l=1

l−1∑
m=0

1

2
Ilm +

N−1∑
l=1

(Sz
l )

2

)
(11b)

Using the definition in equation (5bii) to determine the explicit forms of Sz
l = 1

2
σz
l in the SU(N),

N = 2, 3, 4, 5, examples, we obtain a general relation

N−1∑
l=1

(Sz
l )

2 =
N − 1

2N
IN (11c)

Substituting the relations from equations (10b) and (11c) into equation (11b) provides the SU(N)
quadratic Casimir spin angular momentum operator QN in the form

QN = 2(N − 1)
(
1 +

1

N

)
IN ⇒ QN = 4

(
N
2

)
1

N

(
1 +

1

N

)
IN (11d)

where we have obtained the final form by expressing

N − 1 = N(N − 1)
1

N
= 2

N !

2!(N − 2)!

1

N
;

N !

2!(N − 2)!
=
(
N
2

)
(11e)

We may also reorganize equation (11d) to express the SU(N) quadratic Casimir operator in the form

QN = 2
N2 − 1

N
IN (11f)

where we now identify N2 − 1 as the total number of the traceless SU(N) generators σx
lm , σy

lm , σz
l ,

l = 1, ..., N − 1 , m = 0, 1, ..., l.
We observe that, in contrast to its lth-shell parts σ2

l , l = 1, ..., N − 1, determined in final form
in equation (5civ), the SU(N) quadratic Casimir spin angular momentum operator QN determined
in final form in equation (11d) or (11f) is a multiple of the identity operator IN , which commutes
with all the SU(N) generators. In subsection 4.2 below, we establish that the lth-shell quadratic spin
angular momentum operators σ2

l , l = 1, ..., N −1, are Cartan generators satisfying Cartan subalgebra
and generating eigenvalue equations on the spin state raising and lowering operators S±

lm.
Identifying the general lth-shell quadratic spin angular momentum operator of nth-order Ql:2n

determined in final form in equation (7ci) as the lth-shell part of the general nth-order SU(N) quadratic
Casimir spin angular momentum operator QN :2n, we obtain a generalization of the SU(N) quadratic
Casimir spin angular momentum operator QN to the nth-order SU(N) quadratic Casimir spin angular
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momentum operator determined as a sum of the lth-shell parts Ql:2n from the N − 1 shells specified
by l = 1, ..., N − 1 in the form

QN :2n =
N−1∑
l=1

Ql:2n ; n = 1, 2, 3, ... (11g)

which on substituting Ql:2n from equation (7ci), introducing S+
lmS

−
lm + S−

lmS
+
lm = Ilm and using the

relation obtained in equation (10b) takes the final form (reintroducing (σz
l )

2n = 22n(Sz
l )

2n)

QN :2n = 2(N − 1)IN + 22n
N−1∑
l=1

(Sz
l )

2n ; n = 1, 2, 3, ... (11h)

where (Sz
l )

2n under summation in the second component can be evaluated explicitly in terms of
projection operators Il , Il+1 by setting k = 2n in equation (8hi).

Notice that, setting n = 1 in equation (11h) and using the relation obtained in equation (11c)
provides the SU(N) quadratic Casimir spin angular momentum operator QN obtained in equation
(11d), which we may now interpret as an SU(N) general quadratic Casimir spin angular momentum
operator of 1st-order. The property that for n ≥ 2, the summation in the second term in equation
(11h) is not a multiple of the identity operator IN means that for n ≥ 2, the SU(N) nth-order
quadratic Casimir spin angular momentum operator QN :2n, n ≥ 2, is not a multiple of the SU(N)
identity operator IN . Only the 1st-order (n = 1) SU(N) quadratic Casimir spin angular momentum
operator QN = QN :2 is a multiple of the identity operator IN as determined in equation (11d).

4.1.3 The SU(N) Fubini-Veneziano spin operator

We identify the general lth-shell Fubini-Veneziano spin angular momentum operator of nth-order,
Fl:2n+1, obtained in final form in equation (7cii) as the lth-shell part of an SU(N) nth-order Fubini-
Veneziano spin angular momentum operator FN :2n+1, determined as the sum of the lth-shell parts
Fl:2n+1 from the N − 1 shells specified by l = 1, ..., N − 1 in the form

FN :2n+1 =
N−1∑
l=1

Fl:2n+1 ; n = 1, 2, 3, ... (12a)

which on substituting Fl:2n+1 from equation (7cii) takes the form

FN :2n+1 =
N−1∑
l=1

l−1∑
m=0

(αS+
lm + α∗S−

lm) + 22n+1
N−1∑
l=1

(Sz
l )

2n+1 ; n = 1, 2, 3, ... (12b)

where (Sz
l )

2n+1 under summation in the second component can be evaluated explicitly in terms of
projection operators Il , Il+1 by setting k = 2n+ 1 in equation (8hi).

Setting n = 0 in equations (12a) , (12b) provides the SU(N) Fubini-Veneziano spin angular
momentum operator FN :1 in the form

n = 0 : FN :1 =
N−1∑
l=1

Fl:1 ⇒ FN :1 =
N−1∑
l=1

l−1∑
m=0

(αS+
lm + α∗S−

lm) +
N−1∑
l=1

σz
l (12c)

where we have reintroduced σz
l = 2Sz

l .
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4.2 Algebraic properties of the SU(N) generator spectrum : Cartan-Weyl
basis

Let us now determine the basic algebraic properties of a general SU(N) generator spectrum in the
spin angular momentum basis. In this respect, we have used the explicit forms of the generators
determined in the SU(2) , SU(3) , SU(4) , SU(5) examples in equations (9b)-(9e) to establish that
the traceless antisymmetric diagonal generator Sz

l , its non-traceless symmetric partner S0
l and the

quadratic spin angular momentum operator σ2
l satisfy Cartan subalgebra within and across the N −1

configuration shells specified by l = 1, ..., N − 1. We therefore identify the generators Sz
l , S0

l , σ2
l ,

l = 1, ..., N − 1, determined according to the definitions in equations (5bii) , (5bv) , (5civ) as Cartan
generators. The set of the Cartan generators Sz

l , S0
l , σ2

l , taken together with the spin state raising
and lowering operators (generally called step operators) S+

lm , S−
lm, constitute an extended Cartan-Weyl

basis Sz
l , S+

lm , S−
lm , S0

l , σ2
l , l = 1, ..., N − 1, noting that in the standard literature on Lie , Kac-

Moody and Virasoro algebras [5 , 6 , 7], the Cartan-Weyl basis has been identified only as the three
generators Sz

l ≡ Hl , S
±
lm ≡ E±α in corresponding notations. In the present work, we have extended

the Cartan-Weyl basis in an SU(N) generator spectrum by introducing the non-traceless symmetric
diagonal generator S0

l and the quadratic spin angular momentum operator σ2
l which satisfy the Cartan

subalgebra and generate eigenvalue equations on the spin state raising and lowering operators S±
lm, as

expected in the Cartan-Weyl basis.
Using the explicit forms of the Cartan-Weyl basis Sz

l , S+
lm , S−

lm , S0
l , σ2

l determined in the SU(2)
, SU(3) , SU(4) , SU(5) examples using the definitions in equations (5bii) , (5bv) , (5civ) or equations
(8c) , (8g) as convenient, we obtain explicit algebraic relations, which we generalize to apply to any
general SU(N) generator spectrum for N ≥ 2. We consider the algebraic relations between generators
and spin operators within a given configuration shell specified by a quantum number l and algebraic
relations across configuration shells specified by quantum numbers l , l′ , l ̸= l′.

The Cartan generators Sz
l , S0

l , σ2
l satisfy the Cartan subalgebra within and across the N − 1

shells obtained as
l , l′ = 1, ..., N − 1

[ Sz
l , Sz

l′ ] = 0 ; [ S0
l , S0

l′ ] = 0 ; [ σ2
l , σ2

l′ ] = 0

[ Sz
l , S0

l′ ] = 0 ; [ Sz
l , σ2

l′ ] = 0 ; [ S0
l , σ2

l′ ] = 0 (13a)

The commutation brackets of the Cartan generators Sz
l , S0

l , σ2
l and the spin state raising and

lowering operators S±
lm within or across configuration shells constitute eigenvalue equations for the

spin state raising and lowering operators. The sum of the commutation brackets [ S+
lm, S

−
lm ] taken

over m = 0, ..., l − 1 provides the Cartan generator Sz
l in the lth-shell. The commutation brackets of

the spin state raising and lowering operators S±
lm within a higher configuration shell provide all spin

state raising and lowering operators in the lower shells, while the commutation brackets of the spin
state raising and lowering operators S±

lm and S±
l′m′ across configuration shells l , l′ , l ̸= l′ produce spin

state raising and lowering operators in the various configuration shells within the generator spectrum,
leading to a closed SU(N) generator algebra, which we now present in general form specified by
configuration shell and conjugate spin state raising-lowering operator pair quantum numbers l , m
below.

Within a configuration shell specified by a quantum number l = 1, ..., N − 1, the three Cartan
generators Sz

l , S0
l , σ2

l and the 2l spin state raising and lowering operators S±
lm are correlated by
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algebraic relations ( noting [ S+
lm, S

−
lm ] = σz

lm )

[ Sz
l , S±

lm ] = ± 1 + l√
2l(l + 1)

S±
lm ; [ S0

l , S±
lm ] = ± 1− l√

2l(l + 1)
S±
lm ; [ σ2

l , S±
lm ] = ±2

1− l2

l
S±
lm

l−1∑
m=0

[ S+
lm , S−

lm ] =
√
2l(l + 1) Sz

l (13bi)

[ S±
lm′ , S∓

lm ] = ± |m+ 1⟩⟨m′ + 1| ; [ S±
lm′ , S±

lm ] = 0

l = 1, ..., N − 1 ; m′ < m : m′ = 0, ..., l − 2 ; m = 1, ..., l − 1 (13bii)

Across the configuration shells, Cartan generators Sz
l , S0

l , σ2
l in a higher shell specified by l =

2, ..., N − 1 commute with all step operators El′m′ in the lower shells specified by l′ = 1, ..., l − 1
according to the algebraic relations

l > l′ : l = 2, ..., N − 1 ; l′ = 1, ..., l − 1 ; m′ = 0, ..., l′ − 1

[ Sz
l , S±

l′m′ ] = 0 ; [ S0
l , S±

l′m′ ] = 0 ; [ σ2
l , S±

l′m′ ] = 0 (13c)

while Cartan generators Sz
l , S0

l , σ2
l in a lower shell specified by l = 1, ..., l′ − 1 has mixed algebraic

relations with Cartan-Weyl basis spin state raising and lowering operators Sl′m′ in the upper shells
specified by l′ = 2, ..., N − 1 ; m′ = 0, ..., l′ − 1 according to

l < l′ : l = 1, ..., l′ − 1 ; l′ = 2, ..., N − 1 ; m′ = 0, ..., l′ − 1

[ Sz
l , S±

l′m′ ] =



± 1√
2l(l+1)

S±
l′m′ ; m′ < l

∓ l√
2l(l+1)

S±
l′m′ ; m′ = l

0 ; m′ > l

(13di)

[ S0
l , S±

l′m′ ] =



± 1√
2l(l+1)

S±
l′m′ ; m′ < l

∓ l√
2l(l+1)

S±
l′m′ ; m′ = l

0 ; m′ > l

(13dii)

[ σ2
l , S±

l′m′ ] =



±2 l(l+1)+1
l(l+1)

S±
l′m′ ; m′ < l

±2 (l+1)2−1
l+1

S±
l′m′ ; m′ = l

0 ; m′ > l

(13diii)
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Finally, the commutation bracket relations across the shells between spin state raising and lowering
operators S±

lm in lower shells specified by l = 1, ..., l′ − 1 ; m = 0, ..., l − 1 and spin state raising and
lowering operators Sl′m′ in the higher shells specified by l′ = 2, ..., N − 1 ; m′ = 0, 1, ..., l′ − 1 vanish,
except the commutation brackets for raising and lowering operators specified by m′ = m, l taking the
general forms

l < l′ : l = 1, ..., l′ − 1 ; l′ = 2, ..., N − 1 ; m = 0, ..., N − 2

m′ = m , l : [ S±
lm , S∓

l′m ] = ∓S∓
l′l ; [ S±

lm , S±
l′l ] = ±S±

l′m (13ei)

m′ ̸= m , l : [ S±
lm , S∓

l′m′ ] = 0 (13eii)

We have thus determined a complete set of the basic algebraic relations in an SU(N) generator
spectrum in the extended Cartan-Weyl basis Sz

l , S+
lm , S−

lm , S0
l , σ2

l , composed of the Cartan
subalgebra of Sz

l , S0
l , σ2

l in equation (13a), the eigenvalue equations generated by the Cartan
generators Sz

l , S0
l , σ2

l on the spin state raising and lowering operators S±
lm in equations (13b)-(13d)

and the spin state raising and lowering operator algebraic relations in equation (13e). The SU(N)
generator spectrum satisfying the set of basic algebraic relations in equations (13a)-(13e) constitutes
a closed SU(N) Lie algebra. We observe that the extended Cartan-Weyl basis should be expanded
to include the lth-shell Fubini-Veneziano spin angular momentum operator Fl:1, which generates some
more general algebraic relations. Further generalizations of the basic algebraic relations involving the
general nth-order quadratic and Fubini-Veneziano spin angular momentum operators Ql:2n , Fl:2n+1,
n = 0, 1, 2, 3, ... as defined in equations (7ci) , (7cii) and the universal SU(N) quadratic Casimir and
Fubini-Veneziano spin angular momentum operators QN :2n , FN :2n+1 in equations (11h) , (12b) are
easily determined using the basic algebraic relations obtained here in equations (13a)-(13e).

The closed algebraic relations in equations (13a)-(13e) provide the minimal framework for de-
termining the spectrum of roots , weights and particle states of an SU(N) generator spectrum, as
demonstrated in elaborate calculations in the SU(2) , SU(3) and SU(4) Lie algebras generally used
in models of gauge field theories of elementary particle interactions [5-9]. The quantum structure of
the SU(N) generator spectrum, where each of the N − 1 configuration shells in the generator spec-
trum contains a definite number of generators specified by the shell quantum number l = 1, ..., N − 1
and the symmetric-antisymmetric generator pair (or conjugate spin state raising-lowering operator)
quantum numbers m = 0, ..., l, means that the roots, weights and particle states are not randomly
distributed, but must be defined and distributed within the corresponding N−1 configuration shells of
the SU(N) generator spectrum. In particular, the property that the lth-shell quadratic spin angular
momentum operator σ2

l , identified as the lth-shell component of the SU(N) quadratic Casimir spin
angular momentum operator QN , commutes with both the traceless antisymmetric diagonal generator
Sz
l and the non-traceless symmetric diagonal generator S0

l can be used to determine a spectrum of
spin angular momentum state eigenvectors and eigenvalues within and across configuration shells of
an SU(N) generator spectrum using standard angular momentum algebra in the basis Sz

l , S+
lm , S−

lm

, σ2
l or the basis S0

l , S+
lm , S−

lm , σ2
l , noting that the relation (S0

l )
2 = (Sz

l )
2 means that the quadratic

spin angular momentum operator σ2
l as defined in equations (5cii) , (5civ) takes the same algebraic

form on replacing (Sz
l )

2 with (S0
l )

2.
It is obvious from the expanded algebraic space spanned by the extended Cartan-Weyl basis Sz

l ,
S+
lm , S−

lm , S0
l , σ2

l , Fl:1 (or the more general extended Cartan-Weyl basis Sz
l , S+

lm , S−
lm , S0

l , Ql:2n
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, Fl:2n+1 , n = 0, 1, 2, 3, ...) determined in the present work that the full quantum state space of an
SU(N ≥ 2) symmetry group is much larger than the quantum state spaces of the existing gauge field
theories based on SU(2) , SU(3) , SU(4) , SU(5) , SU(6) symmetry groups [5 , 8 , 10-20] where only
the basic Cartan-Weyl basis Sz

l ≡ Hl , S
±
lm ≡ E±α (considering corresponding notation in [5 , 8 , 10-

20], noting N = 2−6 , l = 1, ..., N−1 , m = 0, 1, ..., l in the present work) have been used to determine
the roots , weights and particle states. Hence, for practical applications of SU(N) symmetry groups in
formulating accurate models of gauge field theories of particle interactions, it is necessary to determine
general algebraic properties and the complete quantum structure of the respective SU(N) generator
spectrum using the entire set of the extended Cartan-Weyl basis Sz

l , S+
lm , S−

lm , S0
l , σ2

l (Ql:2n) ,
Fl:1 (Fl:1;2n+1) , together with the associated SU(N) quadratic Casimir and Fubini-Veneziano spin
angular momentum operators QN :2n , FN :2n+1, n = 0, 1, 2, 3, ..., to determine the entire spectrum of
spin angular momentum state eigenvectors and eigenvalues, or, alternatively, to determine the entire
spectrum of roots, weights and associated particle states, within the full quantum state space of the
SU(N) symmetry group. We highlight important implications of the expanded algebraic space and
quantum structure of an SU(N) generator spectrum to models of gauge field theories based on SU(N)
symmetry groups in section 4.4 below.

4.3 Spectrum of SU(2)-subspaces in an SU(N) state space

We conclude this section by developing a clearer understanding that general SU(N) generators are
defined within a spectrum of 1

2
N(N − 1) 2-dimensional SU(2)-subspaces. The underlying algebraic

property is that an N -dimensional SU(N) space spanned by the N orthonormal state basis vectors |1⟩
, ... , |N⟩ is composed of a spectrum of 1

2
N(N −1) 2-dimensional subspaces spanned by coupled pairs

of the N state basis vectors. Generators of the SU(N) symmetry group are determined as symmetric
and antisymmetric pairs of off-diagonal and diagonal state projection or spin operators within each of
the 1

2
N(N−1) 2-dimensional subspaces. Since the generators defined within a 2-dimensional subspace

spanned by a coupled pair of orthonormal state basis vectors satisfy a closed SU(2) Lie algebra, we
refer to the 2-dimensional subspace as an SU(2)-subspace of the N -dimensional SU(N) space.

The distribution of SU(N) generators in a spectrum composed of N − 1 configuration shells each
containing a definite number of generators specified by shell quantum number l = 1, ..., N − 1 and
symmetric-antisymmetric generator pair quantum number m = 0, 1, ..., l means that the 1

@
N(N − 1)

SU(2)-subspaces within which the generators are defined are also distributed in a spectrum of 2-
dimensional subspaces specified by the two quantum numbers l , m. It follows from the definitions of
generators in the spin angular momentum basis in equations (5bi) , (5bii), that in the lth-shell of an
SU(N) space, an SU(2)-subspace is spanned by a coupled pairs of orthonormal state basis vectors
|m+1⟩ and |l+1⟩ specified by l = 1, ..., N − 1 , m = 0, 1, ..., l− 1, where |l+1⟩ is the principal state
basis vector characterizing the lth-shell as defined earlier.

Generally, in the lth-shell of an SU(N) generator spectrum, we specify a 2-dimensional SU(2)-
subspace spanned by a coupled pair of orthonormal state basis vectors |m+1⟩ and |l+1⟩ by SU(2)lm =
( |m+ 1⟩ , |l + 1⟩ ), l = 1, ..., N − 1 , m = 0, 1, ..., l − 1. This lth-shell SU(2)-subspace contains a set
of generators in the spin angular momentum basis σx

lm , σy
lm , σz

lm , Ilm defined in equations (5bi) ,
(5bii) satisfying closed SU(2) Lie algebra according to

SU(2)lm = ( |m+ 1⟩ , |l + 1⟩ ) ≡ ( σx
lm , σy

lm , σz
lm , Ilm ) ; l = 1, ..., N − 1 , m = 0, 1, ..., l − 1

[ σx
lm , σy

lm ] = 2iσz
lm ; [ σy

lm , σz
lm ] = 2iσx

lm ; [ σz
lm , σx

lm ] = 2iσy
lm

Ilmσ
j
lm = σj

lmIlm = σj
lm ; [ Ilm , σj

lm ] = 0 , j = x, y, z (14a)
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where we identify Ilm as the identity generator within the 2-dimensional subspace SU(2)lm = ( |m+
1⟩ , |l + 1⟩ ).

The property that SU(2)lm = ( |m+ 1⟩ , |l+ 1⟩ ) is specified by l values of the quantum number
m = 0, 1, ..., l− 1 means that the lth-shell contains l SU(2)-subspaces SU(2)lm = ( |m+1⟩ , |l+1⟩ ),
each specified by a set of generators σx

lm , σy
lm , σz

lm , Ilm satisfying closed SU(2) Lie algebra. We
are thus led to an equivalent representation of an SU(N) generator spectrum as a spectrum of 2-
dimensional SU(2)-subspaces SU(2)lm = ( |m+ 1⟩ , |l+ 1⟩ ) specified by generators σx

lm , σy
lm , σz

lm ,
Ilm satisfying closed SU(2) Lie algebra as presented in equation (14b) below.

SU(2)-subspaces in the lth-shell of an SU(N) space : N ≥ 2

SU(2)lm = ( |m+ 1⟩ , |l + 1⟩ ) ≡ ( σx
lm , σy

lm , σz
lm , Ilm ) ; l = 1, ..., N − 1 , m = 0, 1, ..., l − 1

lth − shell :



m = 0 : SU(2)l0 = (|1⟩ , |l + 1⟩) ≡ (σx
l0, σ

y
l0, σ

z
l0, Il0)

m = 1 : SU(2)l1 = (|2⟩ , |l + 1⟩) ≡ (σx
l1, σ

y
l1, σ

z
l1, Il1)

........

........

........

m = l − 1 : SU(2)l l−1 = (|l⟩ , |l + 1⟩) ≡ (σx
l l−1, σ

y
l l−1, σ

z
l l−1, Il l−1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = l : σz
l = 1√

1
2
l(l+1)

∑l−1
m=0 σ

z
lm ; σ0

l = 1√
1
2
l(l+1)

∑l−1
m=0 Ilm

(14b)

where we note that the basic generators σx
lm , σy

lm , σz
lm , Ilm within the SU(2)-subspaces are enumer-

ated up to the value m = l − 1, while the last value m = l enumerates the effective antisymmetric
diagonal generator σz

l and symmetric diagonal generator σ0
l , each determined as the sum of the re-

spective antisymmetric generators σz
l0 , σ

z
l1 , ... , σ

z
l l−1 and symmetric generators Il0 , Il1 , ... , Il l−1

from the l SU(2)-subspaces in the lth-shell, which provides the definitions in equation (5bii).
We illustrate the quantum structure of an SU(N) generator spectrum based on the distribution of

the 1
2
N(N − 1) SU(2)-subspaces using the SU(5) generator spectrum as an example. For the SU(5)

symmetry group, setting N = 5 in equation (14b) gives 5 − 1 = 4 shells l = 1, 2, 3, 4 containing the
total 1

2
5(5− 1) = 10 SU(2)-subspaces, where the lth-shell contains l SU(2)-subspaces as displayed in

equation (14c) below.
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Spectrum of SU(2)-subspaces in the quantum structure of SU(5) space

SU(2)lm = ( |m+1⟩ , |l+1⟩ ) ≡ ( σx
lm , σy

lm , σz
lm , Ilm ) ; N = 5 : l = 1, 2, 3, 4 , m = 0, 1, ..., l−1

1st − shell :


m = 0 : SU(2)10 = (|1⟩ , |2⟩) ≡ (σx

10, σ
y
10, σ

z
10, I10)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 1 : σz
1 = σz

10 ; σ0
1 = I10

2nd − shell :



m = 0 : SU(2)20 = (|1⟩ , |3⟩) ≡ (σx
20, σ

y
20, σ

z
20, I20 )

m = 1 : SU(2)21 = (|2⟩ , |3⟩) ≡ (σx
21, σ

y
21, σ

z
21, I21)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 2 : σz
2 = 1√

3

∑1
m=0 σ

z
2m ; σ0

2 = 1√
3

∑1
m=0 I2m

3rd − shell :



m = 0 : SU(2)30 = (|1⟩ , |4⟩) ≡ (σx
30, σ

y
30, σ

z
30, I30)

m = 1 : SU(2)31 = (|2⟩ , |4⟩) ≡ ( σx
31, σ

y
31, σ

z
31, I31)

m = 2 : SU(2)32 = (|3⟩ , |4⟩) ≡ (σx
32, σ

y
32, σ

z
32, I32)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 3 : σz
3 = 1√

6

∑2
m=0 σ

z
3m ; σ0

3 = 1√
6

∑2
m=0 I3m

4th − shell :



m = 0 : SU(2)40 = (|1⟩ , |5⟩) ≡ (σx
40, σ

y
40, σ

z
40, I40)

m = 1 : SU(2)41 = (|2⟩ , |5⟩) ≡ (σx
41, σ

y
41, σ

z
41, I41)

m = 2 : SU(2)42 = (|3⟩ , |5⟩) ≡ (σx
42, σ

y
42, σ

z
42, I42)

m = 3 : SU(2)43 = (|4⟩ , |5⟩) ≡ (σx
43, σ

y
43, σ

z
43, I43)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 4 : σz
4 = 1√

10

∑3
m=0 σ

z
4m ; σ0

4 = 1√
10

∑3
m=0 I4m

(14c)

In summary, we have now provided a complete algebraic and quantum structure of a general SU(N)
symmetry group illustrated here explicitly in the SU(5) example in equation (14c) above. An SU(N)
space is composed of a spectrum of 1

2
N(N−1) SU(2)-subspaces distributed in definite numbers among

N − 1 configuration shells specified by quantum numbers l = 1, ..., N − 1. The lth-shell contains l
SU(2)-subspaces, where an SU(2)-subspace specified by SU(2)lm = ( |m + 1⟩ , |l + 1⟩ ), is a 2-
dimensional state space spanned by a coupled pair of orthonormal state basis vectors |m + 1⟩ and
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|l+1⟩, l = 1, ..., N − 1 , m = 0, ..., l− 1. General SU(N) symmetry group generators are enumerated
and determined in sets σx

lm , σy
lm , σz

lm , Ilm satisfying closed SU(2) Lie algebra defined within the
SU(2)-subspaces SU(2)lm = ( |m+ 1⟩ , |l + 1⟩ ), l = 1, ..., N − 1 , m = 0, ..., l − 1, such that the full
set of the SU(N) generators are distributed in a spectrum composed of N − 1 configuration shells
based on the distribution of the respective SU(2)-subspaces among the N − 1 configuration shells in
the SU(N) space. The lth-shell effective antisymmetric and symmetric diagonal generators σz

l , σ0
l at

m = l are determined as sums of the respective antisymmetric and symmetric generators σz
lm , Ilm

defined within the SU(2-subspaces according to the formulae in equations (5bii) , (14b).
The algebraic and quantum structure which we have provided here accounts for the enumeration

and determination of the full SU(N) generator spectrum presented with explicit examples in sections
2 and 3 above. The property that SU(N) generators are defined within SU(2)-subspaces specified by
quantum numbers l , m can be very useful in developing and understanding the dynamical structure
of SU(N) gauge field theories of particle interactions, which we comment on in the next section.

5 Some remarks on implications of the expanded SU(N) al-

gebraic space and quantum structure to models of gauge

field theories

We begin by observing that theoretical models of elementary particle interactions driven by electro-
magnetic, weak nuclear and strong nuclear forces, acting separately or as unified forces, in quantum
field theory have generally been formulated as gauge field theories based on the algebraic properties
of U(1) and SU(N) symmetry groups. For SU(N) gauge field theories such as the unified electroweak
interaction, strong nuclear interaction and grand unified interaction models, the driving gauge field
forces are characterized by the respective vector bosons (quanta of the gauge field), which are identified
directly with the generators of the Lie algebra of the chosen SU(N) symmetry group. In particu-
lar, an SU(N) gauge field is specified by N2 − 1 vector boson components Aµ

j , j = 1, 2, ..., N2 − 1,
corresponding to the N2 − 1 traceless generators of the SU(N) symmetry group enumerated in the
Gell-Mann basis λ1, λ2, ..., λN2−1, such that the SU(N) gauge field potential four-vector Aµ is ob-

tained as Aµ =
∑N2−1

j=1 λjAµ
j [6 , 8 , 10-20]. In the spin angular momentum basis where the SU(N)

generators are specified by quantum numbers l , m, the corresponding gauge field vector boson com-
ponents are also specified by the same quantum numbers l , m as we demonstrate below. The general
dynamics in an SU(N) gauge field is generated by interaction energy arising from the coupling of
particle currents and the gauge field. The model of an SU(N) gauge field theory is completed by in-
cluding appropriately specified scalar fields, generally identified as the Higgs fields, which also couple
to the particle currents and the gauge field [6 , 8 , 10-20].

The definition of an SU(N) gauge field potential Aµ in terms of the group generators according to

Aµ =
∑N2−1

j=1 λjAµ
j means that the dynamical structure of an SU(N) gauge field theory is determined

by the algebraic properties and quantum structure of the SU(N) generator spectrum. The formulation
of an SU(N) gauge field theory must therefore be based on an accurate enumeration and determination
of all the generators, together with the corresponding quadratic and Fubini-Veneziano spin angular
momentum operators, in the Gell-Mann or spin angular momentum basis, taking into account the
quantum structure of the generator spectrum composed of N − 1 configuration shells each containing
a definite number of generators specified by the shell quantum number l = 1, ..., N−1 and symmetric-
antisymmetric generator pair quantum number m = 0, 1, ..., l. The quantum structure of the SU(N)
generator spectrum means that the SU(N) gauge field four-vector Aµ is composed of a spectrum
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of N2 − 1 vector bosons Aµ
j , j = 1, ..., N2 − 1, distributed in definite numbers among the N − 1

configuration shells of the generator spectrum. On the other hand, the algebraic properties of the
SU(N) symmetry group, starting with the basic relations in equations (13a)-(13e), generated by the
full spectrum of generators expressed in the extended Cartan-Weyl basis, which besides the standard
traceless basis Sz

l , S+
lm , S−

lm, now includes the non-traceless symmetric generator S0
l , quadratic and

Fubini-Veneziano spin angular momentum operators σ2
l (Ql:2n) , Fl:1 (Fl:2n+1), are used to determine

the complete spectrum of particle states within the entire quantum state space of the SU(N) gauge
field theory. We note that the expanded algebraic space specified by the extended Cartan-Weyl basis
Sz
l , S+

lm , S−
lm , S0

l , σ2
l (Ql:2n) , Fl:1 (Fl:2n+1), considered together with the associated universal

SU(N) quadratic Casimir and Fubini-Veneziano spin operators QN :2n , FN :2n+1, lead to an expansion
of the quantum state space of an SU(N) gauge field theory compared to the quantum state spaces of
existing models of SU(N) gauge field theories where only the basic Cartan-Weyl basis Sz

l , S+
lm , S−

lm

has been used to determine the particle states.
We observe that in the current models of electroweak (SU(2) × U(1)), quantum chromody-

namics (SU(3)c), the standard model (SU(3)c × SU(2)L × U(1)em), Pati-Salam leptoquark models
(SU(4)L+R×SU(4)L+R and SU(4)L×SU(4)R×SU(4′)) and Georgi-Glashow grand unification (SU(5))
gauge field theories [6 , 8 , 10-20], all SU(2) , SU(3) and SU(4) generators have been determined
accurately in agreement with the corresponding Gell-Mann basis determined and presented here for
ease of comparison in equations (2cii) , (2dii) , (2eii) of the respective generator spectra, including
the correct forms of the respective basic Cartan generators 2Sz

l = λl2+2l in each shell l = 1, ..., N − 1
for N = 2, 3, 4, but for the SU(5) symmetry group as used in the model of a grand unified theory in
[14-20], the third and fourth (last two) Cartan generators derived through fine-tuning in the forms (in
the notation of the present work) Sz

3 = diag(0, 0, 0, 1,−1) , Sz
4 = 1√

15
diag(2, 2, 2,−3,−3) to achieve

the desired consistency in the SU(5) grand unified theory deviate completely from the accurate forms
2Sz

3 = λ15 =
1√
6
diag(1, 1, 1,−3, 0) , 2Sz

4 = λ24 =
1√
10
diag(1, 1, 1, 1,−4) determined and presented here

for ease of comparison in equation (2fii) of the SU(5) generator spectrum. This discrepancy in the
determination of Cartan generators already provides a good reason to review the SU(5) grand unified
theory, since, according to the evaluations in [14-20], the specification of the electric charge operator
and the prediction of the weak mixing or Weinberg angle θW depend on the two Cartan generators
2Sz

3 = λ15 , 2Sz
4 = λ24, which we have enumerated and determined accurately in the present work.

Major challenges on quantum structure and algebraic properties arise in existing gauge field the-
ories based on the SU(N) symmetry groups, which we can illustrate using the simpler SU(2) and
SU(3) cases.

For the SU(2) symmetry group applicable in the SU(2)×U(1) (electroweak) and SU(3)c×SU(2)L×
U(1)Y (standard model) gauge field theories, all the 22 − 1 = 3 generators in the Gell-Mann basis
λ1, λ2, λ3, have been determined accurately [6 , 8 , 10 , 11 , 14] in agreement with the corresponding
matrix forms determined and presented here for ease of comparison in equation (2cii) of the general
SU(2) generator spectrum, but the quantum structure is not specified. According to equations (2ai) ,
(2aii) , (5ai) , (5bi) , (5bii), the 3 SU(2) generators in the Gell-Mann or spin angular momentum basis
are specified by quantum numbers l = 1 , m = 0, 1 and occupy the single (2 − 1 = 1) configuration
shell in the SU(2) generator spectrum, containing the 2×1+1 = 3 generators λ1, λ2, λ3 ≡ σx

10, σ
y
10, σ

z
1

as presented in the SU(2) generator spectra in equations (3dii) , (9b), noting that the basic Cartan
generator is obtained as 2Sz

1 = σz
1 = λ3. But the expected non-traceless symmetric diagonal generator

2S0
1 = σ0

1, quadratic spin angular momentum operator σ2
1 (Q1:2n, σ

2
1 = Q1:2) and the Fubini-Veneziano

spin angular momentum operator F1:1 (F1:2n+1 , n = 0, 1, 2, 3, ...), which we have introduced here in
the 1st-shell in equation (9b), are missing in the specifications of Cartan-Weyl basis used in the
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existing SU(2) × U(1) and SU(3)c × SU(2)L × U(1)Y gauge field theories. However, we note that
the symmetric generator S0

1 and the quadratic spin angular momentum operator σ2
1, together with

the corresponding SU(2) quadratic Casimir operator Q2, coincide with the SU(2) identity operator
I2 according to S0

1 = 1
2
σ0
1 = 1

2
I2 from equations (5biv) , (5bv) and Q2 = 2 22−1

2
I2 = 3I2 from equation

(11f). It follows that all the SU(2) algebraic properties and the associated spectrum of roots, weights
and particle states in an SU(2)× U(1) or SU(3)c × SU(2)L × U(1)Y gauge field theory have always
been determined accurately, except now we have discovered that the quantum state space can be
expanded by including the additional spectrum of roots, weights and particle states arising from
the algebraic relations generated by the SU(2) Fubini-Veneziano spin angular momentum operator
F1:1 = αS+

10 + S−
10 + σz

1 determined by setting l = 1 , m = 0 in equation (7e), noting that for SU(2),
σz
1 = λ3 in the Gell-Mann notation. We observe that for SU(2), the Fubini-Veneziano spin angular

momentum operator F1:2n+1 takes the same form in all orders n = 0, 1, 2, 3, ... according to the relation
(σz

1)
2n = I2, giving (σz

1)
2n+1 = σz

1 , F1;2n+1 = F1:1, which applies to the SU(2) generator spectrum in
the spin angular momentum basis in equation (9b).

For the SU(3) symmetry group applicable in the SU(3)c (quantum chromodynamics) and SU(3)c×
SU(2)L×U(1)Y (standard model) gauge field theories, all the 32−1 = 8 generators in the Gell-Mann
basis λ1, λ2, ..., λ8 have been determined accurately [6 , 8 , 10 , 11 , 14] in agreement with the
corresponding matrix forms determined and presented here for ease of comparison in equation (2dii)
of the general SU(3) generator spectrum, but the quantum structure is not specified. According to
equations (2ai) , (2aii) , (5ai) , (5bi) , (5bii), the 8 SU(3) generators in the Gell-Mann or spin angular
momentum basis are specified by quantum numbers l = 1, 2 , m = 0, ..., l and occupy 3 − 1 = 2
configuration shells in the SU(3) generator spectrum, with 2 × 1 + 1 = 3 generators λ1, λ2, λ3 ≡
σx
10, σ

y
10, σ

z
1 in the 1st-shell and 2 × 2 + 1 = 5 generators λ4, λ5, λ6, λ7, λ8 ≡ σx

20, σ
y
20, σ

x
21, σ

y
21, σ

z
2 in

the 2nd-shell as presented in the SU(3) generator spectra in equations (3eii) , (9c), noting that the
two basic Cartan generators are obtained as 2Sz

1 = σz
1 = λ3 , 2Sz

2 = σz
2 = λ8. But the non-traceless

symmetric diagonal generators, quadratic and the Fubini-Veneziano spin angular momentum operators
obtained in the present work as S0

1 , σ2
1 (Q1:2n) , F1;1 (F1:2n+1) in the 1st-shell and S0

2 , σ2
2 (Q2;2n) , F2;1

(F2:2n+1) in the 2nd-shell as given in equation (9c) are missing in the specifications of Cartan generators
used in the existing SU(3)c and SU(3)c×SU(2)L×U(1)Y gauge field theories. The SU(3) quadratic
Casimir operator Q3 coincides with the identity operator I3 according to Q3 = 2 32−1

3
I3 = 16

3
I3

from equation (11f), which does not affect the algebraic properties of the generator spectrum. We
easily arrive at the general understanding that the quantum state space of the existing SU(3)c and
SU(3)c×SU(2)L×U(1)Y gauge field theories, which do not include the additional spectrum of roots,
weights and particle states arising from the algebraic relations generated by the SU(3) non-traceless
symmetric diagonal generators, quadratic and Fubini-Veneziano spin angular momentum operators
S0
l , σ2

l (Ql:2n) , Fl:1 (Fl:2n+1) for l = 1, 2 , n = 0, 1, 2, 3, ..., is not fully specified. It follows that the
quantum state spaces of the existing SU(3)c and SU(3)c × SU(2)L × U(1)Y gauge field theories are
seriously limited, noting that the composite SU(2) and SU(3) quantum state spaces are both limited
as explained above.

In general, the set of basic algebraic relations in equations (13a)-(13e), which are useful in de-
termining the spectrum of roots, weights and particle states, already reveals that an incomplete
specification of the Cartan generators, which does not include the non-traceless symmetric diagonal
generators, quadratic and the Fubini-Veneziano spin angular momentum operators S0

l , σ
2
l (Ql:2n) , Fl:1

(Fl:2n+1) for l = 1, ..., N−1 , n = 0, 1, 2, 3, ... and does not specify the quantum structure of the chosen
SU(N) generator spectrum composed of N − 1 configuration shells each containing definite numbers
of specified generators, drastically limits the quantum state space of a gauge field theory based on the
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SU(N) symmetry group. According to equations (13b)-(13d), the non-traceless symmetric diagonal
generator σ0

l and the quadratic spin angular momentum operator σ2
l generate eigenvalue equations

which can be used to determine additional spectra of roots, weights and particle states to expand the
quantum state spaces of the existing SU(3)c , SU(3)c×SU(2)L×U(1)Y , SU(4)L×SU(4)R×SU(4′)
, SU(5) , SU(6) gauge field models.

In particular, the interpretation of the 2l + 1 traceless generators σx
lm , σy

lm , Sz
l , m = 0, 1, ..., l in

the lth-shell as components of a (2l+1)-component spin angular momentum vector σ⃗l, with quadratic
operator σ2

l = σ⃗l · σ⃗l commuting with both the traceless antisymmetric diagonal generator Sz
l and

the non-traceless symmetric diagonal generator S0
l , provides an opportunity for applying standard

angular momentum algebra using the basis Sz
l , S

+
lm, S

−
lm,Fl:1, σ

2
l and the basis S0

l , S
+
lm, S

−
lm,Fl:1, σ

2
l to

determine the spectrum of spin state eigenvectors and eigenvalues within and across the N − 1 shells
spanning the quantum state space of an SU(N) gauge field theory. Greater detail may be achieved by
replacing the quadratic and Fubini-Veneziano spin angular momentum operators σ2

l , Fl:1 with their
respective general nth-order quadratic and Fubini-Veneziano spin angular momentum operators Ql:2n

, Fl:2n+1 and the universal SU(N) quadratic Casimir and Fubini-Veneziano spin angular momentum
operators QN :2n , FN :2n+1, n = 0, 1, 2, 3, ... as may be necessary. The construction of the quantum
state space spanned by spin state eigenvectors and eigenvalues through the angular momentum algebra
can be very useful in characterizing particle transition states and identifying possible selection rules
for allowed or forbidden transitions in particle interactions in an SU(N) gauge field model. The
selection rules may be more natural mechanisms to account for some of the unexpectedly enhanced
or suppressed transitions emerging as discrepancies between theory and experiment in SU(N) gauge
field theories, which are generally addressed through speculations by adding hypothetical particle
states and scalar fields to expand the quantum state space as desired.

Finally, we consider the implication of the quantum structure of the SU(N) generator spectrum
to the nature of the gauge field potential four-vector Aµ, which corresponds to the SU(N) generator
spectrum in the Gell-Mann basis λj , j = 1, 2, ..., N2 − 1, according to the standard definition Aµ =∑N2−1

j=1 λjAµ
j [6 , 8 , 10-20], where Aµ

j are the component vector bosons of the gauge field potential. As
we have pointed out earlier, the quantum structure of the SU(N) generator spectrum in the Gell-Mann
or spin angular momentum basis displayed explicitly in the respective examples in equations (3d)-(3g)
or equations (9b)-(9e) means that the SU(N) gauge field potential four-vector Aµ is composed of a
spectrum of N2 − 1 vector bosons Aµ

j , j = 1, ..., N2 − 1, distributed in definite numbers among the
N − 1 configuration shells of the generator spectrum. In particular, in the spin angular momentum
basis where the lth-shell generators σx

lm , σy
lm , σz

l , σ0
l are specified explicitly by quantum numbers

l = 1, ..., N − 1 , m = 0, 1, ..., l, the corresponding gauge field vector bosons are also specified by the
same quantum numbers l , m as Aµx

lm , Aµy
lm , Aµz

l , Aµ0
l , such that the lth-shell gauge field potential

four-vector Aµ
l is obtained as Aµ

l =
∑l−1

m=0 σ
j
lmA

µj
lm + σz

l A
µz
l , j = x, y, and the total SU(N) gauge

field potential four-vector Aµ is then obtained as the sum of the N − 1 lth-shell potentials Aµ
l in

the form Aµ =
∑N−1

l=1 Aµ
l . For completeness, we have introduced a hyperphoton vector boson Hµ0

l

corresponding to the non-traceless symmetric generator σ0
l in the lth-shell, giving a corresponding

lth-shell hyperphoton gauge field potential four-vector Hµ
l = σ0

l H
µ0
l .

We present an illustrative picture of the expected quantum structure of an SU(N) gauge field
model, using the SU(5) grand unified theory as an example, which also captures all features of the
quantum structure of gauge field models based on the lower SU(2) , SU(3) , SU(4) symmetry groups
in equation (15a) below, where the generators are in the spin angular momentum basis according to
the general SU(N) generator spectrum in equation (9a) and the SU(5) example in equation (9e). The
definitions given in equations (5ai) , (5bi) , (5bii) , (5civ) , (7e) are used to enumerate and determine
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the generators σx
lm , σy

lm , σz
l , σ0

l , together with the corresponding quadratic and Fubini-Veneziano
spin angular momentum operators σ2

l , Fl:1 in each of the N − 1 configuration shells specified by
l = 1, ..., N − 1. Noting that the grand unified SU(5) gauge field model is composed of strong,
leptoquark and weak interaction sectors, the gauge field vector bosons corresponding to the traceless
generators σx

lm , σy
lm , σz

l in the lth-shell within these sectors are identified as gluons Gµ , leptoquark
bosons Xµ and weak bosons Wµ based on the quantum structure, while the gauge field vector boson
corresponding to the non-traceless generator σ0

l in the lth-shell is identified as a hyperphoton vector
boson Hµ0

l as clarified below.

Shell structure of SU(5) gauge field model : 5 shells, l = 1, 2, 3, 4

l = 1 : 1st − shell : PRST − |2⟩


m = 0 : σx

10 ; σy
10 7→ Gx

10 ; Gy
10

m = 1 : σz
1 ; σ0

1 ; (σ2
1 ; F1:1) 7→ Gz

1 ; H0
1

l = 2 : 2nd − shell : PRST − |3⟩



m = 0 : σx
20 ; σy

20 7→ Gx
20 ; Gx

20

m = 1 : σx
21 ; σy

21 7→ Gx
21 ; Gy

21

m = 2 : σz
2 ; σ0

2 ; (σ2
2 ; F2:1) 7→ Gz

2 ; H0
2

l = 3 : 3rd − shell : PRST − |4⟩



m = 0 : σx
30 ; σy

30 7→ Xx
30 ; Xy

30

m = 1 : σx
31 ; σy

31 7→ Xx
31 ; Xy

31

m = 2 : σx
32 ; σy

32 7→ Xx
32 ; Xy

32

m = 3 : σz
3 ; σ0

3 ; (σ2
3 , F3:1) 7→ Xz

3 ; H0
3

l = 4 : 4th − shell : PRST − |5⟩



m = 0 : σx
40 ; σy

40 7→ Wx
40 ; Wy

40

m = 1 : σx
41 ; σy

41 7→ Wx
41 ; Wy

41

m = 2 : σx
42 ; σy

42 7→ Wx
42 ; Wy

42

m = 3 : σx
43 ; σy

43 7→ Wx
43 ; Wy

43

m = 4 : σz
4 ; σ0

4 ; (σ2
4 , F4:1) 7→ Wz

4 ; H0
4

(15a)

An important physical feature which emerges in the expected quantum structure of the SU(5) gauge
field model (SU(5) GUT) in equation (15a) is that the 24-component SU(5) gauge field potential
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four-vector Aµ = (Gµ , Xµ , Wµ) is composed of 2× 1 + 1 = 3 gluons Gx
10 , Gy

10 , Gz
1 corresponding

to the 3 traceless generators σx
10 , σ

y
10 , σ

z
1, respectively, in the 1st-shell, 2× 2+1 = 5 gluons Gx

20 , G
y
20

, Gx
21 , G21y , Gz

2 corresponding to the 5 traceless generators σx
20 , σy

20 , σx
21 , σy

21 , σz
2, respectively,

in the 2nd-shell, 2 × 3 + 1 = 7 leptoquark (or intermediate interaction) bosons Xx
30 , Xy

30 , Xx
31 ,

Xy
31 , Xx

32 , Xy
32 , Xz

3 corresponding to the 7 traceless generators σx
30 , σy

30 , σx
31 , σy

31 , σx
32 , σy

32 ,
σz
3, respectively, in the 3rd-shell and 2 × 4 + 1 = 9 weak interaction gauge field bosons Wx

40 , Wy
40

, Wx
41 , Wy

41 , Wx
42 , Wy

42 , Wx
43 , Wy

43 , Wz
4 corresponding to the 9 traceless generators σx

40 , σy
40 ,

σx
41 , σy

41 , σx
42 , σy

42 , σx
43 , σy

43 , σz
4 in the 4th-shell, making a total of 52 − 1 = 24 gauge field vector

bosons. The SU(5) gauge field model is thus composed of a strong interaction sector consisting of two
sub-sectors driven by 3 gluon vector bosons Aµ

1 ≡ (Gx
10, G

y
10, G

z
1) in the 1st-shell and 5 gluon vector

bosons Aµ
2 ≡ (Gx

20, G
y
20, G

x
21, G21y, Gz

2) in the 2nd-shell, an intermediate interaction sector driven
by 7 leptoquark vector bosons Aµ

3 ≡ (Xx
30, X

y
30, X

x
31, X

y
31, X

x
32, X

y
32, X

z
3 ) in the 3rd-shell and a weak

interaction sector driven by 9 weak vector bosonsAµ
4 ≡ (Wx

40,W
y
40,Wx

41,W
y
41,Wx

42,W
y
42,Wx

43,W
y
43,Wz

4 )
in the 4th-shell. We note that the weak interaction sector in the 4th-shell is generalized such that, of
the 9 weak vector bosons, the first 6, namely, Wx

40 , Wy
40 , Wx

41 , Wy
41 , Wx

42 , Wy
42, are identified with

the (6) Y vector bosons introduced in the original SU(5) grand unified theory [14-19], while the last
three, namely, Wx

43 , Wy
43 , Wz

4 are identified with the (3) well known W± , W3 vector bosons in the
SU(2) component of the standard SU(2)× U(1) electroweak gauge theory [6 , 8 , 10 , 11 , 14].

Considering that the non-traceless symmetric diagonal generator σ0
l is the algebraic partner of

the traceless antisymmetric diagonal generator σz
l enumerated and determined in each shell l =

1, 2, 3, 4 according to the definitions in equation (5bii), we have introduced a corresponding lth-shell
hyperphoton gauge field vector boson Hµ0

l , l = 1, 2, 3, 4 in each shell as displayed in equation (15a). In
this respect, we develop an understanding that the electromagnetic field photon A and the associated
weak field neutral vector boson Z0 which we have not specified explicitly in the quantum structure
of the SU(5) gauge field model in equation (15a) may arise through the hyperphoton vector bosons
H0

1 , H0
2 , H0

3 , H0
4 corresponding to the non-traceless symmetric diagonal generators σ0

1 , σ0
2 , σ0

3 ,
σ0
4, respectively.
We get finer detail on the dynamical structure of an SU(N) gauge field if we consider the equiv-

alent, but finer quantum structure where the SU(N) generators are defined within a spectrum of
1
2
N(N − 1) SU(2)-subspaces distributed in definite numbers among N − 1 configuration shells in

the SU(N) space as explained in section 4.3 above. In this respect, generators defined within an
SU(2)-subspace specified by quantum numbers l , m determined according to the general spectrum
in equation (14b) as SU(2)lm = (σx

lm , σy
lm , σz

lm , Ilm) in the lth-shell are directly associated with
a corresponding gauge field vector boson Aµ

lm = (Ax
lm , Ay

lm , Az
lm , hlm) defined within the same

SU(2)-subspace in the lth-shell. As an example, we determine the expected finer quantum structure
of the grand unified SU(5) gauge field model where the gauge field vector bosons are defined within a
spectrum of 1

2
5(5− 1) = 10 SU(2)-subspaces by setting N = 5 giving l = 1, 2, 3, 4 in the general spec-

trum of SU(2)-subspaces in equation (14b). The expected finer quantum structure of the grand unified
SU(5) gauge field model composed of a spectrum of 10 SU(2)-subspaces SU(2)lm = (|m+1⟩ , |l+1⟩),
l = 1, 2, 3, 4 , m = 0, ..., l − 1, is displayed in equation (15b) below.
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Expected spectrum of SU(2)-subspaces in the quantum structure of the grand unified SU(5) gauge
field model

SU(2)lm = ( |m+1⟩ , |l+1⟩ ) ≡ ( σx
lm , σy

lm , σz
lm , Ilm ) ; N = 5 : l = 1, 2, 3, 4 , m = 0, 1, ..., l−1

1st − shell :


m = 0 : SU(2)10 = (|1⟩ , |2⟩) ≡ (σx

10, σ
y
10, σ

z
10, I10) : Aµ

10 = (Gx
10, G

y
10, G

z
10, h10)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 1 : σz
1 = σz

10 ; σ0
1 = I10 : Gz

1 ; H0
1

2nd − shell :



m = 0 : SU(2)20 = (|1⟩ , |3⟩) ≡ (σx
20, σ

y
20, σ

z
20, I20 ) : Aµ

20 = (Gx
20, G

y
20, G

z
20, h20)

m = 1 : SU(2)21 = (|2⟩ , |3⟩) ≡ (σx
21, σ

y
21, σ

z
21, I21) : Aµ

21 = (Gx
21, G

y
21, G

z
21, h21)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 2 : σz
2 = 1√

3

∑1
m=0 σ

z
2m ; σ0

2 = 1√
3

∑1
m=0 I2m : Gz

2 ; H0
2

3rd − shell :



m = 0 : SU(2)30 = (|1⟩ , |4⟩) ≡ (σx
30, σ

y
30, σ

z
30, I30) : Aµ

30 = (Xx
30, X

y
30, X

z
30, h30)

m = 1 : SU(2)31 = (|2⟩ , |4⟩) ≡ ( σx
31, σ

y
31, σ

z
31, I31) : Aµ

31 = (Xx
31, X

y
31, X

z
31, h31)

m = 2 : SU(2)32 = (|3⟩ , |4⟩) ≡ (σx
32, σ

y
32, σ

z
32, I32) : Aµ

32 = (Xx
32, X

y
32, X

z
32, h32)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 3 : σz
3 = 1√

6

∑2
m=0 σ

z
3m ; σ0

3 = 1√
6

∑2
m=0 I3m : Xz

3 ; H0
3

4th − shell :



m = 0 : SU(2)40 = (|1⟩ , |5⟩) ≡ (σx
40, σ

y
40, σ

z
40, I40) : Aµ

40 = (Wx
40,W

y
40,Wz

40, h40)

m = 1 : SU(2)41 = (|2⟩ , |5⟩) ≡ (σx
41, σ

y
41, σ

z
41, I41) : Aµ

41 = (Wx
41,W

y
41,Wz

41, h41)

m = 2 : SU(2)42 = (|3⟩ , |5⟩) ≡ (σx
42, σ

y
42, σ

z
42, I42) : Aµ

42 = (Wx
42,W

y
42,Wz

42, h42)

m = 3 : SU(2)43 = (|4⟩ , |5⟩) ≡ (σx
43, σ

y
43, σ

z
43, I43) : Aµ

43 = (Wx
43,W

y
43,Wz

43, h43)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 4 : σz
4 = 1√

10

∑3
m=0 σ

z
4m ; σ0

4 = 1√
10

∑3
m=0 I4m : Wz

4 ; H0
4

(15b)

The quantum structure demonstrated in the SU(5) gauge field in equation (15b) above characterizes
SU(N) gauge field vector bosons as four-vectors Aµ

lm defined within 1
2
N(N − 1) SU(2)-subspaces

in the N − 1 shells of the SU(N) space. Each SU(2)-subspace contains only one four-vector boson,
meaning that there are 1

2
N(N−1) four-vector bosons in an SU(N) gauge field. The general dynamics

of interacting particles in an SU(N) gauge field model is therefore driven by 1
2
N(N − 1) four-vector
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bosons. If the gauge field model is based on several SU(N) symmetry groups, then the dynamics is
driven by a combination of sets of 1

2
N(N −1) four-vector bosons from each of the SU(N) gauge fields

in the model.
It is clear from the quantum structure in equation (15b) that the grand unified SU(5) gauge field

is composed of a total of 1
2
5(5 − 1) = 10 four-vector bosons, which we have identified as gluons

G, leptoquark bosons X and weak bosons W , defined within the respective 10 SU(2)-subspaces
distributed among the 5 − 1 = 4 configuration shells of the SU(5) generator spectrum. Dynamics
in the grand unified SU(5) gauge field model is therefore driven by three gluon four-vector bosons
Aµ

10 , A
µ
20 , A

µ
21 characterizing the strong interaction sector in the 1st and 2nd shells, three leptoquark

four-vector bosons Aµ
30 , Aµ

31 , Aµ
32 characterizing the leptoquark (or intermediate) interaction sector

in the 3rd shell and four weak four-vector bosons Aµ
40 , Aµ

41 , Aµ
42 , Aµ

43 characterizing the general
electroweak interaction sector in the 4th shell.

As we observed earlier, the strong interaction sector is composed of two subsectors of dynamics, one
driven by a single gluon four-vector bosonAµ

10 within the SU(2)10 = (|1⟩ , |2⟩) subspace in the 1st-shell
and the other driven by two gluon four-vector bosons Aµ

20 , Aµ
21 within the two SU(2)20 = (|1⟩ , |3⟩)

, SU(2)21 = (|2⟩ , |3⟩) subspaces in the 2nd-shell. Whether or not these two interaction mechanisms
driven by a single gluon four-vector boson in the 1st-shell or two gluon four-vector bosons in the 2nd-
shell represent some internal dynamical features of the strong interaction can only be determined in
a formal investigation of the strong interactions in various models of SU(N ≥ 3) gauge field theories.

Here again, we make some observations on the weak interaction sector of the grand unified SU(5)
gauge field model. In contrast to the standard interpretation in the original model [14-19], the
quantum structure in equation (15b) reveals that the electroweak interaction sector in the SU(5)
gauge theory is larger, characterized by dynamics driven by four weak four-vector bosons Aµ

40 , Aµ
41

, Aµ
42 , Aµ

43 defined within the respective SU(2)40 , SU(2)41 , SU(2)42 , SU(2)43 subspaces in the
4th-shell of the SU(5) generator spectrum. We identify the three weak four-vector bosons Aµ

40 , Aµ
41

, Aµ
42 in the first three SU(2)-subspaces with the 6 Y leptoquark vector bosons in the interpretation

given in the original SU(5) gauge field model [14-19], while the single weak four-vector boson Aµ
43 in

the last SU(2)-subspaces precisely with the standard interpretation given in [14-19]. The generators
σx
43 = λ22 , σy

43 = λ23 determined here in the Gell-Mann matrix form in equation (2fii) and the
generator σz

43 which we use the SU(5) basis vectors |4⟩ , |5⟩ defined in equation (2fi) to determine
here in the matrix form

σ43 = |4⟩⟨4| − |5⟩⟨5| = diag(0, 0, 0, 1,−1) (15c)

agree precisely with the generators identified with the weak vector bosons in the original model in [14-
19]. But the challenge now arises that the generator σz

43 in equation (15c) is contained in the definition
of the effective traceless diagonal generator σz

4 = λ24 obtained here in the 4th-shell in equation (15b)
according to the summation

σz
4 =

1√
10

3∑
m=0

σz
4m =

1√
10

diag(1, 1, 1, 1,−4) → σz
4 = λ24 (15d)

where the Gell-Mann matrix λ24 is determined in the SU(5) generator spectrum in equation (2fii).
Using the component generator σz

43 defined only in the SU(2)43-subspace, in preference to the effective
generator σz

4 incorporating all the four diagonal generators σz
40 , σz

41 , σz
42 , σz

43 defined in the four
subspaces SU(2)40 , SU(2)41 , SU(2)42 , SU(2)43, to define the weak vector boson automatically
poses a problem in the algebraic and dynamical structure of the SU(5) gauge field model. Even more
serious is the fact that the original SU(5) gauge field model ignores completely the correct effective
traceless diagonal SU(5) generators σz

3 = λ15 , σz
4 = λ24 determined here in equation (2fii), while
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using “fine-tuned” traceless diagonal generators σz
43 = diag(0, 0, 0, 1,−1) and diag( 1√

15
(2, 2, 2,−3,−3)

to define the weak vector boson and hyperphoton fields, respectively. Without giving further detail,
it seems very clear that the formulation of the original grand unified SU(5) gauge field model needs
a critical review to account for all the correct 24 traceless generators and incorporate the quantum
structure of the generator spectrum in the definition of the SU(5) gauge field potential.

We reemphasize that what we have presented here is neither a substantive review nor a reformula-
tion of any existing gauge field theory, but only a picture of the implications of the emerging quantum
structure and expanded algebraic properties of an SU(N) generator spectrum, which now include
additional eigenvalue equations and associated spectrum of roots, weights and particle states gener-
ated through the additional lth-shell (l = 1, ..., N − 1) non-traceless symmetric diagonal generators,
the quadratic and Fubini-Veneziano spin angular momentum operators, together with the universal
SU(N) quadratic Casimir and Fubinin-Veneziano spin angular momentum operators introduced in
the present work. Work on such a substantive review or reformulation of SU(N) gauge field theories
based on the general algebraic properties and quantum structure of the generator spectrum of SU(N)
symmetry groups is in progress to be presented in a forthcoming article.

6 Conclusion

We have provided a mathematical formula for enumerating and determining SU(N) symmetry group
generators based on an algebraic property that the generators occur in symmetric and antisymmetric
pairs specified by quantum numbers l = 1, ..., N − 1 ; m = 0, 1, ..., l according to equations (2ai) ,
(2aii) in the Gell-Mann basis where the tensor products are evaluated in explicit matrix forms and
according to equations (5ai) , (5bi) , (5bii) in the spin angular momentum basis where the generators
are identified as standard spin operators. The generators occur in a spectrum composed of N − 1
configuration shells specified by shell quantum number l = 1, ..., N − 1, where each shell contains
2l + 1 traceless symmetric and antisymmetric generators plus 1 non-traceless symmetric generator,
occurring in symmetric-antisymmetric pairs specified by the symmetric-antisymmetric pair quantum
number m = 0, 1, ..., l. We have also developed an equivalent finer quantum structure in which the
SU(N) generators are defined in sets satisfying closed SU(2) Lie algebra within SU(2)-subspaces
distributed in definite numbers among N − 1 configuration shells in a general SU(N) space.

In the spin angular momentum basis, we have interpreted the 2l + 1 traceless symmetric and
antisymmetric generators in the lth-shell as components of a (2l+1)-component lth-shell spin angular
momentum vector, which we have then used, together with the general algebraic properties of the
spin operators, to determine the lth-shell quadratic (even-power) and Fubini-Veneziano (odd-power)
spin angular momentum operators of general order in each of the N −1 shells l = 1, ..., N −1. Taking
a weighted sum of the non-traceless symmetric generators and similarly the sums of the quadratic
and Fubini-Veneziano spin angular momentum operators from each of the N − 1 shells, we have
determined the respective universal SU(N) identity, quadratic Casimir and Fubini-Veneziano spin
angular momentum operators.

We have established that, replacing the N − 1 non-traceless symmetric diagonal generators with
the universal SU(N) identity generator as defined above, we reduce the general SU(N) generator
spectrum to a standard SU(N) generator spectrum consisting of the single (1) identity generator and
the N2 − 1 traceless symmetric and antisymmetric generators. It has emerged that, by including
a configuration shell specified by l = 0 containing the identity generator, the resulting quantum
structure of a standard SU(N) generator spectrum composed ofN configuration shells each containing
2l + 1 generators now specified by quantum numbers l = 0, 1, ..., N − 1 ; m = 0, 1, ..., l is precisely
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similar to the spectrum of orbital angular momentum states composed of orbital shells l = 0, 1, ..., n−1
each containing 2l + 1 orbital angular momentum states specified by orbital and magnetic quantum
numbers l = 0, 1, ..., n − 1 ; m = 0,±1, ...,±l in the nth-energy level of an atom, thus revealing an
important physical property that the quantum state space of an SU(N) symmetry group corresponds
directly to the quantum state space of the nth-energy level of an atom.

Defining the SU(N) generator spectrum in an extended Cartan-Weyl basis, we have determined
general basic algebraic relations applicable to general SU(N) symmetry groups. These basic algebraic
relations can be used to determine the entire system of roots, weights, Dynkin diagrams and the
general spectrum of particle states which span the quantum state space of an SU(N) symmetry
group. Alternatively, the lth-shell quadratic and Fubini-Veneziano spin angular momentum operators,
taken together with the corresponding spin state raising and lowering operators, constitute two sets
of bases for applying standard angular momentum algebra to determine a complete spectrum of spin
angular momentum eigenvectors and eigenvalues within and across all the N − 1 configuration shells
in an SU(N) generator spectrum.

We have provided elaborate explanations on how the expanded algebraic space and quantum struc-
ture of an SU(N) generator spectrum, characterized by an extended Cartan-Weyl basis which now
includes the non-traceless symmetric diagonal generators and the quadratic and Fubini-Veneziano
spin operators introduced in each of the N − 1 configuration shells, may affect the dynamical struc-
ture of existing or new models of SU(N) gauge field theories. In particular, the algebraic properties
of the additional generators in the extended Cartan-Weyl basis automatically expand the quantum
state space, while the quantum structure of the generator spectrum, taken to the finer level of gen-
erators defined within SU(2)-subspaces, leads to an interpretation that the SU(N) gauge field has
a quantum spectrum with N − 1 configuration shells each containing specified vector bosons of the
full gauge field potential. The quantum structure provides a clear dynamical picture of the gauge
field. Application of standard angular momentum algebra to determine the entire spectrum of state
eigenvectors and eigenvalues within and across the configuration shells in the quantum state space
of an SU(N) gauge field provides the possibility of identifying selection rules governing allowed or
forbidden state transitions due to particle interactions driven by the gauge fields.

Details of the expanded algebraic properties, quantum structure and further insight into the dy-
namical properties of existing or new models of gauge field theories of particle interactions based on
SU(N) symmetry groups will be presented in later work.

7 Acknowledgement

I am thankful to my home institution, Maseno University, Kenya, for providing a conducive environ-
ment for this research.

References

[1] J A Omolo 2018 Determining SU(N) symmetry group generators, ResearchGate-Preprint, DOI:
10.13140 / RG.2.2.17815.21920

[2] J A Omolo 2018 SU(N) generator spectrum, ResearchGate-Preprint, DOI: 10.13140 /
RG.2.2.36540.49285

45



[3] T P Cheng and L F Li 1989 Gauge theory of elementary particle physics, Oxford University
Press, New York , Oxford

[4] A R Edmonds 1957 Angular Momentum in Quantum Mechanics, Princeton University Press,
USA

[5] P Goddard and D Olive 1986 Kac-Moody and Virasoro algebras in relation to quantum physics,
Int. J. Mod. Phys. A 1, 303

[6] R Slansky 1981 Group theory for unified model building, Phys. Rept. 79, 1

[7] J Fuchs 1992 Affine Lie Algebras and Quantum Groups, Cambridge University Press, UK

[8] H Georgi 1999 Lie Algebras in Particle Physics, Second Edition, Westview Press, USA

[9] M A A Shaih, M KH Shrour, M S Hamada and H M Fayad 2013 Lie algebra and representation
of SU(4), EJTP, 10 , 9

[10] O Nachtmann 1990 Elementary Particle Physics, Springer-Verlag, Berlin Heidelberg

[11] C Itzykson and J B Zuber 1980 Quantum Field Theory, McGRAW-HILL Inc., New York ,
Singapore

[12] J C Pati and A Salam 1973 Is baryon number conserved ?, Phys. Rev. Lett 31, 661

[13] J C Pati and A Salam 1974 Lepton number as the fourth “color”, Phys. Rev. D 10, 275

[14] M Kaku 1993 Quantum Field Theory, Oxford University Press, New York , Oxford

[15] B Fornal and B Grinstein 2017 SU(5) grand unified theory without proton decay,
Phys. Rev. Lett. 119, 241801 ; arXiv: 1706.08535 [hep-ph]

[16] B Fornal and B Grinstein 2018 Grand unified theory with a stable proton, Plenary Talk, Confer-
ence on Particles and Cosmology, Singapore, March 05-09 ; arXiv: 1808.00953 [hep-ph]

[17] N Canzano 2016 An overview of SU(5) grand unification, Lecture Notes (March 2016), University
of California, Santa Cruz

[18] M C Romao 2011 The SU(5) grand unification theory revisited, Dissertacao para a obtencao de
Grau de Mestre em, Engenharia Fisica Technologica, Instituto Superior Tecnico, Universidade
Tecnica de Lisboa

[19] S Wiesenfeldt 2008 Grand unified theories, Block Course of the International Graduate School,
GRK 881, Sept.2008

[20] A Hartanto and L T Handoko 2005 Grand unified theory based on the SU(6) symmetry,
Phys. Rev. D 71, 095013 ; arXiv: 0504280 [hep-ph]

46

View publication statsView publication stats

https://www.researchgate.net/publication/338502698

