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Abstract

The main purpose of this article is to provide a simple physically motivated exact analytical procedure
for determining effective Rabi and Dicke Hamiltonians, which have so far posed serious challenges in
studies of quantum phase transition phenomena in the Rabi and Dicke models, where only the low-
energy components have been obtained through approximate unitary transformation, or perturbation
methods to determine the critical coupling constant for quantum phase transition. The full effective
Hamiltonian automatically reveals the expected scaling of field mode energy and quadrature components
near the critical quantum phase transition point and is easily reorganized as a sum of correlated field and
quasi-particle spinor modes. A fully quantized Lipkin-Meshkov-Glick Hamiltonian emerges as an effective
form of the Dicke Hamiltonian.

1 Introduction

The dynamics of a system of two-level atoms interacting with quantized electromagnetic field modes in the
Rabi and Dicke models is characterized by a number of fundamental quantum mechanical properties such
as squeezing, entanglement, population collapses and revivals, fractional revivals, quantum phase transitions
and related universal scaling phenomena, etc [1-9]. In the present article, we focus attention on deter-
mination of effective Hamiltonians, which has proved to be a formidable task in studies of quantum phase
transition phenomena in the Rabi and Dicke models [5-10]. Only the leading order or at best, next-to-leading
order, effective low-energy components of the Hamiltonians have been determined through approximate uni-
tary transformation, perturbation or Holstein-Primakoff bosonization methods under specified approximation
limits. We address the challenge of determining the full effective Rabi and Dicke Hamiltonians in this article
by identifying the basic interaction mechanisms and applying the physical interpretation that the atom-field
coupling through quadrature components generates quadrature fluctuation energy which drives the internal
dynamics of the system. Simple reorganization of the Hamiltonians to introduce the field mode and atomic
spin quadrature fluctuation energy components allows application of unitary squeeze operator transforma-
tions to determine the full effective Hamiltonian. It is best to present the Rabi and Dicke models separately,
starting with the Rabi model to develop the basic interaction mechanisms, then applying the same procedure
to the more general Dicke model.

2 The Rabi model

The quantum Rabi model describes the dynamics of a quantized electromagnetic field mode interacting with
a two-level atom generated by Hamiltonian [1 , 4 , 5]

HR = h̄ω

(
â†â+

1

2

)
+ h̄ω0sz + h̄g(â+ â†)(s+ + s−) (1a)

where ω , â , â† are the quantized field mode angular frequency, annihilation and creation operators, while
ω0 , sz , s+ , s− are the atomic state transition angular frequency and operators, noting σx = s+ + s− ,
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σy = −i(s+ − s−). We substitute sz = s+s− − 1
2 to express the Rabi Hamiltonian in the form

HR = h̄ω

(
â†â+

1

2

)
+ h̄ω0

(
s+s− − 1

2

)
+ h̄g(â+ â†)(s+ + s−) (1b)

which displays an important algebraic symmetry of the field mode and atomic spin operators, showing that
the ground state energy of the field mode is 1

2 h̄ω, while the ground state energy of the atomic spin is −1
2 h̄ω0.

We use the Rabi Hamiltonian in the forms in equation (1a) , (1b) alternately in this work.
The field mode operators â , â† , â†â and atomic spin operators s− , s+ , sz = s+s−− 1

2 satisfy respective
bosonic and spinor algebraic relations

[ â , â† ] = 1 ; [ â†â , â† ] = â† ; [ â†â , â ] = −â

[ s+ , s− ] = 2sz ; [ sz , s+ ] = s+ ; [ sz , s− ] = −s− (1c)

To gain insight into the internal dynamics of the Rabi model, we adopt a physical interpretation that
the dynamics is generated through two alternate interaction mechanisms, one in which the field mode drives
the atomic spin dynamics and the other in which the atomic spin drives the field mode dynamics. The Rabi
Hamiltonian HR can therefore be reorganized in two alternative forms

HaR = h̄ω

(
â†â+

1

2

)
+

{
h̄ω0

(
s+s− − 1

2

)
+ h̄g(â+ â†)(s+ + s−)

}
(1d)

or

HfR = h̄ω0

(
s+s− − 1

2

)
+

{
h̄ω

(
â†â+

1

2

)
+ h̄g(â+ â†)(s+ + s−)

}
(1e)

where in the form HaR in equation (1d), the second component is interpreted as the interactive Rabi Hamil-
tonian for an interaction mechanism in which the atomic spin dynamics is driven by the field mode, while
in the form HfR in equation (1e), the second component is interpreted as the interactive Rabi Hamiltonian
for an interaction mechanism in which the field mode dynamics is driven by the atomic spin. In general, we
identify HaR in equation (1d) as the Rabi Hamiltonian for field mode driven atomic spin dynamics and HfR

in equation (1e) as the Rabi Hamiltonian for atomic spin driven field mode dynamics.

2.1 Field mode and atomic spin quadrature fluctuation energy

An important dynamical property which we notice immediately in equation (1a) and its equivalent forms (1b)
, (1d) , (1e) is that the interaction component h̄g(â+ â†)(s+ + s−) of the Rabi Hamiltonian HR is generated
by the coupling of the field mode quadrature component x̂ = â+ â† to the atomic spin quadrature component
σx = s++s−, which leads to a physical interpretation that the internal dynamics of the Rabi system is driven
by field mode and atomic spin quadrature fluctuations. To determine the quadrature fluctuation energy, we
express the coupled quadrature interaction component in the equivalent alternative forms

h̄g(â+ â†)(s+ + s−) = h̄ω0

(
2
g

ω0
(â+ â†)

(s+ + s−)

2

)
= h̄ω

(
2
g

ω
(s+ + s−)

(â+ â†)

2

)
(2a)

and complete the square in the respective forms of the Rabi interaction according to

h̄g(â+ â†)(s+ + s−) = h̄ω0

{ (
g

ω0
(â+ â†) +

(s+ + s−)

2

)2

− g2

ω2
0

(â+ â†)2 − (s+ + s−)
2

4

}
(2c)

or

h̄g(â+ â†)(s+ + s−) = h̄ω

{ (
g

ω
(s+ + s−) +

(â+ â†)

2

)2

− g2

ω2
(s+ + s−)

2 − (â+ â†)2

4

}
(2d)

depending on the atom-field interaction mechanism generated by the Rabi Hamiltonian according to equations
(1d) , (1e), respectively.

Substituting equations (2c) , (2d) into equations (1d) , (1e), respectively, reorganizing atomic spin and
field mode quadrature fluctuation terms and using

s+ + s− = σx ; σ2
x = I ;

(s+ + s−)
2

4
=

1

4
I ≡ 1

4
(2e)
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we express the Rabi Hamiltonian HaR generating the field mode driven atomic spin dynamics in the form

HaR = h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
+ h̄ω0

(
sz −

1

4

)
+

1

4
h̄ω0

(
σx +

2g

ω0
(â+ â†)

)2

(2f)

and the Rabi Hamiltonian HfR generating the atomic spin driven field mode dynamics in the form

HfR = h̄ω0

(
sz −

1

4
λ2

)
+ h̄ω

(
â†â+

1

2
− 1

4
(â+ â†)2

)
+

1

4
h̄ω

(
â+ â† +

2g

ω
σx

)2

(2g)

where we have introduced a dimensionless parameter λ defined by

λ =
2g

√
ω0ω

⇒ g2

ω0ω
=

1

4
λ2 (2h)

to simplify comparison with other work in the literature [5 , 6].
We now see that the atom-field interaction mechanism generated by each of the Rabi Hamiltonians HaR

, HfR in equations (2f) , (2g) provides field mode or atomic spin quadrature fluctuation energy, which
modifies the free evolution field mode or atomic spin component. We interpret the last component of each
Hamiltonian as the quadrature fluctuation energy of a composite atom-field quasi-particle spinor / bosonic
mode formed in the Rabi interaction to be defined later. It turns out that the field mode and atomic spin
quadrature fluctuation energies drive squeezing, quantum phase transition and related dynamical effects in
the Rabi system.

In the form of the Rabi Hamiltonian HaR in equation (2f), it is evident that in the field mode driven
atomic spin dynamics, the transfer of the field mode quadrature fluctuation energy leaves the field mode in a
(nonlinear) squeezed state. We identify an effective low-energy component HaRLE of the Hamiltonian HaR

in equation (2f) obtained here as

HaRLE = h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
+ h̄ω0sz (3a)

which is exactly equal to the effective low-energy Hamiltonian determined in recent studies of quantum phase
transition in the Rabi model in [5], noting

⟨d|HaRLE |d⟩ = h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
− 1

2
h̄ω0 (3b)

where |d⟩ is the atomic spin-down state vector. In contrast to the derivation in [5] where the effective low-
energy Hamiltonian is determined as an approximation in the limit of an infinite atom-field frequency ratio,
ω0

ω → ∞, the derivation in the present work based on determining the underlying quadrature fluctuation
energy generated in the atom-field interaction is exact and independent of the atom-field frequency ratio ω0

ω .
In the atomic spin driven field mode dynamics generated by the Rabi Hamiltonian HfR in equation (2g),

the transfer of the atomic spin quadrature fluctuation energy evaluated explicitly using the algebraic property
in equation (2e) takes a trivial form which only shifts the atomic spin ground state energy. We identify the
effective low-energy component HfRLE of HfR in equation (2g) obtained here as

HfRLE = h̄ω0

(
sz −

1

4
λ2

)
+ h̄ω

(
â†â+

1

2

)
(3c)

which on averaging in the field mode vacuum (ground) state |0⟩ takes the form

⟨0|HfRLE |0⟩ = h̄ω0

(
sz −

1

4
λ2

)
+

1

2
h̄ω (3d)

agreeing exactly with the Rabi limit (N = 1 , Jz = sz , (J− + J+)
2 = (s− + s+)

2 = 1) of the corresponding
low-energy Lipkin-Meshkov-Glick (LMG) Hamiltonian determined in a study of quantum phase transition in
the Dicke model in [6].

We observe that in isolating the effective low-energy components of the Hamiltonians HaR , HfR in
equations (2f) , (2g) in the respective forms HaREF , HfRLE in equations (3a) , (3c), we have left out a
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quadrature fluctuation component which cancels out in the calculations to determine the full effective Rabi
Hamiltonian presented below.

We can now proceed to determine the full effective Rabi Hamiltonian. In this respect, we note that,
according to the Hamiltonian form HaR in equation (2f), the transfer of field mode quadrature fluctuation
energy driving the atomic spin dynamics transforms the free field mode component to a non-trivial squeezed
form, which can be diagonalized to determine the effective form. On the other hand, the Hamiltonian form
HfR in equation (2g) shows that the transfer of atomic spin quadrature fluctuation energy driving the field
mode dynamics leaves the free atomic spin component in the same diagonal form, but only shifts the energy,
noting sz − 1

4λ
2 = s+s− − 1

2 − 1
4λ

2. We therefore use only the Hamiltonian form HaR to determine an
underlying effective Rabi Hamiltonian.

2.2 Effective Rabi Hamiltonian from HaR

According to equation (2f), the Hamiltonian form HaR for the field mode driven atomic spin dynamics has a
non-trivial squeezed field mode component, which we can use as a starting point to determine the underlying
effective Hamiltonian by applying a factorization procedure.

Expressing the squeezed field mode component in the explicit degenerate parametric down-conversion
form (writing 1

4λ
2 = 1

2 ( 12λ
2))

h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
= h̄ω

(
(1− 1

2
λ2)(â†â+

1

2
)− 1

2

(
1

2
λ2

)
(â2 + â†2)

)
(4a)

we use the relation(
1− 1

2
λ2

)2

−
(
1

2
λ2

)2

= 1− λ2 ⇒
(
1− 1

2λ
2

√
1− λ2

)2

−
( 1

2λ
2

√
1− λ2

)2

= 1 (4b)

to introduce hyperbolic functions cosh η , sinh η defined by

cosh η =
1− 1

2λ
2

√
1− λ2

; sinh η =
1
2λ

2

√
1− λ2

; cosh2 η − sinh2 η = 1 (4c)

giving a suitable form

h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
= h̄ω

√
1− λ2

(
cosh η â†â− 1

2
sinh η (â2 + â†2) +

1

2
cosh η

)
(4d)

We obtain a factorization

cosh η â†â− 1

2
sinh η (â2 + â†2) =

(
cosh

1

2
η â† − sinh

1

2
η â

)(
cosh

1

2
η â− sinh

1

2
η â†

)
− sinh2

1

2
η (4e)

which can be generated through a squeeze operator S(η) using the general operator expansion relation

eP̂ Q̂e−P̂ = Q̂+
1

1!
[P̂ , Q̂] +

1

2!
[P̂ , [P̂ , Q̂]] +

1

3!
[P̂ , [P̂ , [P̂ , Q̂]]] + ... (4f)

by setting Q̂ = â , â† , S(η) = e−P̂ , S†(η) = eP̂ according to

S(η) = e
1
4η(â

†2−â2) : S†(η)âS(η) = cosh
1

2
η â−sinh

1

2
η â† ; S†(η)â†S(η) = cosh

1

2
η â†−sinh

1

2
η â (4g)

Substituting equation (4g) into equation (4e), using the result in equation (4d) and evaluating a term
1
2 cosh η − sinh2 1

2η = 1
2 , we obtain the diagonal form

h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
= S†(η) h̄ω

√
1− λ2

(
â†â+

1

2

)
S(η) (4h)

We use equation (4c) to determine the squeeze parameter η in the form

tanh η =
1
2λ

2

1− 1
2λ

2
⇒ e−2η = 1− λ2 ; η = −1

2
ln(1− λ2) (4i)
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Substituting equation (4h) into equation (2f) and applying the squeeze operator unitarity property S†(η)S(η) =
S(η)S†(η) = 1 to express

1

4
h̄ω0

(
σx +

2g

ω0
(â+ â†)

)2

= S†(η)

{
S(η)1

4
h̄ω0

(
σx +

2g

ω0
(â+ â†)

)2

S†(η)

}
S(η) (5a)

we obtain the Rabi Hamiltonian HaR in the diagonal form

HaR = S†(η)HaRS(η) ⇒ S(η)HaRS†(η) = HaR (5b)

where HaR is the desired underlying effective Rabi Hamiltonian for the field mode driven atomic spin dy-
namics obtained in the form

HaR = h̄ω
√
1− λ2

(
â†â+

1

2

)
+ h̄ω0

(
sz −

1

4

)
+

1

4
h̄ω0

(
σx +

2g

ω0
( â(η) + â†(η) )

)2

(5c)

after introducing (reversed) squeezed field mode operators â(η) , â†(η) obtained as

â(η) = S(η)âS†(η) = cosh
1

2
η â+ sinh

1

2
η â† ; â†(η) = S(η)â†S†(η) = cosh

1

2
η â† + sinh

1

2
η â (5d)

Using equation (5d) and applying the squeeze parameter definition from equation (4i), we obtain

â(η) + â†(η) = e
1
2η(â+ â†) =

â+ â†

(1− λ2)
1
4

(5e)

Substituting â(η) + â†(η) from equation (5e) into equation (5c) and expanding the squared component
provides the underlying effective Rabi Hamiltonian HaR in the final form (reintroducing sz = s+s− − 1

2 ,
σx = s− + s+)

HaR = h̄ω
√

1− λ2

(
â†â+

1

2

)
+ h̄ω0

(
s+s− − 1

2

)
+

h̄g

(1− λ2)
1
4

(â+ â†)(s−+s+)+
h̄g2

ω0

√
1− λ2

(â+ â†)2 (5f)

Comparing equations (5f) and (1a) , (1b) reveals that the underlying effective Rabi Hamiltonian HaR in
equation (5a) is just the original Rabi Hamiltonian HR in equation (1a) , (1b), but with the free field mode

component scaled by a factor
√
1− λ2, field mode quadrature component scaled by a factor (1− λ2)−

1
4 (see

equation (5e)) and an additional nonlinear field mode quadrature fluctuation component.
According to equation (5b), the effective Rabi Hamiltonian HaR in equation (5f) is related to the cor-

responding Hamiltonian HaR for the field mode driven atomic spin dynamics by a unitary transformation
generated by a field mode squeeze operator S(η). In addition, we easily establish that the effective Hamil-
tonian HaR is also directly related to the original Rabi Hamiltonian HR in equation (1a) , (1b) by a similar
field mode squeezing transformation. Reorganizing the effective Hamiltonian HaR in equation (5f) and
introducing a dimensionless parameter ξ defined by

ξ =
λ√

λ2 − 1
⇒ ξ2 =

λ2

λ2 − 1
= − λ2

1− λ2
(6a)

we obtain the form

HaR = h̄ω
√
1− λ2

(
â†â+

1

2
− 1

4
ξ2(â+ â†)2

)
+ h̄ω0

(
s+s− − 1

2

)
+

h̄g

(1− λ2)
1
4

(â+ â†)(s− + s+) (6b)

with squeezed field mode component similar to that in HaR in equation (2f). Applying the factorization
procedure developed above then gives (s+s− − 1

2 = sz) , s− + s+ = σx)

HaR = R†(β)

{
h̄ω
√

1− λ2
√
1− ξ2

(
â†â+

1

2

)
+ h̄ω0sz +

h̄g

(1− λ2)
1
4 (1− ξ2)

1
4

(â+ â†)σx

}
R(β) (6c)

where the squeeze operator R(β) is defined by

R(β) = e
1
4β(â

†2−â2) ; tanhβ =
1
2ξ

2

1− 1
2ξ

2
⇒ e−2β = 1− ξ2 ; β = −1

2
ln(1− ξ2) (6d)
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Using ξ from equation (6a) provides√
1− λ2

√
1− ξ2 = 1 ;

1

(1− λ2)
1
4 (1− ξ2)

1
4

= 1 (6e)

which we substitute into equation (6c) to obtain the expected unitary transformation

HaR = R†(β) HR R(β) ⇒ R(β) HaR R†(β) = HR (6f)

where HR is the original Rabi Hamiltonian in equation (1a). Hence, R(β) defined in equation (6d) is an
alternative squeeze operator compared to S(η) defined in equation (4g) for transforming the original and the
underlying effective Rabi Hamiltonians into each other. Substituting ξ from equation (6a) into equation (6d)
reveals that the alternative squeeze parameter β is related to the original squeeze parameter η in equation
(4i) according to β = −η, thus giving squeeze operator relation R(β) = S−1(η).

2.2.1 Quasi-particle spinor modes in the effective Rabi interaction

Based on the nonlinear form of the effective Rabi Hamiltonian HaR in equation (5f), we can provide two
alternative physical interpretations of the Rabi dynamics. Following a model of Dicke Hamiltonian for
studying quantum phase transitions in [10], we provide a physical interpretation that the effective Hamiltonian
HaR in equation (5f) is the Rabi Hamiltonian for nonlinear quantized light (field mode) interacting with a
single two-level atom (atomic spin).

In an alternative interpretation, we recall the earlier physical interpretation that the transfer of the field
mode quadrature fluctuation energy drives the atomic spin to a composite atom-field quasi-particle spinor
mode. Hence, in the effective Rabi Hamiltonian HaR in equation (5f), we introduce a quasi-particle spinor
mode specified by hermitian conjugate effective spinor operators S− , S+, which are atomic spin state lowering
and raising operators displaced by the effective field mode quadrature component obtained as

S− = s− +
g

ω0(1− λ2)
1
4

(â+ â†) ; S+ = s+ +
g

ω0(1− λ2)
1
4

(â+ â†) (7a)

Taking the normal order product S+S−, multiplying by h̄ω0 and subtracting 1
2 h̄ω0 provides the quasi-particle

spinor mode Hamiltonian HS in the form

HS = h̄ω0

(
S+S− − 1

2

)
= h̄ω0

(
s+s− − 1

2

)
+

h̄g

(1− λ2)
1
4

(â+ â†)(s− + s+) +
h̄g2

ω0

√
1− λ2

(â+ â†)2 (7b)

which we substitute into equation (5f) to express the effective Rabi Hamiltonian HaR as a sum of correlated
effective squeezed field and quasi-particle spinor mode components in the form

HaR = h̄ω
√
1− λ2

(
â†â+

1

2

)
+ h̄ω0

(
S+S− − 1

2

)
(7c)

The correlation property follows from the algebraic property that the two components of the effective Hamil-
tonian HaR in equation (7c) do not commute.

3 The Dicke Hamiltonian

The standard Dicke model describes the interaction between a single quantized field mode and a collection
of N identical, but distinguishable two-level atoms generated by the basic Dicke Hamiltonian [6-9]

HD = h̄ω

(
â†â+

1

2

)
+ h̄ω0Jz +

g√
N

(â+ â†)(J+ + J−) (8a)

after introducing the collective total spin angular momentum operators Jz , J+ , J− for the N atomic spins
obtained as

Jz =
N∑
j=1

szj ; J+ =
N∑
j=1

s+j ; J− =
N∑
j=1

s−j ; Σx = J+ + J− ; Σy = −i(J+ − J−) (8b)
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where the single atomic spin operators szj , s+j , s−j in standard notation have usual meanings as defined
in the Rabi model above. We observe that the Rabi Hamiltonian HR in equation (1a) is obtained as the
simplest form of the Dicke Hamiltonian HD in equation (8a) for a single quantized field mode interacting
with a single atomic spin (N = 1).

The collective atomic spin angular momentum operators in the Dicke model satisfy spinor algebraic
relations

[ J+ , J− ] = 2Jz ; [ Jz , J+ ] = J+ ; [ Jz , J− ] = −J− (8c)

exactly the same as the single atomic spin operator algebraic relations governing the Rabi dynamics in
equation (1c).

As in the Rabi model, we specify the interaction mechanisms driving the internal dynamics of the Dicke
model by reorganizing the Hamiltonian HD in equation (8a) in two alternative forms

HaD = h̄ω

(
â†â+

1

2

)
+

{
h̄ω0Jz +

h̄g√
N

(â+ â†)(J+ + J−)

}
(8d)

HfD = h̄ω0Jz +

{
h̄ω

(
â†â+

1

2

)
+

h̄g√
N

(â+ â†)(J+ + J−)

}
(8e)

where in the form HaD in equation (8d) the second component is interpreted as the interactive Dicke Hamil-
tonian for an interaction mechanism in which the field mode drives the collective atomic spin dynamics, while
in the form HfD in equation (8e) the second component is interpreted as the interactive Dicke Hamiltonian
for an interaction mechanism in which the collective atomic spin drives the field mode dynamics. We observe
that in the study of quantum phase transition in the Dicke model in [6], the interaction mechanism in which
the field mode drives the collective atomic spin dynamics (generated here by Hamiltonian HaD) is character-
ized as the classical oscillator (low-frequency field mode) limit, while the interaction mechanism in which the
collective atomic spin drives the field mode dynamics (generated here by Hamiltonian HfD) is characterized
as the fast oscillator (high-frequency field mode) limit.

Expressing the coupled quadrature interaction component h̄g√
N
(â+ â†)(J++J−) of the Dicke Hamiltonian

in terms of the field mode and collective atomic spin quadrature fluctuation energy in the alternative forms

h̄
g√
N

(â+ â†)(J+ + J−) = h̄ω0

{ (
g

ω0
(â+ â†) +

(J+ + J−)

2
√
N

)2

− g2

ω2
0

(â+ â†)2 − (J+ + J−)
2

4N

}
(9a)

or

h̄
g√
N

(â+ â†)(J+ + J−) = h̄ω

{ (
g

ω
(J+ + J−) +

(â+ â†)

2
√
N

)2

− g2

ω2
(J+ + J−)

2 − (â+ â†)2

4N

}
(9b)

and using
J+ + J− = Σx ; (J+ + J−)

2 = Σ2
x (9c)

we reorganize the Hamiltonian HaD in equation (8d) for the field mode driven collective atomic spin dynamics
in the form

HaD = h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
+ h̄ω0

(
Jz −

1

4N
Σ2

x

)
+

1

4N
h̄ω0

(
Σx +

2g
√
N

ω0
(â+ â†)

)2

(9d)

and the Hamiltonian HfD in equation (8e) for the collective atomic spin driven field mode dynamics in the
form

HfD = h̄ω0

(
Jz −

1

4
λ2Σ2

x

)
+ h̄ω

(
â†â+

1

2
− 1

4N
(â+ â†)2

)
+

1

4N
h̄ω

(
â+ â† +

2g
√
N

ω
Σx

)2

(9e)

In the Dicke Hamiltonian formHaD in equation (9d), we identify the effective low-energy HamiltonianHaDLE

for the field mode driven collective atomic spin dynamics obtained as

HaDLE = h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
+ h̄ω0Jz (10a)

7



which agrees exactly with the effective low-energy Hamiltonian determined in a study of quantum phase
transition in the Dicke model in [6], noting

⟨d|HaDLE |d⟩ = h̄ω

(
â†â+

1

2
− 1

4
λ2(â+ â†)2

)
− jh̄ω0 ; j =

N

2
(10b)

where |d⟩ is the collective atomic spin ground state vector.
On the other hand, in the Dicke Hamiltonian form HfD in equation (9e), we identify the effective low-

energy Hamiltonian HfDLE for the collective atomic spin driven field mode dynamics obtained as

HfDLE = h̄ω0

(
Jz −

1

4
λ2Σ2

x

)
+ h̄ω

(
â†â+

1

2

)
(10c)

We observe that in the study of quantum phase transition in the Dicke model in [6], an effective low-energy
Hamiltonian was determined in the form of the first component ofHfDLE in equation (10c), which is identified
as the Lipkin-Meshkov-Glick (LMG) Hamiltonian [11 , 12 , 13]. We note that in [6] the field mode operators
have been eliminated through (path) integration, which we may also achieve in the present work by averaging
HfDLE in equation (10c) in the field mode vacuum (ground) state |0⟩ to obtain

⟨0|HfDLE |0⟩ = h̄ω0

(
Jz −

1

4
λ2Σ2

x

)
+

1

2
h̄ω (10d)

giving the exact form determined in [6], where the collective atomic spin driven field mode dynamics as
defined in the present work is characterized as the fast oscillator (high-frequency field mode) limit.

The dynamical property that the effective low-energy Hamiltonians HaRLE , HfRLE obtained here in
equations (3a) , (3c) and in [5] in the Rabi model are exactly the same as the corresponding effective
low-energy Hamiltonians HaDLE , HfDLE obtained here in equations (10a) , (10c) and in [6] in the Dicke
model means that dynamics in both Rabi (N = 1) and Dicke models is generated by the same interaction
mechanisms driven by field mode and (collective) atomic spin quadrature fluctuation energies.

3.1 Effective Dicke Hamiltonians

We now determine the effective Dicke Hamiltonians based on the interpretation that the internal dynamics
of the Dicke model is driven by the field mode and collective atomic spin quadrature fluctuation energy.
According to the forms in equations (9d) , (9e), the Dicke Hamiltonian HaD or HfD has a quadrature
fluctuation generated squeezed field mode or collective atomic spin component which can be diagonalized
through factorization equivalent to a squeeze operator generated unitary transformation to determine the
corresponding effective Hamiltonian as we summarize below.

Noting that the Dicke Hamiltonian form Had in equation (9d) has exactly the same algebraic form as the
corresponding Rabi Hamiltonian HaR in equation (1d), we apply exactly the same factorization procedure
developed in section 2.2 to determine an underlying effective Dicke Hamiltonian HaD for the field mode
driven collective atomic spin dynamics in the final form (reintroducing Σx = J− + J+)

HaD = h̄ω
√
1− λ2

(
â†â+

1

2

)
+ h̄ω0Jz +

h̄g√
N(1− λ2)

1
4

(â+ â†)(J− + J+) +
h̄g2

ω0

√
1− λ2

(â+ â†)2 (11a)

which is equivalently obtained through a unitary transformation of the Hamiltonian HaD in equation (9d)
using the field mode squeeze operator S(η) defined in equation (4g) according

HaD = S†(η)HaDS(η) ⇒ S(η)HaDS†(η) = HaD (11b)

We observe that the effective Dicke Hamiltonian HaD obtained in equation (11a) takes exactly the form of
the Dicke Hamiltonian used in a detailed study of quantum phase transition of nonlinear light interacting
with a finite number of two-level atoms in [10]. The effective Dicke Hamiltonian HaD in equation (11a) may
then be interpreted as the Dicke Hamiltonian of nonlinear light interacting with collective atomic spins. In
contrast to the model in [10], the nonlinear term in the effective Dicke Hamiltonian HaD obtained here in
equation (11a) arises from the transfer of field mode quadrature fluctuation energy, which drives the collective
atomic spin into an effective quasi-particle spinor mode.
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Reorganizing equation (11a) in the form

HaD = h̄ω
√
1− λ2

(
â†â+

1

2
− 1

4
ξ2(â+ â†)2

)
+ h̄ω0Jz +

h̄g

(1− λ2)
1
4

(â+ â†)(J− + J+) (11c)

where ξ is the dimensionless parameter defined in equation (6a), we apply exactly the procedure outlined in
equations (6b)-(6f) for the corresponding effective Rabi Hamiltonian HaR to establish that the effective Dicke
Hamiltonian HaD in equation (11a) is directly related to the original Dicke Hamiltonian HD in equation (8a)
through a unitary transformation generated by a field mode squeeze operator R(β) in the form

HaD = R†(β) HD R(β) ⇒ R(β) HaD R†(β) = HD (11c)

where the squeeze operator R(β) = S−1(η) and corresponding squeeze parameter β are defined in equation
(6d). A unitary transformation of the standard Dicke Hamiltonian HD in equation (8a) generated by a field
mode squeeze operator R(ξ) = S−1(η) thus provides the effective Dicke Hamiltonian HaD in equation (11a).
This squeezing phenomenon is associated with the transfer of field mode quadrature fluctuation energy which
drives the collective atomic spin into an effective quasi-particle spinor mode as explained above.

We now determine the effective quasi-particle spinor mode in the field mode driven collective atomic spin
dynamics generated by the effective Dicke Hamiltonian HaD. Using the algebraic relations

J2 = J2
x + J2

y + J2
z ; J+J− = J2 − J2

z + Jz ; J−J+ = J2 − J2
z − Jz (12a)

in equation (11a), we obtain a suitable form

HaD = h̄ω
√

1− λ2

(
â†â+

1

2

)
+ h̄ω0( J+J− − (J2 − J2

z ) )+
h̄g(â+ â†)√
N(1− λ2)

1
4

(J− + J+)+
h̄g2(â+ â†)2

ω0

√
1− λ2

(12b)

Noting that the operator (J2 − J2
z ) commutes with the Hamiltonian in equation (12b), we may replace it

with its (ground state) eigenvalue according to

[ J2−J2
z , J∓ ] = 0 ; [ J2−J2

z , Had ] = 0 ⇒ J2−J2
z −→ j(j+1)−j2 = j ; Jz = J+J−−j (12c)

to express the effective Dicke Hamiltonian HaD in the form

HaD = h̄ω
√
1− λ2

(
â†â+

1

2

)
+ h̄ω0( J+J− − j ) +

h̄g(â+ â†)√
N(1− λ2)

1
4

(J− + J+) +
h̄g2(â+ â†)2

ω0

√
1− λ2

(12d)

We specify the effective quasi-particle spinor mode by hermitian conjugate effective quasi-particle spinor
operators J− , J+, which are the collective atomic spin state lowering and raising operators displaced by the
effective field mode quadrature component obtained as

J− = J− +
g

ω0

√
N(1− λ2)

1
4

(â+ â†) ; J+ = J+ +
g

ω0

√
N(1− λ2)

1
4

(â+ â†) (12e)

Taking the normal order product J+J−, multiplying by h̄ω0 and subtracting jh̄ω0 provides the collective
quasi-particle spinor mode Hamiltonian HJ in the form

HJ = h̄ω0( J+J− − j ) = h̄ω0( J+J− − j )+
h̄g√

N(1− λ2)
1
4

(â+ â†)(J− +J+)+
h̄g2

ω0

√
1− λ2

(â+ â†)2 (12f)

which we substitute into equation (12d) to express the effective Dicke Hamiltonian HaD as a sum of correlated
effective field mode and quasi-particle spinor mode components in the form

HaD = h̄ω
√
1− λ2

(
â†â+

1

2

)
+ h̄ω0( J+J− − j ) (12g)

Finally, we present the procedure for determining the effective Dicke Hamiltonian for the collective atomic
spin driven field mode dynamics generated by the Hamiltonian form HfD in equation (9e). We notice that
the transfer of the collective atomic spin quadrature fluctuation energy transforms the collective atomic
spin component of HfD into a nontrivial form which can be diagonalized through a unitary transformation.
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The diagonalization may be achieved directly by applying a unitary transformation operator based on the
algebraic properties of the collective atomic spin angular momentum operators J− , J+ , Jz or indirectly
by first applying the Holstein-Primakoff transformation of the collective atomic spin angular momentum
operators into equivalent bosonic operators [14 , 15 , 16], then determining an appropriate bosonic unitary
transformation operator. In this work, we adopt the latter approach, since the algebraic properties of the basic
bosonic operators are easier to handle compared to the algebraic properties of the corresponding collective
atomic spin angular momentum operators.

The Holstein-Primakoff transformation of the collective atomic spin angular momentum operators J− ,
J+ to the corresponding bosonic annihilation and creation operators b̂ , b̂† takes the form [7 , 9 , 12-16]

J− =

√
N − b̂†b̂ b̂ ; J+ = b̂†

√
N − b̂†b̂ ; [ b̂ , b̂† ] = 1 (13a)

For purposes of mathematical consistency, we deviate from the conventional approach [7 , 9 , 12 , 13 , 15
, 16] and obtain the Holstein-Primakoff transformation of the z-component collective atomic spin angular
momentum operator Jz by directly substituting the transformations from equation (13a) into the relation
Jz = J+J− − j obtained in equation (12c), noting j = 1

2N , giving

Jz = b̂†
√
N − b̂†b̂

√
N − b̂†b̂ b̂− 1

2
N ⇒ Jz = N

b̂†

√
1− b̂†b̂

N

√
1− b̂†b̂

N
b̂− 1

2

 (13b)

For completeness, we apply the same approach to obtain the Holstein-Primakoff transformation of Σx =
J+ + J− , Σy = −i(J+ − J−) in the form

Σx =
√
N

 b̂†

√
1− b̂†b̂

N
+

√
1− b̂†b̂

N
b̂

 ; Σy = −i
√
N

 b̂†

√
1− b̂†b̂

N
−

√
1− b̂†b̂

N
b̂

 (13c)

We observe that the form of the Holstein-Primakoff spin-boson operator transformation may differ in various
works, e.g., [7 , 9 , 12-16], the present work included, in terms of the interchange or ordering of the collective

atomic spin angular momentum operators J− , J+, giving instead the form J+ =
√

N − b̂†b̂ b̂ , J− =

b̂†
√
N − b̂†b̂ , Jz = N( 12 − b̂†b̂) adopted in the original work [14] and in [12 , 13].
The Holstein-Primakoff transformed Dicke Hamiltonian for collective atomic spin driven field mode dy-

namics is obtained by substituting the collective atomic spin angular momentum operators Jz , Σx from
equations (13b) , (13c) into the Hamiltonian HfD in equation (9e). Algebraic operations of the transformed
Hamiltonian on specified bosonic state vectors are effected by expanding the square root operator appearing
in equations (13b) , (13c) as appropriate [6 , 8 , 12 , 13]. Handling the expansion is a bit problematic for a
finite number N < ∞ of atoms, but simplifies a great deal in the thermodynamic limit, specified by a very
large number of atoms, N → ∞, such that to a very good approximation, the square root operator can be set
equal to unity in the thermodynamic limit of the Dicke interaction. Since the objective of the work in this
article is only to determine effective Dicke Hamiltonians good enough to generate dynamics characterized by
quantum phase transitions and related fundamental quantum mechanical phenomena, but not necessarily a
comprehensive study of all the dynamical properties of the Dicke model, we specialize to the thermodynamic
limit, specified by N → ∞, in this article. Hence, we determine the effective Holstein-Primakoff transformed
Dicke Hamiltonian for collective atomic spin driven field mode dynamics generated by the Dicke Hamiltonian
HfD in the thermodynamic limit.

In the thermodynamic limit where

N → ∞ ;

√
1− b̂†b̂

N
≈ 1 (13d)

the Holtein-Primakoff transformation in equations (13a)-(13c) take much simpler forms

N → ∞ ⇒ J− =
√
N b̂ ; J+ =

√
N b̂† ; Jz = N

(
b̂†b̂− 1

2

)
; Σx =

√
N (b̂+ b̂†) (13e)

Substituting Jz , Σx from equation (13e) into HfD in equation (9e), we obtain the Holstein-Primakoff trans-

formed Dicke Hamiltonian H
∞
fD for collective atomic spin driven field mode dynamics in the thermodynamic
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limit in the form

H
∞
fD = Nh̄ω0

(
b̂†b̂− 1

2
− 1

4
λ2(b̂+ b̂†)2

)
+ h̄ω

(
â†â+

1

2
− (â+ â†)2

4N

)
+

h̄ω

4N

(
â+ â† +

2gN

ω
(b̂+ b̂†)

)2

(13f)
We notice that the transfer of the collective atomic spin quadrature fluctuation energy (which is equivalent
to Holstein-Primakoff bosonic mode quadrature fluctuation energy), modifies the free Holstein-Primakoff

bosonic mode component of H
∞
fD in equation (13f) to a squeezed state form Nh̄ω0

(
b̂†b̂− 1

2 − 1
4λ

2(b̂+ b̂†)2
)

exactly the same form as the corresponding modified free field mode component h̄ω
(
â†â− 1

2 − 1
4λ

2(â+ â†)2
)

of the Rabi and Dicke Hamiltonian forms HaR , HaD in equations (2f) , (9d), respectively. Hence, noting
that the interaction is characterized by the same dimensionless parameter λ defined in equation (2h), we
apply exactly the same factorization procedure developed in section 2.2 to determine a squeeze operator
B(η) of the Holstein-Primakoff bosonic mode annihilation and creation operators b̂ , b̂†, to transform H

∞
fD

in equation (13f) into the corresponding effective Hamiltonian in the thermodynamic limit according to the
unitary transformations

B(η) = e
1
4η(b̂

†2−b̂2) ; tanh η =
1
2λ

2

1− 1
2λ

2
; η = −1

2
ln(1− λ2) (14a)

B†(η)b̂B(η) = cosh
1

2
η b̂− sinh

1

2
η b̂† ; B†(η)b̂†B(η) = cosh

1

2
η b̂† − sinh

1

2
η b̂

B(η)b̂B†(η) = cosh
1

2
η b̂+ sinh

1

2
η b̂† ; B(η)b̂†B†(η) = cosh

1

2
η b̂† + sinh

1

2
η b̂ (14b)

B(η)(b̂+ b̂†)B†(η) = e
1
2η(b̂+ b̂†) =

b̂+ b̂†

(1− λ2)
1
4

(14c)

B†(η)âB(η) = B(η)âB†(η) = â ; B†(η)â†B(η) = B(η)â†B†(η) = â† (14d)

giving unitary squeezing transformations (noting B†(η)B(η) = B(η)B†(η) = 1)

Nh̄ω0

(
b̂†b̂− 1

2
− 1

4
λ2(b̂+ b̂†)2

)
= B†(η) Nh̄ω0

√
1− λ2

(
b̂†b̂− 1

2

)
− 1

2
Nh̄ω0λ

2)B(η) (14e)

h̄ω

(
â†â+

1

2
− (â+ â†)2

4N

)
= B†(η)

{
B(η)h̄ω

(
â†â+

1

2
− (â+ â†)2

4N

)
B†(η)

}
B(η)

= h̄ω

(
â†â+

1

2
− (â+ â†)2

4N

)
(14f)

h̄ω

4N

(
â+ â† +

2gN

ω
(b̂+ b̂†)

)2

= B†(η)

{
B(η)

h̄ω

4N

(
â+ â† +

2gN

ω
(b̂+ b̂†)

)2

B†(η)

}
B(η)

=
h̄ω

4N

(
â+ â† +

2gN

ω(1− λ2)
1
4

(b̂+ b̂†)

)2

(14g)

where in equation (13e), we have reorganized

−1

4
λ2(b̂+ b̂†)2 = −1

4
λ2(b̂2 + b̂†2)− 1

2
λ2( (b̂†b̂− 1

2
) + 1 ) (14h)

In the above, we applied the algebraic property that the field mode annihilation and creation operators â ,
â† are independent of the Holstein-Primakoff bosonic mode annihilation and creation operators b̂ , b̂†, such
that the unitary transformation generated by the squeeze operator B(η) defined in equation (14a) does not
affect â , â† as presented in equation (14d).

Substituting equations (14e) , (14f) , (14g) into equation (13f) provides the underlying effective Hamil-
tonian H∞

fD through unitary transformations

H
∞
fD = B†(η)H∞

fDB(η) ⇒ H∞
fD = B†(η)H

∞
fDB(η) (15a)
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where the effective Dicke Hamiltonian H∞
fD which generates the collective atomic spin driven field mode

dynamics in the thermodynamic limit is obtained in the form

H∞
fD = Nh̄ω0

√
1− λ2

(
b̂†b̂− 1

2

)
− 1

2
Nh̄ω0λ

2+ h̄ω

(
â†â+

1

2

)
+
h̄g(â+ â†)(b̂+ b̂†)

(1− λ2)
1
4

+
h̄g2N(b̂+ b̂†)2

ω
√
1− λ2

(15b)

Reorganizing this effective Hamiltonian in the form

H∞
fD = Nh̄ω0

√
1− λ2

(
b̂†b̂− 1

2
− 1

4
ξ2(b̂+ b̂†)2

)
− 1

2
Nh̄ω0λ

2 + h̄ω

(
â†â+

1

2

)
+

h̄g(â+ â†)(b̂+ b̂†)

(1− λ2)
1
4

(15c)

where ξ is the dimensionless parameter defined in equation (6a), we repeat the factorization procedure in
section 2.2, going through the same steps as in equations (6a)-(6f) to determine a thermodynamic Holstein-
Primakoff bosonic mode squeeze operator T defined by

T (β) = e
1
4β(b̂

†2−b̂2) ; tanhβ =
1
2ξ

2

1− 1
2ξ

2
⇒ β = −1

2
ln(1− ξ2) (15d)

which relates the effective HamiltonianH∞
fD in equation (15b) (reorganized in a useful algebraically equivalent

form in equation (15c)) to the thermodynamic (N → ∞) Holstein-Primakoff transform H∞
D of the original

Dicke Hamiltonian HD in equation (8a) through unitary transformations

H∞
fD = T †(β) H∞

D T (β) ⇒ T (β) H∞
fD T †(β) = H∞

D (15e)

where the thermodynamic (N → ∞) Holstein-Primakoff transform H∞
D of the original Dicke Hamiltonian

HD has been determined in the form

H∞
D = h̄ω

(
â†â+

1

2

)
+Nh̄ω0

(
b̂†b̂− 1

2

)
+ h̄g(â+ â†)(b̂+ b̂†)− 1

2
Nh̄ω0λ

2 (15f)

which is usually obtained through direct Holstein-Primakoff transformation of the Dicke Hamiltonian HD

in equation (8a) in the thermodynamic limit [ 7 , 9], except for the excess collective atomic spin quadra-
ture fluctuation energy term −1

2Nh̄ω0λ
2 and the factor N on the free Holstein-Primakoff mode component

Nh̄ω0

(
b̂†b̂− 1

2

)
, which arises here in the Jz transformation according to equations (13b) , (13e). We note

that, if we ignore the excess collective atomic spin quadrature fluctuation energy term −1
2Nh̄ω0λ

2, then
both forms of the Holstein-Primakoff transformed Hamiltonians obtained here in equation [15f ] and in [7 ,
9] revert back to the same form of the original Dicke Hamiltonian HD in equation (8a) on substituting the

Holstein-Primakoff bosonic operators b̂ , b̂† with the corresponding collective atomic spin angular momentum
operators J− , J+ using the thermodynamic limit transformations in equation (13e).

Transforming the effective Hamiltonian H∞
fD in equation (15b) back to the collective atomic spin angular

momentum space by substituting the Holstein-Primakoff mode operators from equation (13e) provides the
form

H∞
fD = h̄ω0

√
1− λ2 Jz + h̄ω

(
â†â+

1

2

)
+

h̄g√
N(1− λ2)

1
4

(â+ â†)Σx +
h̄g2

ω
√
1− λ2

Σ2
x − 1

2
Nh̄ω0λ

2 (16a)

For physical interpretation, we reorganize this effective Dicke Hamiltonian in two alternative forms. First,
we introduce a quasi-particle bosonic mode specified by hermitian conjugate effective bosonic operators Â ,
Â†, which are the field mode annihilation and creation operators displaced by the effective collective atomic
spin quadrature component obtained as

Â = â+
g

ω
√
N(1− λ2)

1
4

Σx ; Â† = â† +
g

ω
√
N(1− λ2)

1
4

Σx (16b)

Taking the normal order product Â†Â, multiplying by h̄ω and adding 1
2 h̄ω provides the quasi-particle bosonic

Hamiltonian HB in the form

HB = h̄ω

(
Â†Â+

1

2

)
= h̄ω

(
â†â+

1

2

)
+

h̄g√
N(1− λ2)

1
4

(â+ â†)Σx +
h̄g2

ω
√
1− λ2

Σ2
x (16c)
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Substituting equation (16c) into equation (16a), we express the effective Dicke Hamiltonian H∞
aD for the

collective atomic spin driven field mode dynamics as a sum of correlated effective collective atomic spin and
quasi-particle bosonic mode components in the form

H∞
aD = h̄ω0

√
1− λ2 Jz + h̄ω

(
Â†Â+

1

2

)
− 1

2
Nh̄ω0λ

2 (16d)

This form of the effective Dicke Hamiltonian H∞
fD leads to the physical interpretation that quasi-particle

bosonic modes specified by effective bosonic annihilation and creation operators Â , Â† are formed in the
interaction mechanism in which the collective atomic spin drives the field mode dynamics.

Alternatively, we reorganize the effective Hamiltonian H∞
fD in equation (16a) in the form

H∞
fD = h̄ω0

√
1− λ2

(
Jz +

1

4
α2Σ2

x

)
+ h̄ω

(
â†â+

1

2

)
+

h̄g√
N(1− λ2)

1
4

(â+ â†)Σx − 1

2
Nh̄ω0λ

2 (16e)

or in the form

H∞
fD = h̄ω0

√
1− λ2

(
Jz −

1

4
ξ2Σ2

x

)
+ h̄ω

(
â†â+

1

2

)
+

h̄g√
N(1− λ2)

1
4

(â+ â†)Σx − 1

2
Nh̄ω0λ

2 (16f)

where the dimensionless parameter ξ in equation (16f) is defined in equation (6a), while the dimensionless
parameter α in equation (16e) is defined by

α2 =
λ2

1− λ2
⇒ α2 = −ξ2 ; ξ2 =

λ2

λ2 − 1
(16g)

In the form obtained in equation (16e) or (16f), the effective Dicke Hamiltonian H∞
fD for the collective atomic

spin driven field mode dynamics may now be interpreted as an effective Hamiltonian for a fully quantized
uniaxial Lipkin-Meshkov-Glick model in which the external magnetic field driving the N spin- 12 particles [13]
is replaced by a quantized electromagnetic field mode.

4 Critical coupling constant and quantum phase transition

It is evident from the form of the effective Rabi and Dicke Hamiltonians HaR , HaD , HfD in equations (5f),
(11a), (15b)/(16e) that the transfer of the field mode and collective atomic spin quadrature fluctuation energy
driving the atom-field dynamics in the Rabi and Dicke models causes modification and scaling of the free field
mode and collective atomic spin energy component by a factor

√
1− λ2 and the corresponding quadrature

component by a factor (1 − λ2)−
1
4 , (see equations (5e) , (14c), noting that in (14c), b̂ + b̂† ≡ 1√

N
Σx). It

follows that the nature of the dynamics generated by the effective Rabi or Dicke Hamiltonian HaR , HaD ,
H∞

fD is determined by the effective interaction parameter
√
1− λ2, which can take values (λ = 2g√

ω0ω
)

√
1− λ2 =


0 <

√
1− λ2 < 1 : λ < 1 ⇒ g < 1

2

√
ω0ω

0 : λ = λc = 1 ⇒ λc =
2gc√
ω0ω

= 1

i
√
λ2 − 1 > 1 : λ > 1 ⇒ g > 1

2

√
ω0ω

(17a)

We identify a critical coupling constant gc at which the interaction parameter
√
1− λ2 vanishes, obtained as

λ = λc = 1 ⇒ gc =
1

2

√
ω0ω (17b)

which is exactly the value of the critical coupling constant determined in studies of quantum phase transition
in the Rabi model [5] and the Dicke model [6 , 7]. It is clear in the effective Hamiltonians HaR , HaD ,
H∞

fD in equations (5f) , (11a) , (15b)/(16e) that the free field mode and collective atomic spin (equivalent
to the free Holstein-Primakoff bosonic mode) energy components vanish, while either the field mode or the
collective atomic spin (Holstein-Primakoff bosonic mode) quadrature component and the associated atom-
field interaction energy diverge at the critical coupling λc = 1 , gc =

1
2

√
ω0ω, where quantum phase transition

occurs in the Rabi and Dicke models. Normal phase dynamics occurs in the coupling regime g < gc (λ < 1),
while in the coupling regime g > gc (λ > 1) the system is in the superradiance phase.
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Substituting the critical coupling constant gc =
1
2

√
ω0ω from equation (17b) into the general definition of

λ in equation (2h), we rewrite

λ =
g

gc
;

√
1− λ2 =

√
gc + g

gc

√
gc − g =

√
g + gc
gc

|g − gc|
1
2

1

(1− λ2)
1
4

=

(
g + gc
g2c

)− 1
4

|g − gc|−
1
4 (17c)

which we substitute into equations (5e) , (5f) , (11a) , (14c) , (15b)/(16e) to determine the universal scaling
properties, i.e., near the critical coupling constant gc, the free field mode and collective atomic spin energy

component vanishes as |g − gc|
1
2 , while the corresponding field mode or collective atomic spin (Holstein-

Primakoff bosonic mode) quadrature component (length scale) diverges as |g − gc|−
1
4 , as established in studies

of quantum phase transition in the Rabi and Dicke models in [5 , 7 , 8 , 12].
Taking the expectation values of the effective Rabi and Dicke Hamiltonians HaR , HaD , H∞

fD in equations
(5f) , (11a) , (15b)/(16e) with respect to the corresponding ground state eigenvectors provides the respective
ground state energies Eg

aR , Eg
aD , E∞ g

fD of the Rabi and Dicke systems in the form

Eg
aR =

1

2
h̄ω
√

1− λ2 +
h̄g2

ω0

√
1− λ2

− 1

2
h̄ω0 ; Eg

aD =
1

2
h̄ω
√

1− λ2 +
h̄g2

ω0

√
1− λ2

− 1

2
Nh̄ω0

E∞ g
fD =

1

2
Nh̄ω0

√
1− λ2 +

h̄Ng2

ω
√
1− λ2

+
1

2
h̄ω − 1

2
Nh̄ω0λ

2 (17d)

each of which agreeing with the scaling property established in [8 , 12] that the ground state energy in the
Dicke and Lipkin-Meshkov-Glick models is composed of regular and singular components. It follows from
the ground state energy Eg

aR in equation (17d) that the same scaling property applies to the Rabi model.

5 Conclusion

Applying the underlying dynamical property that the internal dynamics of the Rabi and Dicke models
is driven by field mode and (collective) atomic spin quadrature fluctuation energy, we have determined
exact effective Rabi and Dicke Hamiltonians. Two alternative interaction mechanisms, one in which the
field mode drives the (collective) atomic spin dynamics and the other in which the (collective) atomic spin
drives the field mode dynamics, have been identified, which yield the effective Hamiltonians in the expected
complete forms. It has emerged that in the interaction mechanism in which the field mode drives the
(collective) atomic spin dynamics, the transfer of the field mode quadrature fluctuation energy generates
an effective quasi-particle spinor mode, leaving the field mode in an effective squeezed state, while in the
interaction mechanism in which the (collective) atomic spin drives the field mode dynamics, the transfer of
the (collective) atomic spin quadrature fluctuation energy generates an effective quasi-particle bosonic mode,
leaving the (collective) atomic spin (or equivalent Holstein-Primakoff bosonic mode) in an effective squeezed
state. As an alternative to the quasi-particle spinor mode interpretation, the effective Hamiltonians for the
field mode driven (collective) atomic spin dynamics may equivalently be interpreted as the respective Rabi
or Dicke model for nonlinear (squeezed or degenerate parametric down-conversion) light interacting with
two-level atom(s), while as an alternative to the quasi-particle bosonic mode interpretation, the effective
Dicke Hamiltonian for the collective atomic spin driven field mode dynamics may be interpreted as a fully
quantized Lipkin-Meshkov-Glick model. It follows from the nonlinear forms that the effective Rabi and Dicke
Hamiltonians generate dynamics characterized by quantum phase transition and universal scaling features
at a critical coupling constant which we have determined in exact form, as well as squeezing, entanglement
and related non-classical fundamental quantum mechanical properties such as population collapses, revivals
and fractional revivals, which can be established in other work.
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