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Abstract

SU(N) symmetry groups are useful in formulating gauge theories of elementary particle interactions
in quantum field theory. Gauge bosons and particle states are associated with the symmetry group
generators. The accuracy of the physical structure and predictions of the gauge theory thus depends
on the accuracy of the group generators. In this article, we present an accurate mathematical method
for determining all generators of an SU(N) symmetry group for any N ≥ 2. Group generators are
characterized as diagonal or non-diagonal symmetric and antisymmetric partners. There are N(N − 1)
traceless non-diagonal symmetric and antisymmetric generators, (N−1) traceless diagonal antisymmetric
generators and (N − 1) non-traceless diagonal symmetric generators. An SU(N) symmetry group is
therefore specified by a total of N2 − 1 standard traceless non-diagonal and diagonal symmetric and
antisymmetric generators and (N − 1) non-traceless diagonal symmetric generators. The procedure is
particularly effective in enumerating the correct generators of SU(N) groups used in formulating various
models of gauge theories of elementary particle interactions driven by fundamental forces of nature. As
simple illustrations, we have applied the procedure to determine the generators of the SU(2), SU(3)
, SU(4) , SU(5) , SU(6) and SU(7) symmetry groups. While the SU(2) and SU(3) symmetry group
generators have been used as the building blocks of the largely successful Standard Model (SM) of quantum
field theory, the determination of the correct forms of the complete set of generators of the SU(5) and
SU(6) groups, comprising the standard 52 − 1 = 24 or 62 − 1 = 35 traceless non-diagonal and diagonal
symmetric and antisymmetric generators and the other emerging 5 − 1 = 4 or 6 − 1 = 5 non-traceless
diagonal symmetric generators, respectively, reveals that the physical structure and predictions of the
SU(5) and SU(6) models of the Grand Unified Theory needs a radical review, particularly with respect
to the incorrect forms of the standard third, fourth and fifth traceless diagonal antisymmetric generators
used in the current forms of the models.

1 Introduction

In my book, “Parametric Processes and Quantum States of Light” [1], I used a model of an N -level atom
interacting with an external electromagnetic field to provide a simple mathematical method for determining
all the N2 − 1 generators of an SU(N) symmetry group. Considering the method to be basic and possibly
known to everybody with a working knowledge of Lie groups and Lie algebras, I applied it to determine only
the standard SU(2) and SU(3) symmetry group generators as examples. Since the SU(N) symmetry group
idea was only a diversionary spin-off from the dynamical structure of the N -level atom-field interaction, I
suspended further study of its algebraic properties, assuming more elaborate algebraic methods have been
developed by workers in the field for enumerating and characterizing generators of the SU(N) symmetry
groups for all N ≥ 2. I realized only recently that such an algebraic method has never been developed
and the SU(N) generators for N ≥ 4 presented in the literature on gauge theories of elementary particle
interactions [2-10] have just been obtained through “intelligent pattern building” using the known SU(2)
and SU(3) generators as the basic building blocks. For the SU(5) and SU(6) symmetry groups, the pattern
building procedure is presented in detail in [2 , 9 , 10] where the SU(2) , SU(3) or SU(4) generators are fitted
into 2× 2 , 3× 3 or 4× 4 matrix blocks in a 5× 5 or 6× 6 matrix grid to construct the desired set of SU(5)
or SU(6) generators as appropriate. The arbitrariness of the pattern building procedure is clearly captured
in the assumption stated in [2] that “there exists an infinite number of ways in which to choose the matrices
which constitute the SU(5) symmetry group generators”, meaning that there can be a number of different
sets of generators of an SU(N) , N ≥ 4, for formulating a grand unified theory. This challenging situation
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has given me the justification and necessary motivation to lift the well defined mathematical method for
determining SU(N) symmetry group generators from the book [1] and elaborate it in this article for the
benefit of readers who may not be keen to access the book, which is focussed on quantum optics. Since
elements of SU(N) symmetry groups govern dynamical evolution of particle interactions driven by gauge
fields, we consider the group generators to be defined within an appropriately specified quantum state space.

2 Quantum state space of an SU(N) symmetry group

We define the quantum state space of an SU(N) symmetry group as an N -dimensional (integer N =
2, 3, 4, ....) state space specified by N unit state vectors |n⟩ , n = 1, 2, 3, ...., N defined as column matri-
ces, i.e., N × 1 matrices, with entries 0 in all rows except entry 1 in the n-th row according to

|1⟩ =



1
0
0
.
.
.
0


; |2⟩ =



0
1
0
.
.
.
0


; |3⟩ =



0
0
1
.
.
.
0


; ........ ; |N − 1⟩ =



0
0
0
.
.
.
1
0


; |N⟩ =



0
0
0
.
.
.
1


(1a)

These unit state vectors may specify either the energy level or spin angular momentum spectrum of a system
of interacting particles and fields. To describe state transitions characterizing the dynamics of particles driven
by external fields or particle-particle interactions mediated by gauge fields, the N -state quantum space is
decomposed into 1

2N(N − 1) 2-state subspaces nm specified by two unit state vectors |n⟩ , |m⟩ coupled by
transitions n ↔ m, n = 1, 2, ....,m − 1 , m = 2, 3, ...., N . A two-state subspace specified by two unit state
vectors |n⟩ , |m⟩ within the N -state quantum space is identified as a basic SU(2) symmetry space. The
subspace state vectors |n⟩, |m⟩ are orthonormal, satisfying the orthonormalization relation

⟨n|m⟩ = δnm (1b)

Within the two-state |n⟩ , |m⟩ subspace, the basic SU(2) group generators Inm , σz
nm , σx

nm , σy
nm are

N × N basic matrices obtained as diagonal or non-diagonal symmetric and antisymmetric tensor products
of the unit state vectors |n⟩ , |m⟩.

We identify Inm , σz
nm as the diagonal symmetric and antisymmetric generators obtained in the respective

unit state vector tensor product forms

Inm = |n⟩⟨n|+ |m⟩⟨m| ; σz
nm = |n⟩⟨n| − |m⟩⟨m| (1c)

and σx
nm , σy

nm as the non-diagonal symmetric and antisymmetric generators obtained in the respective unit
state vector tensor product forms

σx
nm = |n⟩⟨m|+ |m⟩⟨n| ; σy

nm = −i(|n⟩⟨m| − |m⟩⟨n|) (1d)

where n = 1, 2, ....,m − 1 , m = 2, 3, ...., N and the indices x, y, z denote components in the Cartesian
coordinate axes as usual. The imaginary number factor −i in the definition of the non-diagonal antisymmetric
generator σy

nm effects the algebraic property that the symmetry group generators are interpreted as Hermitian
quantum operators. We observe that the non-diagonal symmetric and antisymmetric generators σx

nm , σy
nm

and the diagonal antisymmetric generator σz
nm are traceless, but the diagonal symmetric generator Inm is

non-traceless.
Applying the orthonormalization relation in equation (1b), we identify the basic non-diagonal symmet-

ric and antisymmetric SU(2) generators σx
nm , σy

nm defined in equation (1d) as state transition operators
generating state algebraic operations

σx
nm|n⟩ = |m⟩ ; σx

nm|m⟩ = |n⟩ ; σy
nm|n⟩ = i|m⟩ ; σy

nm|m⟩ = −i|n⟩ (1e)

and the basic diagonal symmetric and antisymmetric SU(2) generators Inm , σz
nm defined in equation (1c)

as state identity and eigenvalue operators, respectively, generating state algebraic operations

Inm|n⟩ = |n⟩ ; Inm|m⟩ = |m⟩ ; σz
nm|n⟩ = |n⟩ ; σz

nm|m⟩ = −|m⟩ (1f)
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Even though the standard SU(N) generators are normally considered traceless, we shall maintain iden-
tification of the non-traceless identity matrix Inm as the symmetric counterpart of the familiar traceless
diagonal antisymmetric generator σz

nm for consistent characterization of the general SU(N) symmetry group
generators as diagonal or non-diagonal symmetric and antisymmetric partners.

2.1 Quantum state transitions: random and focal state transitions

The general dynamics of a system of particles and gauge fields in an N -state quantum space is character-
ized by transitions among the quantum states. As we have explained above, the N -state quantum space
is decomposed into 1

2N(N − 1) two-state subspaces, specified by paired state numbers nm, within which
transitions occur, such that each transition couples only two states |n⟩ , |m⟩ at a time. The decomposition
of the N -state quantum space into 1

2N(N − 1) two-state subspaces is determined by a rich spectrum of state
transition processes, which we classify in two types, namely random state and focal state transition processes.

A transition from a given state into any one of the other (N − 1) states constitutes a random state
transition process. It follows from the probabilistic nature of quantum mechanics that, unless determined
otherwise by a specified interaction mechanism, quantum state transitions may generally be classified as
random state transition processes.

The probabilistic nature of quantum mechanics also means that it is possible for a number of transitions
to converge at a given state. A number of transitions from various states into a given state constitute a focal
state transition process. A focal state transition process is specified by a focal state, which we define as a state
into which transitions from a specified number of different states converge. The general N -state quantum
space contains (N−1) focal states |m⟩ , m = 2, 3, ...., N . There are (m−1) transitions from (m−1) different
states |n⟩ , n = 1, 2, ...., (m−1) into a focal state |m⟩. This means that there are (m−1) two-state subspaces
sharing a common focal state |m⟩ such that transitions from the different states |n⟩ defined within each of
the (m− 1) two-state subspaces all end up in the focal state |m⟩, as illustrated here in the general form

1 ≤ n ≤ m− 1 ; 2 ≤ m ≤ N : |1⟩ → |m⟩ ; |2⟩ → |m⟩ ; |3⟩ → |m⟩ ; ............ ; |m− 1⟩ → |m⟩

which can be put in a better diagrammatic form with all arrows from the various states |1⟩ , |2⟩ , ...., |m−1⟩
terminating at the focal state |m⟩. We arrive at a physical interpretation that a focal state transition process
within an N -state quantum space is equivalent to a stream of electromagnetic radiation propagating from
(m− 1) different levels |n⟩ , n = 1, 2, ....,m− 1, into a focal level |m⟩ , m = 2, 3, ...., N or a stream of light
rays from various sources converging at a focal point in classical geometrical optics. A focal state in the
quantum state space thus corresponds to a focal point in classical geometrical optics.

To provide a group theoretic interpretation, we define a focal state transition process specified by a focal
state |m⟩ as a collection of (m − 1) transitions into the focal state |m⟩. Noting that each of the (m − 1)
transitions occurs within a two-state subspace, we arrive at the algebraic property that the quantum space
within which a focal state transition process occurs is composed of (m− 1) two-state subspaces connected to
the focal state |m⟩. Let us call the quantum space within which a focal state transition process occurs a focal
state transition space. A focal state transition space specified by a focal state |m⟩ is thus composed of (m−1)
two-state subspaces connected to the focal state |m⟩. The physical property that there are (N − 1) focal
states each specifying a focal state transition space means that there are (N −1) focal state transition spaces
in the general N -state quantum space. We can now provide a group theoretic interpretation that a focal state
transition space corresponds to a Cartan subspace defined by a Cartan subalgebra and the number (N − 1)
of the focal state transition spaces corresponds to the rank of the underlying SU(N) symmetry group.

According to the group theoretic interpretation provided above, the classification of state transitions in an
N -state quantum space as random or focal state transition processes provides a physical basis for determining
the associated SU(N) symmetry group generators, which we clarify below.

2.2 Determining SU(N) generators in a quantum state space

Noting that elements of SU(N) symmetry group govern the dynamical evolution of particle and field inter-
actions, we consider that the group generators are associated with the random and focal state transition pro-
cesses within the N -state quantum space. The decomposition of the N -state quantum space into 1

2N(N − 1)
two-state subspaces |n⟩ , |m⟩ means that the generators of the underlying SU(N) symmetry group are com-
posed of the basic SU(2) group generators Inm , σz

nm , σx
nm , σy

nm determined within each of the 1
2N(N −1)
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two-state subspaces as diagonal or non-diagonal symmetric and antisymmetric tensor products of the unit
state vectors |n⟩ , |m⟩ according to equations (1c) , (1d).

Due to their algebraic property as state transition operators generating the random and focal state
transition processes within the N -state quantum space, all the 1

2N(N − 1) non-diagonal symmetric SU(2)
generators σx

nm and all the 1
2N(N−1) non-diagonal antisymmetric SU(2) generators σy

nm defined in equation
(1d) form a set of 1

2N(N −1)+ 1
2N(N −1) = N(N −1) traceless non-diagonal symmetric and antisymmetric

generators λj = σx
nm , σy

nm of the SU(N) group.
The algebraic property that the basic diagonal symmetric and antisymmetric SU(2) generators Inm , σz

nm

are the respective state identity and eigenvalue operators within each of the 1
2N(N − 1) two-state subspaces

|n⟩ , |m⟩, leaving the state vectors unchanged or only changing the sign of a state vector according to equations
(1e) , (1f) means that the basic SU(2) generators Inm , σz

nm do not separately constitute the expected
effective diagonal symmetric and antisymmetric SU(N) generators. We must now take into account the
underlying dynamical property that there are focal state transition processes specified by (N−1) focal states
|m⟩ , m = 2, 3, ...., N within the N -state quantum space. It follows from the group theoretic interpretation
provided above that an effective diagonal symmetric or antisymmetric SU(N) generator is determined within
each of the (N−1) focal state transition spaces. The algebraic property that each focal state transition space
is composed of (m − 1) two-state subspaces connected to the focal state |m⟩ means that there are (N − 1)
resultant traceless diagonal antisymmetric SU(N) generators Λm−1 composed as normalized sums of the
basic traceless diagonal antisymmetric SU(2) generators σz

nm from each of the (m− 1) two-state subspaces
connected to a focal state |m⟩ according to the composition formula

Λm−1 =

√
2

m(m− 1)

m−1∑
n=1

σz
nm ; n = 1, 2, ....,m− 1 , m = 2, 3, ...., N (1g)

and (N − 1) resultant non-traceless diagonal symmetric SU(N) generators Λm−1 composed as normalized
sums of the basic non-traceless diagonal symmetric SU(2) generators Inm according to the composition
formula

Λm−1 =

√
2

m(m− 1)

m−1∑
n=1

Inm ; n = 1, 2, ....,m− 1 , m = 2, 3, ...., N (1h)

We characterize the non-traceless diagonal symmetric generators Λm−1 determined through the formula in
equation (1h) as the symmetric counterparts of the standard traceless diagonal antisymmetric generators
Λm−1 determined through the formula in equation (1g).

In summary, an SU(N) symmetry group has N(N − 1) traceless non-diagonal symmetric and antisym-
metric generators λj = σx

nm , σy
nm determined using equation (1d), (N−1) traceless diagonal antisymmetric

generators Λm−1 determined using equations (1c) , (1g) and (N − 1) non-traceless diagonal symmetric gen-
erators Λm−1 determined using equations (1c) , (1h), giving a total of N(N −1)+(N −1) = N2−1 traceless
non-diagonal and diagonal symmetric and antisymmetric generators and (N − 1) non-traceless diagonal
symmetric generators.

In specifying all the N(N − 1) + 2(N − 1) = (N + 2)(N − 1) = N2 +N − 2 traceless and non-traceless
SU(N) generators, we consider it necessary to distinguish the notation for the non-diagonal generators
obtained as the basic SU(2) generators σx

nm , σy
nm from the notation for the 2(N − 1) diagonal generators

obtained as normalized sums of the basic diagonal generators σz
nm , Inm from (m − 1) two-state subspaces

connected to a focal state |m⟩. We have therefore introduced a revised notation, denoting the N(N − 1)
traceless non-diagonal symmetric and antisymmetric generators σx

nm , σy
nm obtained using equation (1d)

by the usual Gell-Mann symbols λj , j = 1, 2, ...., N(N − 1), the (N − 1) traceless diagonal antisymmetric
generators obtained as normalized sums of the basic traceless diagonal antisymmetric generators σz

nm using
equations (1c) , (1g) by the upper case symbols Λk , k = 1, 2, ...., N − 1 and the (N − 1) non-traceless
diagonal symmetric generators obtained as normalized sums of the basic non-traceless diagonal generators
Inm using equations (1c) , (1h) by the upper case symbols Λk, k = 1, 2, ...., N − 1. We observe that only the
N(N − 1) + (N − 1) = N2 − 1 traceless non-diagonal and diagonal symmetric and antisymmetric generators
λj , Λk , j = 1, 2, .... , N(N − 1) , k = 1, 2, .... , (N − 1) are generally known to be the standard form of the
full set of generators of an SU(N) symmetry group [2-12]. The (N − 1) non-traceless diagonal symmetric
generators Λk , k = 1, 2, .... , (N − 1) emerged for the first time in [1] and have been elaborated in the
present article as the symmetric counterparts of the standard traceless diagonal antisymmetric generators
Λk , k = 1, 2, .... , (N − 1). We have not found a valid mathematical condition or algebraic property to
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justify ignoring or discarding the unfamiliar non-traceless diagonal symmetric matrices Λk from the general
set of SU(N) symmetry group generators, even though we are yet to determine their full algebraic properties
and possible physical significance in SU(N) gauge theory models.

We now illustrate the mathematical procedure by using the unit state vector definitions in equation (1a),
then applying the state vector tensor product relations in equations (1c) , (1d) and the formulae in equations
(1g) , (1h) to determine generators of the SU(N) groups for N = 2−7 as examples below. We have presented
the generators in explicit detail including their definitions in terms of the basic SU(2) generators to enhance
clarity, which some readers may find unnecessary.

2.2.1 SU(2) generators

N = 2 : n = 1 ; m = 2 : |1⟩ =
(
1
0

)
; |2⟩ =

(
0
1

)
The 22 − 1 = 3 traceless non-diagonal and diagonal symmetric and antisymmetric SU(2) generators are
obtained as

λ1 = σx
12 =

(
0 1
1 0

)
; λ2 = σy

12 =

(
0 −i
i 0

)
; Λ1 = σz

12 =

(
1 0
0 −1

)
(2a)

The 2− 1 = 1 non-traceless diagonal symmetric SU(2) generator is obtained as

Λ1 = I12 =

(
1 0
0 1

)
(2b)

2.2.2 SU(3) generators

N = 3 : n = 1, 2 ; m = 2, 3 : |1⟩ =

 1
0
0

 ; |2⟩ =

 0
1
0

 ; |3⟩ =

 0
0
1


The 32 − 1 = 8 traceless non-diagonal and diagonal symmetric and antisymmetric SU(3) generators are
obtained as

λ1 = σx
12 =

 0 1 0
1 0 0
0 0 0

 ; λ2 = σy
12 =

 0 −i 0
i 0 0
0 0 0

 ; λ3 = σx
13 =

 0 0 1
0 0 0
1 0 0


λ4 = σy

13 =

 0 0 −i
0 0 0
i 0 0

 ; λ5 = σx
23 =

 0 0 0
0 0 1
0 1 0

 ; λ6 = σy
23 =

 0 0 0
0 0 −i
0 i 0


Λ1 = σz

12 =

 1 0 0
0 −1 0
0 0 0

 ; Λ2 =
1√
3
(σz

13 + σz
23) =

1√
3

 1 0 0
0 1 0
0 0 −2

 (3a)

The 3− 1 = 2 non-traceless diagonal symmetric SU(3) generators are obtained as

Λ1 = I12 =

 1 0 0
0 1 0
0 0 0

 ; Λ2 =
1√
3
(I13 + I23) =

1√
3

 1 0 0
0 1 0
0 0 2

 (3b)

2.2.3 SU(4) generators

N = 4 : n = 1, 2, 3 ; m = 2, 3, 4

|1⟩ =


1
0
0
0

 ; |2⟩ =


0
1
0
0

 ; |3⟩ =


0
0
1
0

 ; |4⟩ =


0
0
0
1


5



The 42 − 1 = 15 traceless non-diagonal and diagonal symmetric and antisymmetric SU(4) generators are
obtained as

λ1 = σx
12 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ; λ2 = σy
12 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ; λ3 = σx
13 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0



λ4 = σy
13 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 ; λ5 = σx
14 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ; λ6 = σy
14 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0



λ7 = σx
23 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ; λ8 = σy
23 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 ; λ9 = σx
24 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0



λ10 = σy
24 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 ; λ11 = σx
34 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 ; λ12 = σy
34 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0



Λ1 = σz
12 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ; Λ2 =
1√
3
(σz

13 + σz
23) =

1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0



Λ3 =
1√
6
(σz

14 + σz
24 + σz

34) =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 (4a)

The 4− 1 = 3 non-traceless diagonal symmetric SU(4) generators are obtained as

Λ1 = I12 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ; Λ2 =
1√
3
(I13 + I23) =

1√
3


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 0



Λ3 =
1√
6
(I14 + I24 + I34) =

1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 (4b)

Taking into account the revised notation we have introduced, denoting the 4(4−1) = 12 traceless non-diagonal
symmetric and antisymmetric generators by λj , j = 1, 2, ...., N(N − 1) and the (4− 1) = 3 traceless diagonal
antisymmetric generators by Λk, k = 1, 2, ...., N − 1, we observe that the full set of 15 (42 − 1) standard
traceless non-diagonal and diagonal symmetric and antisymmetric SU(4) generators we have determined
above in equation (4a) agree exactly with the corresponding SU(4) generators obtained in [2 , 6 , 12]
through an intelligent pattern building by fitting (embedding) SU(2) or SU(3) generators as appropriate
into a 4× 4 matrix grid. The pattern building procedure thus works accurately for SU(4).

2.2.4 SU(5) generators

N = 5 : n = 1, 2, 3, 4 ; m = 2, 3, 4, 5

|1⟩ =


1
0
0
0
0

 ; |2⟩ =


0
1
0
0
0

 ; |3⟩ =


0
0
1
0
0

 ; |4⟩ =


0
0
0
1
0

 ; |5⟩ =


0
0
0
0
1


6



The 52 − 1 = 24 traceless non-diagonal and diagonal symmetric and antisymmetric SU(5) generators are
obtained as

λ1 = σx
12 =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; λ2 = σy
12 =


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; λ3 = σx
13 =


0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0



λ4 = σy
13 =


0 0 −i 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; λ5 = σx
14 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 ; λ6 = σy
14 =


0 0 0 −i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0



λ7 = σx
15 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ; λ8 = σy
15 =


0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0

 ; λ9 = σx
23 =


0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0



λ10 = σy
23 =


0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; λ11 = σx
24 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 ; λ12 = σy
24 =


0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0



λ13 = σx
25 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 ; λ14 = σy
25 =


0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0

 ; λ15 = σx
34 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0



λ16 = σy
34 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0

 ; λ17 = σx
35 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 ; λ18 = σy
35 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 i 0 0



λ19 = σx
45 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 ; λ20 = σy
45 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0



Λ1 = σz
12 =


1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; Λ2 =
1√
3
(σz

13 + σz
23) =

1√
3


1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0



Λ3 =
1√
6
(σz

14 + σz
24 + σz

34) =
1√
6


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 0


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Λ4 =
1√
10

(σz
15 + σz

25 + σz
35 + σz

45) =
1√
10


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4

 (5a)

The 5− 1 = 4 non-traceless diagonal symmetric SU(5) generators are obtained as

Λ1 = I12 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; Λ2 =
1√
3
(I13 + I23) =

1√
3


1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0



Λ3 =
1√
6
(I14 + I24 + I34) =

1√
6


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 0



Λ4 =
1√
10

(I15 + I25 + I35 + I45) =
1√
10


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 4

 (5b)

We observe that, taking account of the revised notation in the present work, all the 5(5−1) = 20 traceless non-
diagonal symmetric and antisymmetric generators λ1, λ2, ...., λ20 we have determined above in equation (5a)
agree exactly with the corresponding traceless non-diagonal symmetric and antisymmetric SU(5) generators
obtained through the pattern building procedure in [2 , 5 , 7 , 8]. Of the 5 − 1 = 4 traceless diagonal
antisymmetric generators Λ1,Λ2,Λ3,Λ4 determined above in equation (5a), only the first two, Λ1 , Λ2, have
been determined accurately through the pattern building procedure in [2 , 5 , 7 , 8], while the third and fourth
two traceless diagonal antisymmetric SU(5) generators denoted there by L11 , L12 are completely different
from the respective correct forms Λ3,Λ4 determined in equation (5a). In particular, we identify L11 in [2 , 5 ,
7 , 8] as the basic diagonal generator σz

45, which is one of the four components of Λ4 as determined above in the
present work. We note that the form and normalization factors of the two traceless diagonal antisymmetric
generators L11 , L12 determined in [2 , 5 , 7 , 8] as L11 = diag(0, 0, 0, 1,−1) , L12 = 1√

15
diag(−2,−2,−2, 3, 3)

do not agree with the correct form of the corresponding generators Λ3 , Λ4 obtained above in equation (5a).
We observe that the normalization factor 1√

15
of L12 belongs to the fifth traceless diagonal antisymmetric

generator Λ5 of the higher SU(N) , N ≥ 6 groups, which we demonstrate using SU(6) , SU(7) groups below
for clarity.

An important physical consequence which emerges from the incorrect forms of the two traceless diagonal
antisymmetric SU(5) generators L11 , L12 determined and used in [2 , 5 , 7 , 8] and other related work is
that the formulation, interpretation and predictions of the SU(5) Grand Unified Theory have to be reviewed
to take account of the correct traceless diagonal antisymmetric SU(5) generators Λ3 , Λ4, particularly noting
that in the 5-representation of fermions as defined in [2 , 5 , 7 , 8], the charge operator Q determined there as

a linear combination of the generators L11 and L12 in the form Q = 1
2

(
L12 +

√
5
3L

12
)
is completely specified

by the correct traceless diagonal antisymmetric generator Λ3 obtained here in equation (5a) in the form

Λ3 =

√
3

2


1
3 0 0 0 0
0 1

3 0 0 0
0 0 1

3 0 0
0 0 0 −1 0
0 0 0 0 0

 ⇒ Q = −
√

2

3
Λ3 (5c)

In general, the identification of various types of elementary particle states, fermions or bosons, with the
SU(5) generators, together with the value of the weak-interaction angle parameter sin2 θW predicted within
the SU(5) grand unified theory, may change radically, especially if there is physical meaning attached to the
algebraic properties of the generators as traceless or non-traceless, diagonal or non-diagonal, symmetric or
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antisymmetric, which would broaden the representation scheme to include the four non-traceless diagonal
symmetric generators Λk listed separately in equation (5b).

To clarify the observation we made above that the normalization factor 1√
15

of L12 determined in [2 , 5

, 7 , 8] belongs to the fifth diagonal generator Λ5 of the higher SU(N) , N ≥ 6, groups, we determine the
SU(6) , SU(7) generators as examples and list only the respective diagonal generators Λk , Λk below.

2.2.5 SU(6) generators

N = 6 : n = 1, 2, 3, 4, 5 ; m = 2, 3, 4, 5, 6

|1⟩ =


1
0
0
0
0
0

 ; |2⟩ =


0
1
0
0
0
0

 ; |3⟩ =


0
0
1
0
0
0

 ; |4⟩ =


0
0
0
1
0
0

 ; |5⟩ =


0
0
0
0
1
0

 ; |6⟩ =


0
0
0
0
0
1


Applying the general state vector tensor products in equations (1c) , (1d)) using the 6 unit state vectors
defined above and the mathematical formulae in equations (1g) , (1h), all the 62 − 1 = 35 traceless non-
diagonal and diagonal symmetric and antisymmetric SU(6) generators λ1 , λ2, ...., λ30 , Λ1 , Λ2, ...., Λ5

and the 6 − 1 = 5 non-traceless diagonal symmetric SU(6) generators Λ1 , Λ2, ...., Λ5 are easily obtained.
For the specific purpose of comparing the normalization factors of the fifth traceless diagonal antisymmetric
generator Λ5 of SU(6) with that of the fourth diagonal generator L12 of SU(5) determined in [2 , 5 , 7 , 8] and
generally used in the current models of the SU(5) grand unified theory, we list only the 5 traceless diagonal
antisymmetric SU(6) generators Λ1 , Λ2, ...., Λ5 and their counterpart non-traceless diagonal symmetric
generators Λ1 , Λ2, ...., Λ5 here.

The 6− 1 = 5 traceless diagonal antisymmetric SU(6) generators are obtained as

Λ1 = σz
12 =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ; Λ2 =
1√
3
(σz

13 + σz
23) =

1√
3


1 0 0 0 0 0
0 1 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Λ3 =
1√
6
(σz

14 + σz
24 + σz

34) =
1√
6


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −3 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Λ4 =
1√
10

(σz
15 + σz

25 + σz
35 + σz

45) =
1√
10


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −4 0
0 0 0 0 0 0



Λ5 =
1√
15

(σz
16 + σz

26 + σz
36 + σz

46 + σz
56) =

1√
15


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −5

 (6a)
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The 6− 1 = 5 non-traceless diagonal symmetric SU(6) generators are obtained as

Λ1 = I12 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ; Λ2 =
1√
3
(I13 + I23) =

1√
3


1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Λ3 =
1√
6
(I14 + I24 + I34) =

1√
6


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 3 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Λ4 =
1√
10

(I15 + I25 + I35 + I45) =
1√
10


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 4 0
0 0 0 0 0 0



Λ5 =
1√
15

(I16 + I26 + I36 + I46 + I56) =
1√
15


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 5

 (6b)

It is clear in equation (6a) that the normalization factor 1√
15

belongs to the fifth traceless diagonal antisym-

metric generator Λ5 of the SU(6) group, revealing that this normalization factor is not appropriate for an
SU(5) generator as determined for L12 in [2 , 5 , 7 , 8]. We observe that in a formulation of SU(6) Grand
Unified Theory in [9], all the 6(6− 1) = 30 traceless non-diagonal symmetric and antisymmetric SU(6) gen-
erators corresponding to λ1 , λ2, ...., λ30 and the first two diagonal antisymmetric generators corresponding
to Λ1 , Λ2 (see equation (6a)) in our revised notation have been determined correctly, while the last three
diagonal antisymmetric generators corresponding to Λ3 , Λ4 , Λ5 are incorrect as compared to the correct
forms determined here in equation (6a).

2.2.6 SU(7) generators

N = 7 : n = 1, 2, 3, 4, 5, 6 ; m = 2, 3, 4, 5, 6, 7

|1⟩ =



1
0
0
0
0
0
0


; |2⟩ =



0
1
0
0
0
0
0


; |3⟩ =



0
0
1
0
0
0
0


; |4⟩ =



0
0
0
1
0
0
0


; |5⟩ =



0
0
0
0
1
0
0


; |6⟩ =



0
0
0
0
0
1
0


; |7⟩ =



0
0
0
0
0
0
1


Applying the general state vector tensor products in equations (1c) , (1d)) using the 7 unit state vectors
defined above and the mathematical formulae in equations (1g) , (1h), all the 72 − 1 = 48 traceless non-
diagonal and diagonal symmetric and antisymmetric SU(7) generators λ1 , λ2, ...., λ42 , Λ1 , Λ2, ...., Λ6

and the 7 − 1 = 6 non-traceless diagonal symmetric SU(7) generators Λ1 , Λ2, ...., Λ6 are easily obtained.
Here again, we list only the 6 traceless diagonal antisymmetric SU(7) generators Λ1 , Λ2, ...., Λ6 and their
counterpart non-traceless diagonal symmetric generators Λ1 , Λ2, ...., Λ6 for the specific purpose of comparing
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the normalization factors of the fifth traceless diagonal antisymmetric generator Λ5 of SU(7) with that of
the fourth diagonal generator L12 of SU(5) determined in [2 , 5 , 7 , 8].

The 7− 1 = 6 traceless diagonal antisymmetric SU(7) generators are obtained as

Λ1 = σz
12 =



1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


; Λ2 =

1√
3
(σz

13 + σz
23) =

1√
3



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Λ3 =
1√
6
(σz

14 + σz
24 + σz

34) =
1√
6



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Λ4 =
1√
10

(σz
15 + σz

25 + σz
35 + σz

45) =
1√
10



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Λ5 =
1√
15

(σz
16 + σz

26 + σz
36 + σz

46 + σz
56) =

1√
15



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −5 0
0 0 0 0 0 0 0



Λ6 =
1√
21

(σz
17 + σz

27 + σz
37 + σz

47 + σz
57 + σz

67) =
1√
21



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −6


(7a)

The 7− 1 = 6 non-traceless diagonal symmetric SU(7) generators are obtained as

Λ1 = I12 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


; Λ2 =

1√
3
(I13 + I23) =

1√
3



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Λ3 =
1√
6
(I14 + I24 + I34) =

1√
6



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


11



Λ4 =
1√
10

(I15 + I25 + I35 + I45) =
1√
10



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Λ5 =
1√
15

(I16 + I26 + I36 + I46 + I56) =
1√
15



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 5 0
0 0 0 0 0 0 0



Λ6 =
1√
21

(I17 + I27 + I37 + I47 + I57 + I67) =
1√
21



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 6


(7b)

Here again, it is clear in equation (7a) that the normalization factor 1√
15

belongs to the fifth traceless diagonal

antisymmetric generator Λ5 of the SU(7) group, once again revealing that this normalization factor is not
appropriate for an SU(5) generator as determined for L12 in [2 , 5 , 7 , 8].

We note that all the N(N − 1) + N − 1 = N2 − 1 traceless non-diagonal and diagonal symmetric
and antisymmetric SU(N) generators λ1 , λ2, ...., λN(N−1) , Λ1 , Λ2, ....,ΛN−1 obtained above for N =
2, 3, 4, 5, 6, 7 satisfy the standard SU(N) generator normalization conditions (i, j = 1, 2, ...., N(N−1) ; k, l =
1, 2, ...., (N − 1))

Trλj = 0 ; TrΛk = 0 ; Trλiλj = 2δij ; TrΛkΛl = 2δkl ; TrλjΛk = 0 (8)

which have generally been applied in the various pattern building procedures for determining SU(N) gener-
ators in [2-12].

It has emerged that all (N − 1)2 − 1 standard traceless non-diagonal and diagonal symmetric and an-
tisymmetric generators of a lower SU(N − 1) symmetry group are contained in the corresponding set of
N2 − 1 standard traceless non-diagonal and diagonal symmetric and antisymmetric generators of the one-
step higher SU(N) symmetry group, noting that in this case, each (N − 1)× (N − 1) SU(N − 1) generator
is extended to a corresponding N ×N SU(N) generator by simply adding a column of entries 0 to the right
and a row of entries 0 at the bottom as clearly evident in the set of equations (2a)-(7b). In addition to
the (N − 1)2 − 1 generators which can as well be determined through 0-column and 0-row extensions of the
corresponding generators of a one-step lower SU(N − 1) symmetry group, the SU(N) group has an extra
2N −1 distinct traceless non-diagonal and diagonal symmetric and antisymmetric generators, making a total
of (N − 1)2− 1+ (2N − 1) = N2− 1 as expected. We observe that this algebraic property that all generators
of a lower SU(N − 1) symmetry group are contained in the full set of generators of a one-step higher SU(N)
symmetry group, which remains valid on including the non-traceless diagonal symmetric generators of each
symmetry group, has been applied to determine SU(6) generators in [9 , 10], but the procedure does not
provide a mathematical formula for determining the standard traceless diagonal antisymmetric generators
and it has generally failed to determine the correct forms of the last (N − 1)− 2 = N − 3 standard traceless
diagonal antisymmetric generators for N ≥ 5.

3 Conclusion

The work in this article, which is an elaboration of earlier work in the author’s book [1] published in 2014,
provides an accurate mathematical method which completely solves the problem of determining the correct
generators of an SU(N) symmetry group for any N ≥ 2. The generators are obtained as symmetric and

12



antisymmetric tensor products of unit state vectors |n⟩ , n = 1, 2, ...., N defined in an N -state quantum space
decomposed into 1

2N(N − 1) two-state subspaces. Classifying the generators as traceless or non-traceless
diagonal or non-diagonal symmetric and antisymmetric partners yields the usual N2 − 1 standard traceless
diagonal and non-diagonal symmetric and antisymmetric generators, together with an additional (N − 1)
non-traceless diagonal symmetric generators, arising as the symmetric counterparts of the standard traceless
diagonal antisymmetric generators. The SU(N) generators are physically associated with state transitions
classified as random and focal state transition processes within the N -state quantum space. While the
traceless non-diagonal symmetric and antisymmetric state transition operators defined within each of the
1
2N(N − 1) two-state subspaces are identified as SU(N) generators, the group theoretic interpretation of a
focal state transition space as a Cartan space defined by a Cartan subalgebra of an underlying SU(N) Lie
algebra leads to a precise mathematical composition formula for determining the standard traceless diagonal
antisymmetric generators and their non-traceless diagonal symmetric counterparts. The determination of
the correct sets of SU(N) generators achieved through the accurate mathematical method presented in this
article provides an algebraic platform for a thorough review of current models of SU(N) Grand Unified
Theories of elementary particle interactions, including the latest model of SU(5) Grand Unified Theory
Without Proton Decay [3 , 4].

Finally, we observe that the phenomenon of a focal state transition process composed of a collection of
(m− 1) transitions, equivalent to a stream of (single mode) electromagnetic radiation from (m− 1) different
sources, propagating into a common focal state |m⟩ is an important physical property which brings a focal
state in an N -state quantum space into direct correspondence with a focal point into which a stream of
light rays from various sources converge in classical geometrical optics. There are (N − 1) focal states in an
N -state quantum space.
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