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ABSTRACT 
Thermodynamic properties of Bose-Fermi mixture at ultra-low temperatures were studied using 

perturbation theory in three Cartesian coordinates. The Hamiltonian for the mixture was developed in 

terms of boson-boson, boson-fermion and fermion-fermion interactions. In both first and second excited 

states the mixture had about 150 joules of energy at about 40 kelvins. In both first and third excited states, 

the mixture had energy value of about 200 joules at a temperature of about 48 kelvins. The mixture had 

energy value of about 240 joules at about 58 kelvins in both the second and the third excited states. The 

specific heat capacity versus temperature curves showed sharp turning points with peak values of specific 

heat capacity being J/mol/58.11  at about 6.9 kelvins for first excited state, /J/mol88.7  at about 

13.7 kelvins for second excited state and J/mol/758.6  at about 20.9 kelvins for third excited state. 

Entropy of the BF mixture in an excited state was found to increase with temperature and became 

constant at higher temperatures. 

 

Keywords: Anharmonic Potential, Bose-Fermi Mixture, Perturbed Hamiltonian, Unperturbed 

Hamiltonian, Strong Interaction 

 

INTRODUCTION   

Quantum thermodynamics addresses the emergence of thermodynamics from quantum mechanics 
(Kosloff, 2013). It deals with microscopic properties, based on the idea that every particle behaves as a 

wave and vice versa. Fermions are identical particles which obey the Pauli Exclusion Principle which 

states that this type of particle must be in a state that is antisymmetric with respect to particle exchange 

(Romero-Rochin, 2011). A fermion has a half integer spin angular momentum. Bosons are integer spin 

particles which are governed by Bose-Einstein (BE) statistics (Aversa, 2011). It has been observed that 

fermions in superconductors undergo Bose-Einstein condensation through interactions with the bosons at 

temperatures near absolute zero (Mathew, 2013).  

High-precision measurements on the thermodynamics of a strongly interacting Fermion gas across the 

superfluid transition were done (Bakr et al., 2013). The onset of superfluidity was observed in the 

compressibility, the chemical potential, the entropy and the heat capacity. The ground state properties of 

Heavy isotopes of Yb171  and Yb172  were shown to be degenerate with anisotropic interactions (Haiping, 

2015). A quantum-degenerate BF mixture of Na23  and K40
 with widely tunable interactions was 

created (Park, 2012). Over thirty Feshbach resonances were identified, including p-wave multiple 

resonance. A mixture of interacting atomic bosons and atomic fermions have been described by the 

Hamiltonian in which all the interaction potentials are approximated by contact interactions and 

parameterized by s-wave scattering length (Malatsetxebarria et al., 2013). A Hamiltonian for a strongly 

repulsive one-dimensional Bose-Fermi mixture in a double well potential was determined and used to 

calculate the reduced single-particle density matrix, momentum distribution, natural orbitals and their 

occupancies resulting in a smooth momentum distribution for even mixtures and distinct modulations in 

the momentum distribution of odd mixtures (Lelas et al., 2009). 
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Anharmonic oscillation is a deviation of a system from harmonic oscillation (Jafarpour & Afshar, 2008). 

The ground state properties of trapped atomic BF mixture at near absolute zero temperature have been 

studied using second quantization techniques (Sakwa et al., 2013).  

A grand canonical binary system of HeHe 34   was used. The results for variation of specific heat versus 

temperature showed a peak or turning point in the vicinity of 𝑇 = 0.5𝐾 on a nearly Gaussian curve. The 

variation of entropy with temperature of the binary mixture was found to be a curve with a gently 

decreasing slope, nearly saturating at 1.3K. It is assumed that quartic and sextic anharmonic oscillator 

potentials have similar properties as those of the harmonic oscillator potential in the derivation of the 

eigen states of different particles (Joshua et al., 2008).  

This is because the potentials are even functions. 

The influence of boson-boson (bb) and boson-fermion (bf) interactions on the stability of a binary mixture 

of bosonic and fermionic atoms were investigated (Roth & Feldmeier, 2013). Boson-Boson and Boson-

Fermion interactions were found to have very different effects on the collapse. Massive bosonic or 

fermionic particles with only two types of contact interaction potentials allow for either bosons with s-

wave interactions or fermions with p-wave interactions (Dominik & Michael, 2010). The s-wave 

interactions are dominant in boson-boson and boson-fermion systems while p-wave interactions are 

dominant in fermion-fermion systems.  

Mixtures of fermionic K40  and bosonic Rb87  quantum gases in a three-dimensional optical lattice have 

been studied (Gunter et al., 2008). It is observed that an increasing admixture of the fermionic species 

diminishes the phase coherence of the bosonic atoms as measured by studying both the visibility of the 

matter wave interference pattern and the coherence length of the bosons. A triply quantum degenerate 

mixture of bosonic K41 and two fermionic species K40  and Li6  has been created (Wu et al., 2011). The 

boson is shown to be an efficient coolant for the two fermions, spurring hopes for the observation of 

fermionic superfluids with imbalanced masses. Bose-Fermi mixtures have lower critical temperature due 

to the presence of antisymmetric and mixed symmetry states (Mirza, 2007). The dependence of the 

critical temperature shift on the Bose component of a degenerate Bose-Fermi gas mixture in a harmonic 

trap has been obtained on the basis of the effective Hamiltonian of the Bose subsystem (Belemuk & 

Ryzhov, 2008).  

For calculations it is often more practical to consider the system being in contact with a large reservoir, 

which allows for the exchange of particles and energy (Will, 2013).  

The low-temperature thermodynamic variables of entropy, internal energy and specific heat capacity of a 

liquid HeHe 34   binary system have been studied (Ayodo et al., 2010). A micro-canonical ensemble 

model with pair interactions has been used to obtain entropy, internal energy and specific heat capacity in 

terms of the partition function. 

Anharmonic perturbation of neutron-proton (np) pairs by the unpaired neutrons in heavy finite nuclei has 

been studied (Khanna et al., 2010). Heavy nuclei of Dy161
and Dy163

were used. Second quantization with 

ladder operator techniques was used to calculate the total energy (𝐸𝑛), the specific heat (𝐶) and entropy 

(𝑆) in one dimension. The results showed that the nucleus Dy163
 has larger values of specific heat 

capacity and entropy than the nucleus Dy161
 at any temperature. The nucleus Dy163

has two more 

neutrons than Dy161
which contribute more perturbation energy to the core of the nucleus. The 

thermodynamic properties of finite heavy mass nuclei of n64 , Ru101 and Sm150  with the number of 

neutrons greater than the number of protons have been investigated (Ndinya & Okello, 2014). The core of 

the nucleus contains the neutron-proton pairs that interact harmonically. The excess neutrons reside on the 

surface of the nucleus and they introduce the anharmonic effect. The plot of specific heat capacity versus 

temperature at occupation number nx = 1 depicted a nearly Gaussian curve with peak value at aroundT =
0.5K.  
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Theoretical Derivations 

Energy eigenvalue of unperturbed Hamiltonian operator was first derived for the Bose-Fermi mixture in 

the energy state n in three dimensional Cartesian coordinates. The oscillator was considered to be 

isotropic.   

Hamiltonian of a System 

For a perturbed boson-boson system we have 

  43
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Where, 
3x   and 

4x  are cubic and quartic anharmonic perturbation terms respectively and the subscript 

2,1  refers to a boson-boson or boson-fermion or fermion-fermion pair. Equation (2.1) can be generalized 

to three Cartesian coordinates to obtain total Hamiltonian for boson-boson, boson-fermion and fermion-

fermion systems. The sum of the first and second terms on the right of equation (2.1) represents the 

unperturbed Hamiltonian. 

Eigenvalue of Unperturbed Hamiltonian 

The general expression for eigenvalue of unperturbed Hamiltonian operator of a system in x- coordinates 

is 
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The wave function is a solution to the Hermite equation. From equation (2.2) we can write the eigenvalue 

of kinetic energy operator of a binary system as     
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 (2.4) 

Substituting the terms on the right of equation (2.4) in equation (2.3) we obtain the first integral as 

𝐼1 =
−ℏ2

2𝑚𝑏𝑏
∙ 𝑁𝑛𝑥

2 ∙ 4𝑛𝑥(𝑛𝑥 − 1) ∫ 𝐻𝑛𝑥
(𝑥)

∞

−∞
𝐻𝑛𝑥−2(𝑥)𝑒−𝛼𝑥2

𝑑𝑥 = 0   (2.5)                  

Since, 𝐻𝑛𝑥
(𝑥)𝑒−

𝛼

2
𝑥2

    and    𝐻𝑛𝑥−2(𝑥)𝑒−
𝛼

2
𝑥2

  are orthogonal functions. Similarly, we can write the second 

integral as     

𝐼2 =
−ℏ2

2𝑚𝑏𝑏
∙ 𝑁𝑛𝑥

2 ∙ (−4𝑛𝑥𝛼) ∙ ∫ 𝐻𝑛𝑥
(𝑥)𝐻𝑛𝑥−1

∞

−∞
(𝑥)𝑥𝑒−𝛼𝑥2

𝑑𝑥   (2.6)   

Hence, 
ℏ2

2𝑚𝑏𝑏
∙

𝑁𝑛𝑥

𝑁𝑛𝑥−1
∙ (4𝑛𝑥𝛼) ∙ ∫ 𝑁𝑛𝑥

𝑁𝑛𝑥−1𝐻𝑛𝑥
(𝑥)𝐻𝑛𝑥−1

∞

−∞
(𝑥)𝑥𝑒−𝛼𝑥2

𝑑𝑥 =
ℏ2

2𝑚𝑏𝑏
∙

𝑁𝑛𝑥

𝑁𝑛𝑥−1
∙ (4𝑛𝑥𝛼) ∙ (𝑥)𝑛,𝑛−1                                                                                                                      

(2.7) 

The identity for matrix element is 

(𝑥)𝑖,𝑗 = √
𝑗+1

2𝛼
𝛿𝑗,𝑖−1 + √

𝑗

2𝛼
𝛿𝑗,𝑖+1      (2.8) 

Substituting for 
𝑁𝑛𝑥

𝑁𝑛𝑥−1
=

1

√2𝑛𝑥
 in equation (2.7) we now obtain 

𝐼2 = (
ℏ2

2𝑚𝜂𝜆
. 2𝑛𝑥𝛼) 𝛼−

1

2         (2.9) 

The value in brackets of equation (2.9) represents part of kinetic energy, 2  expressed as 
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The third integral is obtained by substituting  x
x

n
2

2

d

d
 in equation (2.3) with the third term on the right 

of equation (2.4) to obtain 

𝐼3 =
−ℏ2

2𝑚1,2
∙ 𝑁𝑛𝑥

2 ∙ (−𝛼) ∫ 𝐻𝑛𝑥

∞

−∞
(𝑥)𝐻𝑛𝑥

(𝑥)𝑒−𝛼𝑥2
𝑑𝑥 =

ℏ2

2𝑚1,2
𝛼             (2.11) 

The fourth integral is obtained by substituting  x
x

n
2

2

d

d
 in equation (2.3) with the fourth term on the 

right of equation (2.4) to get 

𝐼4 =
−ℏ2

2𝑚1,2
∙ 𝑁𝑛𝑥

2 ∙ 𝛼2 ∫ 𝐻𝑛𝑥

∞

−∞
(𝑥)𝐻𝑛𝑥

(𝑥)𝑥2𝑒−𝛼𝑥2
𝑑𝑥 =

−ℏ2

2𝑚1,2
𝛼 (𝑛𝑥 +

1

2
)         (2.12) 

The sum of the integrals 𝐼3 and 𝐼4and the kinetic energy 2K give the kinetic energy eigenvalues for 

boson-boson (bb), boson-fermion (bf) and fermion-fermion (ff) systems as 
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Hence the total energy eigenvalue of unperturbed system in three Cartesian coordinates is  
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3
3E0

n zyx nnn              (2.14) 

Eigenvalue of Perturbed Hamiltonian 

Cubic perturbation  

The total first order energy correction to cubic perturbation operator is 

𝛽((𝑥3)𝑛,𝑛 + (𝑦3)𝑛,𝑛 + (𝑧3)𝑛,𝑛) = 0                     (2.15) 

Since the integrand is odd and therefore not symmetric in the interval   ,  of x, y and z. Applying 

the second order time independent perturbation theory, the energy eigenvalue for the a system in x-

coordinate reads (Harrison, 2008), 
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(2.16)                                                          

which simplifies to 
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(2.17) 

Quartic perturbation 

The first order correction to quartic perturbation in the x-coordinate is 
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(2.18) 

Therefore, in three Cartesian coordinates we can write the total first order correction to perturbation of the 

mixture as 
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(2.19)                                   

The second order energy correction is  

𝐸𝑛
2(𝑥, 𝑞𝑢𝑎𝑟𝑡𝑖𝑐) =

𝛾2

ℏ𝜔
[
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2

−4
+
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2

4
+
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2

−2
+
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2

2
]   (2.20)  

Solving equation (2.20) we obtain in three dimensions, 
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Expectation Value of Energy 

The total energy of the binary mixture is the sum, 
210

nnnn 
          

(2.21) 

Substituting for
0

n , 
1

n  and 
2

n in equation (2.21) we obtain, 
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(2.22)        

The total internal energy of the Bose-Fermi mixture is (Sakwa et al., 2013) 

   nnneff
        (2.23)       

Where,   is the fermion chemical potential and n  is the probability density operator for the single mode 

or excitation in three Cartesian coordinates given by 
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nnn
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e





3
_

 (2.24) 

Where, 
zyx    for an isotropic oscillator and   is thermodynamic temperature in Kelvins. 

Thus,  3 zyx . 

Heat Capacity 

Heat capacity at constant volume is given by (Laud, 2012) 

 



 n

nVC


  (2.25) 

Hence by substituting for n in equation (2.25) and differentiating we obtain 
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 3
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(2.26)         

Entropy 

Entropy S is given by (Laud, 2012) 

𝑆(𝑇) = ∫ 𝐶𝑉
𝑑𝑇

𝑇
                       (2.27)                          
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Substituting for 𝐶𝑉 in equation (2.26) gives, 
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Parameters for Data Analysis 

The parameters 𝛽𝑥3 𝑎𝑛𝑑 𝛾𝑥4in equation (2.1) have dimensions of energy, then 𝛽 𝑎𝑛𝑑   𝛾 can be 

expressed in terms of the scattering length 𝑎0 as: 

𝛽 =
ℏ𝜔

𝑎0
3 , 𝛾 =

ℏ𝜔

𝑎0
4    (2.29) 

The scattering length is given as: 𝑎0 = 1.3 × 10−13𝐴
1

3𝑐𝑚 (Sakwa et al., 2013), where 𝐴 is the mass 

number of a boson. 

The parameter μ
f
 is the fermion chemical potential given by: 

μ
f

=
π2ℏ2

2mf
(

3NA

πV
)

2

3
   (2.30) 

Where, mf is the molar mass of the fermion and NA is the number of the particles in one mole, known as 

the Avogadro’s number, whose value is NA = 6.025 × 1023mol−1. Atomic mass of e4  is 4A  , 

atomic mass of 3
 is A=3, boson-boson reduced molar mass is 1.86 × 10−3Kgmol−1, boson-fermion 

reduced molar mass is 1.63 × 10−3Kgmol−1, fermion chemical potential is 𝜇𝑓 = 5.0944 × 10−46J. 

Therefore, 𝑚𝑏𝑏 =
1.86×10−3

6.025×1023 = 3.087 × 10−27Kg, mbf = 2.705 × 10−27Kg. 

 

RESULTS AND DISCUSSION 

Equations (2.23), (2.26) and (2.28) were used to obtain graphs of variation of energy, specific heat 

capacity and entropy with temperature respectively for the mixture in the first, second and third excited 

states  as shown in figures 1, 2 and 3 respectively. 

Energy of the Binary  34
System 

Figure 1 shows the variation of internal energy, 
eff with temperature for n=1, n=2 and n=3. 

 

 
Figure 1: Graph of Variation of Internal Energy Versus Temperature 
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Figure 1 shows that for an excited state the internal energy of an interacting ee  34

 mixture in a three 

dimensional anharmonic potential increases with increase in temperature then becomes constant at higher 

temperatures. This result is in agreement with the results obtained by Sakwa et al., (2013) for a

ee  34
mixture and Khanna et al., (2010) for Dy163

nuclei, both in a one dimensional anharmonic 

potential. A temperature rise is accompanied by an increase in the kinetic energy of particles up to some 

temperature where no more heat is absorbed. Hence, beyond some higher temperature, the strength of 

repulsive interactions is just enough to resist further absorption of energy. At lower temperatures near 

absolute zero internal energy of the BF mixture at lower excited state is higher than that at higher excited 

state and at higher temperatures internal energy at higher excited state is higher than at lower excited state 

as shown in figure 1. At higher temperatures, more particles with greater kinetic energy occupy higher 

excited state. At lower temperatures, more particles occupy lower occupation state. At temperatures very 

close to absolute zero temperature all the curves of figure 3 show that internal energy at excited states are 

zero. Hence, all the particles at absolute zero condense into the ground state. It is also noted that in the 

first, second and third excited states the mixture has internal energy of about 150 joules at 40 Kelvins, 200 

joules at 48 Kelvins and 240 joules at 58 Kelvins respectively. At temperatures less than 40 Kelvins the 

mixture has less internal energy at higher excited states. At temperatures higher than 58 Kelvins the 

mixture has more internal energy at higher excited states. Near absolute zero temperature, the internal 

energy of the mixture in an excited state is zero.  

Specific Heat Capacity of ee  34

 System 

Figure 2 shows the variation of specific heat capacity   VC T  with temperature for n=1, n=2 and n=3. 

The curves show peaks in specific heat capacity at different temperatures. At higher excited state, 

repulsive interactions in the mixture are stronger, increasing rate of cooling. Hence, the mixture 

condenses easily at higher temperature. The mixture at higher transition temperature requires less energy 

to be absorbed to raise temperature by one Kelvins since attractive interactions are weaker at higher 

excited states. At lower transition temperature attractive interactions are much stronger, requiring more 

energy to be absorbed per Kelvins rise in temperature. Thus, an additional second order correction to 

quartic perturbation lowers peak value of specific heat capacity and raises the transition temperature in 

the present case. An additional second order correction to quartic perturbation increases rate of cooling by 

further increasing strength of repulsive interactions.  

 
Figure 2: Graph of Variation of Specific Heat Capacity at Constant Volume Versus 

Temperature 
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The three Cartesian coordinates contribute to a larger second order correction to perturbation. In figure 2 

the peak values of specific heat capacity of the mixture in the first, second and third excited states are 

about 11.58J/mol/K at 6.9 kelvins, 7.88J/mol/K at 13.7 Kelvins and 6.75J/mol/K at 20.9 kelvins 

respectively. The turning point in the curve is sharpest at first excited state. At temperatures higher than 

20.9 kelvins specific heat capacity of the mixture has a highest value in the third excited state. 

Entropy of ee  34
 System 

Figure 3 shows the variation of entropy,  S  with temperature for n=1, n=2 and n=3. 

 

Figure 3: Graph of Entropy Versus Temperature 

 

It can be observed from figure 3 that at temperatures higher than absolute zero, entropy at lower excited 

states is higher than entropy at higher excited states. At higher occupation states stronger repulsive 

interactions result in more ordered fermionic spins which reduce dispersion of energy from surroundings 

into the system at constant temperature. Entropy at an excited state is zero at temperatures closer to 

absolute zero since there are no particles in higher occupation states at these temperatures. This is due to 

BE condensation resulting in an infinite This is due to BE condensation resulting in an infinite number of 

particles entering the ground. This is due to BE condensation resulting in an infinite number of particles 

entering the ground state. It is observed that entropy at an excited state increases with temperature, then 

levels off at higher temperatures. It is observed that entropy at an excited state increases with temperature, 

then levels off at higher temperatures. This is similar to results of Khanna et al., (2010) and Sakwa et al., 

(2013). Increase in temperature provides more kinetic energy, causing increase in thermal entropy. 

Conclusion  

In the article the ee  34
 mixture is assumed to be strongly interacting in pairs. The three-dimensional 

Hamiltonian of the mixture consists of the harmonic part, with anharmonic parts being introduced by 

unpaired proton in e3
 nucleus. A temperature rise is accompanied by an increase in the kinetic energy 

of particles up to some temperature where no more heat is absorbed. This result is in agreement with the 

results obtained by Sakwa et al., (2013) for a ee  34
 mixture and Khanna et al., (2010) for Dy163

nuclei. Energy and particle equilibrium between higher states is achieved at higher temperatures than 

between lower excited states as shown in figure 1. The binary mixture in a higher excited state condenses 

more easily at higher transition temperature as shown in figure 2 due to presence of stronger repulsive 

interactions that increase the rate of cooling. The mixture at higher excited state has a smaller peak value 

of specific heat capacity at transition temperature due to presence of stronger repulsive interactions that 

reduce rate of absorption of heat energy. An additional second order correction to quartic perturbation 
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increases rate of cooling by further increasing strength of repulsive interactions. The three Cartesian 

coordinates contribute to a larger second order correction to perturbation, which in turn raises transition 

temperature and lowers the peak value of specific heat capacity at the transition temperature. This is 

supported by comparison with results of Sakwa et al., (2013) in which the peak value of specific heat 

capacity at first excited state is higher and transition temperature is lower due to only the first order 

correction to quartic perturbation and the second order correction to cubic perturbation in one-

dimensional coordinate.  

Entropy at a particular temperature decreases with increase in the occupation number since at higher 

states the spins of particles tend to align more in the same direction. 

 

ACKNOWLEDGEMENT 

We thank our universities for offering us their facilities to carry out this research. We also appreciate the 

International Centre for Theoretical Physics (ICTP) for the journals on current research in condensed 

matter physics. Much appreciation to the Kenya National Council for Science, Technology and 

Innovation (NACOSTI) that awarded one of the authors, Mumali Oliver, financial support for research 

work. 

 

REFERENCES 

Aversa A (2011). The Gross-Pitaevskii Equation, A Non-linear Schrodinger Equation.  

Ayodo YK, Khana KM & Sakwa TW (2010). Thermodynamical variation and stability of a binary 

Bose-Fermi system. Indian Journal of Pure and Applied Physics 48 886-892.  

Bakr W, Cheuk LW, Ku MJ, Park JW, Sommer AT, Will S & Wu CH (2013). Strongly Interacting 

Fermi Gases, (Cambridge, U.S.A.: Havard Center for Ultracold Atoms).  

Belemuk A & Ryzhov V (2008). On the Critical Temperature in a Bose-Fermi Mixture with Attraction 

between the Components. Journal of Experimental and Theoretical Physics Letters 87(7) 376-380.  

Dominik M & Michael F (2010). Discretized vs continuous models of p-wave interacting fermions in 

one dimension. Physical Review A 82 013602.  

Gunter K, Thilo S, Henning M, Kohl M & Tilman E (2008). Bose-Fermi Mixtures in a Three-

Dimensional Optical Lattice, (Institute of Quantum Electronics, Zurich, Switzerland). 

Haiping H, Liming G & Shu C (2015). Strongly Interacting Bose-Fermi Mixture in One-Dimension, 

(Beijing, China: Institute of Physics, Chinese Academy of Sciences).  

Harrison JF (2008). Perturbation Theory, (Michigan, USA: Michigan State University).  

Jafarpour M & Afshar D (2008). An approach to quantum aharmonic oscillators via Lie Algebra. 

Journal of Physics: Conference Series 128.  

Joshua MK, Christopher FJ & Bronson WW (2008). Excited States of the Anharmonic Oscillator 

Potentials. Journal of Undergraduate Research in Physics 21.  

Khana KM, Torongey PK, Kanyeki GF, Rotich SK & Ameka SE (2010). Anharmonic perturbation of 

neutron-proton pairs by unpaired neutrons in heavy mass nuclei. Indian Journal of Pure and Applied 

Physics 48 7.  

Kosloff R (2013). Quantum Thermodynamics: A Dynamical Viewpoint, (Institute of Chemistry, Hebrew 

University, Jerusalem, Israel).  

Laud BB (2012). Fundamentals of Statistical Mechanics (Secend edition), (New Delhi, India: New Age 

International Publishers).  

Lelas K, Jukic D & Buljian H (2009). Ground-state properties of a one-dimensional strongly interacting 

Bose-Fermi mixture in a double-well potential. Physical Review A 80 053617.  

Malatsetxebarria E, Marchetti FM & Cazalilla MA (2013). Phase equilibrium of binary mixtures in 

mixed dimensions. Physical Review A 88 033604.  

Mirza S (2007). Bose-like condensation in half-Bose half-Fermi Statistics and in Fuzzy Bose-Fermi 

Statistics. Presented at the Workshop on Bose Enstein Condensation, Institute of Mathematical Sciences, 

National of Singapore.  



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2016 Vol. 6 (2) April-June, pp. 41-50/Mumali et al. 

Research Article 

Centre for Info Bio Technology (CIBTech)  50 

 

Ndinya BO & Okello A (2014). Thermodynamic properties of a system with finite heavy mass nuclei. 

American Journal of Modern Physics 3(6) 240-244.  

Park JW, Wu CH, Santiago I, Tiecke GT & Will S (2012). Quantum degenerate Bose-Fermi mixture 

of chemically different atomic species with widely tunable interactions. Physical Review A 85.  

Phillips AC (2003). Introduction to Quantum Mechanics, (UK, London: John Wiley & Sons Ltd).  

Romero-Rochin V (2011). Many-Body Theory of Bose and Fermi Gases at Low Temperatures, (North 

America, Mexico: Institute of Physics, University of Mexico).  

Roth R & Feldmeier H (2013). Mean-Field Instability of Trapped Dilute Boson-Fermion Mixtures, 

(GSI, Darmstadt, Germany).  

Sakwa TW, Ayodo YK, Khana KM, Rapando BW & Mukoya AK (2013). Thermodynamics of a 

grand-canonical binary system at low temperatures. International Journal of Physics and Mathematical 

Sciences 3(2) 87-98.  

Will S (2013). Towards Strongly Interacting Bosons and fermions. In: From Atom Optics to Quantum 

Simulation, Springer Theses, (Springer-Verlag Berlin, Heidelberg) DOI: 10.1007/978-3-642-336331-2, 

(c) Springer.  

Wu C, Santiago I, Park W, Ahmadi P & Zwierlein M (2011). Strongly interacting isotopic Bose-Fermi 

mixture in a Fermi sea. Physical Review A 84 011601. 

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/305726022

