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Abstract

This paper presents a precise algebraic and physical framework for studying the dynamics and practical
applications of the quantum Rabi model. We redefine the quantum Rabi interaction in terms of polariton
and anti-polariton qubits generated by the Jaynes-Cummings and anti-Jaynes-Cummings interactions,
respectively. The formation of a polariton qubit involves absorption or emission of positive energy photon
by the field mode, while the formation of an anti-polariton qubit involves absorption or emission of
negative energy photon by the field mode, triggered by initial emission or absorption of positive energy
photon by the atom. A polariton or anti-polariton qubit is a two-state quantized particle specified by
two state vectors, Hamiltonian, conserved excitation number, identity, state transition, U(1)-symmetry,
parity-symmetry, SU(2)/U(1)-symmetry and SU(1, 1)/U(1)-symmetry operators. Superpositions of the
qubit state vectors provide the eigenvectors and energy eigenvalues of the respective Hamiltonians. The
polariton or anti-polariton qubit state transition operator defined within the two-dimensional subspace
spanned by the qubit state vectors has algebraic properties equivalent to the algebraic properties of
an atomic spin state transition operator (Pauli matrix) σx, leading to a photospin interpretation of a
polariton or anti-polariton qubit. Dynamical evolution describing Rabi oscillations between qubit states
is easily evaluated and basic features of the dynamics are determined explicitly. The similarity of polariton
and anti-polariton qubits to the atomic spin qubits, i.e., the photospin picture, naturally leads to the
introduction of a quantum Rabi optical lattice as a geometrical framework for studying the dynamics and
physical properties of systems of interacting polariton and anti-polariton qubits.

KEYWORDS: Rabi model , Jaynes-Cummings and anti-Jaynes-Cummings interactions , polariton and
anti-polariton qubits , conserved excitation number and symmetry operators , quantum Rabi optical lattice.

1 Introduction

The quantum Rabi model describes the dynamics of a quantized electromagnetic field mode interacting with
a two-level atom generated by Hamiltonian [1-9]

HR =
1

2
h̄ω
(
â†â+ ââ†

)
+ h̄ω0sz + h̄g(â+ â†)(s+ + s−) (1a)

where ω , â , â† are the quantized field mode angular frequency, annihilation and creation operators, while
ω0 , sz , s+ , s− are the atomic state transition angular frequency and operators. We have used σx = s−+s+
and expressed the free field mode Hamiltonian in appropriate symmetrized normal and anti-normal order
form 1

2 h̄ω(â
†â+ ââ†).

Exact analytical solutions of the eigenvalue equation for the Rabi Hamiltonian HR in equation (1a) have
been obtained by Braak and others [1-5], but determining the general time evolving state vector to provide
a comprehensive understanding of the dynamical properties of the quantum Rabi interaction still remains a
formidable task [6 , 7]. The eigenvalue spectrum obtained in [1-5] is too complicated to give a clear picture
of the nature of transitions which can occur between the internal states of the system.

In this paper, we seek to gain insight into the internal dynamics of the quantum Rabi model by sym-
metrizing the Hamiltonian HR in equation (1a) into its rotating and anti-rotating components. Collecting
the normal and anti-normal order terms in equation (1), we express the Rabi Hamiltonian in the symmetrized
form

HR =
1

2
( H +H ) (1b)
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where we have identified the normal order rotating component as the Jaynes-Cummings Hamiltonian H
obtained as

H = h̄( ωâ†â+ ω0sz + 2g(âs+ + â†s−) ) (1c)

and the anti-normal order anti-rotating component as the anti-Jaynes-Cummings Hamiltonian H obtained
as

H = h̄( ωââ† + ω0sz + 2g(âs− + â†s+) ) (1d)

We observe that the algebraic property of operator ordering which distinguishes the rotating (Jaynes-
Cummings) and anti-rotating (anti-Jaynes-Cummings) components H , H of the Rabi Hamiltonian HR

is not arbitrary, but has physical foundation. Noting that an electromagnetic field mode is composed of posi-
tive and negative frequency components [10], we provide a physical interpretation that the Jaynes-Cummings
interaction represents the coupling of the atomic spin to the rotating positive frequency component of the
field mode, while the anti-Jaynes-Cummings interaction represents the coupling of the atomic spin to the
anti-rotating negative frequency component of the field mode. We note that dynamical effects arising from
interactions involving negative frequency radiation have been observed in recent experiments [11 , 12].

Having overcome the long standing challenge on the existence of a conserved excitation number operator
for the anti-Jaynes-Cummings interaction in a recent article [13], which we also elaborate in the present paper,
we study the dynamics generated by the Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians H , H
separately. The Jaynes-Cummings interaction forms a polariton qubit through emission or absorption of posi-
tive energy photon by the atom and absorption or emission of positive energy photon by the rotating positive
frequency component of the field mode, while the anti-Jaynes-Cummings interaction forms an anti-polariton
qubit through emission or absorption of positive energy photon by the atom and absorption or emission of
negative energy photon by the anti-rotating negative frequency component of the field mode. We interpret a
polariton or anti-polariton qubit as a two-state quantized particle specified by conserved excitation number,
identity, state transition and symmetry operators, with an explicit eigenvalue spectrum. Polariton qubit
dynamics is characterized by red-sideband state transitions generated by the Jaynes-Cummings interaction,
while anti-polariton qubit dynamics is characterized by blue-sideband state transitions generated by the anti-
Jaynes-Cummings interaction. Noting that the algebraic properties of polariton and anti-polariton qubits
are similar to the algebraic properties of atomic spin qubits, we introduce a quantum Rabi optical lattice
as a geometrical framework in which polariton and anti-polariton qubits are formed within micro-cavities
interpreted as the lattice sites. Polariton and anti-polariton qubits in different lattice sites interact through
their state transition operators.

We introduce the dynamical operators and prove conservation of excitation number operators of polariton
(Jaynes-Cummings interaction) and anti-polariton (anti-Jaynes-Cummings interaction) qubits in section 2.
The algebraic properties and operations of the state transition operators within the two-dimensional sub-
spaces spanned by the respective polariton and anti-polariton qubit state vectors are presented in section 3,
where eigenvectors, energy eigenvalues, dynamical evolution and state transition probabilities are determined
explicitly. Section 4 contains the model of quantum Rabi optical lattice for systems of interacting polariton
and anti-polariton qubits. We end with conclusions in section 5.

2 Dynamical operators of polaritons and anti-polaritons

As stated above, we interpret a polariton or an anti-polariton formed in a Jaynes-Cummings or anti-Jaynes-
Cummings interaction, respectively, as a quantized particle specified by well-defined dynamical operators,
namely Hamiltonian, excitation number, identity, state transition and symmetry operators. We establish that
the excitation number and state transition operators are conserved and they generate corresponding U(1) ,
parity and SU(2)/U(1) or SU(1, 1)/U(1) symmetry operators of the respective polariton and anti-polariton
Hamiltonians.

2.1 Polariton and anti-polariton Hamiltonians

Polariton and anti-polariton Hamiltonians are obtained through appropriate redefinitions of the Jaynes-
Cummings and anti-Jaynes-Cummings Hamiltonians, respectively. Adding and subtracting an atomic spin
normal order term h̄ωs+s− in equation (1c) and anti-normal order term h̄ωs−s+ in equation (1d), then
reorganizing using algebraic relations s+s− = 1

2 + sz , s−s+ = 1
2 − sz ( 12 ≡ 1

2I) and factoring out 2g, we
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obtain the polariton Hamiltonian in the standard form

H = h̄ω(â†â+ s+s−) + 2h̄g(αsz + âs+ + â†s− )− 1

2
h̄ω ; α =

δ

2g
; δ = ω0 − ω (2a)

and the anti-polariton Hamiltonian in the form

H = h̄ω(ââ† + s−s+) + 2h̄g(αsz + âs− + â†s+ )− 1

2
h̄ω ; α =

δ

2g
; δ = ω0 + ω (2b)

where we have introduced respective dimensionless frequency-detuning parameters α , α defined as indicated.

2.2 Polariton and anti-polariton excitation number operators

We open this subsection by noting that a conserved excitation number operator for an anti-polariton (anti-
Jaynes-Cummings interaction) has been discovered in a recent work by the present author [13], but for
completeness and ease of reference, we repeat the calculations here.

In the polariton Hamiltonian H in equation (2a), we identify the normally ordered polariton excitation
number operator N̂ , while in the anti-polariton Hamiltonian H in equation (2b), we identify the anti-normally

ordered anti-polariton excitation number operator N̂ defined by

N̂ = â†â+ s+s− ; N̂ = ââ† + s−s+ (3a)

which we introduce in equations (2a) , (2b) as appropriate to express the polariton and anti-polariton Hamil-
tonians in the form

H = h̄ωN̂ + 2h̄g( αsz + âs+ + â†s− )− 1

2
h̄ω ; H = h̄ωN̂ + 2h̄g( αsz + âs− + â†s+ )− 1

2
h̄ω (3b)

Using standard atomic spin and field mode operator algebraic relations

[s+, s−] = 2sz ; [sz, s−] = −s− ; [sz, s+] = s+ ; s+s− =
1

2
+ sz ; s−s+ =

1

2
− sz

[s+s− , s+] = s+ ; [s−s+ , s+] = −s+ ; [s+s− , s−] = −s− ; [s−s+ , s−] = s−

ââ† = â†â+ 1 ; [â†â , â] = −â ; [â†â , â†] = â† (3c)

we easily prove that the excitation number operators N̂ , N̂ in equation (3a) commute with the respective
polariton and anti-polariton Hamiltonians H , H in equation (3b) according to

[ N̂ , H ] = 0 ; [ N̂ , H ] = 0 (3d)

which proves the standard dynamical property that the polariton excitation number operator N̂ = â†â+s+s−
is conserved in the dynamics generated by the polariton Hamiltonian H and the new dynamical property that

the anti-polariton excitation number operator N̂ = ââ†+s−s+ is conserved in the dynamics generated by the

anti-polariton Hamiltonian H. We easily establish that the anti-polariton excitation number operator N̂ is
not conserved in the polariton dynamics, while the polariton excitation number operator N̂ is not conserved
in the anti-polariton dynamics according to the commutation relations

[ N̂ , H ] ̸= 0 ; [ N̂ , H ] ̸= 0 (3e)

2.2.1 Polariton and anti-polariton U(1)-symmetry operators

The polariton excitation number operator N̂ = â†â+ s+s− generates a U(1)-symmetry operator U(θ) of the
polariton Hamiltonian H obtained as

U(θ) = e−iθN̂ ; U†(θ) = eiθN̂ (4a)

which according to the commutation relation in equation (3d) satisfies U(1)-symmetry relation

[ U(θ) , H ] = 0 ⇒ U†(θ) H U(θ) = H (4b)
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Similarly, the anti-polariton excitation number operator N̂ = ââ†+s−s+ generates a U(1)-symmetry operator
U(θ) of the anti-polariton Hamiltonian H obtained as

U(θ) = e−iθ
ˆ
N ; U

†
(θ) = eiθ

ˆ
N (4c)

which according to the commutation relation in equation (3d) satisfies U(1)-symmetry relation

[ U(θ) , H ] = 0 ⇒ U
†
(θ) H U(θ) = H (4d)

It follows from the commutation relations in equation (3e) that U(θ) in equation (4a) is not a U(1)-symmetry
operator of the anti-polariton Hamiltonian H, while U(θ) in equation (4c) is not a U(1)-symmetry operator
of the polariton Hamiltonian H according to the relations

[ U(θ) , H ] ̸= 0 ⇒ U†(θ) H U(θ) ̸= H ; [ U(θ) , H ] ̸= 0 ⇒ U
†
(θ) H U(θ) ̸= H (4e)

2.2.2 Polariton and anti-polariton parity-symmetry operator

As we have explained above, the commutation relations in equations (3d) and (3e) reveal that for general
values of the symmetry transformation parameter θ, the operators U(θ) , U(θ) in equations (4a) , (4c) are
only U(1)-symmetry operators of the respective polariton or anti-polariton Hamiltonian H or H, but not
symmetry operators of bothH andH. However, there exist a special set of values of θ for which both operators
constitute a common-symmetry operator of both H and H. Evaluating the symmetry transformations in
equation (4e) in the explicit forms

U†(θ)HU(θ) = h̄ωN̂ + 2h̄g( αsz + e−2iθâs− + e2iθâ†s+ )− 1

2
h̄ω

U
†
(θ)HU(θ) = h̄ωN̂ + 2h̄g( αsz + e−2iθâs+ + e2iθâ†s− )− 1

2
h̄ω (5a)

we can determine the special θ-values for a common symmetry operator of both polariton and anti-polariton
Hamiltonians H , H by imposing the common-symmetry condition

e−2iθ = e2iθ = 1 ⇒ 2θ = 2nπ ; θ = nπ ; n = 1, 2, 3, ... (5b)

where n = 0 defines the identity operator. Substituting θ = nπ into equations (4a) , (4c), we obtain the
common polariton and anti-polariton symmetry operator Π̂n(π) in the form

Π̂n(π) = U(nπ) = e−inπN̂ = U(nπ) = e−inπ
ˆ
N ; n = 1, 2, 3, ... (5c)

Expressing Π̂n(π) in the form

Π̂n(π) = (e−iπN̂ )n = (e−iπ
ˆ
N )n = (Π̂)n (5d)

we identify the standard polariton and anti-polariton parity-symmetry operator Π̂ defined here by

Π̂ = e−iπN̂ = e−iπ
ˆ
N (5e)

Substituting N̂ = â†â+ s+s− , N̂ = ââ† + s−s+ and using algebraic relations

ââ† = â†â+ 1 ; s−s+ = s+s− − 2sz ; N̂ = N̂ + 2s−s+ (5f)

we obtain

e−iπ
ˆ
N = e−iπN̂e−2iπs−s+ ; e−2iπs−s+ = I ⇒ e−iπ

ˆ
N = e−iπN̂ (5g)

which establishes the common polariton and anti-polariton parity-symmetry operator relation in equation
(5e).

It is easy to establish that the polariton and anti-polariton parity-symmetry operator Π̂ is a symmetry
operator of the Rabi Hamiltonian HR = 1

2 (H+H) in equation (1b) according to the symmetry transformation
operations

Π̂† H Π̂ = H ; Π̂† H Π̂ = H ; Π̂† HR Π̂ = HR (5h)

We observe that the common-symmetry operator Π̂n(π) and parity-symmetry operator Π̂ in equations (5d)
and (5e) constitute Z2-symmetry operators of the polariton, anti-polariton and Rabi Hamiltonians H , H ,
HR.
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2.3 Polariton and anti-polariton state transition operators

Noting that the interaction components of the HamiltoniansH , H in equation (3d) generate state transitions,

we introduce a polariton state transition operator Â and an anti-polariton state transition operator Â defined
by

Â = αsz + âs+ + â†s− ; Â = αsz + âs− + â†s+ (6a)

which on squaring and applying standard atom-field operator algebraic relations

ââ† = â†â+1 ; s2z =
1

4
; s2− = s2+ = 0 ; s+s−+s−s+ = 1 ; szs++s+sz = 0 ; szs−+s−sz = 0 (6b)

provide the respective polariton and anti-polariton excitation number operators N̂ , N̂ defined in equation
(3c) in the form

Â2 = â†â+ s+s− +
1

4
α2 ⇒ Â2 = N̂ +

1

4
α2

Â
2

= ââ† + s−s+ +
1

4
α2 − 1 ⇒ Â

2

= N̂ +
1

4
α2 − 1 (6c)

Substituting Â , Â from equation (6a) and N̂ = Â2− 1
4α

2 , N̂ = Â
2

− 1
4α

2+1 from equation (6c) into equation
(3d), we express the polariton and anti-polariton Hamiltonians in terms of the respective state transition
operators in the form

H = h̄( ωÂ2 + 2gÂ)− 1

4
h̄ωα2 − 1

2
h̄ω ; H = h̄( ωÂ

2

+ 2gÂ)− 1

4
h̄ωα2 +

1

2
h̄ω (6d)

Using equations (6c) and (6d) easily confirms the polariton and anti-polariton excitation number operator
conservation or non-conservation commutation relations in equations (3f) , (3g).

Similarly, the state transition operators Â , Â are conserved in the dynamics generated by the respective
Hamiltonians H , H, but not in the dynamics generated by the other component Hamiltonian according to
the commutation relations

[ Â , H ] = 0 ; [ Â , H ] ̸= 0 ; [ Â , H ] = 0 ; [ Â , H ] ̸= 0 (6e)

We demonstrate below that the polariton state transition operator Â generates red-sideband state transitions,

while the anti-polariton state transition operator Â generates blue-sideband state transitions. Hence, the
polariton Hamiltonian H in equation (6d) has a red-sideband eigenvalue spectrum, while the anti-polariton
Hamiltonian H has a blue-sideband eigenvalue spectrum.

2.3.1 Polariton and anti-polariton SU(2)/U(1) , SU(1, 1)/U(1) symmetry operators

The conserved polariton state transition operator Â generates an SU(2)/U(1) coset symmetry operator C(η)
of the the polariton Hamiltonian H obtained as

C(η) = e−iηÂ ; C†(η) = eiηÂ (7a)

which according to the commutation relation in equation (6e) satisfies symmetry relation

[C(η) , H] = 0 ⇒ C†(η) H C(η) = H (7b)

Similarly, the conserved anti-polariton state transition operator Â generates an SU(1, 1)/U(1) coset symmetry
operator C(η) of the the anti-polariton Hamiltonian H obtained as

C(η) = e−iη
ˆ
A ; C

†
(η) = eiη

ˆ
A (7c)

which according to the commutation relation in equation (6e) satisfies symmetry relation

[C(η) , H] = 0 ⇒ C
†
(η) H C(η) = H (7d)
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3 Polariton and anti-polariton qubits

We consider a minimal model in which polariton and anti-polariton qubits are formed in a quantum Rabi
interaction between a two-level atom initially in a spin-up (excited) or spin-down (ground) state |u⟩ or |d⟩
and a single quantized electromagnetic field mode initially in a stationary number state |n⟩. The initial
quantum Rabi state space for polariton and anti-polariton qubit formation is therefore specified by only two
n-photon spin-up and spin-down stationary state vectors |nu⟩ , |nd⟩ defined in the usual separable product
form

|nu⟩ = |n⟩|u⟩ ; |nd⟩ = |n⟩|d⟩ ; |u⟩ =
(
1
0

)
; |d⟩ =

(
0
1

)
(8a)

Since the n-photon spin-up and spin-down stationary state vectors |nu⟩ , |nd⟩ are orthogonal and cannot
be transformed into each other through any composite atom-field symmetry operator, we consider that
they specify two disconnected subspaces of the quantum Rabi state space, namely, the upper Rabi subspace
specified by the initial n-photon spin-up stationary state vector |nu⟩ and the lower Rabi subspace specified
by the initial n-photon spin-down stationary state vector |nd⟩. The two Rabi subspaces are distinguished
by characteristic physical features regarding the emission and absorption of photons in the formation of
polariton or anti-polariton qubits.

In the upper Rabi subspace specified by |nu⟩, dynamics begins with the atom in excited (spin-up) state
|u⟩ emitting a positive energy photon and the field mode in state |n⟩ absorbs a positive energy photon in
a transition to the (n + 1)-photon spin-down state |n + 1d⟩ in a Jaynes-Cummings interaction forming a
polariton qubit or a negative energy photon in a transition to the (n − 1)-photon spin-down state |n − 1d⟩
in an anti-Jaynes-Cummings interaction forming an anti-polariton qubit. Defining emission as emission of
positive energy photon, absorption as absorption of positive energy photon and anti-absorption as absorption
of negative energy photon, we characterize the upper Rabi subspace by (initial) photon emission by the atom
and absorption or anti-absorption by the field mode in polariton or anti-polariton qubit formation.

In the lower Rabi subspace specified by |nd⟩, dynamics begins with the atom in ground (spin-down) state
|d⟩ absorbing a positive energy photon and the field mode in state |n⟩ emitting a positive energy photon
in a transition to the (n − 1)-photon spin-up state |n − 1u⟩ in a Jaynes-Cummings interaction forming a
polariton qubit or a negative energy photon in a transition to the (n + 1)-photon spin-up state |n + 1u⟩ in
an anti-Jaynes-Cummings interaction forming an anti-polariton qubit. Noting the definitions of emission ,
absorption given above and defining anti-emission as emission of negative energy photon, we characterize
the lower Rabi subspace by (initial) photon absorption by the atom and emission or anti-emission by the
field mode in polariton or anti-polariton qubit formation.

Algebraic operations on state vectors within the quantum Rabi state space are determined through the
standard atomic and field mode state algebraic operations

s+|d⟩ = |u⟩ ; s−|u⟩ = |d⟩ ; s+|u⟩ = 0 ; s−|d⟩ = 0 ; sz|u⟩ =
1

2
|u⟩ ; sz|d⟩ = −1

2
|d⟩

â|n⟩ =
√
n|n− 1⟩ ; â†|n⟩ =

√
n+ 1|n+ 1⟩ (8b)

Composite atom-field state transition algebraic operations generated by the polariton or anti-polariton state

transition operators Â , Â are characterized respectively by red-shifted or blue-shifted excitation numbers nα
, nα obtained as

nα = n+
1

4
α2 ; nα = n+

1

4
α2 ; n = 0, 1, 2, 3, ... (8c)

3.1 Polariton and anti-polariton qubits in the upper Rabi subspace

In the upper Rabi subspace, interaction begins with the atom in an excited (spin-up) state |u⟩ and the field
mode in an initial number state |n⟩, such that a polariton or anti-polariton qubit is formed in an initial
n-photon spin-up state |ψnu⟩ defined by

|ψnu⟩ = |nu⟩ (9a)

A polariton qubit is formed in a de-excitation of the atom from the initial n-photon spin-up state |ψnu⟩ to
a de-excitation polariton state |ϕnu⟩. Using the standard algebraic operations in equation (8b), we establish
that the polariton state transition operator Â defined in equation (6a) generates reversible state transition
algebraic operations between the initial and de-excitation state vectors |ψnu⟩ , |ϕnu⟩ obtained in the form

Â |ψnu⟩ =
√
nα + 1 |ϕnu⟩ ; Â |ϕnu⟩ =

√
nα + 1 |ψnu⟩
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Â2 |ψnu⟩ = (nα + 1) |ψnu⟩ ; Â2 |ϕnu⟩ = (nα + 1) |ϕnu⟩ (9b)

where the de-excitation polariton state vector |ϕnu⟩ has been obtained in the form

|ϕnu⟩ = cn+1|nu⟩+ sn+1|n+ 1d⟩ (9c)

after reorganizing the results as appropriate to introduce dimensionless interaction parameters cn+1 , sn+1

and Rabi frequency Rn+1 defined by

cn+1 =
gα

Rn+1
=

δ

2Rn+1
; sn+1 =

2g
√
n+ 1

Rn+1
; Rn+1 = 2g

√
nα + 1 =

1

2

√
16g2(n+ 1) + δ2 (9d)

It follows from the reversible state transition algebraic operations in equation (9b) that in the upper Rabi
subspace, the de-excitation process forms a de-excitation polariton qubit specified by the normalized, but
non-orthogonal state vectors |ψnu⟩ , |ϕnu⟩ defined in equations (9a) , (9c).

On the other hand, an anti-polariton is formed in a de-excitation of the atom from the initial n-photon
spin-up state |ψnu⟩ to a de-excitation anti-polariton state | ϕnu⟩. We use the standard algebraic operations

in equation (8b) to establish that the anti-polariton state transition operator Â defined in equation (6a)
generates reversible state transition algebraic operations between the initial and de-exitation anti-polariton
state vectors |ψnu⟩ , | ϕnu⟩ , |ψnu⟩ obtained in the form

Â |ψnu⟩ =
√
nα | ϕnu⟩ ; Â | ϕnu⟩ =

√
nα |ψnu⟩

Â
2

|ψnu⟩ = nα |ψnu⟩ ; Â
2

| ϕnu⟩ = nα | ϕnu⟩ (10a)

where the de-excitation anti-polariton state vector | ϕnu⟩ has been obtained in the form

| ϕnu⟩ = c̄n|nu⟩+ s̄n|n− 1d⟩ (10b)

after reorganizing the results to introduce dimensionless interaction parameters c̄n , s̄n and Rabi frequency
Rn defined by

c̄n =
gα

Rn

=
δ

2Rn

; s̄n =
2g

√
n

Rn

; Rn = 2g
√
nα =

1

2

√
16g2n+ δ

2
(10c)

It follows from the reversible state transition algebraic operations in equation (10a) that in the upper Rabi
subspace, the de-excitation process forms a de-excitation anti-polariton qubit specified by the normalized,
but non-orthogonal state vectors |ψnu⟩ , | ϕnu⟩ defined in equations (9a) , (10b).

3.1.1 The de-excitation polariton qubit subspace

According to the reversible state transition algebraic operations in equation (9b), we interpret a de-excitation
polariton qubit as a two-state quantized particle specified by the two state vectors |ψnu⟩, |ϕnu⟩ defined in
equations (9a) , (9c). We therefore introduce a two-dimensional de-excitation polariton qubit subspace
spanned by the normalized, but non-orthogonal qubit state vectors |ψnu⟩, |ϕnu⟩ satisfying normalization and
non-orthogonality relations

⟨ψnu|ψnu⟩ = 1 ; ⟨ϕnu|ϕnu⟩ = 1 ; ⟨ψnu|ϕnu⟩ = cn+1 ; ⟨ϕnu|ψnu⟩ = cn+1 (11)

The form of the state transition algebraic operations in equation (9b) suggests that we introduce polariton
qubit transition and identity operators Ê , Î defined within the two-dimensional de-excitation polariton qubit
subspace by

Ê =
Â√

nα + 1
; Ê2 = Î (12a)

Substituting equation (12a) into equation (9b), we determine the polariton qubit state transition algebraic
operations in the form

Ê |ψnu⟩ = |ϕnu⟩ ; Ê |ϕnu⟩ = |ψnu⟩ ; Î |ψnu⟩ = |ψnu⟩ ; Î |ϕnu⟩ = |ϕnu⟩ (12b)
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The polariton qubit state transition operators have algebraic properties

Ê† = Ê ; Ê2 = Î ; Ê2k = Î ; Ê2k+1 = Ê ; k = 0, 1, 2, 3, ...

e±iθÎ = e±iθÎ ; e±iθÊ = cos θ Î ± i sin θ Ê (12c)

Substituting Â2 , Â from equation (12a) into equation (6d) provides the polariton qubit Hamiltonian defined
within the qubit subspace in the form

H = h̄ω

(
n+ 1 +

1

4
α2

)
Î + h̄Rn+1Ê − 1

4
h̄ωα2 − 1

2
h̄ω (12d)

where we have substituted the detuned excitation number nα and Rabi frequency Rn+1 defined in equations
(8c) , (9e). Noting that the identity operator Î has unit eigenvalue according to equation (12b), we evaluate

1

4
h̄ωα2 Î − 1

4
h̄ωα2 − 1

2
h̄ω = −1

2
h̄ωÎ (12e)

which we substitute back into equation (12d) to obtain the polariton qubit Hamiltonian H in the final form

H = h̄ω

(
n+

1

2

)
Î + h̄Rn+1Ê (12f)

The polariton qubit excitation number, U(1)-symmetry and parity-symmetry operators are obtained using
equations (6c) , (4a) , (4c) , (5e) and applying equation (12c) in the form

N̂ = (n+ 1)Î ; U(θ) = e−iθ(n+1)Î ; Π̂ = e−iπ(n+1)Î = ± Î (12g)

Finally, we apply the state transition algebraic operations in equation (12b) to establish that superpositions
of the polariton qubit state vectors |ψnu⟩ , |ϕnu⟩ constitute eigenvectors |Ψ ±

nu⟩ of the de-excitation polariton
qubit identity and state transition operators Î , Ê obtained in the form

|Ψ +
nu⟩ =

1√
2
( |ψnu⟩+ |ϕnu⟩ ) ; |Ψ −

nu⟩ =
1√
2
( |ψnu⟩ − |ϕnu⟩ ) (13a)

satisfying eigenvalue equations

Î|Ψ +
nu⟩ = |Ψ +

nu⟩ ; Î|Ψ −
nu⟩ = |Ψ −

nu⟩ ; Ê |Ψ +
nu⟩ = |Ψ +

nu⟩ ; Ê |Ψ −
nu⟩ = −|Ψ −

nu⟩ (13b)

Apart from the standard identity operation Î|Ψ ±
nu⟩ = |Ψ ±

nu⟩, an important dynamical property which emerges
in equation (13b) is that |Ψ +

nu⟩ , |Ψ −
nu⟩ are eigenvectors of the polariton qubit state transition operator Ê

belonging to eigenvalues ±1, respectively.
It follows from equations (12f) and (13b) that |Ψ ±

nu⟩ are eigenvectors of the polariton qubit Hamiltonian
H belonging to energy eigenvalues En±, respectively satisfying eigenvalue equations

H|Ψ +
nu⟩ = En+|Ψ +

nu⟩ ; En+ = h̄ω

(
n+

1

2

)
+

1

2
h̄
√
16g2(n+ 1) + (ω0 − ω)2

H|Ψ −
nu⟩ = En−|Ψ −

nu⟩ ; En− = h̄ω

(
n+

1

2

)
− 1

2
h̄
√
16g2(n+ 1) + (ω0 − ω)2 (13c)

where we have substituted Rn+1 from equation (9d), with δ = ω0 − ω from equation (2a). Recalling the
definitions of |ψnu⟩ , |ϕnu⟩ in equations (9a) , (9c) , (9d), we observe that the eigenvectors |Ψ ±

nu⟩ in equation
(13a), with the corresponding eigenvalues En± in equation (13c), are precisely the eigenvectors and corre-
sponding eigenvalues determined through diagonalization of the Jaynes-Cummings (polariton) Hamiltonian
H in standard quantum optics literature [14 , 15 , 16], where we note that the symmetrization of the Rabi
Hamiltonian HR in equations (1a)-(1d) yields consistent coupling constant 2g instead of the commonly used
g in defining the Jaynes-Cummings Hamiltonian such that 4g2 → 16g2 in all the results in this paper.
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3.1.2 The de-excitation anti-polariton qubit subspace

Based on the reversible state transition algebraic operations in equation (10a), we interpret a de-excitation
anti-polariton qubit as a two-state quantized particle specified by the two state vectors |ψnu⟩, | ϕnu⟩ defined in
equations (9a) , (10b). We therefore introduce a two-dimensional de-excitation anti-polariton qubit subspace
spanned by the normalized, but non-orthogonal qubit state vectors |ψnu⟩, | ϕnu⟩ satisfying normalization
and non-orthogonality relations

⟨ψnu|ψnu⟩ = 1 ; ⟨ ϕnu| ϕnu⟩ = 1 ; ⟨ψnu| ϕnu⟩ = c̄n ; ⟨ ϕnu|ψnu⟩ = c̄n (14)

The form of the state transition algebraic operations in equation (10a) suggests that we introduce anti-

polariton qubit transition and identity operators Ê , Î defined within the two-dimensional de-excitation anti-
polariton qubit subspace in the form

Ê =
Â

√
nα

; Ê
2

= Î (15a)

Substituting equation (15a) into equation (10a), we determine the anti-polariton qubit state transition alge-
braic operations in the form

Ê |ψnu⟩ = | ϕnu⟩ ; Ê | ϕnu⟩ = |ψnu⟩ ; Î |ψnu⟩ = |ψnu⟩ ; Î | ϕnu⟩ = | ϕnu⟩ (15b)

The anti-polariton qubit state transition operators have algebraic properties

Ê
†
= Ê ; Ê

2

= Î ; Ê
2k

= Î ; Ê
2k+1

= Ê ; k = 0, 1, 2, 3, ...

e±iθ
ˆI = e±iθÎ ; e±iθ

ˆE = cos θ Î ± i sin θ Ê (15c)

Substituting Â
2

, Â from equation (15a) into equation (6d) provides the anti-polariton qubit Hamiltonian
defined within the qubit subspaces in the form

H = h̄ω

(
n+

1

4
α2

)
Î + h̄RnÊ − 1

4
h̄ωα2 +

1

2
h̄ω (15d)

where we have substituted the detuned excitation number nα and Rabi frequency Rn defined in equations

(8c) , (10d). Noting that the identity operator Î has unit eigenvalue according to equation (15b), we evaluate

1

4
h̄ωα2 Î − 1

4
h̄ωα2 +

1

2
h̄ω =

1

2
h̄ω Î (15e)

which we substitute back into equation (15d) to obtain the anti-polariton qubit Hamiltonian H in the final
form

H = h̄ω

(
n+

1

2

)
Î + h̄RnÊ (15f)

The anti-polariton qubit excitation number, U(1)-symmetry and parity-symmetry operators are obtained
using equations (6c) , (4a) , (4c) , (5e) and applying equations (12e) , (12f) in the form

N̂ = (n+ 1)Î ; U(θ) = e−iθ(n+1)Î ; Π̂ = e−iπ(n+1)Î = ± Î (15g)

Application of the state transition algebraic operations in equation (15b) reveals that superpositions of the

anti-polariton qubit state vectors |ψnu⟩ , | ϕnu⟩ constitute eigenvectors | Ψ ±
nu⟩ of the de-excitation anti-

polariton qubit identity and state transition operators Î , Ê obtained in the form

| Ψ +

nu⟩ =
1√
2
( |ψnu⟩+ | ϕnu⟩ ) ; | Ψ −

nu⟩ =
1√
2
( |ψnu⟩ − | ϕnu⟩ ) (16a)

satisfying eigenvalue equations

Î| Ψ +

nu⟩ = | Ψ +

nu⟩ ; Î| Ψ −
nu⟩ = | Ψ −

nu⟩ ; Ê | Ψ +

nu⟩ = | Ψ +

nu⟩ ; Ê | Ψ −
nu⟩ = −| Ψ −

nu⟩ (16b)
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It emerges in equation (16b) that | Ψ +

nu⟩ , | Ψ
−
nu⟩ are eigenvectors of the anti-polariton qubit state transition

operator Ê belonging to eigenvalues ±1, respectively.

It follows from equations (15f) and (16b) that | Ψ ±
nu⟩ are eigenvectors of the anti-polariton qubit Hamil-

tonian H belonging to energy eigenvalues E±, respectively satisfying eigenvalue equations

H | Ψ +

nu⟩ = En+ | Ψ +

nu⟩ ; En+ = h̄ω

(
n+

1

2

)
+

1

2
h̄
√
16g2n+ (ω0 + ω)2

H | Ψ −
nu⟩ = En−| Ψ

−
nu⟩ ; En− = h̄ω

(
n+

1

2

)
− 1

2
h̄
√
16g2n+ (ω0 + ω)2 (16c)

where we have substituted Rn from equation (10c), with δ = ω0+ω from equation (2b). Noting the definitions
of |ψnu⟩ , | ϕnu⟩ in equations (9a) , (10b) , (10c), we observe that the anti-polariton qubit Hamiltonian

eigenvectors | Ψ ±
nu⟩ in equation (16a), with the corresponding eigenvalues En± in equation (16c), are new,

but can be determined through diagonalization of the anti-Jaynes-Cummings (anti-polariton) Hamiltonian H

based on the existence of a conserved anti-polariton excitation number operator N̂ , which we have established
here in section 2.2.

3.1.3 Dynamical evolution of polariton and anti-polariton qubits

The polariton and anti-polariton qubit Hamiltonians H , H generate time evolution operators U(t) , U(t)
obtained from the respective time-dependent Schroedinger equations

ih̄
∂

∂t
|Ψnu⟩ = H|Ψnu⟩ ; ih̄

∂

∂t
| Ψnu⟩ = H | Ψnu⟩ (17a)

as
U(t) = e−

i
h̄Ht ; U(t) = e−

i
h̄Ht (17b)

which on substituting H , H from equations (12f) , (15f) as appropriate and noting the commutation

relations [Î , Ê ] = 0 , [Î , Ê ] = 0, take the convenient factorized forms

U(t) = e−iω( n+ 1
2 )Îte−iRn+1Êt ; U(t) = e−iω( n+ 1

2 )ˆIte−iRn
ˆEt (17c)

Using the respective general exponentiation results from equations (12c) , (15c) in equation (17c) as appro-

priate and noting ÎÊ = Ê , Î Ê = Ê , we evaluate the polariton qubit time evolution operator in the final
form

U(t) = e−iω( n+ 1
2 )t

(
cos(Rn+1t)Î − i sin(Rn+1t)Ê

)
(17d)

and the anti-polariton qubit time evolution operator in the final form

U(t) = e−iω( n+ 1
2 )t

(
cos(Rnt)Î − i sin(Rnt)Ê

)
(17e)

We use the respective time evolution operators U(t) , U(t) to determine the general time evolving polariton
and anti-polariton qubit state vectors starting from the corresponding initial qubit state vectors. The general
time evolving polariton qubit state vectors |Ψnu(t)⟩ , |Φnu(t)⟩ are generated from the respective initial qubit
state vectors |ψnu⟩ , |ϕnu⟩, while the general time evolving anti-polariton qubit state vectors | Ψnu(t)⟩ ,
| Ψnu(t)⟩ are generated from the respective initial qubit state vectors |ψnu⟩ , | ϕnu⟩ through the respective
time evolution operators according to

|Ψnu(t)⟩ = U(t)|ψnu⟩ ; |Φnu(t)⟩ = U(t)|ϕnu⟩

| Ψnu(t)⟩ = U(t)|ψnu⟩ ; | Φnu(t)⟩ = U(t)| ϕnu⟩ (17f)

Substituting U(t) , U(t) from equations (17d) , (17e) into equation (17f) and applying the respective state
transition algebraic operations from equations (12b) , (15b) as appropriate, we obtain the general time evolving
polariton qubit state vectors in the final form

|Ψnu(t)⟩ = e−iω( n+ 1
2 )t ( cos(Rn+1t)|ψnu⟩ − i sin(Rn+1t)|ϕnu⟩ )
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|Φnu(t)⟩ = e−iω( n+ 1
2 )t ( cos(Rn+1t)|ϕnu⟩ − i sin(Rn+1t)|ψnu⟩ ) (17g)

and the general time evolving anti-polariton qubit state vectors in the final form

| Ψnu(t)⟩ = e−iω( n+ 1
2 )t ( cos(Rnt)|ψnu⟩ − i sin(Rnt)| ϕnu⟩

)
| Φnu(t)⟩ = e−iω( n+ 1

2 )t ( cos(Rnt)| ϕnu⟩ − i sin(Rnt)|ψnu⟩
)

(17h)

3.1.4 De-excitation, absorption and anti-absorption probabilities

We observe that the general time evolving polariton qubit state vectors |Ψnu(t)⟩ , |Φnu(t)⟩ in equation (17g)
describe Rabi oscillations at frequency Rn+1 between the qubit states |ψnu⟩ and |ϕnu⟩, while the general time
evolving anti-polariton qubit state vectors |Ψnu(t)⟩ , |Φnu(t)⟩ in equation (17h) describe Rabi oscillations at
frequency Rn between the qubit states |ψnu⟩ and |ϕnu⟩.

Under dynamical evolution described by the respective general time evolving state vectors |Ψnu(t)⟩ ,
| Ψnu(t)⟩ in equations (17g) , (17h), the probability Pdex(t) of transition from the initial state |ψnu⟩ to the
de-excitation state |ϕnu⟩ in a de-excitation polariton qubit is obtained as

Pdex(t) = | ⟨ϕnu|Ψnu(t)⟩ |2 ⇒ Pdex(t) = sin2(Rn+1t) (18a)

while the probability P dex(t) of transition from the initial state |ψnu⟩ to the de-excitation state | ϕnu⟩ in a
de-excitation anti-polariton qubit is obtained as

P dex(t) = | ⟨ ϕnu|Ψnu(t)⟩ |2 ⇒ P dex(t) = sin2(Rnt) (18b)

Since a de-excitation is characterized by emission of a positive frequency photon by the atom, we interpret
the de-excitation probability Pdex(t) or P dex(t) as the probability of emission of a photon by the atom in
polariton or anti-polariton qubit dynamics.

To gain more insight, we apply the interpretation that in the upper Rabi subspace, a de-excitation of the
atom to the spin-down state |d⟩, characterized by emission of a positive frequency photon, causes the rotating
positive frequency field mode to absorb a positive energy photon in a transition from the n-photon spin-up
state |nu⟩ to the (n + 1)-photon spin-down state |n + 1d⟩ in a polariton qubit or the anti-rotating negative
frequency field mode to absorb a negative energy photon (anti-absorption) in a transition from the n-photon
spin-up state |nu⟩ to the (n−1)-photon spin-down state |n−1d⟩ in an anti-polariton qubit. Substituting the
stationary qubit state vectors |ψnu⟩ , |ϕnu⟩ , | ϕnu⟩ from equations (9a) , (9d) , (10c) into equations (17g) ,
(17h), respectively, we express the general time evolving polariton qubit state vectors in the form

|Ψnu(t)⟩ = e−iω( n+ 1
2 )t ( (cos(Rn+1t)− icn+1 sin(Rn+1t) )|nu⟩ − isn+1 sin(Rn+1t)|n+ 1d⟩ )

|Φnu(t)⟩ = e−iω( n+ 1
2 )t ( (cn+1 cos(Rn+1t)− i sin(Rn+1t) )|nu⟩+ sn+1 cos(Rn+1t)|n+ 1d⟩ ) (18c)

which explicitly describe reversible time evolving transitions between the photon emission-absorption state
vectors |nu⟩ , |n + 1d⟩ at Rabi frequency Rn+1, while the general time evolving anti-polariton qubit state
vectors are expressed in the form

| Ψnu(t)⟩ = e−iω( n+ 1
2 )t ( (cos(Rnt)− ic̄n sin(Rnt) )|nu⟩ − is̄n sin(Rnt)|n− 1d⟩

)
| Φnu(t)⟩ = e−iω( n+ 1

2 )t ( (c̄n cos(Rnt)− i sin(Rnt) )|nu⟩+ s̄n cos(Rnt)|n− 1d⟩
)

(18d)

which explicitly describe reversible time evolving transitions between the photon emission-anti-absorption
state vectors |nu⟩ , |n− 1d⟩ at Rabi frequency Rn, where we recall that anti-absorption means absorption of
a negative energy photon by the anti-rotating negative frequency field mode.

We observe that the general time evolving polariton and anti-polariton qubit state vectors |Ψnu(t)⟩ ,
|Φnu(t)⟩ , | Ψnu(t)⟩ , | Φnu(t)⟩ obtained in equations (17g) , (17h) , (18c) , (18d) are entangled atom-field
state vectors which preserve the normalization, non-orthogonality and state transition algebraic relations of
the qubit state vectors in equations (11) , (12b) , (14) , (15b), respectively in the form

⟨Ψnu(t)|Ψnu(t)⟩ = 1 ; ⟨Φnu(t)|Φnu(t)⟩ = 1 ; ⟨Ψnu(t)|Φnu(t)⟩ = cn+1 ; ⟨Φnu(t)|Ψnu(t)⟩ = cn+1
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Ê |Ψnu(t)⟩ = |Φnu(t)⟩ ; Ê |Φnu(t)⟩ = |Ψnu(t)⟩ ; Î |Ψnu(t)⟩ = |Ψnu(t)⟩ ; Î |Φnu(t)⟩ = |Φnu(t)⟩ (18e)

⟨ Ψnu(t)| Ψnu(t)⟩ = 1 ; ⟨ Φnu(t)| Φnu(t)⟩ = 1 ; ⟨ Ψnu(t)| Φnu(t)⟩ = c̄n ; ⟨ Φnu(t)| Ψnu(t)⟩ = c̄n

Ê |Ψnu(t)⟩ = | Φnu(t)⟩ ; Ê | Φnu(t)⟩ = |Ψnu(t)⟩ ; Î |Ψnu(t)⟩ = |Ψnu(t)⟩ ; Î | Φnu(t)⟩ = | Φnu(t)⟩ (18f)

In polariton qubit dynamics, the probability Pab(t) of absorption of a positive energy photon by the rotating
positive frequency field mode in a transition from |nu⟩ to |n + 1d⟩ is determined from the time evolving
emission-absorption state vector |Ψnu(t)⟩ in equation (18c) according to

Pab(t) = | ⟨n+ 1d|Ψnu(t)⟩ |2 ⇒ Pab(t) = s2n+1 sin
2(Rn+1t) (18e)

which on substituting sn+1 , Rn+1 from equation (9e) takes the explicit form

Pab(t) =
16g2(n+ 1)

16g2(n+ 1) + (ω0 − ω)2
sin2(

1

2

√
16g2(n+ 1) + (ω0 − ω)2 t) (18f)

accounting for red-sideband transitions generated by the polariton qubit Hamiltonian H.
In anti-polariton qubit dynamics, the probability of absorption of a negative energy photon by the anti-

rotating negative frequency field mode in a transition from |nu⟩ to |n−1d⟩, which we call the anti-absorption
probability P aab(t), is determined from the time evolving emission-anti-absorption state vector | Ψnu(t)⟩ in
equation (18d) according to

P aab(t) = | ⟨n− 1d| Ψnu(t)⟩ |2 ⇒ P aab(t) = s̄2n sin
2(Rnt) (18g)

which on substituting s̄n , R̄n from equation (10d) takes the explicit form

P aab(t) =
16g2n

16g2n+ (ω0 + ω)2
sin2(

1

2

√
16g2n+ (ω0 + ω)2 t) (18h)

accounting for blue-sideband transitions generated by the anti-polariton Hamiltonian H.
Substituting equations (18a) , (18b) into equations (18e) , (18g) respectively, we express the absorption

and anti-absorption probabilities Pab(t) , P aab(t) in terms of the respective de-excitation probabilities Pdex(t)
, P dex(t) in the form

Pab(t) = s2n+1Pdex(t) ; P aab(t) = s̄2nP dex(t) (19a)

which reveal that the probability of absorption or anti-absorption of a photon by the field mode is proportional
to the probability of emission of a photon in a de-excitation of the atom in polariton or anti-polariton qubit
dynamics.

To compare the de-excitation probabilities Pdex(t) , P dex(t) determining the occurrence of red or blue
sideband polariton or anti-polariton qubit state transitions, we substitute δ = ω0 − ω , δ = ω0 + ω from
equations (2a) , (2b) into Rn+1 , Rn in equations (9e), (10d)), respectively and rewrite

(ω0 + ω)2 = (ω0 − ω)2 + 4ω0ω ; 16g2n = 16g2(n+ 1)− 16g2

Rn+1 =
1

2

√
16g2(n+ 1) + (ω0 − ω)2 ; Rn =

1

2

√
16g2(n+ 1) + (ω0 − ω)2 + 4(ω0ω − 4g2) (19b)

giving the relation between the anti-polariton qubit Rabi oscillation frequency Rn and the polariton qubit
Rabi oscillation frequency Rn+1 in the form

Rn = Rn+1

√
1 +

ω0ω − 4g2

R2
n+1

= Rn+1

√
1 +

ω0ω

R2
n+1

(
1− g2

g2c

)
; ω0ω − 4g2 = ω0ω

(
1− g2

g2c

)
(19c)

where we have introduced a critical coupling constant gc obtained as

gc =
1

2

√
ω0ω (19d)
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Substituting Rn from equation (19c) into equation (18b), we express the de-excitation probability in anti-
polariton qubit state transitions in the form

P dex(t) = sin2

(
Rn+1

√
1 +

ω0ω

R2
n+1

(
1− g2

g2c

)
t

)
(19e)

We identify gc = 1
2

√
ω0ω in equation (19d) as the critical coupling constant for quantum phase transition

in the Rabi and Dicke models determined in elaborate calculations in [17 , 18]. In the present work, the
critical coupling constant emerges easily as a dynamical parameter which determines the size of the Rabi
oscillation frequency Rn of blue-sideband state transitions in an anti-polariton qubit relative to the Rabi
oscillation frequency Rn+1 of the red-sideband state transitions in a polariton qubit according to equation
(19c). According to the form of state transition probabilities Pdex(t) , P dex(t) in equations (18a) , (19e),
the critical coupling constant provides a measure of the probability P dex(t) of occurrence of blue-sideband
state transitions generated by the anti-polariton (ant-Jaynes-Cummings interaction) Hamiltonian H relative
to the probability Pdex(t) of occurrence of red-sideband state transitions generated by the polariton (Jaynes-
Cummings interaction) Hamiltonian H.

In the coupling regime where g < gc, the de-excitation probability P dex(t), which provides a measure of
blue-sideband transitions between the anti-polariton qubit states, oscillates faster and on average is smaller
than the corresponding de-excitation probability Pdex(t), which provides a measure of red-sideband tran-
sitions between the polariton qubit states, such that dynamics in the g < gc regime is dominated by red-
sideband transitions generated by the polariton qubit Hamiltonian H. On the other hand, in the coupling
regime where g > gc, the de-excitation probability Pdex(t) for polariton qubit state transitions oscillates
faster and on average is smaller than the corresponding de-excitation probability P dex(t) for anti-polariton
qubit state transitions such that dynamics in the g > gc regime is dominated by blue-sideband transitions
generated by the anti-polariton qubit Hamiltonian H. The critical coupling g = gc dynamics is characterized
by equal de-excitation probabilities, P c

dex(t) = P
c

dex(t), for polariton and anti-polariton qubit state transitions
such that the g = gc dynamics is composed of equal red and blue sideband transitions generated by polariton
and anti-polariton qubit Hamiltonians Hc , H

c
obtained by setting g = gc , Rc

n+1 = R
c

n in equations (12f) ,
(15f), where

g2 = g2c =
1

4
ω0ω ⇒ Rc

n+1 = R
c
=

1

2

√
4ω0ω(n+ 1) + (ω0 − ω)2 =

1

2

√
4ω0ωn+ (ω0 + ω)2 (19f)

3.1.5 Spontaneous de-excitation, absorption and virtual anti-absorption

If the interaction begins with the atom in the spin-up (excited) state |u⟩ and the field mode in the vacuum
state |0⟩, then polariton or anti-polariton qubit formation starts with spontaneous de-excitation process from
the initial 0-photon spin-up state |ψ0u⟩ where the atom spontaneously emits a positive frequency photon,
which causes spontaneous absorption of a positive energy photon by the rotating positive frequency field
mode in a polariton qubit state transition from |ψ0u⟩ to |ϕ0u⟩ or spontaneous absorption of a negative energy
photon (spontaneous anti-absorption) by the anti-rotating negative frequency field mode in an anti-polariton
qubit state transition from |ψ0u⟩ to | ϕ0u⟩, where the initial de-excitation polariton or anti-polariton qubit
state vectors are specified by setting n = 0 in equations (9a) , (9d) , (9e) , (10c) , (10d) (noting | − 1d⟩ = 0)
in the form

|ψ0u⟩ = |0u⟩ ; |ϕ0u⟩ = c1|0u⟩+ s1|1d⟩ ; | ϕ0u⟩ = c̄0|0u⟩ (20a)

with

c1 =
ω0 − ω

2R1
; s1 =

2g

R1
; R1 =

1

2

√
16g2 + (ω0 − ω)2 ; c̄0 = 1 ; s̄0 = 0 ; R0 =

1

2
(ω0+ω) (20b)

Setting n = 0 in equations (17g) , (18a) provides the general time evolving spontaneous de-excitation po-
lariton qubit state vectors |Ψ0u(t)⟩ , |Φ0u(t)⟩, with corresponding spontaneous de-excitation and absorption
probabilities P spt

dex(t) , P
spt
ab (t) in the form

|Ψ0u(t)⟩ = e−
i
2ωt ( cos(R1t)|ψ0u⟩ − i sin(R1t)|ϕ0u⟩ ) ; P spt

dex(t) = sin2R1t ; P spt
ab (t) = s21P

spt
dex(t)

|Φ0u(t)⟩ = e−
i
2ωt ( cos(R1t)|ϕ0u⟩ − i sin(R1t)|ψ0u⟩ ) (20c)
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which describe spontaneously generated Rabi oscillations at frequency R1 between de-excitation polariton
qubit states |ψ0u⟩ , |ϕ0u⟩ governed by spontaneous de-excitation probability P spt

dex(t), while setting n = 0 in
equations (17h) , (18b) provides the general time evolving spontaneous de-excitation anti-polariton qubit state
vectors | Ψ0u(t)⟩ , | Φ0u(t)⟩, with corresponding spontaneous de-excitation and anti-absorption probabilities

P
spt

dex(t) , P
spt

aab(t) in the form

| ϕ0u⟩ = |ψ0u⟩ ; | Ψ0u(t)⟩ = | Φ0u(t)⟩ = e−
i
2 (2ω+ω0)t|ψ0u⟩

P
spt

dex(t) = sin2
1

2
(ω0 + ω)t ; P

spt

aab(t) = 0 (20d)

where we have used equations (20a) , (20b) to obtain the final results in equation (20d).
An important physical property which emerges from equations (20c) , (20d) is that in a spontaneous de-

excitation process starting with the atom in spin-up state |u⟩ and the field mode in vacuum state |0⟩, only the
polariton qubit Hamiltonian H generates observable dynamical effects characterized by spontaneous emission
and red-sideband transitions described by the general time evolving spontaneous de-excitation polariton qubit
state vectors |Ψ0u(t)⟩ , |Φ0u(t)⟩ in equation (20c), while the anti-polariton qubit Hamiltonian H generates
only virtual transitions between degenerate anti-polariton qubit states |ψ0u⟩ = | ϕ0u⟩, signified by non-zero

but fast oscillating spontaneous de-excitation probability P
spt

dex(t) = sin2 1
2 (ω0+ω)t and vanishing spontaneous

anti-absorption probability P
spt

aab(t) = 0, the process being described by the degenerate time evolving plane
wave spontaneous de-excitation anti-polariton qubit state vectors | Ψ0u(t)⟩ = | Φ0u(t)⟩ in equation (20d).

In summary, polariton or anti-polariton qubit dynamics in the upper Rabi subspace, starting with initial
photon emission by the atom, is characterized by photon absorption or anti-absorption by the field mode.
If the field mode is initially in the vacuum state, then the dynamics starting with spontaneous emission by
the atom is dominated by red-sideband transitions generated by the polariton qubit Hamiltonian, while the
anti-polariton qubit dynamics is suppressed into virtual transitions between degenerate qubit states described
by plane waves.

3.2 Polariton and anti-polariton qubits in the lower Rabi subspace

We observe that the lower Rabi subspace where interaction begins with initial photon absorption by the
atom has dynamical features running counter to the dynamical features characterizing interaction in the
upper Rabi subspace, which we have described above. To determine the characteristic dynamical features of
the interaction, we develop the algebraic framework within the lower Rabi subspace separately, even though
at the expense of repeating the basic algebraic properties and operations. It is still necessary to follow the
repeated algebraic operations, since they carry the underlying information on the characteristic features of
the interaction.

In the lower Rabi subspace, interaction begins with the atom in an initial spin-down (ground) state |d⟩
and the field mode in an initial number state |n⟩, such that a polariton or anti-polariton qubit is formed in
an initial n-photon spin-down state |ψnd⟩ defined by

|ψnd⟩ = |nd⟩ (21a)

A polariton qubit is formed in an excitation of the atom from the initial n-photon spin-down state |ψnd⟩ to
an excitation polariton state |ϕnd⟩, while an anti-polariton qubit is formed in an excitation of the atom from
the initial n-photon spin-down state |ψnd⟩ to an excitation anti-polariton state | ϕnd⟩. Applying the polariton

and anti-polariton state transition operators Â , Â defined in equation (6a) on the initial state |ψnd⟩ and
reorganizing, we obtain the polariton qubit state transition algebraic operations in the general form

Â |ψnd⟩ =
√
nα |ϕnd⟩ ; Â |ϕnd⟩ =

√
nα |ψnd⟩ ; Â2 |ψnd⟩ = nα |ψnd⟩ ; Â2 |ϕnd⟩ = nα |ϕnd⟩

|ϕnd⟩ = −cn|nd⟩+ sn|n− 1u⟩ ; cn =
gα

Rn
; sn =

2g
√
n

Rn
; Rn = 2g

√
nα (21b)

and the anti-polariton qubit state transition algebraic operations in the general form

Â |ψnd⟩ =
√
nα + 1 | ϕnd⟩ ; Â | ϕnd⟩ =

√
nα + 1 |ψnd⟩

Â
2

|ψnd⟩ = (nα + 1) |ψnd⟩ ; Â
2

| ϕnd⟩ = (nα + 1) | ϕnd⟩
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| ϕnd⟩ = −c̄n+1|nd⟩+ s̄n+1|n+ 1u⟩ ; c̄n+1 =
gα

Rn+1

; s̄n+1 =
2g

√
n+ 1

Rn+1

; Rn+1 = 2g
√
nα + 1 (21c)

Introducing the polariton and anti-polariton qubit transition and identity operators Ê , Î and Ê , Î defined
within the respective two-dimensional qubit subspaces by

Ê =
Â

√
nα

; Ê2 = Î ; Ê =
Â√

nα + 1
; Ê

2

= Î (22a)

in equations (21b) , (21c) as appropriate provides the polariton qubit state transition algebraic operations in
the basic form

Ê |ψnd⟩ = |ϕnd⟩ ; Ê |ϕnd⟩ = |ψnd⟩ ; Î |ψnd⟩ = |ψnd⟩ ; Î |ϕnd⟩ = |ϕnd⟩ (22c)

and the anti-polariton qubit state transition algebraic operations in the basic form

Ê |ψnd⟩ = | ϕnd⟩ ; Ê | ϕnd⟩ = |ψnd⟩ ; Î |ψnd⟩ = |ψnd⟩ ; Î | ϕnd⟩ = | ϕnd⟩ (22d)

The qubit state transition operators Ê , Ê have the same algebraic properties obtained earlier in equations
(12c) , (15c), respectively.

Within the two-dimensional polariton and anti-polariton subspaces, the respective qubit state vectors
|ψnd⟩, |ϕnd⟩ and |ψnd⟩, | ϕnd⟩ are normalized, but non-orthogonal, satisfying normalization and non-orthogonality
relations

⟨ψnd|ψnd⟩ = 1 ; ⟨ϕnd|ϕnd⟩ = 1 ; ⟨ψnd|ϕnd⟩ = −cn ; ⟨ϕnd|ψnd⟩ = −cn (22e)

⟨ψnd|ψnd⟩ = 1 ; ⟨ ϕnd| ϕnd⟩ = 1 ; ⟨ψnd| ϕnd⟩ = −c̄n+1 ; ⟨ ϕnd|ψnd⟩ = −c̄n+1 (22f)

The polariton qubit Hamiltonian, excitation number, U(1)-symmetry and parity-symmetry operators are
obtained in the final form

H = h̄ω

(
n− 1

2

)
Î + h̄Rn Ê ; N̂ = nÎ ; U(θ) = einθÎ ; Π̂ = einπÎ = ± Î (22g)

while the anti-polariton qubit Hamiltonian, excitation number, U(1)-symmetry and parity-symmetry opera-
tors are obtained in the final form

H = h̄ω

(
n+

3

2

)
Î + h̄Rn+1 Ê ; N̂ = (n+ 2)Î ; U(θ) = ei(n+2)θÎ ; Π̂ = ei(n+2)πÎ = ±Î (22h)

where in each case, we have substituted the respective detuned excitation number nα , nα and Rabi frequency
Rn , Rn+1 defined in equations (8c) , (21b) , (21c).

Superpositions of the polariton qubit state vectors |ψnd⟩ , |ϕnd⟩ constitute eigenvectors |Ψ ±
nd⟩ of the

polariton qubit identity, state transition and Hamiltonian operators Î , Ê , H obtained in the form

|Ψ +
nd⟩ =

1√
2
( |ψnd⟩+ |ϕnd⟩ ) ; |Ψ −

nd⟩ =
1√
2
( |ψnd⟩ − |ϕnd⟩ ) (23a)

satisfying eigenvalue equations

Î|Ψ +
nd⟩ = |Ψ +

nd⟩ ; Î|Ψ −
nd⟩ = |Ψ −

nd⟩ ; Ê |Ψ +
nd⟩ = |Ψ +

nd⟩ ; Ê |Ψ −
nd⟩ = −|Ψ −

nd⟩ (23b)

H|Ψ +
nd⟩ = En+|Ψ +

nd⟩ ; En+ = h̄ω

(
n− 1

2

)
+

1

2
h̄
√
16g2n+ (ω0 − ω)2

H|Ψ −
nd⟩ = En−|Ψ −

nd⟩ ; En− = h̄ω

(
n− 1

2

)
− 1

2
h̄
√

16g2n+ (ω0 − ω)2 (23c)

while superpositions of the anti-polariton qubit state vectors |ψnd⟩ , | ϕnd⟩ constitute eigenvectors | Ψ ±
nd⟩ of

the anti-polariton qubit identity, state transition and Hamiltonian operators Î , Ê , H obtained in the form

| Ψ +

nd⟩ =
1√
2
( |ψnd⟩+ | ϕnd⟩ ) ; | Ψ −

nd⟩ =
1√
2
( |ψnd⟩ − | ϕnd⟩ ) (23d)
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satisfying eigenvalue equations

Î| Ψ +

nd⟩ = | Ψ +

nd⟩ ; Î| Ψ −
nd⟩ = | Ψ −

nd⟩ ; Ê | Ψ +

nd⟩ = | Ψ +

nd⟩ ; Ê | Ψ −
nd⟩ = −| Ψ −

nd⟩ (23e)

H | Ψ +

nd⟩ = En+ | Ψ +

nd⟩ ; En+ = h̄ω

(
n+

3

2

)
+

1

2
h̄
√

16g2(n+ 1) + (ω0 + ω)2

H | Ψ −
nd⟩ = En−| Ψ

−
nd⟩ ; En− = h̄ω

(
n+

3

2

)
− 1

2
h̄
√

16g2(n+ 1) + (ω0 + ω)2 (23f)

where recognize polariton qubit Hamiltonian energy eigenvalues En± in equation (23c) as the usual en-
ergy eigenvalues determined through diagonalization of the Jaynes-Cummings (polariton) Hamiltonian H in
standard quantum optics literature [19 , 20 , 21], noting that the derivation of the Jaynes-Cummings Hamil-
tonian through symmetrization of the Rabi Hamiltonian HR in equations (1a)-(1d) yields consistent coupling
constant 2g instead of the commonly used g such that 4g2 → 16g2. The anti-polariton qubit Hamiltonian
energy eigenvalues En± in equation (23f) are new, but can also be determined through diagonalization of the
anti-Jaynes-Cummings (anti-polariton) Hamiltonian H based on the existence of a conserved anti-polariton

excitation number operator N̂ as established here in section 2.2.
The polariton and anti-polariton qubit Hamiltonians H , H generate respective time evolution operators

U(t) , U(t) obtained in final form

U(t) = e−
i
h̄Ht : U(t) = e−iω( n− 1

2 )t
(

cos(Rnt)Î − i sin(Rnt)Ê
)

(24a)

U(t) = e−
i
h̄Ht : U(t) = e−iω( n+ 3

2 )t
(

cos(Rn+1t)Î − i sin(Rn+1t)Ê
)

(24b)

The time evolving excitation polariton qubit state vectors |Ψnd(t)⟩ , |Φnd(t)⟩ are generated from the initial
qubit state vectors |ψnd⟩ , |ϕnd⟩ by the time evolution operator U(t) in the final form

|Ψnd(t)⟩ = U(t)|ψnd⟩ : |Ψnd(t)⟩ = e−iω( n− 1
2 )t ( cos(Rnt)|ψnd⟩ − i sin(Rnt)|ϕnd⟩ )

|Φnd(t)⟩ = U(t)|ϕnd⟩ : |Φnd(t)⟩ = e−iω( n− 1
2 )t ( cos(Rnt)|ϕnd⟩ − i sin(Rnt)|ψnd⟩ ) (24c)

which describe Rabi oscillations at frequency Rn between the initial state |ψnd⟩ and excitation state |ϕnd⟩
with excitation state transition probability Pex(t) obtained as

Pex(t) = | ⟨ϕnd|Ψnd(t)⟩ |2 ⇒ Pex(t) = sin2(Rnt) (24d)

while the time evolving excitation anti-polariton qubit state vector | Ψnd(t)⟩ , | Φnd(t)⟩ are generated from
the initial qubit state vectors |ψnd⟩ , | ϕnd⟩ by the time evolution operator, U(t) in the final form

| Ψnd(t)⟩ = Und(t)|ψnd⟩ : | Ψnd(t)⟩ = e−iω( n+ 3
2 )t ( cos(Rn+1t)|ψnd⟩ − i sin(Rn+1t)| ϕnd⟩

)
| Φnd(t)⟩ = Und(t)| ϕnd⟩ : | Φnd(t)⟩ = e−iω( n+ 3

2 )t ( cos(Rn+1t)|ϕnd⟩ − i sin(Rn+1t)| ψnd⟩
)

(24e)

which describe Rabi oscillations at frequency Rn+1 between the initial state |ψnd⟩ and excitation state |ϕnd⟩
with excitation state transition probability P ex(t) obtained as

P ex(t) = | ⟨ ϕnd|Ψnd(t)⟩ |2 ⇒ P ex(t) = sin2(Rn+1t) (24f)

Since an excitation is characterized by absorption of a positive frequency photon by the atom, we interpret the
excitation probability Pex(t) or P ex(t) as the probability of absorption of a photon by the atom in polariton
or anti-polariton qubit dynamics.

Substituting α , δ = ω0 −ω , α , δ = ω0 +ω from equations (2a) , (2b) into Rn , Rn+1 in equations (21b),
(21c)), respectively and rewriting

(ω0 + ω)2 = (ω0 − ω)2 + 4ω0ω ; 16g2(n+ 1) = 16g2n+ 16g2

we obtain the relation between the anti-polariton qubit Rabi oscillation frequency Rn and the polariton qubit
Rabi oscillation frequency Rn in the form

Rn+1 = Rn

√
1 +

ω0ω + 4g2

R2
n

= Rn

√
1 +

ω0ω

R2
n

(
1 +

g2

g2c

)
; ω0ω + 4g2 = ω0ω

(
1 +

g2

g2c

)
(24g)
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which we substitute into equation (24f) to express the excitation state transition probability in the anti-
polariton qubit in the form

P ex(t) = sin2

(
Rn

√
1 +

ω0ω

R2
n

(
1 +

g2

g2c

)
t

)
(24h)

where we have introduced the critical coupling constant gc defined earlier in equation (19e). It follows from
equations (24d) , (24h) that in the lower Rabi subspace, the excitation probability P ex(t) governing blue-
sideband transitions in an anti-polariton qubit always oscillates faster than the excitation probability Pex(t)
governing red-sideband transitions in a polariton qubit. The critical behavior of red-sideband transitions
relative to blue-sideband transitions characterizing dynamics in the coupling regimes g < gc , g = gc , g > gc
in the upper Rabi subspace are not manifestly evident in the lower Rabi subspace.

Applying the interpretation that in the lower Rabi subspace, an excitation of the atom to the spin-up
state |u⟩, characterized by absorption of a positive frequency photon, is triggered by emission of a positive
energy photon by the rotating positive frequency field mode in a transition from the n-photon spin-down
state |nd⟩ to the (n−1)-photon spin-up state |n−1u⟩ in a polariton qubit or by emission of a negative energy
photon (anti-emission) by the anti-rotating negative frequency field mode in a transition from the n-photon
spin-down state |nd⟩ to the (n + 1)-photon spin-up state |n + 1u⟩ in an anti-polariton qubit, we substitute
the stationary qubit state vectors |ψnd⟩ , |ϕnd⟩ , | ϕnd⟩ from equations (21a) , (21d) , (21c) into equations
(24c) , (24e), respectively, to express the general time evolving polariton qubit state vectors in the form

|Ψnd(t)⟩ = e−iω( n− 1
2 )t ( (cos(Rnt) + icn sin(Rnt) )|nd⟩ − isn sin(Rnt)|n− 1u⟩ )

|Φnd(t)⟩ = e−iω( n− 1
2 )t ( (−cn cos(Rnt)− i sin(Rnt) )|nd⟩+ sn cos(Rnt)|n− 1u⟩ ) (25a)

which explicitly describe Rabi oscillations at frequency Rn between the photon emission-absorption states
|nd⟩ , |n − 1u⟩ with the probability Pem(t) of emission of a positive energy photon by the rotating positive
frequency field mode in a transition from |nd⟩ to |n− 1u⟩ obtained as

Pem(t) = | ⟨n− 1u|Ψnd(t)⟩ |2 ⇒ Pem(t) = s2n sin
2(Rnt) (25b)

which on substituting sn , Rn using equations (2a) , (8c) , (21b) takes the explicit form

Pem(t) =
16g2n

16g2n+ (ω0 − ω)2
sin2(

1

2

√
16g2n+ (ω0 − ω)2 t) (25c)

accounting for red-sideband transitions generated by the polariton qubit Hamiltonian H, while the general
time evolving anti-polariton qubit state vectors are expressed in the form

| Ψnd(t)⟩ = e−iω( n+ 3
2 )t ( (cos(Rn+1t) + ic̄n+1 sin(Rn+1t) )|nd⟩ − is̄n+1 sin(Rn+1t)|n+ 1u⟩

)
| Φnd(t)⟩ = e−iω( n+ 3

2 )t ( (−c̄n+1 cos(Rn+1t)− i sin(Rn+1t) )|nd⟩+ s̄n+1 cos(Rn+1t)|n+ 1u⟩
)

(25d)

which explicitly describe Rabi oscillations at frequency Rn+1 between the photon anti-emission-absorption
states |nd⟩ , |n+1u⟩ with the probability of emission of a negative energy photon (anti-emission) by the anti-
rotating negative frequency field mode in a transition from |nd⟩ to |n+ 1u⟩, which we call the anti-emission
probability P aem(t), obtained as

P aem(t) = | ⟨n+ 1u| Ψnd(t)⟩ |2 ⇒ P aem(t) = s̄2n+1 sin
2(Rn+1t) (25e)

which on substituting s̄n+1 , R̄n+1 using equations (2b) , (8c) , (21c) takes the explicit form

P aem(t) =
16g2(n+ 1)

16g2(n+ 1) + (ω0 + ω)2
sin2(

1

2

√
16g2(n+ 1) + (ω0 + ω)2 t) (25f)

accounting for blue-sideband transitions generated by the anti-polariton Hamiltonian H, where we recall
that anti-emission means emission of a negative energy photon by the anti-rotating negative frequency field
mode.

Here again, we observe that the general time evolving polariton and anti-polariton qubit state vectors
|Ψnd(t)|Ψnd(t)⟩ , |Φnd(t)⟩ , | Ψnd(t)⟩ , | Φnd(t)⟩ obtained in equations (24c) , (24e) , (25a) , (25d) are
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entangled atom-field state vectors which preserve the normalization, non-orthogonality and state transition
algebraic relations of the qubit state vectors in equations (22c) , (22d) , (22e) , (22f), respectively in the
form

⟨Ψnd(t)|Ψnd(t)⟩ = 1 ; ⟨Φnd(t)|Φnd(t)⟩ = 1 ; ⟨Ψnd(t)|Φnd(t)⟩ = −cn ; ⟨Φnd(t)|Ψnd(t)⟩ = −cn
Ê |Ψnd(t)⟩ = |Φnd(t)⟩ ; Ê |Φnd(t)⟩ = |Ψnd(t)⟩ ; Î |Ψnd(t)⟩ = |Ψnd(t)⟩ ; Î |Φnd(t)⟩ = |Φnd(t)⟩ (26a)

⟨ Ψnd(t)| Ψnd(t)⟩ = 1 ; ⟨ Φnd(t)| Φnd(t)⟩ = 1 ; ⟨ Ψnd(t)| Φnd(t)⟩ = −c̄n+1 ; ⟨ Φnd(t)| Ψnd(t)⟩ = −c̄n+1

Ê |Ψnd(t)⟩ = | Φnd(t)⟩ ; Ê | Φnd(t)⟩ = |Ψnd(t)⟩ ; Î |Ψnd(t)⟩ = |Ψnd(t)⟩ ; Î | Φnd(t)⟩ = | Φnd(t)⟩ (26b)

If the interaction begins with the atom in the spin-down (ground) state |d⟩ and the field mode in the vacuum
state |0⟩, then polariton or anti-polariton qubit formation starts with spontaneous excitation process from
the initial 0-photon spin-down state |ψ0d⟩ where the anti-rotating negative frequency component of the field
mode spontaneously emits a negative energy photon (spontaneous anti-emission), which causes the atom
to spontaneously absorb a positive energy photon in an anti-polariton qubit state transition from |ψ0d⟩ to
| ϕ0d⟩ or in an event of vacuum fluctuations, the rotating positive frequency component of the field mode
spontaneously emits a positive energy photon in a polariton qubit state transition from |ψ0d⟩ to |ϕ0d⟩, where
the initial excitation polariton or anti-polariton qubit state vectors are specified by setting n = 0 in equations
(21a) , (21b) , (21c) (noting | − 1u⟩ = 0) in the form

|ψ0d⟩ = |0d⟩ ; |ϕ0d⟩ = −c0|0d⟩ ; | ϕ0d⟩ = −c̄1|0d⟩+ s̄1|1u⟩ (27a)

with

R0 =
1

2
(ω0 − ω) ; c0 = 1 ; s0 = 0 ; R1 =

1

2

√
16g2 + (ω0 + ω)2 ; c̄1 =

ω0 + ω

2R1

; s̄1 =
g

R1

(27b)

Setting n = 0 in equations (24e) , (24f) , (25e) provides the general time evolving spontaneous excitation
anti-polariton qubit state vectors | Ψ0d(t)⟩ , | Φ0d(t)⟩, with corresponding spontaneous excitation and anti-
emission probabilities P spt

ex (t) , P spt
aem(t) in the form

| Ψ0d(t)⟩ = e−
3
2 iωt

(
cos(R1t)|ψ0d⟩ − i sin(R1t)| ϕ0d⟩

)
; P

spt

ex (t) = sin2(R1t) ; P
spt

aem(t) = s̄21P
spt

ex (t)

| Φ0d(t)⟩ = e−
3
2 iωt

(
cos(R1t)|ϕ0d⟩ − i sin(R1t)| ψ0d⟩

)
(27c)

which describe spontaneously generated Rabi oscillations at frequency R1 between initial and excitation

states |ψ0d⟩ , | ϕ0d⟩ in the anti-polariton qubit governed by spontaneous excitation probability P
spt

ex (t), while
setting n = 0 in equations (24c) , (24d) , (25b) provides the general time evolving spontaneous excitation
polariton qubit state vectors |Ψnd(t)⟩ , |Φnd(t)⟩, with corresponding spontaneous excitation and emission
probabilities P spt

ex (t) , P spt
em (t) in the form

|ϕ0d⟩ = −|ψ0d⟩ ; |Ψ0d(t)⟩ = −|Φ0d(t)⟩ = e
i
2 (ω0−ω)t|0d⟩

P spt
ex (t) = sin2

1

2
(ω0 − ω)t ; P spt

em (t) = 0 (27d)

where we have used equations (27a) , (27b) to obtain the final results in equation (27d).
It emerges from equations (27c) , (27d) that in a spontaneous excitation process starting with the atom

in spin-down state |d⟩ and the field mode in vacuum state |0⟩, only the anti-polariton qubit Hamiltonian
H generates observable dynamical effects characterized by spontaneous anti-emission and blue-sideband
transitions described by the general time evolving spontaneous excitation anti-polariton qubit state vectors
| Ψ0d(t)⟩ , | Φ0d(t)⟩ in equation (27c), while the polariton qubit Hamiltonian H generates only virtual
transitions between degenerate polariton qubit states |ψ0d⟩ = −| ϕ0d⟩, signified by a non-zero spontaneous
excitation probability P spt

ex (t) = sin2 1
2 (ω0 −ω)t and vanishing spontaneous emission probability P spt

em (t) = 0,
the process being described by the degenerate time evolving plane wave spontaneous excitation polariton
qubit state vectors |Ψ0d(t)⟩ = −|Φ0d(t)⟩ in equation (27d).

In summary, polariton or anti-polariton qubit dynamics in the lower Rabi subspace, starting with initial
photon absorption by the atom, is characterized by photon emission or anti-emission by the field mode. If the
field mode is initially in the vacuum state, then the dynamics starting with spontaneous absorption by the
atom, triggered by spontaneous anti-emission by the field mode, is dominated by blued-sideband transitions
generated by the anti-polariton qubit Hamiltonian, while the polariton qubit dynamics is suppressed into
virtual transitions between degenerate qubit states described by plane waves.
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3.3 Photospins

We now provide a general physical interpretation by noting that within the two-dimensional subspaces
spanned by the respective qubit state vectors, |ψnu⟩ , |ϕnu⟩ and |ψnu⟩ , | ϕnu⟩ in the upper Rabi subspace or
|ψnd⟩ , |ϕnd⟩ and |ψnd⟩ , | ϕnd⟩ in the lower Rabi subspace, the standard form of the algebraic operations and

properties of the polariton and anti-polariton qubit state transition operators Ê , Ê given in equations (12b)
, (12c) , (15b) , (15c) are similar to the algebraic operations and properties of an atomic spin state transition
operator (Pauli matrix) σx in a two-dimensional subspace spanned by atomic spin-up and spin-down qubit
state vectors |u⟩ , |d⟩ according to

σx|u⟩ = |d⟩ ; σx|d⟩ = |u⟩ ; I|u⟩ = |u⟩ ; I|d⟩ = |d⟩ (28a)

σ†
x = σx ; σ2

x = I ; σ2k
x = I ; σ2k+1

x = σx ; k = 0, 1, 2, 3, ...

e±iθI = e±iθI ; e±iθσx = cos θ I ± i sin θ σx (28b)

The equivalence of the algebraic operations and properties to that of an atomic spin in equations (28a) ,
(28b), combined with the forms of the respective polariton and anti-polariton qubit Hamiltonians in equations
(12f) , (15f) , (22g) , (22h) means that we can interpret polariton and anti-polariton qubits as photospins.
We define a photospin as a photon-carrying spin-12 particle specified by a state transition operator Ê or

Ê in a two-dimensional subspace spanned by two normalized, but non-orthogonal photonic-spin qubit state
vectors, where a photonic state vector is just a quantized field mode number state vector with the appropriate
number of photons. In this respect, we interpret a polariton qubit as a rotating photospin specified by a
corresponding state transition operator Ê and an anti-polariton qubit as an anti-rotating photospin specified

by a corresponding state transition operator Ê . The action of the state transition operator Ê on the rotating
photspin state vectors generates reversible state transitions by alternately raising (or lowering) and lowering

(or raising) the photonic and spin states, while the action of the state transition operator Ê on the anti-
rotating photspin state vectors generates reversible state transitions by simultaneously raising or lowering
both photonic and spin states. The dynamical picture of a polariton or anti-polariton qubit as a photospin
with algebraic operations and properties of a spin-12 particle is useful for developing geometrical frameworks
for models of interacting polariton and anti-polariton qubit systems as presented in the next section.

4 Polariton and anti-polariton qubit interactions : the quantum
Rabi optical lattice

We have now determined the basic algebraic and dynamical properties of polariton and anti-polariton qubits
generated by the Jaynes-Cummings and anti-Jaynes-Cummings interactions specified within the quantum
Rabi model. The next important challenge is to build models of interacting polariton and anti-polariton qubit
systems to provide foundations for studying general dynamical properties and devising practical applications
in the design and implementation of quantum information processing, quantum computation and all related
quantum technologies.

Motivated by the interpretation of a polariton or an anti-polariton qubit as a photsspin specified by two
qubit state vectors and a state transition operator, we introduce a quantum Rabi optical lattice defined as
a regular pattern of coupled arrays of optical lattice sites, where an optical lattice site is an optical cavity
containing a single two-level atom coupled to a single quantized electromagnetic field mode. We therefore
interpret an optical lattice site as a quantum Rabi state space, composed of the upper and lower Rabi
subspaces. The general theory of polariton and anti-polariton qubits developed above then means that each
optical lattice site contains a polariton or anti-polariton qubit specified by a cavity field mode frequency

ωi , atomic state transition frequency ω0i , coupling constant gi and state transition operator Êi or Ê i,
respectively, with corresponding Hamiltonian Hi or Hi.

Applying the algebraic property that the upper and lower Rabi subspaces in each lattice site are discon-
nected, we identify the quantum Rabi optical lattice as an upper Rabi optical lattice or a lower Rabi optical
lattice. Each site in an upper Rabi optical lattice is defined as an upper Rabi subspace containing a polariton
or an anti-polariton qubit formed from the initial n-photon spin-up state |ψnu⟩, while each site in a lower
Rabi optical lattice is defined as a lower Rabi subspace containing a polariton or an anti-polariton qubit
formed from the initial n-photon spin-down state |ψnd⟩. Since the two models are similar, we present only
the upper Rabi optical lattice model below.
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4.1 Upper Rabi optical lattice

In the i-th site of the upper Rabi optical lattice, the polariton qubit (rotating photospin) is specified by its
two state vectors |ψniui⟩ , |ϕniui⟩, qubit transition operator Êi , identity operator Îi and Hamiltonian Hi

defined by

|ψniui⟩ = |niui⟩ ; |ϕniui⟩ = cni+1|niui⟩+ sni+1|ni + 1di⟩ ; i = 1, 2, 3, ..., S

cni+1 =
giαi

Rni+1
; sni+1 =

2gi
√
ni + 1

Rni+1
; Rni+1 = 2gi

√
ni + 1 +

1

4
α2
i ; αi =

ω0i − ωi

2gi
(29a)

Êi =
Âi√

ni + 1 + 1
4α

2
i

; Îi = Ê2
i ; Ê2k

i = Îi ; Ê2k+1
i = Êi ; Hi = h̄ωi

(
ni +

1

2

)
Îi+h̄Rni+1Êi (29b)

e±iθiÎi = e±iθi Îi ; e±iθiÊi = cos θi Îi ± i sin θi Êi (29c)

with time evolution operator

Ui(t) = e−
i
h̄Hit ⇒ Ui(t) = e−iωi(ni+

1
2 )t
(
cos(Rni+1t) Îi − i sin(Rni+1t) Êi

)
(29d)

while the anti-polariton qubit (anti-rotating photospin) is specified by its two-state vectors |ψniui⟩ , | ϕniui
⟩,

qubit transition operator Ê i , identity operator Îi and Hamiltonian Hi defined by

|ψniui⟩ = |niui⟩ ; | ϕniui
⟩ = c̄ni |niui⟩+ s̄ni |ni − 1di⟩ ; i = 1, 2, 3, ..., S

c̄ni =
giαi

Rni

; s̄ni =
2gi

√
ni

Rni

; Rni = 2gi

√
ni +

1

4
α2
i ; αi =

ω0i + ωi

2gi
(30a)

Ê i =
Âi√
ni + λ

2

i

; Îi = Ê
2

i ; Ê
2k

i = Îi ; Ê
2k+1

i = Ê i ; Hi = h̄ωi

(
ni +

1

2

)
Îi + h̄Rni Ê i (30b)

e±iθi
ˆIi = e±iθi Îi ; e±iθi

ˆEi = cos θi Îi ± i sin θi Ê i (30c)

with time evolution operator

U i(t) = e−
i
h̄Hit ⇒ U i(t) = e−iωi(ni+

1
2 )t
(
cos(Rnit) Îi − i sin(Rnit) Ê i

)
(30d)

where the integer k in equations (29b) , (30b) takes values k = 0, 1, 2, 3, ....
The polariton and anti-polariton qubit state transition algebraic operations in the i-th site are obtained

in the form

Êi|ψniui
⟩ = |ϕniui

⟩ ; Êi|ϕniui
⟩ = |ψniui

⟩ ; Îi|ψniui
⟩ = |ψniui

⟩ ; Îi|ϕniui
⟩ = |ϕniui

⟩ (31a)

Ê i|ψniui⟩ = | ϕniui
⟩ ; Ê i| ϕniui

⟩ = |ψniui⟩ ; Îi|ψniui⟩ = |ψniui⟩ ; Îi| ϕniui
⟩ = | ϕniui

⟩ (31b)

We note that according to the Rabi Hamiltonian HRi =
1
2 (Hi +Hi), a polariton and an anti-polariton qubit

formed in the same lattice site are correlated ([Hi, Hi] ̸= 0), but do not interact. Only polariton and anti-
polariton qubits in different lattice sites interact interact through coupling of their state transition operators

Êi , Ê i according to

Hij = gij ÊiÊj ; Hij = gij Ê iÊj ; Hij = gij ÊiÊj ; i , j = 1, 2, 3, ..., S (32a)

where Hij is a polariton-polariton, Hij an anti-polariton-anti-polariton and Hij a polariton-anti-polariton

qubit interaction Hamiltonian. We assume that the state transition operators Êi or Ê i for different polariton
or anti-polariton qubits commute.
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The total Hamiltonian of S interacting polariton qubits or S interacting anti-polariton qubits in the upper
Rabi optical lattice is easily obtained in the form

H =
S∑

i=1

Hi +
S∑

i ̸=j=1

gij ÊiÊj ; H =
S∑

i=1

Hi +
S∑

i ̸=j=1

gij Ê iÊj ; i , j = 1, 2, 3, ..., S (32b)

while the total Hamiltonian of S polariton qubits interacting with S anti-polariton qubits is obtained as

H =
S∑

i=1

Hi +
S∑

j ̸=i

Hj +
S∑

i ̸=j

gij ÊiÊj ; i , j = 1, 2, 3, ..., S (32c)

where the polariton and anti-polariton qubit Hamiltonians Hi , Hi at the i-th site are defined in equations
(29b) , (30b). The commuting polariton qubit transition operators Êi , Êj or anti-polariton qubit transition

operators Ê i , Êj at different sites generate state transitions according to the algebraic operations in equations
(31a) , (31b).

Since the qubit transition operators Êi , Ê i commute with the respective Hamiltonians Hi , Hi, the time
evolution operator U(t) , U(t) , U(t) generated by the total Hamiltonian H , H , H of interacting polariton
qubits , interacting anti-polariton qubits or interacting polariton-anti-polariton qubits can be factorized in
the form

U(t) = e−
it
h̄ H ⇒ U(t) = e−

it
h̄

∑S

i=1
Hi e

− it
h̄

∑S

i ̸=j=1
gij ÊiÊj (32d)

U(t) = e−
it
h̄ H ⇒ U(t) = e−

it
h̄

∑S

i=1
Hi e

− it
h̄

∑S

i ̸=j=1
gij

ˆEi
ˆEj (32e)

U(t) = e−
it
h̄ H ⇒ U(t) = e−

it
h̄

∑S−1

i=1
Hi e

− it
h̄

∑S

j ̸=i=1
Hj e

− it
h̄

∑S

i ̸=j=1
gij Êi

ˆEj (32f)

The commutation of the qubit state transition operators at different sites according to [Êi, Êj ] = 0 , [Ê i, Êj ] = 0

, [Êi, Êj ] = 0 means that the time evolution operators in equations (32d) , (32e) , (32f) can be evaluated
exactly. If we consider only nearest-neighbor interactions, then we can set j = i + 1 in the interaction
Hamiltonians.

In the simplest case of two interacting polariton qubits or two interacting anti-polariton qubits or
polariton-anti-polariton qubit interaction, we set S = 2 in equations (32b) , (32c) to obtain the respective
two-qubit Hamiltonians in the form

H = H1 +H2 + gÊ1Ê2 ; H = H1 +H2 + gÊ1Ê2 ; H = H1 +H2 + gÊ1Ê2 ; g = g12 (33a)

where the polariton and anti-polariton qubit Hamiltonians Hi , Hi , i = 1, 2 are defined at two lattice sites
i = 1, 2 in the respective forms in equations (29b) , (30b). The initial state vectors of the two interacting
polariton, anti-polariton or polariton-anti-polariton qubits can be expressed as appropriate in any of four
entangled forms

|ψ ±
12 ⟩ =

1√
2
( |ψn1u1⟩|ψn2u2⟩ ± |ϕn1u1⟩|ϕn2u2⟩ ) ; |ϕ ±

12 ⟩ =
1√
2
( |ψn1u1⟩|ϕn2u2⟩ ± |ϕn1u1⟩|ψn2u2⟩ ) (33b)

| ψ ±
12 ⟩ =

1√
2
( |ψn1u1⟩|ψn2u2⟩±| ϕn1u1

⟩| ϕn2u2
⟩ ) ; | ϕ ±

12 ⟩ =
1√
2
( |ψn1u1⟩| ϕn2u2

⟩±| ϕn1u1
⟩|ψn2u2⟩ ) (33c)

| ψ̃ ±
12 ⟩ =

1√
2
( |ψn1u1⟩|ψn2u2⟩± |ϕn1u1⟩| ϕn2u2

⟩ ) ; | ϕ̃ ±
12 ⟩ =

1√
2
( |ψn1u1⟩| ϕn2u2

⟩± |ϕn1u1⟩|ψn2u2⟩ ) (33d)

where we note that the polariton and anti-polariton qubit state vectors |ψniui⟩ , |ϕniui⟩ , | ϕniui
⟩ defined in the

respective forms in equations (29a) , (30a) at the two lattice sites i = 1, 2 are normalized, but non-orthogonal.
The Gram-Schmidt orthonormalization procedure may be applied to transform them into the appropriate
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orthonormal forms. Dynamical evolution of an entangled two-qubit state vector is governed by an appropriate
time evolution operator U(t) , U(t) , U(t) generated by the respective two-qubit Hamiltonians H , H , H
in equation (33a) according to equations (32d) , (32e) , (32f). In each case, the time evolution operator
can be evaluated explicitly to provide an exact time evolving entangled state vector of the two interacting
polariton-polariton, anti-polariton-anti-polariton or polariton-anti-polariton qubits. The determination of
exact time evolving entangled state vectors opens greater possibilities for practical applications of systems
of interacting polariton, anti-polariton or polariton-anti-polariton qubits in the design and implementation
of various aspects of quantum technology, such as teleportation, quantum cryptography, quantum state
tomography, quantum information processing, quantum computation, quantum metrology, etc. Here, we
have provided only the model and algebraic foundation for studying the dynamics and practical applications
of systems of interacting polaritons and anti-polaritons generated within the quantum Rabi model, but details
will be presented in other work.

Finally, we observe that the total Hamiltonian H in equation (32b) for interacting polariton qubits is
similar in form , but differs significantly from the corresponding Jaynes-Cummings-Hubbard Hamiltonian
generally used to describe polariton interactions in coupled arrays of optical cavities [19-24]. While the
Hamiltonian H in equation (32b) generates the dynamics of a system of interacting polariton qubits coupled
through their state transition operators Êi , Êj , the Jaynes-Cummings-Hubbard Hamiltonian in [19-24] gen-
erates the dynamics of a system of interacting polaritons coupled through the field mode annihilation and
creation operators âi , â

†
i , âj , â†j of photons tunneling between the optical lattice sites i , j.

5 Conclusion

We have developed a precise algebraic and physical framework for studying the dynamics and practical appli-
cations of polariton or anti-polariton qubits interpreted as two-state quantized particles formed through the
coupling of an atomic spin to a rotating positive frequency or anti-rotating negative frequency component of
a quantized electromagnetic field mode in a Jaynes-Cummings or anti-Jaynes-Cummings interaction, respec-
tively. Polariton or anti-polariton qubit formation and dynamics is generated in a two-dimensional subspace
spanned by the respective qubit state vectors defined within an upper or lower Rabi state space. Conserved
excitation number, identity, state transition, U(1)-symmetry, parity-symmetry, SU(2)/U(1)-symmetry and
SU(1, 1)/U(1)-symmetry operators, as well as eigenvectors and energy eigenvalues of a polariton or an anti-
polariton qubit Hamiltonian have been determined explicitly. Since the atom starts in an excited (spin-up) or
ground (spin-down) state, dynamics is effectively characterized by absorption or emission of positive energy
photons by the field mode in red-sideband state transitions generated by the polariton qubit Hamiltonian
and absorption or emission of negative energy photons by the field mode in blue-sideband state transitions
generated by the anti-polariton qubit Hamiltonian. Exact time evolving state vectors which describe the
red-sideband and blue-sideband state transitions at the respective Rabi oscillation frequencies have been
determined. In interactions starting with the field mode in an initial vacuum state, dynamics in the upper
Rabi state space is dominated by spontaneous absorption process in which the field mode absorbs positive
energy photons in red-sideband transitions, while dynamics in the lower Rabi state space is dominated by
spontaneous anti-emission process in which the field mode emits negative energy photons in blue-sideband
transitions. Noting the similarity of polariton and anti-polariton qubits to the basic atomic spin qubits, we
have introduced a quantum Rabi optical lattice as a geometrical framework for studying the dynamics and
physical properties of systems of interacting polariton and anti-polariton qubits.
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