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Abstract

An exact analytical solution of the time-dependent Schroedinger equation for a fully quantized
degenerate parametric amplification process generated by quantized multi-mode pump photons
provides a quantized multi-photon squeeze operator which generates dynamics characterized by
interaction frequency mixing specified by quantized anti-normal order Rabi frequency operator

R̂ = g

√
N̂ − k2 and normal order Rabi frequency operator R̂ = g

√
N̂ − k2, where g is the pump

photon coupling constant, N̂ is the anti-normal order and N̂ is the normal order pump photon
number operator, while k is the frequency de-tuning parameter. Due to the quantum frequency
mixing mechanism, the time evolving annihilation and creation operators of the initially degen-
erate signal-idler photon modes become effectively non-degenerate. The full quantum interaction
thus destroys the initial degeneracy of the signal-idler photon modes. The loss of degeneracy
means that all time evolving signal-idler photon operators become complex, thus developing
purely quantum Hermitian imaginary parts. Fluctuations of these purely quantum Hermitian
operators generate fundamental quantum noise effects. General fundamental quantum noise
arising from cross-correlations of the Hermitian real and imaginary parts of the complex time
evolving operators modify the minimum values of the corresponding Heisenberg uncertainty
products. The full quantum squeezing phenomenon signified by the smaller, purely quantum
fluctuations, of the imaginary parts, compared to the larger fluctuations of the corresponding
Hermitian parts, takes the form of a sum and difference of two time evolving interaction variables
and does not display extreme behavior such as exponential growth or exponential decay of one
or the other quadrature fluctuation usually obtained in the corresponding semiclassical model.

Keywords: quantized parametric amplification, quantum squeeze operator, quantized Rabi fre-
quency operator, loss of degeneracy, operator state amplitudes, fundamental quantum noise, correla-
tions and uncertainty relations.

1 Introduction

Parametric processes in which signal-idler photon pairs are created through the interaction between
light or laser generated pump photons and matter provide the physical foundations for the design
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and implementation of quantum technologies. Semiclassical models of the parametric processes re-
veal fundamental quantum mechanical, i.e., nonclassical, properties such as quadrature squeezing
and entanglement, which have been identified as the basic resources for developing general quantum
communication protocols, quantum computation, quantum information processing and other quan-
tum technologies. In [4-6], the present author has established that in fully quantized parametric
oscillation or amplification processes, Jaynes-Cummings or anti-Jaynes-Cummings modes of inter-
action drive signal-idler photon polarization state dynamics in which the mean total intensities or
mean positive-negative helicity (mean horizontal-vertical) intensity inversion and the related mean
polarizations are characterized by fundamental quantum phenomena of fractional revivals or general
collapses and revivals when the pump photons are in Fock or coherent states. It is important to
note that, while squeezing and entanglement emerge as nonclassical properties in both semiclassical
and fully quantized parametric processes, the more fundamental features of collapses, revivals and
fractional revivals occur only in fully quantized models. The full quantum models thus provide more
detailed information about the internal dynamics of parametric oscillation or amplification processes.
The exact analytical solutions of the equations of dynamics obtained in [4-6] and in the present paper
now open possibilities for more comprehensive theoretical analysis of all the detailed features of the
dynamics of fully quantized parametric processes, which can lead to improved precision in the design
and implementation of related quantum technologies.

In the present paper, we establish that full quantum interaction creates two different quantized
Rabi frequency channels, which destroys the degeneracy of the initial signal-idler photon modes in a
degenerate parametric amplification process driven by quantized pump photon modes. The resulting
non-degenerate time evolving signal-idler photon annihilation and creation operators develop purely
quantum quadrature components, which arise as their Hermitian imaginary parts. In general, the loss
of degeneracy due to the full quantum interaction means that all time evolving observable operators
such as number operators, polarization operators, etc, now become complex, thus developing purely
quantum quadrature components arising as their Hermitian imaginary parts. The fluctuations of these
purely quantum quadrature components constitute fundamental quantum noise in the dynamics of a
fully quantized degenerate parametric amplification process.

In the general framework of non-linear quantum optics, multi-photon interaction modes emerge
as progressive terms in the expansion of the electric polarization component of the displacement
vector governing the dynamics of an electromagnetic (radiation) field in a material medium, such as a
nonlinear crystal. The widely studied optical harmonic generation and four-wave mixing interactions
[1] are respectively the second and third order parametric processes of these multi-photon interactions
in non-linear quantum optics. The general process is modeled as the dynamics of a signal and idler
photon pair coupled by N̄ ≥ 1 quantized pump photon modes. Hence, we take the model Hamiltonian
for a fully quantized degenerate parametric amplification process generated by a multi-photon pump
in the multi-linear form [2 , 3]

H = h̄{ωâ†â+
N̄∑
j=1

ωj â
†
j âj +

i

2
g(f̂ â†2 − f̂ † â2)} (1a)

where f̂ and its Hermitian conjugate f̂ †, is a multi-photon pump intensity amplitude operator defined
by

f̂ =
N̄∏
j=1

âj = â1â2....âN̄ ; f̂ † =
N̄∏
j=1

â†j = â†1â
†
2....â

†
N̄

(1b)

Here, (âj, â
†
j), j = 1, 2, ..., N̄ and (â, â†) denote the annihilation and creation operators, while ωj
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and ω denote the angular frequencies of the pump and the degenerate signal-idler photon modes,
respectively. We take the coupling parameter g to be constant and real for simplicity.

The annihilation and creation operators satisfy the usual commutation relations

[âp , â
†
q] = δpq ; [âp , âq] = 0 ; [â†p , â

†
q] = 0 (1c)

where we take p, q to label any photon involved in the process.
The parametric process generated by the multi-linear Hamiltonian in equation (1a) is composed

of general radiation-matter interactions proceeding through intermediate excited states in which N̄
pump photon modes are annihilated, effectively releasing a degenerate signal-idler photon pair in the
final stage. It is therefore effectively a fully quantized (N̄ + 2)-wave mixing process.

In recent work [4-6], the present author has obtained exact analytical solutions of Heisenberg’s
equations for signal-idler photon polarization state vectors in fully quantized parametric processes
generated by nonlinear Hamiltonians of the form in equation (1a). The dynamics is then understood
to be due to a Jaynes-Cummings or anti-Jaynes-Cummings mode of interaction governing the time
evolution of the coupled signal-idler photon pair polarization states.

In the present paper, we provide exact analytical solutions of the time-dependent Schroedinger
equation describing the dynamics of fully quantized parametric processes in the alternative Schroedinger
picture. The general time evolving state amplitude |ψ(t)⟩ is governed by the time-dependent Schroedinger
equation

ih̄
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ (2)

Exact analytical solutions of this time-dependent Schroedinger equation with a full quantum multi-
linear Hamiltonian such as H in equation (1a) have never been found, thus posing a major challenge in
nonlinear quantum optics and its practical applications within the Schroedinger picture. We address
this important challenge and apply the results to determine some uniquely quantum features of the
dynamics in the present paper.

Since exact analytical solutions of the time-dependent Schroedinger equation for a fully quantized
parametric amplification process has never been obtained in earlier works, we develop fairly elabo-
rate solution procedure and methods of evaluating expectation values of the resulting time evolving
operators through corresponding operator state amplitudes in section 2. In section 3 and section 4,
we have evaluated fluctuation and cross-correlation functions, as well as the associated Heisenberg
uncertainty relations, of the quadrature (or Hermitian) components of the effectively non-degenerate
time evolving signal-idler photon annihilation, creation and number operators, which display the ex-
pected squeezing properties and the occurrence of fundamental quantum noise due to the full quantum
interaction. Comparison of the full quantum model with the semiclassical model of the degenerate
parametric amplification process is presented in section 5.

2 General solution of the Schroedinger equation

We put equation (2) in an exactly solvable form by introducing the degenerate signal-idler photon
initial polarization operators K̂0, K̂+ and K̂− defined by

K̂0 =
1

2
(â†â+

1

2
) ; K̂+ =

1

2
â†2 ; K̂− =

1

2
â2 (3a)

satisfying commutation relations

[K̂+ , K̂−] = −2K̂0 ; [K̂0 , K̂+] = K̂+ ; [K̂0 , K̂+] = −K̂− (3b)
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to express the Hamiltonian H in equation (1a) in the form

H = h̄{
N∑
j=1

ωj â
†
j âj + 2ωK̂0 + ig(f̂ K̂+ − f̂ †K̂−)} (3c)

where we have ignored a constant term −1
2
h̄ω which yields only a global phase factor.

Adding and subtracting
∑N

j=1 h̄ωjK̂0, we express H in equation (3c) as

H = h̄
N∑
j=1

(ωj â
†
j âj + ωjK̂0) + h̄{δ K̂0 + ig(f̂ K̂+ − f̂ † K̂−)} (3d)

where we have introduced the frequency detuning δ defined by

δ = 2ω −
N∑
j=1

ωj (3e)

This relation specifies energy transfer due to the multi-wave mixing interactions characterizing the
fully quantized degenerate parametric amplification process generated by multi-mode pump photons.

We write H as a sum of two components in the form

H = H0 +H (3f)

after introducing a free evolution Hamiltonian H0 and interaction Hamiltonian H defined by

H0 = h̄
N∑
j=1

(ωj â
†
j âj + ωjK̂0) ; H = h̄{δ K̂0 + ig(f̂ K̂+ − f̂ † K̂−)} (3g)

Using the algebraic relations for the pump annihilation and creation operators âj, â
†
j given in

equation (1c), noting the definition of the multi-mode pump operator f̂ , f̂ † in equation (1b) and
applying the algebraic relations for the initial polarization operators K̂0, K̂+, K̂− given in equation
(3b) easily gives

[ H0 , H ] = 0 ⇒ [ H0 , H ] = 0 ; [ H , H ] = 0 (3h)

Since both components H0 and H commute with H, they are constants of the motion. The Hamilto-
nian H = H0 +H is therefore time-independent.

With the Hamiltonian H time-independent, we easily solve the Schroedinger equation (2) through
simple integration to obtain

|ψ(t)⟩ = U(t)|ψ(0)⟩ (4a)

where |ψ(0)⟩ is the initial state amplitude and U(t) is the general time evolution operator obtained
as

U(t) = e−
i
h̄
H0tŜ(f̂) (4b)

after applying the commutation of H0 and H as in equation (3h) to factorize the free evolution
component and the interaction component. The interaction time evolution operator Ŝ(f̂) has been
obtained as

Ŝ(f̂) = e−
i
h̄
Ht (4c)

which on substituting H from equation (3g) takes the form

Ŝ(f̂) = e−it{2δ K̂0+ig(f̂ K̂+−f̂† K̂−)} (4d)
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Using the definitions of the initial polarization operators given in equation (3a) and once again ignoring
a constant global phase contributing term, we express the interaction time evolution operator in the
final form

Ŝ(f̂) = et{−iδ â†â+ 1
2
g(f̂ â†2−f̂†â2)} (4e)

which we recognize as the quantized squeeze operator for the fully quantized degenerate parametric
amplification process. The time evolution operator U(t) in equation (4b) is therefore a general quan-
tized squeeze operator and the corresponding state amplitude |ψ(t)⟩ obtained in equation (4a) is a
general quantized squeezed state amplitude.

2.1 Time evolution in the general squeezed state

The time evolution of a general operator Q̂ representing some physical quantity of the parametric
amplification process described by the general squeezed state amplitude |ψ(t)⟩ in equation (4a) is
obtained using the time evolution operator U(t) according to

Q̂(t) = U †(t)Q̂U(t) (5a)

In particular, for the annihilation and creation operators â , â† of the degenerate signal-idler photon,
we set Q̂ = â , â† in equation (5a) and use U(t) from equation (4b) with H0 from equation (3g) (set
K̂0 = â†â) to obtain the form

b̂+(t) = e−
i
2
ΩtŜ†(f̂)âŜ(f̂) ; b̂−(t) = e

i
2
ΩtŜ†(f̂)â†Ŝ(f̂) (5b)

where we have introduced the total pump photon frequency Ω obtained as

Ω =
N̄∑
j=1

ωj (5c)

The notation b̂+(t) and b̂−(t) in equation (5b) represents time evolution over two different frequency
channels, which we clarify below. The main task is to evaluate Ŝ†(f̂)âŜ(f̂) and Ŝ†(f̂)â†Ŝ(f̂) which
provide time evolution with respect to the squeeze operator within the Schroedinger picture. We
develop the procedure below.

Let us introduce an operator Â defined by

Â = −{−iδ â†â+ 1

2
g(f̂ â†2 − f̂ †â2)} = iδ â†â+

1

2
g(f̂ †â2 − f̂ â†2) (6a)

to express the squeeze operator and its Hermitian conjugate in the form

Ŝ(f̂) = e−tÂ ; Ŝ†(f̂) = etÂ (6b)

The time evolution of the annihilation and creation operators in equation (5b) is then obtained in
explicit form through

Ŝ†(f̂)âŜ(f̂) = etÂâe−tÂ ; Ŝ†(f̂)â†Ŝ(f̂) = etÂâ†e−tÂ (6c)

These are evaluated through application of the standard operator expansion theorem [1], which in the
present case Q̂ = â , â†, takes the general form

etÂQ̂e−tÂ = Q̂+
t

1!
[Â , Q̂] +

t2

2!
[Â , [Â , Q̂]] +

t3

3!
[Â , [Â , [Â , Q̂]]] + .... (7a)
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We express this as power series expansion in terms of the commutators in the form

etÂQ̂e−tÂ =
∞∑
n=0

tn(Ân)Q̂
n!

(7b)

where the power series terms are evaluated according to the definition

(Â0)Q̂ = Q̂ ; (Â1)Q̂ = [Â , (Â0)Q̂] = [Â , Q̂] ; (Ân)Q̂ = [Â , (Ân−1)Q̂] , n ≥ 1 (7c)

It is convenient to express the expansion in equation (7b) in even and odd power terms in the form

etÂQ̂e−tÂ =
∞∑
l=0

t2l(Â2l)Q̂
(2l)!

+
∞∑
l=0

t2l+1(Â2l+1)Q̂
(2l + 1)!

(7d)

The problem then reduces to evaluation of commutation brackets according to equation (7c). In the
evaluation of the commutation brackets for the time evolution of the degenerate signal-idler photon
annihilation and creation operators (Q̂ = â , â†) using equation (7c), we must take account of the
pump photon operators f̂ , f̂ † in the definition of Â. In particular, these pump photon operators
become important in the evaluation of the second-order commutation brackets [Â , [Â , â]] and
[Â , [Â , â†]], which are also involved in the higher-order commutation brackets. Including the
commutation brackets [Â , f̂ ] , [Â , f̂ †] with respect to the pump photon operators contributes
seemingly superfluous extra nonlinear terms, which are inconsistent with the exact time evolution
obtained within the Heisenberg picture in [4-6].

To obtain results in exact agreement with the time evolution in the Heisenberg picture, we intro-
duce an effective procedure, which we call partial evaluation of commutation bracket with respect to
signal-idler photon operators â, â†, in which we treat the driving pump photon operators f̂ , f̂ † as if
they were c-numbers, but maintaining their order in the products during the evaluation of [Â , [Â , â]]
, [Â , [Â , â†]]. This is understood to be equivalent to averaging (tracing) out the pump photon oper-
ators with respect to the initial pump photon state amplitude, i.e., we consider ⟨ψf |[Â , [Â , â]]|ψf⟩
, ⟨ψf |[Â , [Â , â†]]|ψf⟩, where |ψf⟩ is an arbitrary multi-pump photon state vector to be dropped at
the end of the evaluation. The final results obtained through the partial evaluation of the commu-
tation brackets as appropriate are then exactly the same as the results obtained as exact solutions
of Heisenberg time evolution equations for signal-idler photon annihilation and creation operators in
fully quantized parametric processes in [4-6].

Setting Q̂ = â , â† in equation (7c) and carrying out a number of steps of partial evaluation
of the commutation brackets [Â , [Â , â]] and [Â , [Â , â†]] occurring in second and higher-order
commutation brackets with respect to â , â†, holding f̂ , f̂ † as c-numbers, but maintaining their order
in the products at each stage, we obtain general results for even and odd power terms in the form

Q̂ = â : (Â0)â = â ; (Â2l)â =


√
∂

∂â
[
∂Â

∂â†
, Â]

2l

(Â0)â ; l = 0, 1, 2, ... (8a)

(Â2l+1)â = −


√
∂

∂â
[
∂Â

∂â†
, Â]

2l

∂Â

∂â†
(8b)

Q̂ = â† : (Â0)â† = â† ; (Â2l)â† =


√

∂

∂â†
[Â ,

∂Â

∂â
]

2l

(Â0)â† ; l = 0, 1, 2, ... (8c)
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(Â2l+1)â† =


√

∂

∂â†
[Â ,

∂Â

∂â
]

2l

∂Â

∂â
(8d)

where we have used standard procedure to obtain

[â , Â] =
∂Â

∂â†
; [â† , Â] = −∂Â

∂â
(8e)

We use Â from equation (6a) to obtain

∂Â

∂â
= iδâ† + gf̂ †â ;

∂Â

∂â†
= iδâ− gf̂ â† (8f)

[
∂Â

∂â†
, Â] = (g2f̂ f̂ † − δ2)â ;

∂

∂â
[
∂Â

∂â†
, Â] = g2f̂ f̂ † − δ2 (8g)

[Â ,
∂Â

∂â
] = (g2f̂ †f − δ2)â† ;

∂

∂â†
[Â ,

∂Â

∂â
] = g2f̂ †f̂ − δ2 (8h)

where we have applied partial evaluation of commutation brackets in equations (8g)-(8h).
Substituting equations (8f)-(8g) into equations (8a)-(8b) gives

(Â2l)â =
(√

g2f̂ f̂ † − δ2
)2l

â ; (Â2l+1)â =
(√

g2f̂ f̂ † − δ2
)2l

(−iδâ+ gf̂ â†) (9a)

while substituting equations (8f) and (8h) into equations (8c)-(8d) gives

(Â2l)â† =
(√

g2f̂ †f̂ − δ2
)2l

â† ; (Â2l+1)â† =
(√

g2f̂ †f̂ − δ2
)2l

(iδâ† + gf̂ †â) (9b)

Substituting equation (6c) into equation (7d) for Q̂ = â , â† and using equations (9a)-(9b) as appro-
priate gives the time evolution of â and â† in the squeezed state in the form

Ŝ†âŜ =
∞∑
l=0

(
gt

√
f̂ f̂ † − k2

)2l

(2l)!
â+

1

g
√
f̂ f̂ † − k2

∞∑
l=0

(
gt

√
f̂ f̂ † − k2

)2l+1

(2l + 1)!
(−iδâ+ gf̂ â†) (10a)

Ŝ†â†Ŝ =
∞∑
l=0

(
gt

√
f̂ †f̂ − k2

)2l

(2l)!
â† +

1

g
√
f̂ †f̂ − k2

∞∑
l=0

(
gt

√
f̂ †f̂ − k2

)2l+1

(2l + 1)!
(iδâ† + gf̂ †â) (10b)

where we introduced a detuning interaction parameter k defined by

k2 =
δ2

g2
(10c)

Notice that we have introduced a factor g
√
f̂ f̂ † − k2 or g

√
f̂ †f̂ − k2 in the numerator and denominator

to complete the odd power terms as appropriate in equations (10a)-(10b).

7



We now introduce hyperbolic functions in equations (10a)-(10b) according to the expansions

coshx =
∞∑
n=0

x2n

(2n)!
; sinh x =

∞∑
n=0

x2n+1

(2n+ 1)!
(10d)

together with the antinormal-order and normal-order multi-photon pump number operators N̂ and
N̂ , respectively defined by

N̂ = f̂ f̂ † =
N∏
j=1

(n̂j + 1) ; N̂ = f̂ †f̂ =
N∏
j=1

n̂j ; n̂j = â†j âj (10e)

to obtain

Ŝ†âŜ = {cosh
(
R̂t

)
− i

δ

R̂
sinh

(
R̂t

)
} â+ g

R̂
sinh

(
R̂t

)
f̂ â† (10f)

Ŝ†â†Ŝ = {cosh
(
R̂t

)
+ i

δ

R̂
sinh

(
R̂t

)
} â† + g

R̂
sinh

(
R̂t

)
f̂ †â (10g)

where we have introduced quantized antinormal-order and normal-order Rabi frequency operators R̂
and R̂, respectively, defined by

R̂ = g
√
N̂ − k2 ; R̂ = g

√
N̂ − k2 (10h)

Introducing general time evolving pump photon interaction operators µ̂+(t) , µ̂−(t) and ν̂+(t) , ν̂−(t)
defined by

µ̂+(t) = cosh
(
R̂t

)
− i

δ

R̂
sinh

(
R̂t

)
; µ̂−(t) = cosh

(
R̂t

)
+ i

δ

R̂
sinh

(
R̂t

)
(11a)

ν̂+(t) =
g

R̂
sinh

(
R̂t

)
f̂ † ; ν̂−(t) =

g

R̂
sinh

(
R̂t

)
f̂ (11b)

and denoting the squeezed state time evolving annihilation and creation operators by â+(t) and â−(t),
respectively according to

â+(t) = Ŝ†âŜ ; â−(t) = Ŝ†â†Ŝ (11c)

we express the results in equations (10f)-(10g) in the final form

â+(t) = µ̂+(t)â+ ν̂−(t)â
† ; â−(t) = µ̂−(t)â

† + ν̂+(t)â (11d)

The general solutions in equation (5b) then become

b̂+(t) = e−
i
2
Ωtâ+(t) ; b̂−(t) = e

i
2
Ωtâ−(t) (11e)

The results in equations (11a)-(11e) are exactly the same as the results obtained within Heisenberg
picture in [4-6], only with an appropriate interchange of notation ν̂+(t) ↔ ν̂−(t) to match their
definitions as effective pump photon creation and annihilation operators according to equation (11b),
noting that R̂, R̂ are defined in terms of pump photon number operators according to equation (10h).
The remarkable agreement of solutions (11d)-(11e) in the Schroedinger picture with solutions obtained
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in the Heisenberg picture in [4-6] is due to the partial evaluation of commutation brackets applied in
the present paper.

We observe that according to the definitions of the time evolving pump photon interaction opera-
tors µ̂±(t) , ν̂±(t) in equations (11a)-(11b), the time evolving annihilation and creation operators b̂+(t)
and b̂−(t) obtained in equations (11d)-(11e) are separately specified by the quantized antinormal and
normal order Rabi frequencies R̂, R̂ , respectively. This fact, coupled with the fact that the operators
µ̂±(t) , ν̂±(t) are not Hermitian conjugates of one another, leads to the important conclusion that the
time evolving annihilation and creation operators b̂+(t) and b̂−(t) are not Hermitian conjugates and
are effectively non-degenerate. The full quantum interaction has thus destroyed the initial degeneracy
of the signal-idler photon annihilation and creation operators.

Under the full quantum interaction, the non-degenerate time evolving annihilation and creation
operators b̂+(t) , b̂−(t) develop purely quantum quadrature components in their imaginary parts. De-
noting the quadrature components by (x̂+(t), ŷ+(t)) and (x̂−(t), ŷ−(t)) for b̂+(t) , b̂−(t), respectively,
we define

b̂+(t) = x̂+(t)+ i ŷ+(t) ; x̂+(t) =
1

2
(b̂+(t)+ b̂

†
+(t)) ; ŷ+(t) = − i

2
(b̂+(t)− b̂†+(t)) (11f)

b̂+(t) = x̂−(t)+ i ŷ−(t) ; x̂−(t) =
1

2
(b̂−(t)+ b̂†−(t)) ; ŷ−(t) = − i

2
(b̂−(t)− b̂†−(t)) (11g)

where the Hermitian conjugates b̂†+(t) , b̂
†
−(t) follow easily from equations (11d)-(11e) as

b̂†+(t) = e
i
2
Ωtâ†+(t) ; â†+(t) = µ̂†

+(t)â
† + ν̂†−(t)â (11h)

b̂†−(t) = e−
i
2
Ωtâ†−(t) ; â†−(t) = µ̂†

−(t)â+ ν̂†+(t)â
† (11i)

It will become clear in the course of our study that the imaginary parts ŷ+(t) and ŷ−(t) are purely
quantum quadrature components.

2.2 Interaction-induced pump photon operators: an interpretation

To facilitate the evaluation of mean values, correlation functions and fluctuations of the time evolving
operators which characterize the dynamics of the signal-idler photon pair in the fully quantized para-
metric amplification process, we provide an appropriate physical interpretation of the pump photon
interaction operators µ̂±(t) , ν̂±(t) defined in equations (11a)-(11b) and specify their action on a given
initial pump photon state amplitude.

Let us consider the N pump photon modes to be in an initial Fock state described by state
amplitude |N⟩ defined as usual in the product form

|N⟩ =
N∏
j=1

|nj⟩ ; nj = 0, 1, 2, ... (12a)

We interpret the operator f̂ defined in equation (1b) as the non-degenerate N -photon pump anni-
hilation operator, while the Hermitian conjugate operator f̂ † is the non-degenerate N -photon pump
creation operator. The antinormal and normal order pump photon number operators N̂ , N̂ have
been defined in equation (10e). These operators act on the initial pump photon Fock state amplitude
|N⟩ in the usual manner, giving

f̂ |N⟩ =
√
N |

N̄∏
j=1

(nj − 1)⟩ ; f̂ †|N⟩ =
√
N |

N̄∏
j=1

(nj + 1)⟩ (12b)
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N̂ |N⟩ = N |N⟩ ; N̂ |N⟩ = N|N⟩ (12c)

where N is the anti-normal order pump photon number and N is the normal-order pump photon
number obtained in the form

N =
N̄∏
j=1

(nj + 1) ; N =
N̄∏
j=1

nj (12d)

We observe that the parametric interaction mechanism effectively transforms the pump photon
annihilation, creation and number operators to the corresponding time evolving interaction operators
µ̂+(t) , ν̂+(t) , µ̂−(t), ν̂−(t) defined in equations (11a)-(11b), which we interpret as the interaction-
induced pump photon number, creation and annihilation operators as appropriate.

According to the set of equations (10h)-(11b), the time evolving operator µ̂+(t) is essentially
defined in terms of the anti-normal order pump photon number operator N̂ , which determines R̂,
while the time evolving operator µ̂−(t) is essentially defined in terms of the normal order pump
photon number operator N̂ , which determines R̂. We therefore interpret µ̂+(t) defined in equation
(11a) as the interaction-induced anti-normal order pump photon number operator and µ̂−(t) defined
in equation (11b) as the interaction-induced normal order pump photon number operator.

The Hermitian conjugates of the interaction-induced pump photon number operators are obtained
as

µ̂†
+(t) = cosh

(
R̂t

)
+ i

δ

R̂
sinh

(
R̂t

)
; µ̂†

−(t) = cosh
(
R̂t

)
− i

δ

R̂
sinh

(
R̂t

)
(13a)

Using equations (12b)-(12c) and recalling the hyperbolic function expansions in equation (10d), noting
the definitions of R̂± given in equation (10h), we determine the action of the interaction-induced
pump photon number operators and their Hermitian conjugates on the initial pump photon Fock
state amplitude |N⟩ in the final form

µ̂+(t)|N⟩ = µ+(t)|N⟩ ; µ̂†
+(t)|N⟩ = µ∗

+(t)|N⟩ (13b)

µ̂−(t)|N⟩ = µ−(t)|N⟩ ; µ̂†
−(t)|N⟩ = µ∗

−(t)|N⟩ (13c)

where the interaction-induced time evolving pump photon number eigenvalues µ+(t) and µ−(t) have
been obtained in the form

µ+(t) = cosh(Rt)− i
δ

R
sinh(Rt) ; µ−(t) = cosh(Rt) + i

δ

R
sinh(Rt) (13d)

We have introduced quantized Rabi frequencies R , R obtained as

R = g
√
N − k2 ; R = g

√
N − k2 (13e)

Noting that, in equation (11b), the definition of the time evolving pump photon interaction operator
ν̂−(t) involves an effective annihilation operator f̂ to the right, while the definition of the time evolving
pump photon interaction operator ν̂+(t) in equation (11b) involves an effective creation operator
f̂ † to the right, we interpret ν̂−(t) as the interaction-induced pump photon annihilation operator
specified by R̂ and ν̂+(t) as the interaction-induced pump photon creation operator in the normal
order frequency channel specified by R̂. The Hermitian conjugates of the interaction-induced pump
photon annihilation and creation operators follow from equations (11a) and (11b), respectively, as

ν̂†+(t) = f̂ † g

R̂
sinh

(
R̂t

)
; ν̂†−(t) = f̂

g

R̂
sinh

(
R̂t

)
(14a)
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Using the definitions given in equations (11a), (11b), (13a) and the hyperbolic function expansions,
we determine the action of the interaction-induced pump photon annihilation and creation operators,
together with their Hermitian conjugates, on the initial pump photon Fock state amplitude |N⟩ in
the final form

ν̂+(t)|N⟩ = ν+(t)|
N̄∏
j=1

(nj − 1)⟩ ; ν̂†+(t)|N⟩ = ν−(t)|
N̄∏
j=1

(nj + 1)⟩ (14b)

ν̂−(t)|N⟩ = ν−(t)|
N̄∏
j=1

(nj + 1)⟩ ; ν̂†−(t)|N⟩ = ν+(t)|
N̄∏
j=1

(nj − 1)⟩ (14c)

where the c-numbers ν+(t) and ν−(t) have been obtained in the form

ν−(t) =
g
√
N

R
sinh(Rt) ; ν+(t) =

g
√
N

R
sinh(Rt) (14d)

2.3 Time evolving operator state amplitudes

The calculation of the mean value and correlation functions of a general operator Q̂ in the general
time evolving state amplitude |ψ(t)⟩ = U(t)|ψ(0)⟩ according to

Q(t) = ⟨ψ(t)|Q̂|ψ(t)⟩ = ⟨ψ(0)|Q̂(t)|ψ(0)⟩ ; Q̂(t) = U †(t)Q̂U(t) (15a)

which usually requires expansion of the general time evolving operator Q̂(t) = U †(t)Q̂U(t) before
evaluating in the initial state amplitude |ψ(0)⟩ can be simplified by introducing a time evolving
operator state amplitude |Q̂(t)⟩ and its dual |Q̂†(t)⟩ generated through the action of the time evolving
operator Q̂(t) on the initial state amplitude |ψ(0)⟩ in the form

|Q̂(t)⟩ = Q̂(t)|ψ(0)⟩ ; |Q̂(t)⟩ = Q̂(t)|ψ(0)⟩ (15b)

where Q̂†(t) is the Hermitian conjugate of Q̂(t). Taking Hermitian conjugation of the operator state
amplitudes gives

⟨Q̂(t)| = ⟨ψ(0)|Q̂†(t) ; ⟨Q̂†(t)| = ⟨ψ(0)|Q̂(t) (15c)

The mean values of Q̂(t) and Q̂†(t) are obtained as the overlap of the initial state amplitude |ψ(0)⟩
and the time evolving operator state amplitudes |Q̂(t)⟩ , |Q̂†(t)⟩ from equation (15b) in the form

Q(t) = ⟨ψ(0)|Q̂(t)⟩ = ⟨ψ(0)|Q̂(t)|ψ(0)⟩ ; Q
∗
(t) = ⟨ψ(0)|Q̂†(t)⟩ = ⟨ψ(0)|Q̂†(t)|ψ(0)⟩ (15d)

while the second moments or correlation functions of the operators Q̂(t) , Q̂†(t) are obtained as
appropriate overlaps of the operator state amplitudes |Q̂(t)⟩ , |Q̂†(t)⟩ using equations (15b)-(15c)
according to

⟨Q̂†(t)|Q̂(t)⟩ = ⟨ψ(0)|Q̂2(t)|ψ(0)⟩ = Q2(t) ; ⟨Q̂(t)|Q̂†(t)⟩ = ⟨ψ(0)|Q̂†2(t)|ψ(0)⟩ = Q∗2(t) (15e)

⟨Q̂†(t)|Q̂†(t)⟩ = ⟨ψ(0)|Q̂(t)Q̂†(t)|ψ(0)⟩ = Q(t)Q∗(t) (15f)

⟨Q̂(t)|Q̂(t)⟩ = ⟨ψ(0)|Q̂†(t)Q̂(t)|ψ(0)⟩ = Q∗(t)Q(t) (15g)

These relations apply to any set of operators Q̂j(t) , j = 1, 2, ...
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The concept of operator state amplitudes which we have introduced here for general calculations
forms part of a growing interest in quantum state engineering and orthogolization schemes [2 , 7-
11] for application in quantum computation, quantum information processing and related quantum
technologies. In the present work, the appropriate operators are generated through the general time
evolution operator U(t) of the fully quantized degenerate parametric amplification process, while the
Fock state amplitude |Nn⟩ has been chosen as the initial state.

We proceed to apply the operator state amplitude methods and general results obtained in this
section to calculate the fluctuations and correlation functions of time evolving quadrature compo-
nents and number operator to determine the squeezing properties and fundamental quantum noise in
the general dynamics of a fully quantized degenerate parametric amplification process based on the
Hamiltonian in equation (1a).

3 Time evolving quadrature operators

Quadrature components of annihilation and creation operators have been identified as useful ob-
servable operators for theoretical studies and practical applications of the statistical properties of
parametric oscillation and amplification processes. To determine some important fundamental fea-
tures of a degenerate parametric amplification process driven by fully quantized pump photon modes,
we consider the time evolution of the initial signal-idler photon quadrature operators â1, â2 defined
as usual by

â1 =
1

2
(â+ â†) ; â2 = − i

2
(â− â†) (16a)

These initial quadrature operators evolve in time under the full quantum squeeze operator U(t)
according to

â1(t) = U †(t)â1U(t) ; â2(t) = U †(t)â2U(t) (16b)

which on introducing the time evolving annihilation and creation operators b̂+(t) , b̂−(t) take the form

â1(t) =
1

2
(b̂+(t) + b̂−(t)) ; â2(t) = − i

2
(b̂+(t)− b̂−(t)) (16c)

Since b̂+(t) and b̂−(t) are not Hermitian conjugates of each other, the time evolving quadrature
operators â1(t) , â2(t) obtained in equation (16c) are complex and have Hermitian conjugates

â†1(t) =
1

2
(b̂†+(t) + b̂†−(t)) ; â†2(t) =

i

2
(b̂†+(t)− b̂†−(t)) (16d)

By expanding the commutation bracket of the operators b̂+(t) and b̂−(t) using equations (11d)-(11g),
then averaging out the quantized pump photon operators in the pump photon Fock state |N⟩, we
obtain the commutation relation

⟨N | [b̂+(t) , b̂−(t)] |N⟩ = {µ+(t)µ−(t)− ν2+(t)}ââ† − {µ+(t)µ−(t)− ν2−(t)}â†â (16e)

which can be used to determine the commutation relation for the time evolving quadrature operators
according to

⟨N | [â1(t) , â2(t)] |N⟩ = − i

4
⟨N | [(b̂+(t)+b̂−(t)) , (b̂+(t)−b̂−(t))] |N⟩ = i

2
⟨N | [b̂+(t) , b̂−(t)] |N⟩ (16f)
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The non-vanishing commutation bracket (16e) shows that the time evolving non-degenerate signal-
idler photon mode operators b̂+(t) and b̂−(t) are not independent, in contrast to the independent
signal-idler photon modes in a general non-degenerate parametric process [1 , 4-6]. This is due to the
fact that the non-degeneracy of the operators b̂+(t) and b̂−(t) is a full quantum interaction effect, which
develops through the time evolution of the initial degenerate annihilation and creation operators â
, â† of the signal-idler photon modes. The operators b̂+(t) , b̂−(t) maintain the initial algebraic
relations of â and â†, only modified by the frequency mixing effects in the full quantum interaction
as established in the commutation relation in equation (16e). Indeed, at initial time t = 0 where
µ+(0) = µ∗

−(0) = 1 , ν+(0) = ν−(0) = 0 and in the semiclassical model where µ+(t) = µ∗
−(t) = µ(t) ,

ν+(t) = ν−(t) = ν(t) gives µ+(t)µ−(t)− ν2+ = µ+(t)µ−(t)− ν2− = |µ(t)|2 − ν2(t) = 1 (see section 5 for
details), the commutation relation (16e) reduces to the expected form

[b̂+(0) , b̂−(0)] = [b̂sc+ (t) , b̂
sc
− (t)] = 1 (16g)

where the pump photon Fock state amplitude |N⟩ has now been dropped as appropriate and the
superscript sc denotes semiclassical.

3.1 Time evolving quadrature state amplitudes

As explained in the previous section, we simplify the evaluation procedure for mean values, correlation
functions and fluctuations of the time evolving quadrature operators by introducing general time
evolving quadrature state amplitudes |â1(t)⟩ , |â2(t)⟩ and the corresponding dual amplitudes |â†1(t)⟩ ,
|â†2(t)⟩ obtained through the action of the time evolving quadrature operators â1(t) , â2(t) and their
Hermitian conjugates â†1(t) , â

†
2(t) on the initial state amplitude |Nn⟩ according to

|â1(t)⟩ = â1(t)|Nn⟩ =
1

2
(|ϕ+(t)⟩+ |ϕ−(t)⟩) ; |â†1(t)⟩ = â†1(t)|Nn⟩ =

1

2
(|ϕ∗

+(t)⟩+ |ϕ∗
−(t)⟩) (17a)

|â2(t)⟩ = â2(t)|Nn⟩ = − i

2
(|ϕ+(t)⟩ − |ϕ−(t)⟩) ; |â†2(t)⟩ = â†2(t)|Nn⟩ =

i

2
(|ϕ∗

+(t)⟩ − |ϕ∗
−(t)⟩) (17b)

where we have introduced the basic time evolving annihilation and creation operator state amplitudes
|ϕ+(t)⟩ , |ϕ−(t)⟩ and their corresponding dual state amplitudes |ϕ∗

+(t)⟩ , |ϕ∗
−(t)⟩ obtained as

|ϕ+(t)⟩ = b̂+(t)|Nn⟩ ; |ϕ∗
+(t)⟩ = b̂†+(t)|Nn⟩ (17c)

|ϕ−(t)⟩ = b̂−(t)|Nn⟩ ; |ϕ∗
−(t)⟩ = b̂†−(t)|Nn⟩ (17d)

Substituting b̂+(t) , b̂
†
+(t) , b̂−(t) , b̂

†
−(t) from the set of equations (11d)-(11g) into equations (17a)-

(17b) as appropriate, then applying the results from equations (13b)-(13c) and (14b)-(14c), we obtain
the basic state amplitudes and their dual counterparts in the explicit forms

|ϕ+(t)⟩ = e−
i
2
Ωt(µ+(t)

√
n |N(n− 1)⟩+ ν−(t)

√
n+ 1 |

N∏
j=1

(nj − 1)(n+ 1)⟩) (17e)

|ϕ−(t)⟩ = e
i
2
Ωt(µ−(t)

√
n+ 1 |N(n+ 1)⟩+ ν+(t)

√
n |

N∏
j=1

(nj + 1)(n− 1)⟩) (17f)

|ϕ∗
+(t)⟩ = e

i
2
Ωt(µ∗

+(t)
√
n+ 1 |N(n+ 1)⟩+ ν+(t)

√
n |

N∏
j=1

(nj + 1)(n− 1)⟩) (17g)
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|ϕ∗
−(t)⟩ = e−

i
2
Ωt(µ∗

−(t)
√
n |N(n− 1)⟩+ ν−(t)

√
n+ 1 |

N∏
j=1

(nj − 1)(n+ 1)⟩) (17h)

We notice that, according to the definitions in equations (13d), (13e) and (14d), each basic state
amplitude has two components weighted by interaction variable pairs (µ+(t), ν−(t)) or (µ−(t), ν+(t))
specified by different quantized Rabi frequencies R , R, which demonstrates the frequency-mixing
arising from the full quantum interaction. We observe that this quantized Rabi frequency-mixing is
responsible for the occurrence of purely quantum features such as fractional revivals, collapse-revival
effects [4-6] and fundamental quantum noise in the full quantum model, in addition to squeezing and
entanglement properties which arise also in the widely studied semiclassical model of the degenerate
parametric amplification process [1 , 4-6].

The basic state amplitudes |ϕ+(t)⟩ , |ϕ−(t)⟩ and their dual counterparts |ϕ∗
+(t)⟩ , |ϕ∗

−(t)⟩ satisfy
the following orthogonality relations

⟨ϕ+(t)|ϕ−(t)⟩ = 0 ; ⟨ϕ−(t)|ϕ+(t)⟩ = 0 ; ⟨ϕ∗
+(t)|ϕ∗

−(t)⟩ = 0 ; ⟨ϕ∗
−(t)|ϕ∗

+(t)⟩ = 0 (18a)

⟨ϕ+(t)|ϕ∗
+(t)⟩ = 0 ; ⟨ϕ−(t)|ϕ∗

−(t)⟩ = 0 ; ⟨ϕ∗
+(t)|ϕ+(t)⟩ = 0 ; ⟨ϕ∗

−(t)|ϕ−(t)⟩ = 0 (18b)

We observe the basic state amplitudes are not all mutually orthogonal, since there are nearly degen-
erate pairs (|ϕ+(t)⟩ , |ϕ∗

−(t)⟩) and (|ϕ−(t)⟩ , |ϕ∗
+(t)⟩), which have the same Fock state amplitudes,

but differ only in the component weighting interaction variables µ+(t) , µ−(t) specified by different
quantized Rabi frequencies R , R. These non-degenerate pairs which differ only in their quantized
Rabi frequencies, but have coinciding Fock state amplitudes, are non-orthogonal according to

⟨ϕ+(t)|ϕ∗
−(t)⟩ = µ∗

+(t)µ
∗
−(t)n+ν

2
−(t)(n+1) ; ⟨ϕ∗

−(t)|ϕ+(t)⟩ = µ−(t)µ+(t)n+ν
2
−(t)(n+1) (18c)

⟨ϕ−(t)|ϕ∗
+(t)⟩ = µ∗

+(t)µ
∗
−(t)(n+1)+ν2+(t)n ; ⟨ϕ∗

+(t)|ϕ−(t)⟩ = µ−(t)µ+(t)(n+1)+ν2+(t)n (18d)

3.2 Mean values and correlations of the time evolving quadrature oper-
ators

We take the overlaps of the initial state amplitude |Nn⟩ and the time evolving quadrature state
amplitudes in equations (17a)-(17b) and use the basic state amplitudes in equations (17e)-(17h) to
obtain the mean values of the time evolving quadrature operators as

a1(t) = 0 ; a∗1(t) = 0 ; a2(t) = 0 ; a∗2(t) = 0 (19a)

Taking overlaps of the state amplitudes in equations (17a)-(17b) as appropriate according to the
general definitions in equations (15e)-(15g) and using the basic state amplitudes in equations (17e)-
(17h), we obtain all possible correlation functions for the time evolving quadrature operators â1(t) ,
â2(t) and their Hermitian conjugates â†1(t) , â

†
2(t) in the final forms

⟨â1(t)|â1(t)⟩ = a∗1(t)a1(t) =
1

4
{(|µ+|2 + ν2+)n+ (|µ−|2 + ν2−)(n+ 1)} (19b)

⟨â†1(t)|â
†
1(t)⟩ = a1(t)a∗1(t) =

1

4
{(|µ+|2 + ν2−)(n+ 1) + (|µ−|2 + ν2+)n} (19c)

⟨â†1(t)|â1(t)⟩ = a21(t) =
1

4
{µ+µ−(2n+ 1) + ν2−(n+ 1) + ν2+n}
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⟨â1(t)|â†1(t)⟩ = a∗21 (t) =
(
a21(t)

)∗
(19d)

⟨â2(t)|â2(t)⟩ = a∗2(t)a2(t) = a∗1(t)a1(t) ; ⟨â†2(t)|â
†
2(t)⟩ = a2(t)a∗2(t) = a1(t)a∗1(t) (19e)

⟨â†2(t)|â2(t)⟩ = a22(t) = a21(t) ; ⟨â2(t)|â†2(t)⟩ = a∗22 (t) =
(
a22(t)

)∗
(19f)

⟨â1(t)|â2(t)⟩ = a∗1(t)a2(t) =
i

4
; ⟨â2(t)|â1(t)⟩ = a∗2(t)a1(t) =

(
a∗1(t)a2(t)

)∗
= − i

4
(19g)

⟨â1(t)|â†2(t)⟩ = a∗1(t)a
∗
2(t) =

i

4
{µ∗

+µ
∗
− + ν2+n− ν2−(n+ 1)}

⟨â†2(t)|â1(t)⟩ = a2(t)a1(t) =
(
a∗1(t)a

∗
2(t)

)∗
(19h)

⟨â†1(t)|â2(t)⟩ = a1(t)a2(t) = − a2(t)a1(t) ; ⟨â2(t)|â†1(t)⟩ = a∗2(t)a
∗
1(t) = − a∗1(t)a

∗
2(t) (19i)

⟨â†1(t)|â
†
2(t)⟩ = a1(t)a∗2(t) =

i

4
{((|µ+|2 − ν2−)(n+ 1)− (|µ−|2 − ν2+)n} (19j)

⟨â†2(t)|â
†
1(t)⟩ = a2(t)a∗1(t) =

(
a1(t)a∗2(t)

)∗
(19k)

We notice that, according to equations (19a), (19d) and (19f), the uncertainties in the quadratures,
∆a1(t) , ∆a2(t) are equal, but complex and would pose problems in experimental measurements. This
is in great contrast to the familiar case of the semiclassical model where the uncertainties are real,
but the uncertainty in one quadrature component grows exponentially, while the uncertainty in the
other quadrature component decays exponentially [1 , 6] as demonstrated in section 5 below.

3.3 Hermitian quadrature components: fluctuations, squeezing and fun-
damental quantum noise

For purposes of experimental measurements and practical applications, we introduce Hermitian com-
ponents X̂1(t) , Ŷ1(t) and X̂2(t) , Ŷ2(t) of the time evolving quadrature operators â1(t) , â2(t) according
to

X̂1(t) =
1

2
(â1(t) + â†1(t)) ; Ŷ1(t) = − i

2
(â1(t)− â†1(t)) (20a)

X̂2(t) =
1

2
(â2(t) + â†2(t)) ; Ŷ2(t) = − i

2
(â2(t)− â†2(t)) (20b)

It is easy to confirm that these Hermitian quadrature components are expressible in terms of the
Hermitian components of b̂+(t) and b̂−(t) defined within the frequency channels in equations (11h)-
(11i), e.g., X̂1(t) =

1
2
(x̂+(t) + x̂−(t)).

We obtain the time evolving Hermitian quadrature operator state amplitudes |X̂1(t)⟩ , |Ŷ1(t)⟩ ,
|X̂2(t)⟩ , |Ŷ2(t)⟩ together with their corresponding Hermitian conjugates, evolving from the initial
Fock state amplitude |ψ(0)⟩ = |Nn⟩ in the form

|X̂1(t)⟩ = X̂1(t)|Nn⟩ =
1

2
(|â1(t)⟩+ |â†1(t)⟩) ; ⟨X̂1(t)| = ⟨nN |X̂1(t) =

1

2
(⟨â1(t)|+ ⟨â†1(t)|) (21a)
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|Ŷ1(t)⟩ = Ŷ1(t)|Nn⟩ = − i

2
(|â1(t)⟩ − |â†1(t)⟩) ; ⟨Ŷ1(t)| = ⟨nN |Ŷ1(t) =

i

2
(⟨â1(t)| − ⟨â†1(t)|) (21b)

|X̂2(t)⟩ = X̂2(t)|Nn⟩ =
1

2
(|â2(t)⟩+ |â†2(t)⟩) ; ⟨X̂2(t)| = ⟨nN |X̂2(t) =

1

2
(⟨â2(t)|+ ⟨â†2(t)|) (21c)

|Ŷ2(t)⟩ = Ŷ2(t)|Nn⟩ = − i

2
(|â2(t)⟩− |â†2(t)⟩) ; ⟨Ŷ2(t)| = ⟨nN |Ŷ2(t) =

i

2
(⟨â2(t)| − ⟨â†2(t)|) (21d)

where the quadrature operator state amplitudes |â1(t)⟩ , |â†1(t)⟩ , |â2(t)⟩ , |â†2(t)⟩ are defined in the
set of equations (17a)-(17h).

The mean values of the time evolving Hermitian quadrature components are obtained as over-
laps of the initial state amplitude |Nn⟩ with the time evolving Hermitian quadrature operator state
amplitudes |X̂1(t)⟩ , |Ŷ1(t)⟩ , |X̂2(t)⟩ , |Ŷ2(t)⟩ defined in equations (21a)-(21d) according to

X1(t) = ⟨nN |X̂1(t)⟩ ; Y 1(t) = ⟨nN |Ŷ1(t)⟩ ; X1(t) = ⟨nN |X̂1(t)⟩ ; Y 1(t) = ⟨nN |Ŷ1(t)⟩
(22a)

while the second moments (auto-correlations) of X̂1(t) , Ŷ1(t) , X̂2(t) , Ŷ2(t) are obtained as overlaps
of the respective state amplitudes |X̂1(t)⟩ , |Ŷ1(t)⟩ , |X̂2(t)⟩ , |Ŷ2(t)⟩ according to

X2
1 (t) = ⟨X̂1(t)|X̂1(t)⟩ =

1

4
(⟨â1(t)|â1(t)⟩+ ⟨â†1(t)|â

†
1(t)⟩+ ⟨â1(t)|â†1(t)⟩+ ⟨â†1(t)|â1(t)⟩) (22b)

Y 2
1 (t) = ⟨Ŷ1(t)|Ŷ1(t)⟩ =

1

4
(⟨â1(t)|â1(t)⟩+ ⟨â†1(t)|â

†
1(t)⟩ − ⟨â1(t)|â†1(t)⟩ − ⟨â†1(t)|â1(t)⟩) (22c)

X2
2 (t) = ⟨X̂2(t)|X̂2(t)⟩ =

1

4
(⟨â2(t)|â2(t)⟩+ ⟨â†2(t)|â

†
2(t)⟩+ ⟨â2(t)|â†2(t)⟩+ ⟨â†2(t)|â2(t)⟩) (22d)

Y 2
2 (t) = ⟨Ŷ2(t)|Ŷ2(t)⟩ =

1

4
(⟨â2(t)|â2(t)⟩+ ⟨â†2(t)|â

†
2(t)⟩ − ⟨â2(t)|â†2(t)⟩ − ⟨â†2(t)|â2(t)⟩) (22e)

Substituting the explicit forms of |ϕ+(t)⟩ , |ϕ−(t)⟩ , |ϕ∗
+(t)⟩ , |ϕ∗

−(t)⟩ from equations (17e)-(17h) into
equation (17b), then using the results in equations (21a)-(21d) and (22a) provides the mean values as

X1(t) = 0 ; Y 1(t) = 0 ; X2(t) = 0 ; Y 2(t) = 0 (23a)

and the second moments as

X2
1 (t) = X2

2 (t) =
1

16
{(

∣∣∣µ+(t) + µ∗
−(t)

∣∣∣2)(2n+ 1) + 4ν2−(t)(n+ 1) + 4ν2+(t)n} (23b)

Y 2
1 (t) = Y 2

2 (t) =
1

16

∣∣∣µ+(t)− µ∗
−(t)

∣∣∣2(2n+ 1) (23c)

The fluctuations in the Hermitian time evolving quadrature components are obtained as overlaps of the
respective fluctuation state amplitudes |∆X̂1(t)⟩ = |X̂1(t)⟩ , |∆Ŷ1(t)⟩ = |Ŷ1(t)⟩ , |∆X̂1(t)⟩ = |X̂1(t)⟩
, |∆Ŷ1(t)⟩ = |Ŷ1(t)⟩ in the form

(∆Qj(t))
2 = ⟨∆Q̂j(t)|∆Q̂j(t)⟩ = Q2

j(t) ; Q = X,Y ; j = 1, 2 (23d)

which on using the results obtained in equations (23b)-(23c) take the final form

(∆X1(t))
2 = (∆X2(t))

2 =
1

16
{(

∣∣∣µ+(t) + µ∗
−(t)

∣∣∣2)(2n+ 1) + 4ν2−(t)(n+ 1) + 4ν2+(t)n} (23e)
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(∆Y 1(t))
2 = (∆Y 2(t))

2 =
1

16

∣∣∣µ+(t)− µ∗
−(t)

∣∣∣2(2n+ 1) (23f)

Comparing the results gives the inequalities

∆Y 1(t) < ∆X1(t) ; ∆Y 2(t) < ∆X2(t) (23g)

which shows that the fluctuations in the Hermitian quadrature components Ŷ1(t) , Ŷ2(t) are generally
less than the fluctuations in the corresponding Hermitian quadrature component X̂1(t) , X̂2(t). This
reveals the squeezing property of the fully quantized parametric amplification process.

A very important feature which emerges here is that the fluctuations ∆Y 1(t) , ∆Y 2(t) in the
imaginary parts Ŷ1(t) , Ŷ2(t) of the time evolving quadrature operators obtained in equation (27f)
constitute fundamental quadrature quantum noise spectrum qn(t) expressed in the form

(∆Y 1(t))
2 = (∆Y 2(t))

2 =
1

4
qn(t) (23h)

where the fundamental quadrature quantum noise spectrum qn(t) is obtained as

qn(t) =
1

4

∣∣∣µ+(t)− µ∗
−(t)

∣∣∣2(2n+ 1) ; n = 0, 1, 2, 3, ..... (23i)

It is easy to confirm that this noise spectrum vanishes at initial time t = 0 when µ+(0) = µ∗
−(0) = 1.

We demonstrate in section 5 that qn(t) vanishes in the semiclassical model of the degenerate parametric
amplification process. It is therefore an effect of the full quantum interaction.

The squeezing behavior displayed in equations (23e)-(23g) in the general squeezed Fock state in
the full quantum model are specified by two different quantized Rabi frequencies R , R, defining two
competing quantized squeezing parameters r+(t) = Rt , r−(t) = Rt. The general form of this full
quantum squeezing action is different from the squeezing behavior in the semiclassical model in which
the quadrature fluctuations either grow or decay exponentially, specified by a single Rabi frequency R
and a single squeezing parameter r(t) [1 , 6]. We compare the full quantum and semiclassical models
in section 5 below.

3.4 Heisenberg uncertainty relations and fundamental quantum noise in
Hermitian quadrature correlations

The Heisenberg uncertainty principle imposes constraints on how quantum noise or fluctuations af-
fect the accuracy of simultaneous measurements of mean values of quantum operators in a specified
quantum state at any time. For Hermitian operators Â(t) , B̂(t) with state amplitudes |Â(t)⟩ , |B̂(t)⟩
representing the time evolving Hermitian quadrature components defined above, the Heisenberg un-
certainty principle governing the measurements of the mean values of Â(t) and B̂(t) in an initial state
|Nn⟩ is obtained in the mathematical form

∆A(t)∆B(t) ≥ 1

2

∣∣∣⟨nN | [Â(t), B̂(t)] |Nn⟩
∣∣∣ (24a)

where ⟨nN | [Â(t), B̂(t)] |Nn⟩ is the mean value of the commutation bracket of the operators Â(t) ,
B̂(t) in the initial state |Nn⟩.

Since the commutation bracket provides a measure of the correlation of the Hermitian quadrature
operators, i.e., whether or not the operators Â(t) , B̂(t) are independent of each other, we consider it
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best to use the cross-correlation functions obtained as appropriate overlaps of the time evolving oper-
ator state amplitudes |Â(t)⟩ , |B̂(t)⟩ to determine the mean value of the corresponding commutation
bracket. The overlaps of the Hermitian operator state amplitudes

|Â(t)⟩ = Â(t)|Nn⟩ ; |B̂(t)⟩ = B̂(t)|Nn⟩ (24b)

provides the cross-correlation functions in the form

A(t)B(t)−B(t)A(t) = ⟨Â(t)|B̂(t)⟩ − ⟨B̂(t)|Â(t)⟩ = ⟨nN |
(
Â(t)B̂(t)− B̂(t)Â(t)

)
|Nn⟩ (24c)

which provides the general relation between cross-correlation function and the mean commutation
bracket in the form

A(t)B(t)−B(t)A(t) = ⟨nN | [Â(t) , B̂(t)] |Nn⟩ (24d)

We substitute equation (24d) into equation (24a) to obtain the Heisenberg uncertainty relation in
terms of the cross-correlation functions as

∆A(t)∆B(t) ≥ 1

2

∣∣∣A(t)B(t)−B(t)A(t)
∣∣∣ (24e)

For the Hermitian quadrature components Â(t), B̂(t) = X̂1(t), Ŷ1(t), X̂2(t), Ŷ2(t), we obtain

X1(t)Y1(t)− Y1(t)X1(t) = ⟨X̂1(t)|Ŷ1(t)⟩ − ⟨Ŷ1(t)|X̂1(t)⟩ = ⟨nN | [X̂1(t), Ŷ1(t)] |Nn⟩ (25a)

X2(t)Y2(t)− Y2(t)X2(t) = ⟨X̂2(t)|Ŷ2(t)⟩ − ⟨Ŷ2(t)|X̂2(t)⟩ = ⟨nN | [X̂2(t), Ŷ2(t)] |Nn⟩ (25b)

X1(t)Y2(t)− Y2(t)X1(t) = ⟨X̂1(t)|Ŷ2(t)⟩ − ⟨Ŷ2(t)|X̂1(t)⟩ = ⟨nN | [X̂1(t), Ŷ2(t)] |Nn⟩ (25c)

Y1(t)X2(t)−X2(t)Y1(t) = ⟨Ŷ1(t)|X̂2(t)⟩ − ⟨X̂2(t)|Ŷ1(t)⟩ = ⟨nN | [Ŷ1(t), X̂2(t)] |Nn⟩ (25d)

X1(t)X2(t)−X2(t)X1(t) = ⟨X̂1(t)|X̂2(t)⟩ − ⟨X̂2(t)|X̂1(t)⟩ = ⟨nN | [X̂1(t), X̂2(t)] |Nn⟩ (25e)

Y1(t)Y2(t)− Y2(t)Y1(t) = ⟨Ŷ1(t)|Ŷ2(t)⟩ − ⟨Ŷ2(t)|Ŷ1(t)⟩ = ⟨nN | [Ŷ1(t), Ŷ2(t)] |Nn⟩ (25f)

Taking the overlaps of the time evolving Hermitian quadrature state amplitudes from equations (21a)-
(21d) and using the explicit expressions for the quadrature correlation functions obtained in equations
(19b)-(19k) provides the explicit forms of the cross-correlation functions, which we substitute into
equations (25a)-(25f) to obtain the corresponding mean commutation brackets in the final forms

⟨nN | [X̂1(t), Ŷ1(t)] |Nn⟩ = ⟨nN | [X̂2(t), Ŷ2(t)] |Nn⟩ =
i

2
q(t) (26a)

⟨nN | [X̂1(t), Ŷ2(t)] |Nn⟩ = ⟨nN | [Ŷ1(t), X̂2(t)] |Nn⟩ = 0 (26b)

⟨nN | [X̂1(t), X̂2(t)] |Nn⟩ = ⟨nN | [Ŷ1(t), Ŷ2(t)] |Nn⟩ =
i

2
(1 + q12(t)) (26c)

which we substitute into equation (24a) for Â(t), B̂(t) = X̂1(t), Ŷ1(t), X̂2(t), Ŷ2(t) as appropriate to
obtain Heisenberg’s uncertainty relations as the set of inequalities

∆X1(t)∆Y 1(t) = ∆X2(t)∆Y 2(t) ≥
1

4
q(t) (26d)

∆X1(t)∆Y 2(t) = ∆Y 1(t)∆X2(t) ≥ 0 (26e)
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∆X1(t)∆X2(t) = ∆Y 1(t)∆Y 2(t) ≥
1

4

∣∣∣1 + q12(t)
∣∣∣ (26f)

where we have identified fundamental quadrature correlation quantum noise q(t) and q12(t) obtained
as

q11(t) = q22(t) = q(t) : q(t) =
1

4

(
|µ+(t)|2 − |µ−(t)|2

)
(26g)

q12(t) =
1

4

{
|µ+(t)|2 + µ+(t)µ−(t) + µ∗

+(t)µ
∗
−(t)− 3ν2−(t)− 3 + (|µ+(t)|2 − |µ−(t)|2 + 3ν2+(t)− 3ν2−(t))n

}
(26h)

We observe that in equation (30c), we have added and subtracted 3 to obtain the final result with
q12(t) in the form in equation (30h).

The results we have obtained in equations (26a)-(26h) are very important for physical interpre-
tation of the dynamics of the fully quantized degenerate parametric amplification process. The full
quantum interaction generates fundamental quantum noise q(t) , q12(t), which affect the process of
quadrature measurements according to the uncertainty relations in equations (26d) and (26f). We
observe that the fundamental quantum noise arises as pure quantum fluctuation effects.

The vanishing of the mean value of the commutation brackets in equation (26b) means that the
Hermitian quadrature pairs (X̂1(t), Ŷ2(t)) and (Ŷ1(t), X̂2(t)) are independent. Measurements on X̂1(t)
and Ŷ2(t) can be performed simultaneously. Similarly, measurements on Ŷ1(t) and X̂2(t)) can be
performed simultaneously. The Hermitian quadrature pairs (X̂1(t), Ŷ2(t)) and (Ŷ1(t), X̂2(t)) can be
interpreted as the effective EPR pairs arising through the full quantum interaction in a degenerate
parametric amplification process. Since the Hermitian operators Ŷ1 and Ŷ2 emerging as the imaginary
parts of the time evolving quadrature components â1(t) and â2(t) according to equations (20a)-(20b)
are purely quantum operators, their fluctuations obtained in equation (23h) and their uncertainty
relations obtained in equations (26d)-(26f) are purely quantum mechanical, i.e., nonclassical. Indeed,
in the semiclassical model where the fundamental quantum noise vanishes as demonstrated in section 5
below, equation (26f) reduces to the expected quadrature uncertainty relation ∆X1(t)∆X2(t) →
∆X

sc
1 (t)∆X

sc
2 (t) ≥ 1

4
(see equation (36e) below), where sc denotes semiclassical as defined earlier.

We notice that, at initial time t = 0 when the interaction just begins, the interaction variables
µ+(t), µ−(t) and ν+(t), ν−(t) in equations (13d) and (14d) take initial forms

t = 0 : µ+(0) = µ∗
−(0) = 1 , ν+(0) = ν−(0) = 0 (27a)

which we use in equations (23i) , (26g) , (26h) to obtain

t = 0 : qn(0) = 0 ; q(0) = 0 ; q12(t) = 0 (27b)

This shows that the fundamental quadrature and quadrature correlation quantum noise do not exist
at the beginning, but arise only in the course of the full quantum interaction.

4 Time evolution of the initial number operator

We now consider the time evolution of the initial signal-idler photon number operator under the
quantum squeezing operator U(t). Given the initial photon number operator

n̂ = â†â (28a)

19



we obtain the time evolving number operator n̂(t) according to

n̂(t) = U †(t)â†âU(t) = U †(t)â†U(t)U †(t)âU(t) (28b)

in the final form
n̂(t) = b̂−(t)b̂+(t) (28c)

This is complex and has Hermitian conjugate

n̂†(t) = b̂†+(t)b̂
†
−(t) (28d)

These are decomposed into eigen and fluctuation components in the form

n̂(t) = n̂(t) + ∆n̂(t) ; n̂(t) = µ̂−µ̂+â
†â+ ν̂−ν̂+ââ

† ; ∆n̂(t) = µ̂−ν̂+â
†2 + ν̂−µ̂+â

2 (28e)

n̂†(t) = n̂
†
(t) + ∆n̂†(t) ; n̂

†
(t) = µ̂†

+µ̂
†
−â

†â+ ν̂†+ν̂
†
−ââ

† ; ∆n̂†(t) = µ̂†
+ν̂

†
−â

†2 + ν̂†+µ̂
†
−â

2 (28f)

The time evolving number state amplitude |n̂(t)⟩ and its dual |n̂†(t)⟩ are then easily obtained as

|n̂(t)⟩ = n(t)|Nn⟩+ |∆n̂(t)⟩ ; |n̂†(t)⟩ = n∗(t)|Nn⟩+ |∆n̂†(t)⟩ (29a)

where the eigen and fluctuation state amplitudes are obtained according to

n̂(t)|Nn⟩ = n(t)|Nn⟩ ; ∆n̂(t)|Nn⟩ = |∆n̂(t)⟩ (29b)

n̂
†
(t)|Nn⟩ = n∗(t)|Nn⟩ ; ∆n̂†(t)|Nn⟩ = |∆n̂†(t)⟩ (29c)

The mean values n(t) , n∗(t) and the number fluctuation state amplitudes |∆n̂(t)⟩ , |∆n̂†(t)⟩ have
been obtained in explicit forms

n(t) = µ+µ−n+ ν2−(n+ 1) ; n∗(t) = µ∗
+µ

∗
−n+ ν2−(n+ 1) (29d)

|∆n̂(t)⟩ = µ+ν+
√
n(n− 1)|

N∏
j=1

(nj + 1)(n− 2)⟩+ µ̃−ν−
√
(n+ 1)(n+ 2)|

N∏
j=1

(nj − 1)(n+ 2)⟩ (29e)

|∆n̂†(t)⟩ = µ∗
−ν+

√
n(n− 1)|

N∏
j=1

(nj + 1)(n− 2)⟩+ µ∗
+ν−

√
(n+ 1)(n+ 2)|

N∏
j=1

(nj − 1)(n+ 2)⟩ (29f)

where in the evaluation of µ̂†
+(t)|

∏N
j=1(nj +1)⟩ and µ̂†

−(t)|
∏N

j=1(nj − 1)⟩ according to equations (13b)-
(13c) with nj → nj ± 1, we have obtained

µ̄+(t) = cosh(R̄t) + i
δ

R̄
sinh(R̄t) ; R̄ = g

√
N̄ − k2 ; N̄ =

N̄∏
j=1

(nj + 2) (29g)

µ̃−(t) = cosh(R̃t)− i
δ

R̃
sinh(R̃t) ; R̃ = g

√
Ñ − k2 ; Ñ =

N̄∏
j=1

(nj − 1) (29h)

The Hermitian conjugates of the number state amplitudes are obtained as

⟨n̂(t)| = ⟨nN |n̂†(t) ; ⟨n̂†(t)| = ⟨nN |n̂(t) (29i)
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The fluctuations in the time evolving signal-idler photon numbers are easily obtained as the overlaps
of the number fluctuation state amplitudes |∆n̂(t)⟩ , |∆n̂†(t)⟩ in the form

( ∆n∗(t)n(t) )2 = ⟨∆n̂(t)|∆n̂(t)⟩ ; ( ∆n(t)n∗(t) )2 = ⟨∆n̂†(t)|∆n̂†(t)⟩ (30a)

( ∆n(t) )2 = ⟨∆n̂†(t)|∆n̂(t)⟩ ; ( ∆n∗(t) )2 = ⟨∆n̂(t)|∆n̂†(t)⟩ (30b)

which on substituting the explicit forms of the squeezed number fluctuation state amplitudes from
equations (29c)-(29d), together with their Hermitian conjugates take the final forms

( ∆n∗(t)n(t) )2 = |µ+|2ν2+n(n− 1) + |µ̃−|2ν2−(n+ 1)(n+ 2) (30c)

( ∆n(t)n∗(t) )2 = |µ−|2ν2+n(n− 1) + |µ+|2ν2−(n+ 1)(n+ 2) (30d)

( ∆n(t) )2 = µ+µ−ν
2
+n(n− 1) + µ+µ̃−ν

2
−(n+ 1)(n+ 2) (30e)

( ∆n∗(t) )2 = µ∗
+µ

∗
−ν

2
+n(n− 1) + µ∗

+µ̃
∗
−ν

2
−(n+ 1)(n+ 2) (30f)

We notice that only the conjugate cross-correlation fluctuations in equations (30c)-(30d) are real,
while the number fluctuations in equations (30e)-(30f) are complex, which would pose problems in
direct number measurements.

4.1 Hermitian time evolved number components: fluctuations and fun-
damental number quantum noise

For experimental measurements and practical applications, it is necessary to introduce Hermitian
components r̂(t) , ŝ(t), of the time evolving number operator defined by

r̂(t) =
1

2
(n̂(t) + n̂†(t)) ; ŝ(t) = − i

2
(n̂(t)− n̂†(t)) (31a)

which we can decompose into eigen and fluctuation components

r̂(t) = r̂(t) + ∆r̂(t) ; r̂(t) =
1

2
(n̂(t) + n̂

†
(t)) ; ∆r̂(t) =

1

2
(∆n̂(t) + ∆n̂†(t)) (31b)

ŝ(t) = ŝ(t) + ∆ŝ(t) ; ŝ(t) = − i

2
(n̂(t)− n̂

†
(t)) ; ∆ŝ(t) = − i

2
(∆n̂(t)−∆n̂†(t)) (31c)

The corresponding state amplitudes starting from an initial Fock state amplitudes

|r̂(t)⟩ = 1

2
(|n̂(t)⟩+ |n̂†(t)⟩) ; |ŝ(t)⟩ = − i

2
(|n̂(t)⟩ − |n̂†(t)⟩) (31d)

with Hermitian conjugates

|r̂(t)⟩ = r̂(t)|Nn⟩ , ⟨r̂(t)| = ⟨nN |r̂(t) ; |ŝ(t)⟩ = ŝ(t)|Nn⟩ , ⟨ŝ(t)| = ⟨nN |ŝ(t) (31e)

are obtained using equation (29a) in the form

|r̂(t)⟩ = r(t)|Nn⟩+ |∆r̂(t)⟩ ; |ŝ(t)⟩ = s(t)|Nn⟩+ |∆ŝ(t)⟩ (31f)

where the mean values r(t) , s(t) and fluctuation state amplitudes |∆r̂(t)⟩ , |∆ŝ(t)⟩ have been obtained
as

r(t) =
1

2
(n(t) + n∗(t)) ; s(t) = − i

2
(n(t)− n∗(t)) (31g)
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|∆r̂(t)⟩ = 1

2
(|∆n̂(t)⟩+ |∆n̂†(t)⟩) ; |∆ŝ(t)⟩ = − i

2
(|∆n̂(t)⟩ − |∆n̂†(t)⟩) (31h)

Fluctuations in the measurements of the mean values of the Hermitian number components are
obtained as the overlaps of the corresponding fluctuation state amplitudes according to

( ∆r(t) )2 = ⟨∆r̂(t)|∆r̂(t)⟩ ; ( ∆s(t) )2 = ⟨∆ŝ(t)|∆ŝ(t)⟩ (32a)

which on using equation (31d) together with its Hermitian conjugate take the form

( ∆r(t) )2 =
1

4
{(⟨∆n̂(t)|∆n̂(t)⟩+ ⟨∆n̂†(t)|∆n̂†(t)⟩) + (⟨∆n̂†(t)|∆n̂(t)⟩+ ⟨∆n̂(t)|∆n̂†(t)⟩)} (32b)

( ∆s(t) )2 =
1

4
{(⟨∆n̂(t)|∆n̂(t)⟩+ ⟨∆n̂†(t)|∆n̂†(t)⟩)− (⟨∆n̂†(t)|∆n̂(t)⟩+ ⟨∆n̂(t)|∆n̂†(t)⟩)} (32c)

Noting the definitions given in equations (30a)-(30b) and substituting the results from equations
(30c)-(30f) into equations (32b)-(32c), we obtain the fluctuations in explicit form

( ∆r(t) )2 =
1

4
{|µ+ + µ∗

−|2ν2+n(n− 1) + |µ+ + µ̃∗
−|2ν2−(n+ 1)(n+ 2)} (32d)

( ∆s(t) )2 =
1

4
{|µ+ − µ∗

−|2ν2+n(n− 1) + |µ+ − µ̃∗
−|2ν2−(n+ 1)(n+ 2)} (32e)

Comparing equations (32d) and (32e) gives the inequality

( ∆s(t) )2 < ( ∆r(t) )2 (32f)

which reveals the expected squeezing phenomenon.
We notice that the fluctuations ∆s(t) of the imaginary part obtained in equation (32e) constitute

fundamental number quantum noise spectrum Ñn(t) expressed in the form

( ∆s(t) )2 = Ñn(t) (32g)

where the fundamental number quantum noise is obtained as

Ñn(t) =
1

4
{|µ+ − µ∗

−|2ν2+n(n− 1) + |µ+ − µ̃∗
−|2ν2−(n+ 1)(n+ 2)} ; n = 0, 1, 2, 3, .... (32h)

We demonstrate in section 5 below that this fundamental number quantum noise spectrum, which
arises as an effect of the full quantum interaction, vanishes both at initial time t = 0 and in the
semiclassical model of the degenerate parametric amplification process. We observe that ŝ(t) is a
purely quantum Hermitian component of the complex time evolving number operator, which vanishes
both at initial time and in the semiclassical model where the number operator is real, having only the
real part and a null imaginary part.

4.2 Heisenberg uncertainty relations and fundamental number correla-
tion quantum noise

The cross-correlation functions of the Hermitian number operator components r̂(t) , ŝ(t) are obtained
as overlaps of the corresponding number operator state amplitudes defined in equations (31d)-(31f)
according to

r(t)s(t) = ⟨r̂(t)|ŝ(t)⟩ = r(t)s(t) + ⟨∆r̂(t)|∆ŝ(t)⟩ ; s(t)r(t) = ⟨ŝ(t)|r̂(t)⟩ = s(t)r(t) + ⟨∆ŝ(t)|∆r̂(t)⟩
(33a)
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with corresponding fluctuations following easily in the form

( ∆r(t)s(t) )2 = ⟨∆r̂(t)|∆ŝ(t)⟩ ; ( ∆s(t)r(t) )2 = ⟨∆ŝ(t)|∆r̂(t)⟩ (33b)

which on using equation (31e) take the form

( ∆r(t)s(t) )2 = − i

4
{(⟨∆n̂(t)|∆n̂(t)⟩−⟨∆n̂†(t)|∆n̂†(t)⟩)+(⟨∆n̂†(t)|∆n̂(t)⟩−⟨∆n̂(t)|∆n̂†(t)⟩)} (33c)

( ∆s(t)r(t) )2 =
i

4
{(⟨∆n̂(t)|∆n̂(t)⟩− ⟨∆n̂†(t)|∆n̂†(t)⟩)− (⟨∆n̂†(t)|∆n̂(t)⟩− ⟨∆n̂(t)|∆n̂†(t)⟩)}) (33d)

We notice that
| ( ∆s(t)r(t) )2 | < | ( ∆r(t)s(t) )2 | (33e)

which again reveals a squeezing phenomenon. The explicit forms are obtained using results presented
in equations (30a)-(30f).

We use equations (33a)-(33b) to obtain the cross-correlation function relation

r(t)s(t)− s(t)r(t) = ⟨∆r̂(t)|∆ŝ(t)⟩ − ⟨∆ŝ(t)|∆r̂(t)⟩ = ( ∆r(t)s(t) )2 − ( ∆s(t)r(t) )2 (34a)

which we substitute into the general form of the Heisenberg uncertainty relation in equation (24e) for
Â(t) = r̂(s) , B̂(t) = ŝ(s) to the Hermitian number cross-correlation uncertainty inequality

( ∆r(t) )2( ∆s(t) )2 ≥ 1

4

∣∣∣ ( ∆r(t)s(t) )2 − ( ∆s(t)r(t) )2
∣∣∣2 (34b)

We use equations (33c)-(33d) to obtain

( ∆r(t)s(t) )2 − ( ∆s(t)r(t) )2 = − i

2
(⟨∆n̂(t)|∆n̂(t)⟩ − ⟨∆n̂†(t)|∆n̂†(t)⟩) (34c)

which on using the definitions and results from equations (30a) , (30c) and (30d) takes the explicit
form

( ∆r(t)s(t) )2−( ∆s(t)r(t) )2 = − i

2
{(|µ+|2−|µ−|2)ν2+n(n−1)+(|µ−|2−|µ+|2)ν2−(n+1)(n+2)} (34d)

which we substitute into equation (34e) to obtain the uncertainty relation in the final form

( ∆r(t) )2( ∆s(t) )2 ≥ 1

16

∣∣∣ {(|µ+|2 − |µ−|2)ν2+n(n− 1) + (|µ̃−|2 − |µ+|2)ν2−(n+ 1)(n+ 2)}
∣∣∣2 (34e)

We express this as

( ∆r(t) )2( ∆s(t) )2 ≥
∣∣∣Ñ rs

n (t)
∣∣∣2 (34f)

after introducing fundamental number correlation quantum noise Ñ rs
n (t) obtained as

Ñ rs
n (t) =

1

4
{(|µ+|2 − |µ−|2)ν2+n(n− 1) + (|µ̃−|2 − |µ+|2)ν2−(n+ 1)(n+ 2)} (34g)

Since ŝ(t) as defined in equation (31a) is a purely quantum Hermitian operator and its fluctuation
∆s(t) is therefore a purely quantum fluctuation, which vanishes in the semiclassical model, we conclude
that the signal-idler photon number uncertainty relation in equation (34f) is a fundamental quantum
mechanical uncertainty relation (i.e., nonclassical uncertainty relation) characterizing the general
dynamics of a degenerate parametric amplification process generated by quantized multi-mode pump
photons as specified in the Hamiltonian H in equation (1a).
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5 Comparison with the semiclassical model

To establish that the fundamental quantum noise is a purely quantum effect, we consider its value in
the most commonly applied semiclassical model of the degenerate parametric amplification process.
In the semiclassical model (or parametric approximation), it is assumed that the pump photons are
generated by very high intensity laser sources such that the pump annihilation and creation operators
in the Hamiltonian H in equation (1a) are replaced by c-numbers αj , α

∗
j , according to

âj ≡ αj , â†j ≡ α∗
j ; f̂ ≡

N̄∏
j=1

αj = α , f̂ † ≡ α∗ (35a)

N+ = N− = |α|2 ; R = R = R̃ = R̃ = R̄ = g
√
|α|2 − k2 (35b)

Rt = Rt = R̃t = R̃t = R̄t ⇒ µ+(t) = µ∗
−(t) = µ+ = µ̃∗

− = µ(t) ; ν+(t) = ν−(t) = ν(t) (35c)

which show that in the semiclassical model, there is only one Rabi frequency R̄ so that the resulting
time evolving quadrature operators remain real and therefore have null imaginary parts.

The general calculations give
|ψsc(t)⟩ = U sc(t)|ψ(0)⟩ (35d)

where |ψ(0)⟩ is the initial state amplitude and U sc(t) is the semiclassical time evolution operator
obtained as

U sc(t) = e−
i
h̄
H0tŜsc(α) ; Ŝsc(α) = et{−iδ â†â+ 1

2
g(αâ†2−α∗â2)} (35e)

b̂sc+ (t) = â(t) ; b̂sc− (t) = â†(t) ; â(t) = e−
i
2
Ωt(µ(t)â+ ν(t)â†) ; â†(t) = e

i
2
Ωt(µ∗(t)â† + ν(t)â)

(35f)

µ(t) = cosh
(
gt

√
|α|2 − k2

)
− i

k√
|α|2 − k2

sinh
(
gt

√
|α|2 − k2

)
(35g)

ν(t) =
|α|√

|α|2 − k2
sinh

(
gt

√
|α|2 − k2

)
(35h)

Substituting the semiclassical results from equation (35c) into the definition of the fundamental quan-
tum noise in Hermitian quadrature and number fluctuations and correlations in equations (23i) , (26g)
, (26h) , (32h) , (34g), respectively, and applying

|µ(t)|2 − ν2(t) = 1 ; |ν(t)|2 = ν2(t) (36a)

gives
qscn (t) = 0 ; qsc(t) = 0 ; qsc12(t) = 0 ; N sc

n (t) = 0 ; N rs:sc
n (t) = 0 (36b)

where the superscript sc denotes semiclassical model as defined earlier. According to equation (36b),
the mode of interaction within the semiclassical model does not generate fundamental quantum noise.
This confirms that the fundamental quantum noise is a purely quantum effect generated through the
full quantum interaction mechanism. In general, semiclassical interaction mechanism, which generates
only one Rabi frequency channel, cannot reveal the existence of fundamental quantum noise, just
as much as it cannot reveal the occurrence of fundamental quantum phenomena characterized as
fractional revivals or collapses and revivals demonstrated in exact calculations in fully quantized
parametric processes in [4-6] and computer simulations in earlier work cited in [4 , 5].
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The semiclassical quadrature operators are obtained as

â1(t) → X̂sc
1 (t) =

1

2
(b̂sc+ (t) + b̂sc− (t)) =

1

2
(â(t) + â†(t)) ; Ŷ sc

1 (t) = 0 (36c)

â2(t) → X̂2(t) = − i

2
(b̂sc+ (t)− b̂sc− (t)) = − i

2
(â(t)− â†(t)) ; Ŷ sc

2 (t) = 0 (36d)

where the quadrature operators Ŷ sc
1 (t) , Ŷ sc

2 (t) corresponding to the imaginary components Ŷ1(t) ,
Ŷ2(t) in equations (20a)-(20b) of the full quantum treatment vanish since the semiclassical quadrature
operators are real.

The semiclassical quadrature operators satisfy commutation and uncertainty relations in the de-
generate signal-idler photon state |n⟩

⟨n| [X̂sc
1 (t) , X̂sc

2 ] |n⟩ = i

2
; ∆X

sc
1 (t)∆X

sc
2 (t) ≥

1

4
(36e)

Comparing the semiclassical results in equation (36e) with the fully quantized results obtained in
equations (26c) and (26f) reveals that the full quantum interaction contributes additional funda-
mental quantum noise terms i

2
q12(t) and 1

4
q12(t), respectively. This has important implications for

the growing interest in practical applications of the degenerate parametric amplification (degenerate
spontaneous down-conversion) process in quantum information processing, quantum computation and
related quantum technologies. The full quantum parametric amplification process involves fundamen-
tal quantum noise state amplitudes which do not exist in the widely applied semiclassical model.

In particular, equations (36c)-(36d) show that the semiclassical quadrature operators are real so
that the imaginary components Ŷ sc

1 (t) , Ŷ sc
2 (t) vanish, while the full quantum interaction generates

purely quantum mechanical quadrature components Ŷ1(t) , Ŷ2(t) obtained as the imaginary parts of
the complex time evolving quadrature operators in equations (16c)-(16d) and (20a)-(20b). These gen-
erate purely quantum mechanical time evolving quadrature state amplitudes |Ŷ1(t)⟩ , |Ŷ2(t)⟩ defined
in equations (21b) and (21d) describing purely quantum quadrature fluctuations ∆Y 1(t) , ∆Y 2(t)
obtained in equation (23f). We identify the pure quantum quadrature fluctuations ∆Y 1(t) , ∆Y 2(t)
as fundamental quadrature quantum noise spectrum according to equations (23h)-(23i).

The basic semiclassical channel state amplitudes |ϕsc
+ (t)⟩ = b̂sc+ (t)|n⟩ , |ϕsc

− (t)⟩ = b̂sc− (t)|n⟩ and their

dual counterparts |ϕsc∗
+ (t)⟩ = b̂sc†+ (t)|n⟩ , |ϕsc∗

− (t)⟩ = b̂sc†− (t)|n⟩ are obtained using equation (35f) in the
final form

|ϕsc
+ (t)⟩ = e−

i
2
Ωt(µ(t)

√
n |n− 1⟩+ ν(t)

√
n+ 1 |n+ 1⟩) ; |ϕsc∗

− (t) = |ϕsc
+ (t)⟩ (37a)

|ϕsc
− (t)⟩ = e

i
2
Ωt(µ∗(t)

√
n+ 1 |n+ 1⟩+ ν(t)

√
n |n− 1⟩) ; |ϕsc∗

+ (t)⟩ = |ϕsc
− (t)⟩ (37b)

Notice that these can be obtained by substituting the semiclassical model variables obtained as the c-
number analogues of the quantized pump mode operators in equation (35c) and setting the pump mode
state amplitudes |N⟩ , |∏N

j=1(nj ± 1)⟩ to unity in the corresponding full quantum state amplitudes in
equations (17e)-(17h).

We observe that in the semiclassical model, the state space spanned by the basic state amplitudes
|ϕsc

+ (t)⟩ , |ϕsc
− (t)⟩ coincides with the dual state space spanned by the dual state amplitudes |ϕsc∗

+ (t) ,
|ϕsc∗

− (t)⟩ according to the state amplitude merging relations |ϕsc∗
− (t) = |ϕsc

+ (t)⟩ , |ϕsc∗
+ (t)⟩ = |ϕsc

− (t)⟩.
This means that the basic semiclassical state space can be interpreted as a degenerate 2-dimensional
Hilbert space effectively spanned by |ϕsc

+ (t)⟩ , |ϕsc
− (t)⟩. In contrast, corresponding compatible basic

state amplitude pairs (|ϕ+(t)⟩, |ϕ∗
−(t)⟩) in equations (17e) , (17h) and (|ϕ−(t)⟩, |ϕ∗

+(t)⟩) in equations
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(17f) , (17g) of the full quantum model have the same Fock state amplitudes, but different respec-
tive interaction variable pairs (µ+(t), µ

∗
−(t)) or (µ−(t), µ

∗
+(t)), since µ+(t) is defined in terms of the

quantized Rabi frequency R, while µ−(t) is defined in terms of the quantized Rabi frequency R. This
quantized Rabi frequency difference prevents the merging of the compatible full quantum state ampli-
tude pairs, i.e., µ∗

−(t) ̸= µ+(t) ⇒ |ϕ∗
−(t)⟩ ≠ |ϕ+(t)⟩ , µ∗

+(t) ̸= µ−(t) ⇒ |ϕ∗
+(t)⟩ ̸= |ϕ−(t)⟩. Hence, the

basic full quantum frequency channel state space and its dual can be interpreted as a non-degenerate
4-dimensional Hilbert space spanned by |ϕ+(t)⟩ , |ϕ−(t)⟩ , |ϕ∗

+(t)⟩ , |ϕ∗
−(t)⟩ defined in equations

(17e)-(17h). The basic full quantum state amplitudes satisfy orthogonality and non-orthogonality
relations according to equations (18a)-(18d), while the corresponding semiclassical state amplitudes
in equations (37a)-(37b) are strictly non-orthogonal according to

⟨ϕsc
+ (t)|ϕsc

− (t)⟩ = µ∗(t)ν(t)(2n+ 1) ; ⟨ϕsc
− (t)|ϕsc

+ (t)⟩ = µ(t)ν(t)(2n+ 1) (37c)

The full quantum dynamical state space is therefore larger and more general, being characterized
by both orthogonality and non-orthogonality properties. These properties of orthogonality and non-
orthogonality have important theoretical consequences, which can prove useful in practical appli-
cations of the full quantum model or semiclassical model of the parametric amplification process,
noting that orthogonality eliminates interference effects, while non-orthogonal state amplitudes con-
tribute interference terms in the evaluation of operator correlation functions as shown below in the
semiclassical model.

The semiclassical quadrature state amplitudes |X̂sc
1 (t)⟩ and |X̂sc

2 (t)⟩ are obtained as

|X̂sc
1 (t)⟩ = X̂sc

1 (t)|n⟩ = 1

2
(|ϕsc

+ (t)⟩+|ϕsc
− (t)⟩) ; |X̂sc

2 (t)⟩ = X̂sc
2 (t)|n⟩ = − i

2
(|ϕsc

+ (t)⟩−|ϕsc
− (t)⟩) (38a)

The mean values and second moments of the quadrature operators X̂sc
1 (t) and X̂sc

1 (t) are obtained as
overlaps of the corresponding state amplitudes according to

X
sc
1 (t) = ⟨n|X̂sc

1 (t)⟩ = 1

2
(⟨n|ϕsc

+ (t)⟩+⟨n|ϕsc
− (t)⟩) ; X

sc
2 (t) = ⟨n|X̂sc

2 (t)⟩ = − i

2
(⟨n|ϕsc

+ (t)⟩−⟨n|ϕsc
− (t)⟩)
(38b)

Xsc2
1 (t) = ⟨X̂sc

1 (t)|X̂sc
1 (t)⟩ = 1

4
(⟨ϕsc

+ (t)|ϕsc
+ (t)⟩+ ⟨ϕsc

− (t)|ϕsc
− (t)⟩+ ⟨ϕsc

+ (t)|ϕsc
− (t)⟩+ ⟨ϕsc

− (t)|ϕsc
+ (t)⟩) (38c)

Xsc2
2 (t) = ⟨X̂sc

2 (t)|X̂sc
2 (t)⟩ = 1

4
(⟨ϕsc

+ (t)|ϕsc
+ (t)⟩+ ⟨ϕsc

− (t)|ϕsc
− (t)⟩−⟨ϕsc

+ (t)|ϕsc
− (t)⟩−⟨ϕsc

− (t)|ϕsc
+ (t)⟩) (38d)

Substituting equations (37a)-(37b) into equations (38b)-(38d) gives final results

X
sc

1 (t) = 0 ; X
sc

2 (t) = 0 (38e)

Xsc2
1 (t) =

1

4
(|µ|2 + ν2 + µ∗ν + µν)(2n+ 1) = |µ+ ν|2(2n+ 1) (38f)

Xsc2
2 (t) =

1

4
(|µ|2 + ν2 − µ∗ν − µν)(2n+ 1) = |µ− ν|2(2n+ 1) (38g)

The quadrature fluctuations follow easily from equations (38e)-(38g) as

(∆X
sc
1 (t))

2 = |µ+ ν|2(2n+ 1) ; (∆X
sc
2 (t))

2 = |µ− ν|2(2n+ 1) (38h)

According to equations (38f)-(38h), the fluctuations ∆X
sc
1 (t) in the semiclassical quadrature X̂sc

1 (t)
are generally larger than the fluctuations ∆X

sc
2 (t) in the semiclassical quadrature X̂sc

2 (t). This is
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a general squeezing property of the semiclassical degenerate parametric amplification process. We
notice that the quadrature fluctuations obtained in equations (38f)-(38h) in the semiclassical model
correspond to the Hermitian quadrature fluctuations obtained in equations (23e)-(23f) in the full
quantum model. It is evident that the fluctuations in the full quantum model are characterized by
the different quantized Rabi frequencies R± and fundamental quantum noise spectrum qn(t) arising
as fluctuations ∆Y 1(t) , ∆Y 2(t) of the imaginary parts Ŷ1(t) , Ŷ2(t), which vanish in the semiclassical
model, while the corresponding fluctuations ∆X

sc
2 (t) in the semiclassical model are general in nature,

but do not include any fundamental quantum noise. The last two terms in the general expansions
in equations (38c)-(38d) are the interference terms arising from the non-orthogonality relations in
equation (37c). Without these interference terms, the fluctuations in the two quadratures would
be equal. It means that the squeezing property is an interference effect associated with the non-
orthogonality of the basic state amplitudes |ϕsc

+ (t)⟩, |ϕsc
− (t)⟩ which constitute the quadrature state

amplitudes defined in equation (38a).
To obtain the semiclassical squeezing property in familiar form, we consider the resonance case

δ = 0 , k = 0 ⇒ µ(t) = cosh (Rt) ; ν(t) = sinh (Rt) ; R = g|α| (39a)

which we substitute into equations (38f)-(38g) to obtain the semiclassical quadrature second moments
and fluctuations under resonance in the final form

k = 0 ⇒ (∆X
sc
1 (t))

2 = Xsc2
1 (t) =

1

4
e2Rt(2n+ 1) ; (∆X

sc
2 (t))

2 = Xsc2
2 (t) =

1

4
e−2Rt(2n+ 1)

(39b)
which show that under resonance, the fluctuations in the semiclassical quadrature X̂sc

1 (t) grow ex-
ponentially, while the fluctuations in the semiclassical quadrature X̂sc

2 (t) decay exponentially with
time for R > 0. This is the familiar squeezing property of the semiclassical degenerate parametric
amplification process [1 , 6].

For the sake of completeness, we obtain the quadrature cross-correlation functions according to

Xsc
1 (t)Xsc

2 (t) = ⟨X̂sc
1 (t)|X̂sc

2 (t)⟩ ; Xsc
2 (t)Xsc

1 (t) = ⟨X̂sc
2 (t)|X̂sc

1 (t)⟩ (39c)

which on substituting the quadrature state amplitudes defined in equation (38b) and subtracting the
results give

Xsc
1 (t)Xsc

2 (t)−Xsc
2 (t)Xsc

1 (t) = − i

2
( ⟨ϕsc

+ (t)|ϕsc
+ (t)⟩ − ⟨ϕsc

− (t)|ϕsc
− (t)⟩ ) (39d)

Using |ϕsc
+ (t)⟩, |ϕsc

− (t)⟩ from equations (37c)-(37d) and applying |µ(t)|2−ν2(t) = 1 gives the final result

Xsc
1 (t)Xsc

2 (t)−Xsc
2 (t)Xsc

1 (t) =
i

2
(39e)

which we substitute into the general uncertainty relation in equation (24e) for Â(t) = X̂sc
1 (t), B̂(t) =

X̂sc
2 (t) to obtain the expected semiclassical quadrature uncertainty relation given earlier in equation

(36e).
In the case of the time evolving number operator, we observed earlier that the imaginary part ŝ(t)

of the complex time evolving number operator is a purely quantum mechanical quadrature operator
obtained in the fully quantized degenerate parametric amplification process. According to the defi-
nition in equation (31a), the quadrature ŝ(t) has no initial time analogue, since it reduces to a null
operator at initial time t = 0 when the initial number operator is real according to

t = 0 : n̂(0) = n̂ = â†â , n̂† = n̂ ⇒ ŝ(0) = ŝ = 0 ; r̂(0) = r̂ = n̂ (40a)
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Notice that only the real part r̂(t) has an initial time analogue as established in equation (40a).
We also note that in the semiclassical degenerate parametric amplification process, the time evolv-

ing number operator n̂(t) obtained using equations (28c) and (35f) as

n̂sc(t) = b̂sc− (t)b̂
sc
+ (t) = â†(t)â(t) (40b)

remains real and therefore has a null imaginary part, i.e., ŝ(t) → ŝsc(t) = 0. The time evolving
number quadrature ŝ(t) thus arises only within the full quantum interaction model of the degenerate
parametric amplification process. All the fluctuations, cross-correlation functions and the Heisenberg
uncertainty relation involving the purely quantum operator ŝ(t) obtained in equations (32e)-(32h) ,
(33a)-(33e) , (34c)-(34g), are therefore purely quantum mechanical in nature and each can easily be
confirmed to vanish under the semiclassical mode of interaction.

6 Conclusion

In this paper, we have developed an elaborate procedure for obtaining exact analytical solutions of
the time-dependent Schroedinger equation for a fully quantized degenerate parametric amplification
process generated by quantized multi-mode pump photons. Time evolution of the signal-idler pho-
ton annihilation and creation operators governed by the general time evolution operator is obtained
through operator expansion theorem by applying an effective method of partial evaluation of com-
mutation brackets. The results reveal that the full quantum interaction destroys the degeneracy of
the initial degenerate signal-idler photon modes. Every time evolving operator of the effectively non-
degenerate signal-idler photon pair then becomes complex and can be decomposed into Hermitian
real and imaginary parts. The Hermitian imaginary parts are purely quantum operators which arise
through the full quantum interaction and do not have initial time or classical analogues. The fluctua-
tions of these purely quantum imaginary parts constitute related fundamental quantum noise, which
are generally smaller than the fluctuations of the corresponding real parts, thus displaying a squeezing
phenomenon. General fundamental quantum noise also arise through cross-correlations of the real
and imaginary parts. The cross-correlation functions have been used to derive Heisenberg uncertainty
relations in which the minimum uncertainty products are modified by corresponding cross-correlation
fundamental quantum noise. It has been demonstrated through explicit calculations that the funda-
mental quantum noise vanishes in the corresponding semiclassical model of the degenerate parametric
amplification process.
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