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Abstract

This paper provides a derivation of a unit vector specifying the tem-
poral axis of four-dimensional space-time frame as an imaginary axis in
the direction of light or general wave propagation. The basic elements
of the resulting complex four-dimensional spacetime frame are complex
four-vectors expressed in standard form as four-component quantities
specified by four unit vectors, three along space axes and one along the
imaginary temporal axis. Consistent mathematical operations with the
complex four-vectors have been developed, which provide extensions of
standard vector analysis theorems to complex four-dimensional space-
time. The general orientation of the temporal unit vector relative to
all the three mutually perpendicular spatial unit vectors leads to ap-
propriate modifications of fundamental results describing the invariant
length of the spacetime event interval, time dilation, mass increase with
speed and relativistic energy conservation law. Contravariant and co-
variant forms have been defined, providing appropriate definition of the
invariant length of a complex four-vector and appropriate definitions of
complex tensors within the complex four-dimensional spacetime frame,
thus setting a new geometrical framework for physics and mathematics.

1 Introduction

Four-dimensional space-time frame is the natural reference frame for de-
scribing the general dynamics of physical systems. Its basic elements are

∗Regular Associate, Abdus Salam ICTP: 2001-2006

1



four-vectors, which are suitable for expressing field equations and associ-
ated physical quantities in consistent forms.

An interesting point to note is that, while physicists and mathematicians
are quite comfortable using four-vectors to develop field theories and gen-
eralizations of geometry, no attempt has ever been made to identify a unit
vector to specify the temporal direction in a manner equivalent to the spec-
ification of the three space axes by corresponding unit vectors x̂, ŷ, ẑ. The
current representation of four-vectors in contravariant and covariant forms
is obviously incomplete, since a unit vector specifying the temporal axis has
not been defined.

The definition and specification of a reference frame for theoretical de-
scription and experimental verification of various features of the dynamics
of a physical system should be complete and the relative orientations of its
coordinate axes should be as general as possible. In general, each coordi-
nate axis is a vector specified by a unit vector giving its direction and a
coordinate giving its magnitude. In the current definition of the dynami-
cal spacetime reference frame, only the three spatial axes, namely x-axis,
y-axis and z-axis, have been fully defined by specifying their corresponding
unit vectors and coordinates. The temporal axis has not been fully defined
since a corresponding unit vector giving its direction has not been identified.
The current definition of the dynamical spacetime frame is therefore incom-
plete. It is important to note that the general orientation of the temporal
axis relative to the three spatial axes cannot be fixed without specifying the
temporal unit vector, contrary to the present assumption implicit in conven-
tional four-vector mathematics that the temporal axis is perpendicular to
all the three mutually perpendicular spatial axes. We observe that there is
no physically justifiable reason why a dynamical reference frame such as the
four-dimensional spacetime frame must be composed of mutually perpendic-
ular coordinate axes. We therefore propose that the relative orientations of
all the four spacetime coordinate axes should be general enough to accom-
modate as much information as possible about the dynamics of a physical
system.

The purpose of this paper is to derive and specify the temporal unit
vector to complete and generalize the specification of the dynamical four-
dimensional spacetime frame. The derivation is presented in the next sec-
tion and the appropriate definition of four-vectors, together with suitable
mathematical operations and physical consequences, are developed in the
subsequent sections.
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2 The temporal unit vector

The starting point is the realization that dynamics in a general four-dimensional
spacetime frame is governed by wave equations, which we express in the form

(− 1

c2
∂2

∂t2
+∇2)ψ = −f(r, t) (1)

where ψ(r, t) is an arbitrary function which may represent a temporal or
spatial component of a four-vector, while f(r, t) is a function representing
external sources.

In the standard Cartesian coordinate system, the spatial component of
the derivative operator ∇ is a three-component vector defined as

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ (2a)

where x̂, ŷ, ẑ are the mutually perpendicular unit vectors along the three
space directions.

The Laplacian ∇2 is then obtained as a vector dot product

∇2 = ∇ · ∇ = (
∂

∂x
x̂) · ( ∂

∂x
x̂) + (

∂

∂y
ŷ) · ( ∂

∂y
ŷ) + (

∂

∂z
ẑ) · ( ∂

∂z
ẑ) (2b)

The second order partial differential operator on the l.h.s. of of the wave
equation (1) is then expressed in the form

− 1

c2
∂2

∂t2
+∇·∇ = − 1

c2
∂2

∂t2
+(

∂

∂x
x̂) · ( ∂

∂x
x̂)+ (

∂

∂y
ŷ) · ( ∂

∂y
ŷ)+ (

∂

∂z
ẑ) · ( ∂

∂z
ẑ)

(2c)
The form in equation (2c) makes it evidently clear that some information
is missing, since the spatial component ∇2 can be expressed in vector dot
product form with the vector ∇ defined in equation (2a), while the temporal

component − 1
c2

∂2

∂t2
cannot be expressed in a similar vector dot product form

without defining and specifying a unit vector along the temporal direction.
We observe that the missing information is hidden in the speed of light

occurring in the temporal component in the form 1
c2

( or for any general
wave with phase velocity, the information is hidden in the speed occurring
in the temporal component in the form 1

v2
). This follows from the fact that

the speed c, wave number k and angular frequency ω of light are related in
the form

c =
ω

k
⇒ 1

c2
=
k2

ω2
(3a)
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Note that for a general wave characterized by a phase velocity v, the same
relation applies, i.e., v = ω

k and we can replace c with v everywhere.
We introduce the wave vector k to obtain the dot product form

k2 = k · k ⇒ 1

c2
=

k

ω
· k
ω

(3b)

Expressing the wave vector k in terms of its unit vector k̂ and wave number
k through the standard definition

k = kk̂ (3c)

we write equation (3b) in the useful form

1

c2
=
k

ω
k̂ · k

ω
k̂ (3d)

Substituting 1
c2

from equation (3d) into the temporal component, intro-
ducing the imaginary number i =

√
−1 and reintroducing the speed c by

substituting 1
c = k

ω from equation (3a), we express the temporal component
in the desired one-dimensional dot product form

− 1

c2
∂2

∂t2
= (

i

c

∂

∂t
k̂) · ( i

c

∂

∂t
k̂) (4b)

which is now consistent with the dot product forms of the spatial com-
ponents in equation (2d). This is the main result in this paper. We have
succeeded in deriving and identifying the unit wave vector k̂ as the unit vec-
tor specifying the temporal direction in four-dimensional spacetime frame.
The occurrence of the imaginary number i =

√
−1 leads to the interpreta-

tion that the temporal axis is an imaginary axis specified by the unit wave
vector k̂ defining the direction of light / wave propagation within a complex
four-dimensional spacetime frame.

2.1 The derivative four-vector

Substituting equation (4) into equation (2c) now provides the complete dot
product form obtained as

− 1

c2
∂2

∂t2
+∇2 = (

i

c

∂

∂t
k̂) · ( i

c

∂

∂t
k̂) +∇ · ∇ (5a)

The r.h.s. of equation (5a) can be expressed in vector dot product form

(
i

c

∂

∂t
k̂) · ( i

c

∂

∂t
k̂) +∇ · ∇ = (

i

c

∂

∂t
k̂+∇) · ( i

c

∂

∂t
k̂+∇) + d (5b)
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where d is a derivative operator composed of extra terms which arise if the
temporal unit vector, k̂, has general orientation not perpendicular to the
spatial unit vectors, x̂, ŷ, ẑ, thus satisfying

k̂ · x̂ ̸= 0 ; k̂ · ŷ ̸= 0 ; k̂ · ẑ ̸= 0 ⇒ d ̸= 0 (5c)

The derivative operator d vanishes in the special case where the tempo-
ral unit vector is perpendicular to all the three spatial unit vectors, thus
satisfying

k̂ · x̂ = 0 ; k̂ · ŷ = 0 ; k̂ · ẑ = 0 ⇒ d = 0 (5d)

It is then clear that the first term on the r.h.s. of equation (5b) is the
dot product of a four-component derivative vector, which we shall call the
spacetime derivative four-vector denoted by ∇⃗ taking the form

∇⃗ =
i

c

∂

∂t
k̂+∇ =

i

c

∂

∂t
k̂+

∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ (6a)

We then obtain

∇⃗ · ∇⃗ = (
i

c

∂

∂t
k̂+∇) · ( i

c

∂

∂t
k̂+∇) (6b)

which we substitute into equation (5b) to obtain

∇⃗ · ∇⃗ = −(
1

c2
∂2

∂t2
−∇2 + d) (6c)

Full expansion of ∇⃗ · ∇⃗ as defined in equation (6b), considering general ori-
entation of k̂ specified by equation (5c), provides the general form of d to be
used in equation (6c), revealing a modification of the standard d’Alembertian

operator 1
c2

∂2

∂t2
− ∇2 which is a wave propagation operator in classical and

quantum field theories. The usual form of the d’Alembertian operator is ob-
tained in the conventional four-vector mathematics based on the assumption
that the temporal and spatial axes in a spacetime frame are all mutually
perpendicular.

3 Vectors in four-dimensional spacetime

Having defined the spacetime derivative four-vector ∇⃗ in equation (6a), we
proceed to the general definition of the other physical or mathematical four-
vectors in similar form and then developing the appropriate mathematical
operations with the four-vectors in the complex four-dimensional spacetime.
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We define a general complex four-vector V⃗ in the form

V⃗ = Vkk̂+V = Vkk̂+ Vxx̂+ Vyŷ + Vz ẑ (7a)

with the imaginary temporal component Vk defined by

Vk = −icV ; V = V(t, r) (7b)

where V is a scalar quantity specifying the nature of the temporal component
of the four-vector. In general, the temporal component of each four-vector
occurs along the imaginary temporal axis, ik̂, multiplied by a factor −c,
where c is the speed of light. We observe that if we base the derivation on a
general wave equation characterized by a phase velocity v, then c would be
replaced everywhere by the speed v = |v| of the general wave. The speed
v = c then becomes specific to light or electromagnetic wave.

According to the general definition in equations (7a)-(7b), the spacetime
derivative, ∇⃗, current density, J⃗ , linear momentum, P⃗ and field potential,
A⃗, four-vectors are obtained as

V⃗ = ∇⃗ ⇒ Vk =
i

c

∂

∂t
; V = − 1

c2
∂

∂t
; V = ∇ (8a)

V⃗ = J⃗ ⇒ Vk = −icρ ; V = ρ ; V = J (8b)

V⃗ = A⃗ ⇒ Vk = −icϕ ; V = ϕ ; V = A (8c)

V⃗ = P⃗ ⇒ Vk = −imc ; V = m ; V = p (8d)

where m denotes mass.
The spacetime displacement four-vector X⃗ takes the form

X⃗ = xkk̂+ r = xkk̂+ x x̂+ y ŷ + z ẑ ; xk = −ict (8e)

while the corresponding event interval dX⃗ between two neighbouring space-
time points, takes the form

dX⃗ = dxkk̂+ dr = dxkk̂+ dx x̂+ dy ŷ + dz ẑ ; dxk = −icdt (8f)

4 Mathematical operations with four-vectors

The general four-component vector form in equation (7a) with all unit vec-
tors specified now allows us to carry out four-vector mathematical operations
in the complex spacetime frame in exactly the same manner as the standard
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mathematical operations with the familiar three-component vectors in three-
dimensional space.

In developing the mathematical operations in general form, we shall
take the temporal unit vector k̂ to be of general orientation relative to the
spatial unit vectors x̂, ŷ, ẑ, satisfying the conditions in equation (5c). We
denote four-vectors with arrows, while the three-component spatial vectors
are written in boldface as usual. We use two general four-vectors V⃗ and U⃗
defined by

V⃗ = Vk k̂+V , Vk = −icV ; U⃗ = Uk k̂+U , Uk = −ic U (9)

to develop the mathematical operations with four-vectors. The basic math-
ematical operations are essentially addition, subtraction, dot product, cross
product, divergence and curl.

4.1 Addition and subtraction

Four-vector addition and subtraction is straightforward, taking the form

W⃗ = U⃗ ± V⃗ = (Uk + Vk) k̂± (U+V) (10)

4.2 The dot product

The dot product of the four-vectors U⃗ and V⃗ is obtained as

U⃗ · V⃗ = (Uk k̂+U) · (Vk k̂+V) (11a)

which we expand term by term, maintaining the order of components in the
products and then substitute Uk = −ic U , Vk = −icV from equation (9), to
obtain the dot product in the final form

U⃗ · V⃗ = U ·V − c2 U V − ic k̂ · (U V +U V) (11b)

4.3 The cross product

The cross product of the four-vectors U⃗ and V⃗ is obtained as

U⃗ × V⃗ = (Uk k̂+U)× (Vk k̂+V) (12a)

which we expand term by term, using k̂× k̂ = 0 , U× k̂ = −k̂×U and then
substitute Uk = −ic U , Vk = −icV from equation (9) to obtain the cross
product in the final form

U⃗ × V⃗ = U×V − ic k̂× (U V −U V) (12b)
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4.4 Divergence of a four-vector

Setting U⃗ equal to the spacetime derivative four-vector ∇⃗ according to

U⃗ = ∇⃗ =
i

c

∂

∂t
k̂+∇ = −ic(− 1

c2
∂

∂t
)k̂+∇ = −ic U k̂+U (13a)

with

U = − 1

c2
∂

∂t
; U = ∇ (13b)

in the general four-vector dot product obtained in equation (11b), we obtain
the divergence of a general four-vector V⃗ in the final form

∇⃗ · V⃗ =
∂V
∂t

+∇ ·V + ik̂ · (1
c

∂V

∂t
−∇(c V)) (13c)

4.5 Curl of a four-vector

Setting U⃗ equal to the spacetime derivative four-vector ∇⃗ according to equa-
tions (13a)-(13b) in the general four-vector cross product obtained in equa-
tion (12b), we obtain the curl of a general four-vector V⃗ in the final form

∇⃗ × V⃗ = ∇×V − i(
1

c

∂V

∂t
+∇(c V))× k̂ (14)

4.6 Four-vector theorems

We now derive three theorems for four-vectors in complex four-dimensional
spacetime frame, which generalize standard vector theorems in three-dimensional
space.

4.6.1 Curl of gradient four-vector

A gradient four-vector ∇⃗ϕ generated through application of the spacetime
derivative four-vector ∇⃗ on a scalar function ϕ is obtained as

∇⃗ϕ = (
i

c

∂

∂t
k̂+∇)ϕ = −ic(− 1

c2
∂ϕ

∂t
)k̂+∇ϕ (15a)

Setting the general four-vector V⃗ equal to the gradient four-vector according
to

V⃗ = ∇⃗ϕ = −ic(− 1

c2
∂ϕ

∂t
)k̂+∇ϕ = −ic V k̂+V (15b)

with

V = − 1

c2
∂ϕ

∂t
; V = ∇ϕ (15c)
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in the general curl of a four-vector obtained in equation (14), we obtain the
curl of a gradient four-vector ∇⃗ϕ in the form

∇⃗ × ∇⃗ϕ = ∇×∇ϕ− i(
1

c

∂∇ϕ
∂t

−∇(
1

c

∂ϕ

∂t
))× k̂ (15d)

which on using the standard results

∇×∇ϕ = 0 ;
1

c

∂∇ϕ
∂t

= ∇(
1

c

∂ϕ

∂t
) (15e)

gives the final result
∇⃗ × ∇⃗ϕ = 0 (16)

This shows that the curl of a gradient four-vector vanishes. This generalizes
the corresponding vector theorem in standard three-dimensional space.

4.6.2 Divergence of curl of a four-vector

Taking the divergence of the curl of the general four-vector V⃗ in equation
(14), we obtain

∇⃗ · ∇⃗ × V⃗ = (
i

c

∂

∂t
k̂+∇) · (∇×V − i(

1

c

∂V

∂t
+∇(c V))× k̂) (17a)

which on expanding term by term becomes

∇⃗ · ∇⃗ × V⃗ =
i

c

∂

∂t
k̂ · ∇ ×V +

1

c

∂

∂t
k̂ · {(1

c

∂V

∂t
+∇(c V))× k̂}+∇ · ∇ ×V

−i∇ · {(1
c

∂V

∂t
+∇(c V))× k̂} (17b)

Applying standard vector analysis results gives

k̂ · {(1
c

∂V

∂t
+∇(c V))× k̂} = 0 ; ∇ · ∇ ×V = 0 (17c)

which we use in equation (17b) to obtain

∇⃗ · ∇⃗ × V⃗ = i{k̂ · (∇× 1

c

∂V

∂t
)−∇ · {(1

c

∂V

∂t
+∇(c V))× k̂}} (17d)

Application of standard vector identity

∇ · (Q×R) = R · (∇×Q)−Q · (∇×R) (17e)
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gives

∇·{(1
c

∂V

∂t
+∇(c V))×k̂} = k̂·(∇×(

1

c

∂V

∂t
+∇(c V)))−(

1

c

∂V

∂t
+∇(c V))·(∇×k̂)

(17f)
which on using

∇×∇(c V) = 0 ; ∇× k̂ = 0 (17g)

takes the final form

∇ · {(1
c

∂V

∂t
+∇(c V))× k̂} = k̂ · (∇× 1

c

∂V

∂t
) (17h)

Substituting equation (17h) into equation (17d) gives the final result

∇⃗ · ∇⃗ × V⃗ = 0 (18)

This shows that the divergence of curl of a four-vector vanishes. This gener-
alizes the corresponding vector theorem in standard three-dimensional space.

4.6.3 General vanishing four-vector dot product

The important identity on the vanishing of the divergence of curl of a four-
vector in equation (18) can be generalized by taking the dot product of the
four-vector U⃗ and the cross product of the four-vectors U⃗ and V⃗ which on
using the general result in equation (12b) is obtained as

U⃗ · (U⃗ × V⃗ ) = (Uk k̂+U) · (U×V + k̂× (Uk V −U Vk)) (19a)

which we expand term by term and use standard results

k̂ · {k̂× (UkV −UVk)} = 0 ; U · (U×V) = 0 (19b)

to obtain

U⃗ · (U⃗ × V⃗ ) = k̂ · (UkU×V) +U · {k̂× (Uk V −U Vk)} (19c)

Applying a vector identity

U · {k̂× (Uk V −U Vk)} = k̂ · {(Uk V −U Vk)×U} (19d)

and using
UVk ×U = VkU×U = 0 (19e)

gives
U · {k̂× (Uk V −U Vk)} = −k̂ · (Uk U×V) (19f)
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which we substitute into equation (19c) to obtain the final result

U⃗ · (U⃗ × V⃗ ) = 0 (19g)

This result generalizes the divergence of curl of a four-vector obtained in
equation (18). It is a generalization the corresponding vector theorem in
standard three-dimensional space.

The three four-vector theorems derived in equations (16) , (18) and (19g)
confirm the consistency of the definitions of the complex four-component
vectors and corresponding mathematical operations within the complex four-
dimensional spacetime frame. This means that complex four-dimensional
spacetime frame characterized by complex four-component vectors is a con-
sistent mathematical extension of the standard three-dimensional space char-
acterized by the usual three-component vectors.

5 Physical features of dynamics in the complex
spacetime frames

The identification of a temporal unit vector has led to the definition of
four-dimensional spacetime frames fully specified by unit vectors along tem-
poral and spatial coordinates. The fact that the temporal axis is imaginary
means that the basic elements of the complex four-dimensional spacetime
frame are complex four-vectors with four components, each component de-
fined along an axis specified by a unit vector as presented above. The
mathematical operations with these four-vectors follows the well developed
procedures in standard vector analysis using three-component vectors de-
fined within three-dimensional space frames. The basic mathematical op-
erations with fully specified spacetime four-vectors yields consistent results
with additional information in the imaginary parts arising as features asso-
ciated with the imaginary temporal axis. The real parts of the four-vector
dot and cross products agree with results usually obtained through conven-
tional four-vector mathematical operations. The divergence and curl of a
four-vector take interesting forms with important physical consequences as
explained below. The vanishing of the curl of a gradient four-vector and
the vanishing of the divergence of curl of a general four-vector in complex
spacetime frame is a useful extension of well established theorems derived
in standard vector analysis in three-dimensional space frame. In this sec-
tion, we study some of the physical consequences of the dynamics based on
the mathematical operations with complex four-vectors defined within the
four-dimensional spacetime frame with an imaginary temporal axis, noting
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that the four-vectors represent physical quantities which characterize the
dynamics of a system.

5.1 General field intensities in a spacetime frame

Rewriting the curl of the general four-vector V⃗ in equation (14) in the form

∇⃗ × V⃗ = ∇×V + i(−1

c

∂V

∂t
−∇(c V))× k̂ (20a)

we introduce general field intensities R and Q characterizing spacetime dy-
namics defined by

R = ∇×V ; Q = −∇(cV)− 1

c

∂V

∂t
(20b)

to express the curl of the general four-vector in the form

∇⃗ × V⃗ = R+ iQ× k̂ (20c)

This is an important result which shows that the curl of the general complex
four-vector V⃗ generates a general complex field intensity F taking the form

F = R+ iQ× k̂ (20d)

The general nature of the curl of a general four-vector as presented in
equations (20a)-(20d) presents important physical implications for dynamics
characterized by quantities which are generally expressed as complex four-
vectors within the complex four-dimensional spacetime frame. We illustrate
some of these consequences using electromagnetic and gravitational fields as
examples.

For dynamics in an electromagnetic field characterized by the field po-
tential four-vector, we set V⃗ = A⃗ in equations (20a)-(20d) then means that
the curl of the electromagnetic field potential four-vector generates the fa-
miliar magnetic and electric field intensities B and E obtained by setting
R = B, Q = E, V = A, V = ϕ in equation (20b) giving the usual definitions

B = ∇×A ; E = −∇(cϕ)− 1

c

∂A

∂t
(21a)

The total electromagnetic field intensity follows from equation (20d) as

F = B+ iE× k̂ (21b)
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In a gravitational field, equation (20c) shows that the curl of the field
potential four-vector provides two components of the gravitational field in-
tensity, one component being the familiar Newtonian gravitational field in-
tensity g specified by Q = g and the other component may be interpreted as
a gravitational field induction d responsible for deflection of masses within
the gravitational field specified by R = d in equation (20b), with V and
V then representing appropriately defined gravitational scalar and vector
potentials, respectively, giving

d = ∇×V ; g = −∇(cV)− 1

c

∂V

∂t
(21c)

The total gravitational field intensity follows from equation (20d) as

F = d+ ig × k̂ (21d)

In this respect, g corresponds to the electric field intensity E, while d corre-
sponds to the magnetic field induction B in an electromagnetic field. This
general result is consistent with usual results obtained in the linearized form
of Einstein’s field equations in the weak gravitational field limit of the gen-
eral theory of relativity.

5.2 General field equations in a spacetime frame

We now proceed to derive general field equations governing dynamics in a
complex spacetime frame specified by general intensities R, Q derived from
the general complex four-vector V⃗ according to equation (20b).

Following usual procedure, we take three-dimensional divergence (∇·) or
curl (∇×) of R, Q in equation (20b) and apply standard three-dimensional
vector analysis results as appropriate to obtain the following general field
equations governing dynamics in a complex four-dimensional spacetime frame
with an imaginary temporal axis:

∇ ·Q = ϱ ; ∇ ·R = 0 ; ∇×Q = −1

c

∂R

∂t
; ∇×R =

1

c

∂Q

∂t
+

1

c
q

(22a)
1

c2
∂2V
∂t

−∇2V =
ϱ

c
;

1

c2
∂2V

∂t2
−∇2V = −∇F(r) +

1

c
q (22b)

satisfying the conditions

∂V
∂t

+∇ ·V = F(r) ;
∂ϱ

∂t
+∇ · q = 0 (22c)
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We interpret ϱ as source charge density and q as source current density,
which generate the complex four-vector V⃗ . The general complex source
current density four-vector q⃗ takes the form

q⃗ = −icϱ k̂+ q (22d)

The source charge and current densities have been introduced by considering
that the divergence of a vector generates a scalar quantity, while the curl or
time derivative of a vector generates another vector, to set a scalar function
ϱ(t, r) equal to ∇ ·Q and a vector in the form 1

cq equal to ∇×R− 1
c
∂Q
∂t at

appropriate stages of the derivation of equations (22a)-(22b). Notice that the
first condition in equation (22c) is a generalization of the familiar Lorentz
gauge condition in electrodynamics, which applies when F(r) = 0.

A general four-vector with time and space varying components satisfies a
wave equation governed by a general gauge condition, a continuity equation
for the generating sources and Maxwell type equations for the intensities
generated through the curl of the general four-vector. These equations ap-
ply to the electromagnetic field four-vector V⃗ = A⃗, with the corresponding
electric and magnetic field intensities Q = E, R = B and sources being the
electric charge and current densities ϱ = ρ, q = J. Both electric current
density and the electromagnetic energy density four-vectors also propagate
as waves within the four-dimensional spacetime frame. As explained ear-
lier, setting V⃗ equal to a gravitational field potential four-vector leads to
the conclusion that the gravitational field is also characterized by a two-
component complex field intensity satisfying Maxwell type equations, while
the gravitational field potential satisfies a wave equation within the complex
four-dimensional spacetime frame.

5.3 Some fundamental physical consequences

It is now quite clear that complex spacetime frame with an imaginary tem-
poral axis specified by a unit vector in the direction of light (wave) prop-
agation has more general dynamical features compared to usual dynamics
within conventional real spacetime frame where the temporal axis is not
fully specified. The mathematical operations with the complex four-vectors
in the four-dimensional complex spacetime frame reveal additional infor-
mation associated with the general orientation of the temporal unit vector
relative to the spatial coordinates, as well as additional information hidden
behind the imaginary temporal axis as we demonstrate below.
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5.3.1 General field force

In the dynamical field characterized by a general potential four-vector V⃗ and
corresponding general field intensity F derived as the curl of V⃗ in equations
(20c)-(20d), we obtain the general field force F⃗ as the cross product of the
general source current density four-vector q⃗ and the general field intensity
F using equations (20c)-(20d) and (22d) in the form

F⃗ = q⃗ × (∇⃗ × V⃗ ) = q⃗ × F = q⃗ × (R+ iQ× k̂) (23a)

which we expand and reorganize to obtain

F⃗ = cϱ k̂× (Q× k̂) + q×R+ i {cϱ R× k̂+ q× (Q× k̂)} (23b)

Applying a standard vector identity gives

k̂× (Q× k̂) = Q− (k̂ ·Q)k̂ (23c)

which we substitute into equation (31b) to obtain the general field force in
the final form

F⃗ = cϱ Q+ q×R− cϱ (k̂ ·Q)k̂+ i {cϱ R× k̂+ q× (Q× k̂)} (23d)

We notice that the real part of the general force in equation (23d) is com-
posed of a Lorentz force term cϱ Q+q×R and an additional term −cϱ (k̂ ·
Q)k̂ associated with the general orientation of the temporal unit vector k̂
relative to the spatial unit vectors x̂, ŷ, ẑ. The imaginary part contains a
force cϱ R × k̂ + q × (Q × k̂) acting in a plane perpendicular to the field
intensities R, Q and the temporal unit vector k̂. In a conventional dynam-
ical spacetime frame such as the standard electromagnetic field, only the
Lorentz force term is obtained in a derivation using Maxwell’s equations in
a material medium.

5.3.2 General interaction energy

The general interaction energy for source charges under the action of the
general field force within the complex four-dimensional spacetime frame,
which constitutes a material medium in this respect, is obtained as the dot
product of the source current density four-vector q⃗ defined in equation (22d)
and the general field force F⃗ obtained in equation (23d) according to

Eint = q⃗ · F⃗ (24a)
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It is easy to use the definition of the general field force F⃗ in equation (23a)
and apply the general vanishing four-vector dot product theorem established
earlier in equation (19g) to obtain

q⃗ · F⃗ = q⃗ · (q⃗ × (∇⃗ × V⃗ )) = 0 (24b)

giving the final result for the general interaction energy to be

Eint = 0 (24c)

The vanishing of the general interaction energy as established above means
that the total energy is conserved in the dynamics under the action of the
general field force F⃗ within the complex four-dimensional spacetime frame
defined in a material medium. This is in great contrast to the familiar case
of dynamics under the Lorentz force in a conventional electromagnetic field
in a material medium where the dot product of the electric current density
vector and the Lorentz force yields a non-vanishing interaction energy in the
form J ·E, leading to violation of the total energy conservation principle.

5.3.3 Angular momentum

Having obtained the general form of four-vector cross product in equation
(12b), we now set U⃗ equal to the spacetime displacement four-vector X⃗
defined in equation (8e) and V⃗ equal to the linear momentum four-vector
P⃗ defined in equation (8d) to obtain the angular momentum L⃗ in the final
form

L⃗ = X⃗ × P⃗ = r× p− ic k̂× (tp−mr) = L+ i N× k̂ (25a)

where the real part L is the usual orbital angular momentum defined in
3-dimensional space, while N is the imaginary temporal component. These
angular momentum components are defined by

L = r× p ; N = (ctp−mc r) (25b)

5.3.4 Invariant length of the spacetime event interval

Setting U⃗ = V⃗ = dX⃗ in the dot product in equation (11b) and using the
definition of dX⃗ given in equation (8f), we obtain

dX⃗ · dX⃗ = (dX⃗)2 = (dr)2 − (cdt)2 − i (2cdtk̂ · dr) (26a)
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which is a complex scalar quantity with square modulus obtained as

|(dX⃗)2|2 = ( (dr)2 − (cdt)2 )2 + (2cdtk̂ · dr)2 (26b)

We reorganize this and introduce velocity v defined as usual by

v =
dr

dt
; v = |v| (26c)

to obtain the invariant length ds of the spacetime event interval defined by

(ds)2 = |(dX⃗)2| (26d)

in the final form
(ds)2 = η ( (dr)2 − (cdt)2 ) (26e)

where we have obtained a temporal-spatial axes general orientation modifi-
cation factor η in the form

η =

√√√√1 +
4(k̂ · v)2

c2(1− v2

c2
)2

(26f)

Similar forms of the orientation dependent modifications of the invariant
length of the spacetime event interval have also been obtained in works
investigating space anisotropy within the framework of Finsler geometry
[1-2].

5.3.5 Time dilation

We introduce the event interval dX⃗0 in the rest frame defined by

dX⃗0 = −icdτ k̂ (27a)

where dτ is the time duration measured in the rest frame. The invariant
length of the event interval in the rest frame follows easily from equation
(27a) in the form

|(dX⃗0)
2| = c2(dτ)2 (27b)

Applying the invariance principle according to

|(dX⃗)2| = |(dX⃗0)
2| (27c)

and using equations (26d)-(26e) and (27b), we obtain the time dilation re-
lation in the complex four-dimensional spacetime frame in the final form

dt = η−
1
2 γ dτ ; γ =

1√
1− v2

c2

(27d)

which modifies the usual result obtained in Einstein’s special theory of rel-
ativity by a temporal-spatial orientation factor η−

1
2 .
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5.3.6 Mass increase

Introducing velocity v to define the linear momentum four-vector P⃗ in equa-
tion (8d) in the form

p = mv ; P⃗ = −imc k̂+mv (28a)

we obtain

P⃗ · P⃗ = P 2 = m2c2(1 + i
2k̂ · v

c(1− v2

c2
)
)(1− v2

c2
) (28b)

from which the invariant magnitude follows easily in the form

√
|P 2| = mc

(
1 +

4(k̂ · v)2

c2(1− v2

c2
)2

) 1
4

√
1− v2

c2
(28c)

The linear momentum four-vector P⃗0 in the rest frame is defined by

P⃗0 = −im0c k̂ (28d)

where m0 is the rest mass. The invariant magnitude of linear momentum in
the rest frame is easily obtained as√

|P 2
0 | = m0c (28e)

Applying the invariance principle according to

|P 2| = |P 2
0 | ⇒

√
|P 2| =

√
|P 2

0 | (28f)

and using equations (28c) and (28e) gives the mass increase relation in the
complex four-dimensional spacetime frame in the final form

m = η−
1
2 γ m0 (28h)

which modifies the usual result obtained in Einstein’s special theory of rel-
ativity by a temporal-spatial orientation factor η−

1
2 .

5.3.7 Energy conservation: dispersion relation

Let us now redefine the linear momentum four-vector P⃗ as an energy-
momentum four-vector using the usual mass-energy equivalence relation
E = mc2 to obtain

P⃗ = −ic E
c2

k̂+ p ; V⃗ = P⃗ ; Vk = −i E
c

; V =
E

c2
; V = p

(29a)
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Substituting U⃗ = V⃗ = P⃗ in the general dot product in equation (11b)
and using equation (29a) as appropriate gives the square of the energy-
momentum four-vector in the form

P 2 = p2 − E2

c2
− 2i

E

c
k̂ · p (29b)

which we reorganize in the form

P 2 = −
(
1 + i

2E
c k̂ · p

(E
2

c2
− p2)

)(
E2

c2
− p2

)
(29c)

The invariant magnitude of the energy-momentum four-vector then follows
easily in the form

|P 2| =

√√√√1 +
(2E

c k̂ · p)2

(E
2

c2
− p2)2

(
E2

c2
− p2

)
(29d)

We now apply the invariance principle according to equation (28f) and use
the results from equations (28e) and (29d) to obtain the general energy
conservation law (sometimes called dispersion relation) governing dynamics
within the complex four-dimensional spacetime frame in the final form

E2 = p2c2 +
m2

0c
4√

1 + 4c2( k̂·p)2

E2(1− p2c2

E2 )2

(29e)

after rewriting

(2E
c k̂ · p)2

(E
2

c2
− p2)2

=
4( k̂ · p)2

E2

c2
(1− p2c2

E2 )2
=

4c2( k̂ · p)2

E2(1− p2c2

E2 )2
(29f)

We may now introduce standard definitions to obtain

p = mv ; E = mc2 ;
1√

1 + 4c2( k̂·p)2

E2(1− p2c2

E2 )2

=
1

η
(29g)

where η is defined in equation (26e). The general energy conservation law
in equation (29e) then expressed in terms of the temporal-spatial axes ori-
entation factor η in the form

E2 = p2c2 +
m2

0c
4

η
(29h)
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It follows from equation (29e) that the general energy conservation law is
determined by the general orientation of the temporal unit vector k̂ relative
to the spatial unit vectors x̂, ŷ, ẑ (which define the linear momentum p in
this case). In the special case where the temporal axis is perpendicular to all
the three spatial axes, the energy conservation law in equation (29e) takes
the familiar form

k̂ · p = 0 ⇒ E2 = p2c2 +m2
0c

4 (29i)

which is the standard result normally obtained in Einstein’s special the-
ory of relativity. Confirmed discrepancies between experiment and theo-
retical predictions based on this long standing energy conservation law has
been observed, leading to intensive investigations into the possible viola-
tions of Lorentz invariance [3-6] and the effects of anisotropy of space [1-2].
The current theoretical challenges, which include proposed generalizations
of Lorentz transformation laws [5-6] to provide for suggested additional non-
linear terms to the conservation law in equation (29i), may well be addressed
by the naturally arising temporal-spatial axes orientation dependent conser-
vation law we have obtained here in equation (29e) or (29h). We observe
that equation (29e) takes exactly the form of the modified energy conserva-
tion law proposed in [3-6]. In this respect, it may be understood that the
observed discrepancies between theory and experiment in relativistic parti-
cle physics, gravitation, cosmology and quantum field theory is due to an
incomplete specification of the dynamical spacetime frame, which has been
addressed in the present paper through derivation and identification of the
temporal unit vector to define the imaginary temporal axis. The resulting
complex four-dimensional spacetime frame with an imaginary temporal axis
then provides the natural geometrical framework for describing the dynamics
of physical systems.

6 Contravariant and covariant four-vectors

In standard four-vector mathematics within conventional spacetime frames,
contravariant and covariant forms are useful in carrying out mathemati-
cal operations. A contravariant four-vector is specified by positive spatial
components, while a covariant four-vector is specified by negative spatial
components. Changing the signs of the spatial components of four-vectors
effects transformations between contravariant and covariant forms.

Adopting conventional notation, we represent a contravariant four-vector
V⃗ by V µ, with corresponding covariant form Vµ, with µ = 0, 1, 2, 3 where 0
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labels the temporal component, while 1, 2, 3 label the spatial (x, y, z) com-
ponents, respectively. We define V µ and Vµ below.

In the general fully specified complex four-dimensional spacetime frame
with imaginary temporal axis, each coordinate axis is specified by a unit
vector as explained above. This means that the definition of a four-vector
in terms of its components in contravariant or covariant form must take into
account the corresponding unit vectors, noting that the temporal unit vec-
tor has general orientation relative to all the three mutually perpendicular
spatial unit vectors.

Denoting the four unit vectors by k̂, x̂, ŷ, ẑ as presented in this paper,
we define the contravariant coordinates xµ of the general complex four-
dimensional spacetime frame in the form

xµ , µ = 0, 1, 2, 3 : x0 = ict , x1 = x , x2 = y , x3 = z
(30a)

The corresponding covariant coordinates xµ are defined in the form

xµ , µ = 0, 1, 2, 3 : x0 = x0 = ict , x1 = −x1 = −x ,

x2 = −x2 = −y , x3 = −x3 = −z (30b)

Following earlier definitions, we express the complex contravariant spacetime
displacement four-vector Xµ in the fully specified form

Xµ = −x0k̂+x1x̂+x2ŷ+x3ẑ = −ict k̂+ r ; r = x x̂+ y ŷ+ z ẑ (30c)

with corresponding covariant form Xµ obtained as

Xµ = −x0k̂+ x1x̂+ x2ŷ + x3ẑ = −ict k̂− r (30d)

which we express in the final forms

Xµ = −(ict k̂− r) ; Xµ = −(ict k̂+ r) (30e)

The complex spacetime event interval takes the contravariant and covariant
forms

dXµ = −dx0k̂+ dx1x̂+ dx2ŷ + dx3ẑ = −(icdt k̂− dr) ;

dXµ = −dx0k̂+ dx1x̂+ dx2ŷ + dx3ẑ = −(icdt k̂+ dr) (30f)

These have complex conjugates taking final form

dXµ∗ = (icdt k̂+ dr) ; dX∗
µ = (icdt k̂− dr) (30g)
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from which follows the important relation between contravariant and covari-
ant forms in the complex spacetime frame

dXµ∗ = −dXµ ; dX∗
µ = −dXµ (30h)

We use this relation to obtain

dXµ · dX∗
µ = −(dXµ)2 ; dXµ∗ · dXµ = −(dXµ)

2 (31a)

from which follows the definition of the invariant length ds of the complex
spacetime event interval in the form

(ds)2 = | − (dXµ)2| = | − (dXµ)
2| (31b)

This is expressed in the general form

(ds)2 = |dXµ · dX∗
µ| = |dXµ∗ · dXµ| (31c)

Substituting dXµ, dXµ from equation (30f) into equation (31b) or using
dXµ∗, dX∗

µ from equation (30g) into the general form in equation (31c) and
reorganizing gives the final result presented earlier in equations (26e)-(26f).

A general complex four-vector V⃗ as defined earlier is expressed in con-
travariant and covariant forms according to

V 0 = ic V , V 1 = Vx , V 2 = Vy , V 3 = Vz (32a)

V0 = V 0 = ic V , V1 = −V 1 , V2 = −V 2 , V3 = −V 3 (32b)

with

V µ = −V 0k̂+ V 1x̂+ V 2ŷ+ V 3ẑ ; Vµ = −V0k̂+ V1x̂+ V2ŷ+ V3ẑ (32c)

which we express in the final forms

V µ = −(icV k̂−V) ; Vµ = −(icV k̂+V) (32d)

related through complex conjugation in the form

V µ∗ = −Vµ ; V ∗
µ = −V µ (32e)

We use this contravariant-covariant four-vector conjugation relation to ob-
tain

V µ · V ∗
µ = −(V µ)2 ; V µ∗ · Vµ = −(Vµ)

2 (32f)
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which provides the definition of the invariant length V of the general complex
four-vector V µ or Vµ according to

V 2 = | − (V µ)2| = | − (Vµ)
2| (32g)

We express this in the general form

V 2 = |V µ · V ∗
µ | = |V µ∗ · Vµ| (32h)

Using V µ, Vµ from equation (32d), noting the relation in equation (32e), we
apply equation (32g) or (38h) to obtain the invariant length in the explicit
form

V 2 =

√√√√1 +
(2cV k̂ ·V)2

(c2V2 −V2)2

(
c2V2 −V2

)
(32i)

6.1 Standard four-vector notation and tensors

We now develop the procedure for defining tensors within the general com-
plex four-dimensional spacetime frame. To put the presentation in familiar
form, we adopt the standard contravariant and covariant four-vector nota-
tion to express V µ and Vµ from equation (32d) in the form

V µ = −(icV , −V) ; Vµ = −(icV , V) (33a)

with complex conjugates taking the form

V µ∗ = (icV , V) = −Vµ ; V ∗
µ = (icV , −V) = −V µ (33b)

where the usual four-vector mathematics is applied, but now taking account
of the general orientation of the temporal unit vector k̂ relative to the spatial
unit vectors x̂, ŷ, ẑ to obtain the general results presented above.

Using the complex conjugation relation from equation (33b) gives

V µ · V ∗
ν = −V µ · V ν ; V µ∗ · Vν = −Vµ · Vν (34a)

from which a definition of complex contravariant and covariant rank-2 ten-
sors Tµν and Tµν follows according to

Tµν = −V µ · V ν = V µ · V ∗
ν ; Tµν = −Vµ · Vν = V µ∗ · Vν (34b)

In addition,

V µ · V ν∗ = −V µ · Vν ; V µ∗ · V ν = −Vµ · V ν (34c)
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provides a definition of complex rank-2 mixed tensors Tµ
ν and T ν

µ in the form

Tµ
ν = −V µ · Vν = V µ · V ν∗ ; T ν

µ = −Vµ · V ν = V µ∗ · V ν (34d)

The definition of more general tensors of higher rank follows easily. Some
mathematical properties of the rank-2 tensors defined above can be obtained
by interchanging the indices µ, ν or taking complex conjugation or carrying
out both operations simultaneously.

The complete definition of contravariant and covariant complex four-
vectors, which can be used to define tensors of general ranks in contravari-
ant, covariant or mixed forms, provides the necessary foundation for more
general vector and tensor analysis, leading to reformulation of differential
geometry using complex four-component vectors defined within the com-
plex four-dimensional spacetime frame. This is indeed the origin of a new
framework for studying physics, mathematics and related disciplines in the
21st-century and beyond.

7 Conclusion

In this paper, we have successfully derived and specified a unit vector in the
temporal direction to define a general complex four-dimensional spacetime
frame with an imaginary temporal axis. The basic elements of the complex
spacetime frame are complex four-vectors with components defined along the
temporal and spatial axes specified by the corresponding unit vectors. Basic
mathematical operations developed using the complex four-vectors provide
results consistent with standard results of vector analysis within the familiar
three-dimensional space frame. Taking account of the general orientation of
the temporal unit vector k̂ relative to all the three spatial unit vectors x̂,
ŷ, ẑ leads to appropriate modifications of well-known fundamental results
in relativistic physics (i.e., dynamics in spacetime frames). Such temporal-
spatial axes orientation dependent modifications of the fundamental results
may account for the observed discrepancies between experiment and theo-
retical predictions of phenomena based on the energy conservation principle,
Lorentz invariance, etc, which constitute the major challenges to be over-
come in current models of relativistic mechanics, quantum field theory and
general relativity as a theory of gravitation and cosmology.

The definition of contravariant and covariant forms of the general com-
plex four-vectors, together with the contravariant-covariant complex conju-
gation relation has provided a consistent definition of the invariant length (or
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invariant magnitude) of the four-vector, which clearly displays the temporal-
spatial axes orientation dependence. The general definition of tensors pro-
vided here can lead to a generalization of standard vector analysis in three-
dimensional space to include four-dimensional complex spacetime frames
and a reformulation of differential geometry based on the new procedures
of tensor analysis in four-dimensional complex spacetime. These new and
more general mathematical operations with complex four-vectors and related
tensors will obviously provide the framework and necessary motivation to
reformulate relativistic mechanics, quantum field theory and general rela-
tivity theory in particular, which are directly based on the mathematical
properties defined within four-dimensional spacetime frames.
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