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In teaching mechanics course to first year undergraduate students, I have come across a simple, but very
important, gap in the formulation of the principle of conservation of momentum and energy in the dynamics
of a body of mass m, velocity v and linear momentum p governed by Newton’s equation of motion

dp

dt
= F (1a)

where, at position (displacement) vector r, the velocity and linear momentum at time t are obtained according
to the usual definitions

v =
dr

dt
; p = mv (1b)

The force F in equation (1a) can take any general form, zero or non-zero static (constant or position-
dependent), time-dependent, velocity-dependent or a combination of various types of forces, including fric-
tional (dissipative) forces.

We identify Newton’s equation (1a) as the linear momentum transfer equation expressible in explicit form

dp = Fdt (1c)

Taking the dot product of equation (1a) with the velocity v, substituting p = mv from equation (1b) and
reorganizing

v · dp
dt

=
d

dt

(
1

2
mv2

)
; v2 = v · v (1d)

we introduce the kinetic energy T according to the usual definition

T =
1

2
mv2 (1e)

to transform Newton’s equation into the energy transfer equation

dT

dt
= F · v (1f)

which provides the rate of change of kinetic energy with time under the action of an external force F, where
F · v is the energy due to work done by the force per unit time, normally defined as power. The energy
transfer equation (1f) can be expressed in explicit form

dT = F · vdt (1g)

We observe that the r.h.s of equation (1g) is expressible as F · dr only if the force F is independent of time
t and velocity v. This observation specifies the gap in the usual formulation of the energy conservation
principle, where the assumption F · vdt = F · dr [ 1 , 2 , 3] automatically excludes effects of time-dependent
forces and velocity-dependent frictional forces. We address this problem below.

In classical mechanics textbooks or lecture notes [ 1 , 2 , 3], the standard formulation of the momentum
and energy conservation principles is based on dynamics in conservative force fields, always excluding motion
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under time-dependent and frictional forces, which are usually classified under non-conservative force fields.
However, using Newton’s equation (1a) , we demonstrate in this note that application of a simple mathe-
matical relation in basic calculus or standard integration of equations (1c) , (1g) followed by differentiation
of the general result with respect to time, generalizes the momentum and energy conservation principles to
include dynamics under time-dependent and frictional forces.

From basic calculus, we rewrite F , F ·v on the r.h.s of equations (1a) , (1f) in equivalent time derivative
forms using the mathematical relations

F =
d

dt

∫ t

0

Fdt′ ; F · v =
d

dt

∫ t

0

F · vdt′ (2a)

where we identify the impulse I and total work W done by the force over the time duration t obtained as
usual in the respective forms

I =

∫ t

0

Fdt′ ; W =

∫ t

0

F · vdt′ (2b)

which we can substitute back into equation (2a) to relate force to the impulse generated I and power F · v
to the work done by the force over the time duration t according to

F =
dI

dt
; F · v =

dW

dt
(2c)

These are standard results in basic mechanics, yet they do not seem to have been considered in formulating
the linear momentum and energy conservation principles.

Substituting F , F · v from equation (2a) into equations (1a) , (1f) as appropriate, we express the linear
momentum and energy transfer equations in the respective conservation forms

d

dt

(
p−

∫ t

0

Fdt′
)

= 0 ;
d

dt

(
T −

∫ t

0

F · vdt′
)

= 0 (2d)

As stated above, these conservation equations can be derived directly by first integrating Newton’s and energy
transfer equations expressed in the alternative forms (1c) , (1g) to obtain

p− p0 =

∫ t

0

Fdt′ ⇒
(

p−
∫ t

0

Fdt′
)

= p0 ; p0 = mv0

T − T0 =

∫ t

0

F · vdt′ ⇒
(

T −
∫ t

0

F · vdt′
)

= T0 ; T0 =
1

2
mv20 (2e)

where v0 , p0 , T0 are the initial velocity, linear momentum and kinetic energy, respectively. Differentiating
the results in equation (2e) with respect to time t provides the respective conservation equations obtained in
equation (2d).

Introducing the transferred linear momentum pI and the transferred energy U , each related to the re-
spective impulse generated I and work done W by the force according to

pI = −I = −
∫ t

0

Fdt′ ; U = −W = −
∫ t

0

F · vdt′ (2f)

we obtain the instantaneous total linear momentum P and total energy E in the form

P = p+ pI = p−
∫ t

0

Fdt′ ; E = T + U = T −
∫ t

0

F · vdt′ (2g)

which we substitute into equation (2d) as appropriate to obtain the linear momentum conservation equation
in the final form

P = p+ pI :
dP

dt
= 0 ⇒ p+ pI = p0 (2h)

and the energy conservation equation in the final form

E = T + U :
dE

dt
= 0 ⇒ T + U = T0 (2i)
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where the initial linear momentum p0 and initial kinetic energy T0 are defined in equation (2e).
For completeness, we take the cross product of Newton’s equation (1a) with the position vector r to

introduce orbital angular momentum L and torque N characterizing rotational dynamics according to the
corresponding Newton’s equation of motion

L = r× p ; N = r× F :
dL

dt
= N (3a)

expressible in explicit orbital angular momentum transfer form

dL = Ndt (3b)

The orbital angular momentum conservation equation is easily determined in the form

d

dt

(
L−

∫ t

0

Ndt′
)

= 0 ⇒ L−
∫ t

0

Ndt′ = L0 ; L0 = r0 × p0 (3c)

The fundamental physical property which arises in the above derivations is that the momentum and energy
conservation relations in equations (2h) , (2i) , (3c) apply to dynamics generated by external force(s) of general
form, including time-dependent and frictional forces usually considered non-conservative. The generalization
of momentum and energy conservation principles governing dynamics under arbitrary external forces is the
main result of this note.

To gain a clear understanding, let us focus attention on the energy conservation principle. According to
the definition in equation (2f), the transferred energy U arising from the work done by the external force
F over the time duration t can take any form, either being stored in the body as potential (or other form
of internal) energy or being extracted from the body in various forms, including energy dissipated as heat,
depending on the nature of the external force. It then follows from the definition of the instantaneous total
energy E in equation (2g) that the generalized energy conservation principle in equation (2i) means that the
sum of the instantaneous kinetic energy and energy transferred in various forms as work done by the external
force(s) remains constant, equal to the initial kinetic energy. We demonstrate the general energy conservation
principle by considering dynamics under three types of forces, the first being the familiar position-dependent
force derivable from a field potential, the second an arbitrarily defined time-dependent force and the third
one being the familiar velocity-dependent frictional force.

(i) Position-dependent force

To obtain the familiar form of the energy conservation principle as derived in standard classical mechanics
textbooks or lecture notes [ 1 , 2 , 3 ], we consider an external force F derivable from a position-dependent
field potential V (r), commonly understood to constitute a conservative force field, where the force is obtained
as a potential gradient in the form

F = −∇V (r) (4a)

which we substitute into the definition of transferred energy U in equation (2f) to obtain

U =

∫ t

0

∇V (r) · vdt′ =
∫ r

r0

∇V (r) · dr′ ⇒ U = V (r)− V (r0) (4b)

where V (r0) is the potential energy at initial position r0. Substituting U from equation (4b) into equation
(2i) provides the energy conservation relation in a conservative force field in the familiar form [ 1 , 2 , 3 ]

T + V (r) = T0 + V (r0) = constant (4c)

In the second and third examples of time-dependent and frictional forces usually classified under non-
conservative force fields, we consider one-dimensional motion, which can easily be generalized to three-
dimensional forms. We choose the time-dependent force in an arbitrary form F = αt2+βt and the frictional
force in the common velocity-dependent form F = −αv, where α, β are constants, while for one-dimensional
motion v is the speed of the body.
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(ii) Time-dependent force: F = αt2 + βt

We obtain the speed v from Newton’s equation of motion in the form

dv

dt
=

1

m
F ⇒ v = v0 +

1

m

∫ t

0

(αt′2 + βt′)dt′ = v0 +
1

m

(
α

3
t3 +

β

2
t2

)
(5a)

where v0 is the initial speed. The kinetic energy is obtained using the speed v from equation (5a) in the final
form

T =
1

2
mv2 = T0 + v0

(
α

3
t3 +

β

2
t2

)
+

1

2m

(
α

3
t3 +

β

2
t2

)2

(5b)

where T0 is the initial kinetic energy. The transferred energy U as defined in equation (2f) is evaluated using
F = αt2 + βt and v from equation (5a) in the final form

U = −
∫ t

0

(αt′2 + βt′)(v0 +
1

m
(
α

3
t3 +

β

2
t2 )dt′ = −v0

(
α

3
t3 +

β

2
t2

)
− 1

m

(
α2

18
t6 +

αβ

6
t5 +

β2

8
t4

)

⇒ U = −v0

(
α

3
t3 +

β

2
t2

)
− 1

2m

(
α

3
t3 +

β

2
t2

)2

(5c)

Using the kinetic energy T from equation (5b) and the transferred energy U from equation (5c), we obtain
the instantaneous total energy E at any time t as

E = T + U = T0 (5d)

in agreement with the energy conservation relation in equation (2i).

(iii) Frictional force : F = −αv

We obtain the speed v from Newton’s equation of motion in the form

dv

dt
=

1

m
F = − α

m
v ⇒ v = v0e

− α
m t (5e)

where v0 is the initial speed. The kinetic energy is obtained using the speed v from equation (5e) in the final
form

T =
1

2
mv2 = T0e

− 2α
m t (5f)

The transferred energy U as defined in equation (2f) is evaluated using F = −αv and v from equation (5e)
or kinetic energy T from equation (5f) in the final form

U = α

∫ t

0

v2dt′ =
2α

m

∫ t

0

Tdt′ ⇒ U = T0

(
1− e−

2α
m t

)
(5g)

Using the kinetic energy T from equation (5f) and the transferred energy U from equation (5g), we obtain
the instantaneous total energy E at any time t as

E = T + U = T0 (5h)

in agreement with the energy conservation relation in equation (2i). It is evident in equation (5g) that the
transferred energy U generated as work done by the frictional force does not dissipate to zero, but settles
down to the initial kinetic energy T0 in the long time limit.

The validity of the momentum and energy conservation principles in dynamics under arbitrary forces
means that the physical property of conservative and non-conservative force fields has to be re-interpreted.
The demonstration of energy conservation under a position-dependent force in example (i) leads to the
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physical interpretation that in a conservative force field, all the energy arising as work done by the external
force(s) is stored in the system as potential energy or an appropriate form of internal energy, while the
demonstration of energy conservation under time-dependent and frictional forces in examples (ii) and (iii)
leads to the physical interpretation that in a non-conservative force field, all the energy arising as work done
by the external force(s) is transformed into various forms of energy released by the system, except for some
particular types of forces where part of the energy may be stored in the system over some time periods.

Noting that the momentum and energy conservation principles occur separately in equations (2h) , (2i),
having been determined separately from equations (1a) , (1f), respectively, we now proceed to unify the
two conservation principles by making an advancement from the Newtonian classical mechanics to the cor-
responding relativistic classical mechanics to determine a unified relativistic energy-momentum conservation
principle, from which the Newtonian conservation principles in equations (2h) , (2i) can be determined as
the slow motion non-relativistic limit. In this note, we do not include the conservation of orbital angular
momentum in the generalization to relativistic mechanics.

Relativistic mechanics is formulated within a four-dimensional spacetime frame specified by a spacetime
coordinate (displacement) four-vector X defined in contravariant or covariant form in a cartesian coordinate
system as

Xµ = (X0 , X1 , X2 , X3) = (ct , r) ; Xµ = (X0 , X1 , X2 , X3) = (ct , −r)

X0 = X0 = ct , X1 = x , X2 = y , X3 = z ; X1 = −X1 , X2 = −X2 , X3 = −X3 (6a)

with corresponding velocity four-vector V obtained as

V µ =
dXµ

dt
= (c , v) ; Vµ =

dXµ

dt
= (c , −v) (6b)

and spacetime derivative four-vector ∂ defined by

∂µ =
∂

∂Xµ
= (

1

c

∂

∂t
, ∇) ; ∂µ =

∂

∂Xµ
= (

1

c

∂

∂t
, −∇) (6c)

where c is the speed of light. In this note, we denote four-vector and tensor components using Greek symbols
taking values µ , ν = 0 , 1, 2, 3.

To develop the relativistic mechanics in a form consistent with the corresponding Newtonian mechanics in
the slow motion limit under a given force, we consider a general force field created by a fundamental physical
property of matter, normally defined as charge ξ, which generates the field potential four-vector A specified
as usual by temporal (scalar potential ϕ) and spatial (vector potential A) components in the form

Aµ = (A0 , A) = (ϕ , A) ; Aµ = (A0 , −A) = (ϕ , −A) ; A0 = A0 = ϕ ; A = (Ax , Ay , Az) (6d)

The generalized curl of the field potential four-vector provides the field intensity (field strength) tensor Fµν

obtained in the form
Fµν = ∂µAν − ∂νAµ ; µ , ν = 0 , 1, 2, 3 (6e)

which can be evaluated explicitly and decomposed into Lorentz-boost and Lorentz-rotation components in
the form

Fµν = K · f + L · d (6f)

where K = (Kx , Ky , Kz) , L = (Lx , Ly , Lz) are the respective Lorentz-boost and Lorentz-rotation
symmetry generating matrices, revealing that in relativistic mechanics, the force field is specified by a Lorentz-
boost field intensity f and a Lorentz-rotation field intensity d obtained as

f = −∇A0 − 1

c

∂A

∂t
; d = ∇×A (6g)

We note that in cases of dynamics in force fields where the Lorentz-rotation field intensity component d does
not arise in a manifest form, we may follow the definition in equation (6g) to set the vector potential A equal
to the gradient of a scalar φ according to

A = ∇φ ⇒ f = −∇( A0 +
1

c

∂φ

∂t
) ; d = ∇×∇φ = 0 (6h)
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The linear momentum four-vector P of a moving body of mass m and velocity four-vector V is obtained in
contravariant or covariant form as

Pµ = mV µ = (mc , p) ; Pµ = mVµ = (mc , −p) ; p = mv (7a)

which on introducing the relativistic energy E according to Einstein’s energy-mass equivalence relation

E = mc2 (7b)

is normally interpreted as the energy-momentum four-vector defined in the form

Pµ =

(
E
c
, p

)
; Pµ =

(
E
c
, −p

)
(7c)

For completeness, we observe that in relativistic mechanics, the mass m and time duration dt measured in an
inertial frame co-moving with a body is related to the rest mass m0 and proper time duration dτ measured
in the rest frame in the respective forms

m = γm0 ; dt = γdτ ; γ =
1√

1− v2

c2

(7d)

The equation of motion of a body of mass m, charge ξ, velocity four-vector V and energy-momentum four-
vector P in a force field specified by field intensity tensor Fµν is obtained as

dPµ

dt
=

ξ

c
FµνVν (7e)

which on introducing a power-force four-vector Fµ defined by

Fµ =
ξ

c
FµνVν (7f)

takes the generalized Newtonian form
dPµ

dt
= Fµ (7g)

which unifies equations (1a) and (1f) of Newtonian classical mechanics. We observe that the relativistic
equation of motion (7g) is derived in terms of the proper time τ in [2], where the power-force four-vector Fµ

defined here in equation (7f) is determined as the Minkowski force.
Setting µ = 0, 1, 2, 3 in equation (7f) and applying Einstein’s summation convention over the repeated

index ν = 0, 1, 2, 3 in usual manner, we determine the power-force four-vector Fµ in explicit form

Fµ =

(
ξf · v
c

, ξ( f +
v

c
× d )

)
=

(
F · v
c

, F

)
; F = ξ( f +

v

c
× d ) ; F · v = ξf · v (7h)

Note that in a force field where the vector potential A is derivable as the gradient of a scalar function as
defined in equation (6h), the power-force four-vector takes the same form, with the force F appropriately
determined according to

A = ∇φ ⇒ Fµ =

(
F · v
c

, F

)
; F = ξf (7i)

The arbitrary nature of the fundamental physical property of matter ξ which we have defined as charge
provides the flexibility to use the relativistic equation of motion (7g) to describe dynamics conserving linear
momentum and energy in any force field where the force driving the dynamics is derivable from a spacetime
coordinate-dependent potential four-vector. For dynamics in an electromagnetic field, we identify the arbi-
trary charge ξ as the electric charge q, such that the Lorentz-boost field intensity component f is the electric
field intensity E, the Lorentz-rotation field intensity component d is the magnetic field intensity (magnetic
induction) B and the force F = ξ( f + v

c × d ) is the Lorentz force FL = q( E + v
c × B ). Similarly, for

dynamics in a gravitational field, we identify the arbitrary charge ξ as the gravitational mass mg, commonly
interpreted as equivalent to inertial mass m, such that the Lorentz-boost field intensity component f is the
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gravitoelectric field intensity (gravitational acceleration) g, the Lorentz-rotation field intensity component
d is the gravitomagnetic field intensity D and the force F = ξ( f + v

c × d ) is the gravito-Lorentz force
FgL = mg( g + v

c × D ). We observe that a gravitational force field defined within an inertial spacetime
frame arises as gravitoelectromagnetic field through linearization of Einstein’s general relativity field equa-
tions, where the nature and form of gravitational charge mg and gravitoelectromagnetic field intensities g
, D are clearly defined [4]. We note that, depending on the form of the vector potential A, equations (7h)
, (7i) can provide any type of force derivable from a field potential in Newtonian or relativistic mechanics
with appropriate specification of the arbitrary charge ξ. Only frictional forces which cannot be derived from
spacetime coordinate-dependent field potentials are not provided by the definition of force in the set of equa-
tions (6d)-(6h) , (7f). This means that, as in the Newtonian case, frictional forces can be specified separately
in appropriate form, including derivation from dissipation function [2], then added to the equation of motion
(7g).

Applying either of the equivalent mathematical procedures presented in equations (2a) , (2e) to the
relativistic equation of motion (2g), we obtain a general energy-momentum conservation equation in the
form

d

dt
(Pµ − Iµ) = 0 ; Iµ =

∫ t

0

Fµdt′ (8a)

after introducing an impulse four-vector Iµ obtained as

Iµ =

∫ t

0

Fµdt′ =

(
W

c
, I

)
; W =

∫ t

0

F · vdt′ ; I =

∫ t

0

Fdt′ ; F = ξ( f +
v

c
× d ) (8b)

where W is the work done and I is the impulse generated by the force F. Introducing transferred energy-
momentum four-vector Pµ

I and instantaneous total energy-momentum four-vector Pµ obtained as

Pµ
I = −Iµ =

(
U

c
, pI

)
; Pµ = Pµ + Pµ

I (8c)

where U = −W is the transferred energy and pI = −I is the transferred linear momentum as defined earlier
in equation (2f), we express the general energy-momentum conservation relation in the form

Pµ = Pµ + Pµ
I :

dPµ

dt
= 0 ⇒ Pµ = Pµ + Pµ

I = Pµ
0 (8d)

where Pµ
0 is the energy-momentum four-vector in the rest frame obtained as

Pµ
0 =

(
E0
c

, 0

)
; E0 = m0c

2 (8e)

Note that in this relativistic case, we have assumed that the body is initially at rest, i.e., the motion starts
off from a rest frame, in contrast to the Newtonian case where we can assume the body to be initially at rest
or moving with an initial velocity. This situation does not pose any challenge, since in relativistic mechanics,
a state of uniform motion with an initial velocity can be transformed into a state of rest in a rest frame.

Using the energy-momentum and transferred energy-momentum four-vectors Pµ , Pµ
I as defined in equa-

tions (7c) , (8c), we determine the instantaneous total energy-momentum four-vector Pµ defined in equation
(8c) in the explicit form

Pµ =

(
E + U

c
, p+ pI

)
(8f)

Expressing the general energy-momentum conservation relation in equation (8d) in the equivalent invariance
form

PµPµ = P0µP
µ
0 (8g)

and using Pµ
0 , Pµ from equations (8e) , (8f), noting their covariant forms P0µ , Pµ, we obtain a general

relativistic energy conservation relation in the form

( E + U )2 = m2
0c

4 + c2( p+ pI )2 (8h)

which includes the effects of forces driving the dynamics of a body in a force field, excluding effects of frictional
forces which cannot be derived from spacetime coordinate-dependent field potential four-vectors specified in
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the present formulation. We recall that in the Newtonian case where the external forces can be specified as
desired without reference to their origin, the formulation of the general energy conservation relation easily
includes effects of frictional forces.

We observe that closing the gaps by including the effects of forces of arbitrary nature in the formulation of
the momentum and energy or energy-momentum conservation relations reduces or, in some cases, eliminates
discrepancies between theoretical predictions and experimental observations.
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