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Abstract

This paper develops a procedure for obtaining progressively improving approximate solutions
of the WKB (semiclassical ) model of the stationary Schroedinger equation through factoriza-
tion and successive boost transformations of the resultant equivalent matrix equation. Each
order of approximation provides an amplitude-modulated “plane” wave function specified by a
renormalized momentum. A simple binomial expansion of the renormalized momentum allows
exact evaluation of the phase accumulation integral for studying basic features of the dynamics
in arbitrary potentials. For a linear potential, the probability density profile reveals the expected
confinement of the particle within the allowed energy region.
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1 Introduction

In the WKB (semiclassical ) model of approximate solutions, the stationary Schroedinger equation
for a particle of mass m and total energy E in a field potential V (x) is expressed in the form

(h̄2
d2

dx2
+ p2)ψ = 0 (1a)

where p(x) is the linear momentum obtained as

p(x) =
√
2m(E − V (x)) (1b)

The model in equations (1a)-(1b) is useful in describing potential barrier penetration and quantum
tunneling phenomena.
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Assuming that the potential V (x) varies slowly in space, approximate solutions of equation (1a)
can be obtained by imposing the WKB approximation condition [1-3]

h̄

p2
dp

dx
=

1

k2
dk

dx
≪ 1 ; p = h̄k (1c)

where k is the wave number. For later reference, we introduce the “WKB approximation parameter
” w defined by

w =
h̄

p2
dp

dx
=

1

k2
dk

dx
⇒ w << 1 (1d)

Starting with ansatz of the form
ψ(x) = eiϕ(x) (1e)

and imposing the approximation condition (1c) provides the leading order in the allowed energy region
E > V (x), expressed in the asymptotic form [1-14]

ψwkb(x) =
A√
p(x)

e
− i

h̄

∫ x

x0
p(x′) dx′

+
B√
p(x)

e
i
h̄

∫ x

x0
p(x′) dx′

; E > V (x) (1f)

which in the asymptotic limit takes the form

ψwkb(x) =
C√
p(x)

cos(
1

h̄

∫ x

x0

p(x′) dx′ ∓ π

4
) ; E > V (x) (1g)

The WKB leading order probability density ρwkb(x) is obtained as

ρwkb(x) = |ψwkb(x)|2 ; ψwkb(x) =
ψwkb(x)

C
(1h)

Taking the linear potential V (x) = κx as a useful example for comparison with results obtained in
the present paper, we plot ρwkb(x) in Fig. 1 using ψwkb(x) from equation (1g). We observe that the
probability density profile in the allowed energy region E > κx undergoes a discontinuity near the
energy turning point E = κx, without displaying any features of the confining property of the linear
potential.
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ρwkb(x) for V (x) = κx , p(x) =
√
b− ax , b = 2mE , a = 2mκ ; ϑ =

π

4
(1i)
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Figure 1: WKB probability density ρwkb(x) (1h) using ψwkb(x) (1g) for linear potential V (x) = κx
with b = 12, a = 0.5, over the range x = 0 → 50

.

Even though the WKB approximation was based on a very slowly varying potential V (x) in
non-relativistic quantum mechanics, the leading order form in equation (1f) and its improvements
through some appropriate forms of series expansions has also been widely applied to investigations of
systems of varying forms of potentials in relativistic physics, notably cosmology, Dirac equation and
quarkonium physics [7-14].

A very serious problem with the WKB method is that it is too difficult to improve the accuracy
beyond the leading order form in equation (1f). The standard method of expanding the arbitrary
phase ϕ(x) in equation (1e) in powers of h̄ through perturbation or other suitable series expansion
methods [1-14] always run into difficulties after only a few orders as the calculation gets more tedious
at every step and the series expansions may also be divergent beyond some terms. In addition, the
validity of the approximation condition (1c) may also be questionable since the WKB approximation
parameter w(x) = h̄

p2
dp
dx

may not be very small for some potentials V (x).
In the present paper, we develop a new solution procedure which automatically overcomes the

major challenges of the WKB or power series expansion methods stated above. We factorize and
express the stationary Schroedinger equation (1a) in an appropriate matrix form. A general solution
up to a desired nth-order approximation is obtained by first transforming the matrix equation to a
suitable boost frame through n successive boost transformations alternately along the x-axis and y-
axis. Each boost transformation provides an approximate diagonalized Hamiltonian matrix specified
by a renormalized momentum and a smaller approximation parameter. The ever reducing magnitude
of the approximation parameter means that each boost operation improves the accuracy of the ap-
proximate solution. An important outcome of the boost operations is that the resulting renormalized
momentum has a simple binomial expansion in powers of the corresponding approximation parameter,
which facilitates exact evaluation of the phase accumulation integral for various forms of the potential
V (x). The resulting wave function and corresponding probability density display expected behavior
for arbitrary entry-boundary angles within the allowed energy region, with discontinuities occurring
only near well defined turning points.
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2 Factorization

The form of the second-order differential operator (h̄2 d2

dx2 + p2) in equation (1a) shows that it is
expressible as a difference of two squares after introducing the imaginary number i =

√
−1 according

to a2 + b2 = a2 − (ib)2, which is easily factorized, depending on the forms of a and b. Applying this
in equation (1a) and taking account of the x-dependence of p(x) provides two alternative factorized
forms

(−ih̄ d
dx

+ p)(ih̄
d

dx
+ p)ψ = −ih̄ dp

dx
ψ (2a)

(ih̄
d

dx
+ p)(−ih̄ d

dx
+ p)ψ = ih̄

dp

dx
ψ (2b)

according to the ordering of the differential operators.
Introducing complex wave amplitudes ϕ and ϕ∗ defined by

√
p ϕ = (ih̄

d

dx
+ p)ψ ;

√
p ϕ∗ = (−ih̄ d

dx
+ p)ψ ⇒ ψ =

1

2
√
p
(ϕ+ ϕ∗) (3a)

we express equations (2a)-(2b) in the simpler first-order forms

ih̄
dϕ

dx
= p ϕ+ i

h̄

2p

dp

dx
ϕ∗ ; ih̄

dϕ∗

dx
= −p ϕ∗ + i

h̄

2p

dp

dx
ϕ (3b)

These are coupled equations for the wave amplitudes ϕ and ϕ∗. We identify a factorization coupling
parameter f(x) defined by

f(x) =
h̄

2p

dp

dx
(3c)

which we substitute into equation (3b) to obtain the final form

ih̄
dϕ

dx
= p ϕ+ if ϕ∗ (3d)

ih̄
dϕ∗

dx
= −p ϕ∗ + if ϕ (3e)

An important point to note is that for real ψ, the wave amplitudes ϕ and ϕ∗ as defined in equation
(3a) are complex conjugates, while for complex ψ, the wave amplitudes ϕ and ϕ∗ would not be related
by simple complex conjugation. However, equations (3a)-(3b) apply for real or complex ψ, since they
follow from the operator ordering in the factorization and definitions given in equations (2a)-(2b) and
(3a), respectively. We may then adopt general notation

ϕ→ ϕ− ; ϕ∗ → ϕ+ ; ψ =
1

2
√
p
(ϕ− + ϕ+) (3f)

defined according to equation (3a), applying to real ψ (ϕ+ = ϕ∗
−) or complex ψ (ϕ+ ̸= ϕ∗

−).

2.1 The matrix form

Introducing a two-component column matrix χ defined by

χ =
(
ϕ
ϕ∗

)
(4a)
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equations (3d)-(3e) are expressed in the matrix form

ih̄
dχ

dx
= Hχ (4b)

where H is the corresponding 2× 2 Hamiltonian matrix obtained as

H =
(
p if
if −p

)
(4c)

We use the Pauli spin matrices σz and σx defined by

σz =
(
1 0
0 −1

)
; σx =

(
0 1
1 0

)
(4d)

to express the Hamiltonian matrix in the form

H = pσz + ifσx (4e)

We complete the specification of Pauli matrices by introducing the identity I and σy defined as

I =
(
1 0
0 1

)
; σy =

(
0 −i
i 0

)
(4f)

In general, exact analytical solution of the matrix equation (4b) cannot be obtained through direct
integration due to the x-dependence of the coefficients p(x) and f(x) of the Hamiltonian H in equation
(4e). In an arbitrarily varying potential V (x), the Hamiltonian H(x) at point x may not commute
with H(x′) at a different point x′, which means that space coordinate ordering can affect the results.
Direct integration may apply only as an approximation in the case of very slowly varying potential
where [H(x) , H(x′)] ≈ 0.

3 Accuracy levels, dynamical frames and transformations

An approximation procedure is considered good if it is consistent and can achieve high accuracy.
Accuracy is a measure of the validity of the approximation conditions which determine the effectiveness
of the approximation procedure. In standard practice, approximation conditions are specified by
approximation parameters which are either small enough to be neglected or can be used as expansion
parameters in power series expansions. Neglecting an approximation parameter or terminating a
series expansion in powers of the approximation parameter at some order determines the level of
accuracy achievable. In some cases, series expansions may either be divergent or get too complicated
to be evaluated exactly beyond the first few orders. Divergence completely destroys accuracy and
validity of approximation procedure, while termination at low orders of expansion limits the level
of accuracy. We provide an alternative procedure for improving accuracy of approximation through
successive transformations in the present paper.

On the general understanding that accuracy is described as low , fair or high, we adopt an in-
terpretation that accuracy is classified in terms of levels, from low to high accuracy. We consider
that an accuracy level is defined on a dynamical frame and that improving from one accuracy level
to a higher accuracy level is equivalent to an advancement from one dynamical frame of lower accu-
racy level to another dynamical frame of higher accuracy level. The advancement from one accuracy
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level to a higher accuracy level is then interpreted as a transformation from a dynamical frame of
lower accuracy to another dynamical frame of higher accuracy through application of an appropriate
transformation operator T . Each operation has the effect of reducing the size of the approximation
parameter, thereby improving the accuracy. We specify the original dynamical frame (where the
equation of dynamics (1a) applies) as the zeroth or leading-order dynamical frame. The approxi-
mation parameter defined in the original frame is called zeroth-order approximation parameter, ξ0,
which normally satisfies ξ0 < 1 and corresponds to lowest level accuracy. In the dynamics governed by
the stationary Schroedinger equation (1a), we shall determine ξ0 to be equal to half the usual WKB
approximation parameter.

Starting from the original dynamical frame of zero-order (lowest level) accuracy, we apply n ≥ 1
successive transformation operations to reach the nth dynamical frame of nth-order (higher) accuracy.
The zeroth-order transformation operator T = T0 is an identity operator which leaves the original
frame invariant. The first-order transformation operator composed as T = T1T0 transforms the origi-
nal dynamical frame to the first-order dynamical frame characterized by the first-order approximation
parameter ξ1 obtained in terms of a first-order derivative of the zeroth-order approximation parameter
ξ0 and therefore ξ1 < ξ0 as established in the next section. The nth-order transformation operator
composed as T = TnTn−1....T1T0 transforms the original dynamical frame to the nth-order dynamical
frame characterized by the nth-order approximation parameter ξn, which is obtained in terms of the
nth-order derivative of ξ0, such that ξn ≪ ξ0. Accuracy then increases progressively under successive
transformations from the zeroth-order to the nth-order dynamical frame. Each transformation opera-
tor Tn is specified by an arbitrary transformation parameter θn, which is eliminated at the end of the
operation with Tn to determine the form of ξn before applying the next operator Tn+1.

3.1 The transformation law

We develop the transformation law by considering that the transformation from one dynamical frame
to another of higher accuracy level is taken one step at a time. In this respect, we consider the
general case of a transformation from the nth-order dynamical frame characterized by wave amplitude
matrix χn, Hamiltonian Hn, approximation parameter ξn and transformation operator Tn specified
by arbitrary transformation parameter θn, to the (n + 1)th-order dynamical frame. The equation of
dynamics in the nth-order dynamical frame takes the form

ih̄
dχn

dx
= Hnχn , n = 0, 1, 2, 3, ..., (5a)

Transformation to the (n + 1)th-order dynamical frame characterized by wave amplitude χn+1 and
transformation operator Tn+1 is defined by

χn+1 = Tn+1χn ⇒ χn = T−1
n+1χn+1 (5b)

In general, a transformation operator T and its inverse T−1 satisfy the condition

TT−1 = T−1T = I (5c)

where I is the identity matrix.
We substitute χn = T−1

n+1χn+1 from equation (5b) into equation (5a), multiply the result by Tn+1

from the left and then apply the condition (5c) to obtain the equation of dynamics in the (n+1)th-order
dynamical frame in the form

ih̄
dχn+1

dx
= Hn+1χn+1 , n = 0, 1, 2, 3, ..., (5d)
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where the Hamiltonian Hn+1 is obtained as a transformation of Hn according to

Hn+1 = Tn+1HnT
−1
n+1 − ih̄Tn+1

dT−1
n+1

dx
(5e)

3.2 The boost frames

According to equation (4e), the original Hamiltonian H is non-Hermitian. We therefore consider
that the appropriate transformation to apply is a boost along an axis normal to the plane of the
Hamiltonian. In the general terminology adopted in the present work, the zeroth-order dynamical
frame Hamiltonian H0 = H given in equation (4e) is expressed as

H0 = q0σz + iξ0σx (6a)

where we call q0(x) and ξ0(x) the zeroth-order renormalized momentum and dynamical approximation
parameter, respectively defined by comparing equations (4e) and (6a) in the form

q0 = p ; ξ0 = f =
h̄

2p

dp

dx
(6b)

The fact that H0 = H is defined in the zx-plane means that the original (zeroth-order) dynamical
frame of the stationary Schroedinger equation is the zx-plane. The first-order boost operator T1(x) is
therefore defined along the y-axis specified by an arbitrary transformation parameter θ1(x) according
to the definition

T1(x) = e
1
2
θ1(x)σy =

(
cosh 1

2
θ1 −i sinh 1

2
θ1

i sinh 1
2
θ1 cosh 1

2
θ1

)
(6c)

which on substituting into equation (5e) for n = 0, H0 = H and then eliminating the arbitrary θ1(x)
as explained below provides the first-order dynamical frame Hamiltonian H1 in the form

H1 = q1σz − iξ1σy (6d)

where q1(x) and ξ1(x) are the first-order renormalized momentum and dynamical approximation
parameter, respectively. We observe that H1 is defined in the zy-plane, meaning that the first-order
dynamical frame is the zy-plane. The transformation from the first-order dynamical frame is therefore
a boost along the x-axis.

In general, the accuracy level dynamical frames alternate between zx and zy planes so that the
corresponding boost transformations along axes normal to the dynamical planes are effected by boost
transformations defined alternately along y-axis or x-axis as appropriate. For the general transfor-
mation from the nth-order frame to the (n+ 1)th-order frame specified above, we define Tn+1 and its
inverse T−1

n+1 in relation to the plane of Hn according to

Hn = qnσz − iξnσx ⇒ Tn+1(x) = e
1
2
θn+1(x)σy =

(
cn+1 −isn+1

isn+1 cn+1

)

T−1
n+1(x) = e−

1
2
θn+1(x)σy =

(
cn+1 isn+1

−isn+1 cn+1

)
(7a)

which we substitute into the transformation law in equation (5e) to obtain

Hn+1 = qn{(cosh θn+1 + ξ̄n sinh θn+1)σz − i(sinh θn+1 + ξ̄n cosh θn+1)σx}+ i
h̄

2

dθn+1

dx
σy (7b)

7



while the form

Hn = qnσz − iξnσy ⇒ Tn+1(x) = e
1
2
θn+1(x)σx =

(
cn+1 sn+1

sn+1 cn+1

)

T−1
n+1(x) = e−

1
2
θn+1(x)σx =

(
cn+1 −sn+1

−sn+1 cn+1

)
(7c)

substituted into equation (5e) gives

Hn+1 = qn{(cosh θn+1 + ξn sinh θn+1)σz − i(sinh θn+1 + ξn cosh θn+1)σy}+ i
h̄

2

dθn+1

dx
σx (7d)

where we have introduced short notation for approximation parameter and the hyperbolic functions
in the form

ξn =
ξn
qn

; cn+1 = cosh
1

2
θn+1(x) ; sn+1 = sinh

1

2
θn+1(x) (7e)

We have used standard hyperbolic function identities

cosh2(.) + sinh2(.) = cosh 2(.) ; 2 sinh(.) cosh(.) = sinh 2(.) (7f)

to obtain the final form in equations (7b) and (7d).

3.2.1 Eliminating θn+1(x) : renormalized momentum

The only externally introduced arbitrary parameter in the Hamiltonian Hn+1 in equations (7b) and
(7d) is the boost transformation parameter θn+1(x), which must be eliminated to obtain a physically
meaningful boost frame Hamiltonian. Since we shall diagonalize Hn+1 in the end to obtain the desired
approximate solution of equation (5d) in the (n+1)th-order dynamical frame, we start by eliminating
the σx-component in equation (7b) or the σy-component in equation (7d) by setting the coefficient to
zero according to

sinh θn+1 + ξn cosh θn+1 = 0 (8a)

which easily fixes the boost parameter θn+1 in terms of the physical parameters in the form

tanh θn+1(x) = −ξn(x) (8b)

Squaring equation (8b) and using cosh2(.)− sinh2(.) = 1 gives

cosh θn+1(x) =
1√

1− ξ
2

n(x)
; sinh θn+1(x) = − ξn(x)√

1− ξ
2

n(x)
(8c)

where the negative sign in the definition of tanh θn+1(x) has been taken into account in the derivation
of cosh θn+1(x) and sinh θn+1(x). We then obtain

cosh θn+1(x) + ξn(x) sinh θn+1(x) =
√
1− ξ

2

n(x) (8d)

Differentiating equation (8b) with respect to x using

d

dx
tanh θn+1 =

dθn+1

dx

d

dθn+1

tanh θn+1 =
dθn+1

dx
(1− tanh2 θn+1) (8e)
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gives the final result
h̄

2

dθn+1

dx
= − h̄

2(1− ξ
2

n(x))

d ξn(x)

dx
(8f)

Noticing that the r.h.s. of equation (8f) involves first-order derivative of the n-order boost approxi-
mation parameter ξn = ξn

qn
, we introduce the (n+1)th boost approximation parameter ξn+1(x) defined

by
h̄

2

dθn+1

dx
= −ξn+1(x) ⇒ ξn+1(x) =

h̄

2(1− ξ
2

n(x))

d ξn(x)

dx
, n = 0, 1, 2, 3, ..., (8g)

Substituting equations (8a) , (8d) and (8g) into equations (7b) and (7d) (noting that the coefficients
are the same), we obtain the boost frame Hamiltonian in the alternate forms

Hn = qnσz − iξnσx ⇒ Hn+1 = qn+1σz − iξn+1σy (9a)

Hn = qnσz − iξnσy ⇒ Hn+1 = qn+1σz − iξn+1σx (9b)

where we have introduced the (n+ 1)th-order renormalized momentum qn+1(x) obtained as

qn+1(x) = qn(x)
√
1− ξ

2

n(x) , n = 0, 1, 2, 3, ..., (9c)

Setting n = 0, 2, 3, ..., in equations (9a)-(9c) provides the zeroth, even and odd order dynamical frame
Hamiltonians according to

H0 = q0σz + iξ0σx ; q0 = p ; ξ0 =
h̄

2p

dp

dx
; ξ0 =

ξ0
q0

=
1

2
w (9d)

where w(x) is the WKB approximation parameter defined in equation (1d).

H2n = q2nσz − iξ2nσx ; q2n = q2n−1

√
1− ξ

2

2n−1 ; ξ2n =
h̄

2(1− ξ
2

2n−1)

d ξ2n−1

dx

ξ2n−1 =
ξ2n−1

q2n−1

, n ≥ 1 (9e)

H2n+1 = q2n+1σz − iξ2n+1σy ; q2n+1 = q2n

√
1− ξ

2

2n ; ξ2n+1 =
h̄

2(1− ξ
2

2n)

d ξ2n
dx

ξ2n =
ξ2n
q2n

, n ≥ 0 (9f)

3.3 Diagonalization and approximate solutions

We recall that the purpose of the transformations of the original equation (4b) and its Hamiltonian
(4e) is to find a dynamical frame in which the resultant Hamiltonian is either space-independent
for an exact analytical solution or has a negligible approximation parameter for a high accuracy
approximation. Since the renormalized momentum qn(x) and the dynamical approximation parameter
ξn(x) which specify the Hamiltonian Hn in the nth-order dynamical frame for n = 0, 1, 2, 3, ..., are
space-dependent, the resultant equation of dynamics (5a) (note that (5d) takes the same form as
(5a) for n → n + 1) can only be solved under good approximation conditions in which we consider
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the nth-order dynamical approximation parameter ξn(x) to be negligible. Under such conditions, the
Hamiltonian Hn is diagonalized, leading to a simple solution through direct integration.

The main task is to establish that the nth-order approximation parameter ξn(x) is small enough
to be neglected at the n ≥ 0 accuracy level. To do this, we consider that ξn(x) is defined in terms of
progressively increasing orders of differentiation of the zeroth-order approximation parameter ξ0(x)
according to

n = 0 : ξ0 =
h̄

2p

dp

dx
; q0 = p ; ξ0 =

ξ0
q0

=
1

2
w

n ≥ 1 : ξn =
h̄

2(1− ξ
2

n−1)

d ξn−1

dx
; ξn−1 =

ξn−1

qn−1

(10a)

where w(x) is the WKB approximation parameter. We now consider the cases n = 1, 2 to realize the
physical implications.

n = 1 : ξ1 =
h̄

2(1− ξ
2

0)

d ξ0
dx

=
h̄

4(1− 1
4
w2)

dw

dx
(10b)

n = 2 : ξ2 =
h̄

2(1− ξ
2

1)

d ξ1
dx

; ξ1 =
ξ1
q1

;
d ξ1
dx

=
d

dx
(
ξ1
q1
) =

1

q1
(
dξ1
dx

− ξ1
dq1
dx

) (10c)

We use equation (10b) to obtain

dξ1
dx

=
d

dx

h̄

4(1− 1
4
w2)

dw

dx
=
h̄

4
{ w

2(1− 1
4
w2)2

(
dw

dx
)2 +

1

(1− 1
4
w2)

d2w

dx2
} (10d)

In general, the dynamical approximation parameters are proportional to the derivatives of the WKB
parameter according to the degree

ξ1 ∼
dw

dx
; ξ2 ∼ {(dw

dx
)2 ,

d2w

dx2
} (10e)

n ≥ 2 : ξn ∼ {(dw
dx

)n ,
dnw

dxn
} (10f)

It is clear that under the WKB approximation condition (w ≪ 1) in equations (1c)-(1d), the dynamical
approximation parameters ξn(x) become progressively smaller with increasing n ≥ 0. This means that
the accuracy level increases with the number n ≥ 0 of successive transformations from the zeroth-order
to the nth-order (n ≥ 1) dynamical frame. The highest accuracy level is achieved in the dynamical
frame where the approximation parameter ξ(x) takes the smallest possible value and can be safely
neglected. Hence, for nth-level accuracy (equivalent to approximation to the nth-order), we set ξn(x)
(general n = 0 , even , odd) equal to zero in any of the forms in equations in (9a)-(9e), leading to
diagonalization of the general nth-order dynamical Hamiltonian according to

ξ0(x) = 0 ⇒ H0 = q0σz , q0(x) = p(x) ; ξ0(x) =
1

2
w(x) (11a)

ξn(x) = 0 ⇒ Hn = qnσz , qn(x) = qn−1(x)

√
1− ξ

2

n−1(x) , n = 1, 2, 3, ..., (11b)

Substituting the diagonalized Hamiltonian from equations (11a)-(11b) into equation (5a), we eas-
ily obtain the approximate solution satisfying the accuracy conditions (11a)-(11b) in the nth-order
dynamical frame in the form

χn(x) = Un(x)χn(0) , n = 0, 1, 2, 3, ..., (11c)
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with the space evolution operator Un(x) obtained through direct integration in the final form

Un(x) = e−iδn(x)σz , n = 0, 1, 2, 3, ..., (11d)

where the phase accumulation integral δn(x) has been obtained as

δn(x) =
1

h̄

∫ x

x0

qn(x
′)dx′ , n = 0, 1, 2, 3, ..., (11e)

Noting that χn(x) in the nth-order dynamical frame is obtained from χ(x) as defined in equation (4a)
in the original frame through a succession of boost transformations according to

χn(x) = Tn(x)χn−1(x) = Tn(x)Tn−1(x)Tn−2(x)......T3(x)T2(x)T1(x)T0(x)χ(x) (12a)

where
T0(x) = I ⇒ χ0(x) = T0(x)χ(x) = χ(x) (12b)

we apply the inverse operations in succession from the left of equation (12a), starting with T−1
n (x) as

appropriate, to obtain the original wave amplitude in the form (T−1
0 x = I)

χ(x) = T−1
1 (x)T−1

2 (x)T−1
3 (x)......T−1

n−2(x)T
−1
n−1(x)T

−1
n (x)χn(x) (12c)

Applying the inverse operation on equation (11c) from the left and substituting equation (12c), to-
gether with the entry-boundary transformation

χn(0) = Tn(0)Tn−1(0)Tn−2(0)......T3(0)T2(0)T1(0)χ(0) (12d)

we obtain the approximate solution of equation (4b) in the original frame in the form

χ(x) = U(x)χ(0) , χ(x) =
(
ϕ(x)
ϕ∗(x)

)
, χ(0) =

(
ϕ(0)
ϕ∗(0)

)
(12e)

where the space evolution operator U(x) in the original frame has been obtained in the form

U(x) = T−1
1 (x)T−1

2 (x)T−1
3 (x)......T−1

n−1(x)T
−1
n (x)Un(x)Tn(0)Tn−1(0)......T2(0)T1(0) , n ≥ 1 (12f)

We recall that the boost operators applied in succession in equations (12a)-(12f) alternate between
the x-axis and y-axis boosts as explained earlier in the form

T2j(x) = e
1
2
θ2j(x)σx ; T2j+1(x) = e

1
2
θ2j+1(x)σy , j = 0, 1, 2, 3, ..., ; θ0(x) = 0 (12g)

Once U(x) is evaluated explicitly and substituted into equation (12e) to obtain ϕ(x) , ϕ∗(x), the desired
general solution of the stationary Schroedinger equation (1a) up to nth-order accuracy follows easily
using the definition of the wave function ψ(x) in equation (3a). We observe that the general results we
have obtained in equations (9d)-(9f), (10a)-(10f), (11d)-(11e) and (12e)-(12f) through factorization
and successive boost transformations can be compared with the improved WKB (or phase-integral
based) results obtained through various methods of expansion by S L Braunstei [4] and S Winitzki
in [7]. The boost transformation procedure developed in the present paper is straightforward and
quite effective in providing progressively improving approximate solutions of the semiclassical (WKB)
model of the stationary Schroedinger equation (1a).

We illustrate the procedure by presenting explicit results for the zeroth-order and first-order ap-
proximations below. The first-order probability density profile in a confining linear potential is plotted
to test the accuracy level of the first-order approximate solution.
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3.4 Zeroth-order approximation

Up to the zeroth-order approximation, we set

n = 0 : q0(x) = p(x) ; δ0(x) =
1

h̄

∫ x

x0

p(x′)dx′ (13a)

U0(x) = e−iδ0(x)σz =
(
e−iδ0(x) 0

0 eiδ0(x)

)
(13b)

T−1
0 (x) = I = T0(x) (13c)

to obtain

U(x) = U0(x) ⇒ U(x) =
(
e−iδ0(x) 0

0 eiδ0(x)

)
(13d)

which we substitute into equation (12e) to obtain the final result

ϕ(x) = e−iδ0(x)ϕ(0) ; ϕ∗(x) = eiδ0(x)ϕ∗(0) (13e)

Expressing the entry-boundary complex wave amplitudes ϕ(0) , ϕ∗(0) in the polar form

ϕ(0) = |ϕ(0)|e−iϑ ; ϕ∗(0) = |ϕ(0)|eiϑ (13f)

in equation (13e) and using the result in the definition of the wave function ψ(x) according to equation
(3a) gives the solution of equation (1a) to zeroth-order approximation in the form

n = 0 : ψ(x) =
A√
p(x)

cos(
1

h̄

∫ x

x0

p(x′)dx′ + ϑ) ; A = |ϕ(0)| (13g)

after substituting δ0(x) from equation (13a). We notice that this zeroth-order approximation is
exactly the leading order WKB approximation ψwkb(x) in equation (1g). We observe that for complex
ψ(x), the general definitions in equation (3f) and the results obtained in equation (13e) provide the
zeroth-order solution in the WKB form presented in equation (1f).

3.5 First-order approximation

Up to the first-order approximation, we set

n = 1 : ξ0(x) =
1

2
w(x) ; q1(x) = p(x)

√
1− ξ

2

0(x) ; δ1(x) =
1

h̄

∫ x

x0

q1(x
′)dx′ (14a)

U1(x) = e−iδ1(x)σz =
(
e−iδ1(x) 0

0 eiδ1(x)

)
(14b)

T−1
1 (x) = e−

1
2
θ1(x)σy =

(
c1 is1

−is1 c1

)
; T1(0) = e

1
2
θ1(x)σy =

(
c̄1 −is̄1
is̄1 c̄1

)
(14c)

where c1 , s1 and corresponding entry-boundary values c̄1 , s̄1 are defined according to equation (7e)
in the form

c1 = cosh
1

2
θ1(x) ; s1 = sinh

1

2
θ1(x) ; c̄1 = cosh

1

2
θ1(0) ; s̄1 = sinh

1

2
θ1(0) (14d)
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Using equations (14b)-(14c) in equation (12f) for the n = 1 case, we obtain the space evolution
operator U(x) up to the first-order approximation in the form

U(x) = T−1
1 (x)U1(x)T1(0) ⇒ U(x) =

(
µ(x) ν(x)
ν∗(x) µ∗(x)

)
(14e)

after introducing complex variables µ(x) and ν(x) obtained as

µ(x) = c̄1c1e
− i

2
δ1(x) − s̄1s1e

i
2
δ1(x) ; ν(x) = −i(s̄1c1e−

i
2
δ1(x) − c̄1s1e

i
2
δ1(x)) (14f)

with complex conjugates µ∗(x) and ν∗(x).
Substituting U(x) from equation (14e) into equation (12e) provides the solution to first-order

approximation (first accuracy level) in the form

ϕ(x) = µ(x)ϕ(0) + ν(x)ϕ∗(0) ; ϕ∗(x) = µ∗(x)ϕ∗(0) + ν∗(x)ϕ(0) (14g)

The general wave function ψ(x) defined in equation (3a) is obtained using ϕ(x) and ϕ∗(x) from
equation (14g) in the reorganized form

ψ(x) =
1

2
√
p(x)

{µ∗(x)ϕ∗(0) + µ(x)ϕ(0)}+ 1

2
√
p(x)

{ν∗(x)ϕ(0) + ν(x)ϕ∗(0)} (15a)

which on using the polar form of ϕ(0), ϕ∗(0) from equation (13f) takes the form

ψ(x) =
|ϕ(0)|
2
√
p(x)

{(µ∗(x) + µ(x) + ν∗(x) + ν(x)) cosϑ+ i(µ∗(x)− µ(x)− (ν∗(x)− ν(x))) sinϑ} (15b)

The definitions of µ(x) , ν(x) given in equations (14f) are used to obtain

µ∗(x) + µ(x) + ν∗(x) + ν(x) = 2{(c̄1c1 − s̄1s1) cos δ1(x)− (s̄1c1 + c̄1s1) sin δ1(x)} (15c)

µ∗(x)− µ(x)− (ν∗(x)− ν(x)) = 2i{(c̄1c1 + s̄1s1) sin δ1(x)− (s̄1c1 − c̄1s1) cos δ1(x)} (15d)

which we substitute into equation (15b), reorganize and then apply standard trigonometric identities
to obtain

ψ(x) =
|ϕ(0)|√
p(x)

{c̄(c1 cos(δ1(x)+ϑ)−s1 sin(
1

2
δ1(x)+ϑ))− s̄(s1 cos(δ1(x)−ϑ)+c1 sin(δ1(x)−ϑ))} (15e)

Using the general definition of cosh θ(x) in equation (8c), applying the hyperbolic function iden-
tities

c21 − s21 = 1 ; c21 + s21 = cosh θ(x) ; 2c1s1 = sinh θ(x) (16a)

and introducing appropriately defined parameters f+(x) and f−(x) gives

c1 =
f+(x)(√

1− ξ
2

0(x)
) 1

2

; s1 =
f−(x)(√

1− ξ
2

0(x)
) 1

2

(16b)

where

f+(x) =

√
1

2

(
1 +

√
1− ξ

2

0(x)
)

; f−(x) =

√
1

2

(
1−

√
1− ξ

2

0(x)
)

(16c)
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Substituting equation (16b) into equation (15e) gives the general wave function in the two-component
form

ψ(x) = ψ+(x)− ψ−(x) (17a)

where the components ψ+(x) and ψ−(x) have been obtained as

ψ+(x) =
A√

p(x)
√
1− ξ

2

0(x)

{f+(x) cos(δ1(x) + ϑ)− f−(x) sin(δ1(x) + ϑ)} ; A = c̄ |ϕ(0)| (17b)

ψ−(x) =
B√

p(x)
√
1− ξ

2

0(x)

{f−(x) cos(δ1(x)− ϑ) + f+(x) sin(δ1(x)− ϑ)} ; B = s̄ |ϕ(0)| (17c)

with constants A and B defined as shown in the equations. According to the definitions in equation
(16b), we obtain

c̄1 =
f+(0)(√

1− ξ
2

0(0)
) 1

2

; s̄1 =
f−(0)(√

1− ξ
2

0(0)
) 1

2

(17d)

The forms of ψ+(x) and ψ−(x) in equations (17b) and (17c) suggest that we can introduce a space-
dependent phase angle φ(x) defined by

cosφ(x) = f+(x) ; sinφ(x) = f−(x) (17e)

which we substitute into equations (17b)-(17c), apply standard trigonometric identities and then
substitute the renormalized momentum q1(x) from equation (14a) to obtain ψ+(x) and ψ−(x) in the
final forms

ψ+(x) =
A√
q1(x)

cos(δ1(x) + φ(x) + ϑ) ; ψ−(x) =
B√
q1(x)

sin(δ1(x) + φ(x)− ϑ) (17f)

Substituting the definition of δ1(x) from equation (14a) into these results gives the familiar forms

ψ+(x) =
A√
q1(x)

cos(
1

h̄

∫ x

x0

q1(x
′) dx′ + φ(x) + ϑ) (17g)

ψ−(x) =
B√
q1(x)

sin(
1

h̄

∫ x

x0

q1(x
′) dx′ + φ(x)− ϑ) (17h)

We can reorganize and apply the parameter definitions of c1 , s1, c̄1, s̄1 as appropriate to obtain the
general wave function in the alternative form

ψ(x) =
A√
q1(x)

(cos(φ− ϑ) cos(δ1(x) + φ(x))− sin(φ+ ϑ) sin(δ1(x) + φ(x))) (18a)

where the constants A and φ have been obtained as

A =
|ϕ(0)|(√

1− ξ
2

0(0)
) 1

2

; φ = φ(0) ⇒ cosφ = f+(0) , sinφ = f−(0) (18b)

In a simpler case with only one constant parameter-dependent phase angle, we set ϑ = φ in equation
(18a) to obtain

ϑ = φ : ψ(x) =
A√
q1(x)

(cos(δ1(x) + φ(x))− sin(2φ) sin(δ1(x) + φ(x))) (18c)
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3.5.1 The probability density

Since the field potential V (x) is arbitrary, the total energy range includes both the allowed energy
region (E > V (x)) and the classically forbidden region (E < V (x)). The dynamics described by the
general wave function obtained in the set of equations (17a)-(17h) or (18a)-(18c) is expected to be
normal in the allowed energy region and then change discontinuously as the system approaches the
turning point into the classically forbidden region where the fundamental phenomenon of quantum
tunneling is expected. The general features of the dynamics over the entire energy range can be
studied through the probability density profile.

The probability density to first-order approximation, ρ1(x), is obtained according to the definition

ρ1(x) = |ψ̄(x)|2 = ψ̄2
+(x) + ψ̄2

−(x)− 2ψ̄+(x)ψ̄−(x) (19a)

where

ψ̄(x) =
ψ(x)

A
= ψ̄+(x)− ψ̄−(x) ; ψ̄+(x) =

ψ+(x)

A
; ψ̄−(x) =

ψ−(x)

A
(19b)

noting that in dividing ψ−(x) by A, we obtain

B

A
=
s̄

c̄
=

√√√√√1−
√
1− ξ

2

0(0)

1 +
√
1− ξ

2

0(0)
(19c)

where we have used the definitions in equations (16c) and (17d), with ψ+(x) , ψ−(x) in the forms
(17b)-(17c) or (17f)-(17h) as convenient. We may also use ψ(x) in the alternative form in equations
(18a)-(18c).

3.5.2 The phase accumulation integral

The phase accumulation integral δ1(x) defined in equation (14a) can be evaluated exactly or to very
good approximation once the field potential V (x) for a given system is specified.

In general, the evaluation of the phase accumulation integral is simplified by obtaining an appropri-
ate binomial expansion of the renormalized momentum q1(x) using ξ0(x) =

1
2
w(x) as the expansion

parameter. The suitability of ξ0(x) as an expansion parameter follows immediately from the fact
that it satisfies the WKB condition (w(x) ≪ 1) according to equation (1d). In addition, standard
trigonometric identities for φ(x) using equations (16c) and (17e) give

cos 2φ(x) =
√
1− ξ

2

0(x) ; sin 2φ(x) = ξ0(x) (20a)

which shows that ξ0(x) must satisfy the trigonometric condition (| sin(..)| ≤ 1)

|ξ0(x)| ≤ 1 (20b)

This includes the WKB approximation condition ξ0(x) = 1
2
w(x) ≪ 1 for slowly varying potentials

V (x).
The expansion procedure is based on the general condition obtained in equation (20b). But this

condition cannot apply fully, since the wave function and probability density in the set of equations
(17a)-(18c) experience discontinuity at the value |ξ0(x)| = 1 where the momentum renormalization
factor vanishes according to

|ξ0(x)| = 1 ⇒
√
1− ξ

2

0(x) = 0 ;
1√

1− ξ
2

0(x)
= ∞ (20c)
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which may be called the ξ0(x)-discontinuity condition. It is important to note that the ξ0(x)-
discontinuity must occur before reaching the energy turning-point (E = V (x)), since ξ0(x) =

1
2
w(x) is

indeterminate at the turning point according to the definition of w(x) in equation (1d). This feature
of a discontinuity occurring just before the turning point is displayed in the probability profiles below.

The ξ0(x)-discontinuity condition in equation (20c) means that the upper limit |ξ0(x)| = 1 in
equation (20b) must be excluded. The proper dynamical condition for the parameter ξ0(x) then
follows from equations (20b) and (20c) in the general form

|ξ0(x)| < 1 ; ξ
2

0(x) < 1 (20d)

This condition is necessary and sufficient for using ξ
2

0(x) as an expansion parameter to expand 1√
1−ξ

2
0(x)

and
√
1− ξ

2

0(x) according to the general binomial expansion

(1 + y)m = 1 +
∞∑
n=1

m(m− 1)(m− 2).....(m− n+ 1)

n!
yn (20e)

Setting y = −ξ20(x), m = ±1
2
in equation (20e) and applying the double factorial results

(−1)!! = 1 ; (−3)!! = −1 (20f)

to include the n = 0, 1 terms gives the final forms

1√
1− ξ

2

0(x)
=

∞∑
n=0

(2n− 1)!!

2nn!
ξ
2n

0 (x) ;
√
1− ξ

2

0(x) =
∞∑
n=0

(−1)2n−1(2n− 3)!!

2nn!
ξ
2n

0 (x) (20g)

Notice that, if we express

ξ0(x) =
1

2

1

p

dp

dx
=

1

2

d ln p

dx
⇒ ξ0(x) =

1

2p

d ln p

dx
(20h)

then the expansion in equation (20g) can be compared with the form of phase-integral expansion
obtained by S L Braunstein in [4].

Substituting the expansion for
√
1− ξ

2

0(x) from equation (20g) into the renormalized momentum
q1(x) in equation (14a), now setting ξ0(x) =

1
2
w(x), we obtain an expansion for the phase accumulation

integral δ1(x) defined in equation (14a) in the form

δ1(x) =
∞∑
n=0

(−1)2n−1(2n− 3)!!

2nn!

1

h̄

∫ x

x0

p(x′)(
1

2
w(x′))2n dx′ (21a)

Using the definition of the momentum from equation (1b) gives

p(x) =
√
2m(E − V (x)) ;

dp(x)

dx
=

m

p(x)

−dV (x)

dx
=

m

p(x)
F (x) (21b)

which is substituted into equation (1d) to obtain the WKB approximation parameter w(x) in the
form

w(x) =
mh̄

p3(x)

(
−dV (x)

dx

)
=

mh̄

p3(x)
F (x) (21c)
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after identifying the classical force F (x) obtained as usual from the field potential V (x) according to

F (x) = −dV (x)

dx
(21d)

From equation (21c) follows (noting (−1)2n = 1)

(
1

2
w(x))2n =

(
mh̄

2

)2n
1

p6n(x)

(
dV (x)

dx

)2n

; p(x)(
1

2
w(x))2n =

(
mh̄

2

)2n
1

p6n−1(x)

(
dV (x)

dx

)2n

(21e)

Using equation (21e) in equation (21a) and substituting p(x) =
√
2m(E − V (x)) provides the phase

accumulation integral expansion in the final form

δ1(x) =
∞∑
n=0

(−1)2n−1(2n− 3)!!

2nn!

(
mh̄

2

)2n−1 ∫ x

x0

m(√
2m(E − V (x′))

)6n−1

(
dV (x′)

dx′

)2n

dx′ (21f)

after factoring m2n = m2n−1m.
An important point to note is that the phase accumulation integral δ1(x) obtained explicitly in

terms of the field potential V (x) in equation (21f) is exactly evaluated analytically or using a suitable
computer program, e.g., Mathematica, for many different forms of the arbitrary field potential V (x).
In some cases, the results are expressed in terms of appropriate special functions. Where the results
are too long to be presented in closed form for all n, only a finite number of expansion terms may be
used.

3.5.3 Example: probability density profile in a linear potential: V (x) = κx

To compare the first-order approximation with the leading order WKB approximation (zeroth-order
approximation) displayed in Fig. 1, we evaluate the first-order probability density ρ1(x) defined in
equation (18a) for the case of the linear potential V (x) = κx and display the profile in Fig. 2 below.
The evaluations are simplified for any mass m , mean total energy E and field potential coupling
constant κ using the potential and parameter definitions given in equation (1i).

We have discovered that for ϑ = ±π
4
, the probability density ρ1(x) in equation (19a) takes infinite

values according to

ρ1(x , ϑ = ∓π
4
) = ±∞ (22a)

which means that for entry-boundary values ϑ = ∓π
4
, the dynamics in a linear potential is indetermi-

nate even in the allowed energy region E ≥ κx. Noting that the behavior is very highly sensitive to
the entry-boundary values, we choose ϑ arbitrarily close to π

4
to compare ρ1(x) from equation (19a)

with the WKB leading order probability density ρwkb(x) in equation (1h) displayed in Fig. 1.
The probability density profile from equation (19a) for dynamics in a linear field potential V = κx

is displayed in Fig. 2 for entry-boundary phase angle ϑ = (1± 10−10)π
4
≡ π

4
, which we have chosen to

be arbitrarily close to the WKB asymptotic value ϑ = π
4
in equation (1g). We have used the expansion

in equation (21f) to include n = 0 → 50000 exactly evaluated terms so that the phase accumulation
integral δ1(x) is essentially exact.
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ρ1(x) for V (x) = κx , p(x) =
√
b− ax , b = 2mE , a = 2mκ ; ϑ = (1± 10−10)

π

4
≡ π

4
(22b)

10 20 30 40 50

0.2

0.4

0.6

0.8

Figure 2: First-order probability density ρ1(x) for linear potential V (x) = κx with b = 12, a = 0.5,
ϑ ≡ π

4
over the range x = 0 → 50

.

This diagram clearly reveals a rapid increase, like a discontinuity, in the probability density at
the turning point, followed immediately by a rapid collapse to zero. The probability density ρ1(x)
remains exactly zero throughout the region beyond the turning point, which reveals that the particle
is confined within the allowed energy region E > κx. This confirms the well known confining property
of the linear potential V (x) = κx. In contrast, the leading order WKB probability density ρwkb(x)
in equation (1h) displayed in Fig. 1 undergoes a discontinuous change, increasing very sharply near
the turning point and remains indeterminate beyond the turning point. The leading order WKB
approximation does not tell what happens to the particle once it gets close to the turning point and
thus fails to reveal the confining property of the linear potential. The first-order approximate solution
obtained through the factorization and boost transformation presented in final form in equations
(17a)-(17h) or (18a)-(18c) is therefore much more accurate compared to the leading order WKB
approximation presented in equations (1f)-(1g).

4 Space-dependent spin / polarization state vectors

An important outcome of the matrix method is the emergence of the basic spin or polarization state
vectors in the definition of χ according to

χ = ϕ
(
1
0

)
+ ϕ∗

(
0
1

)
⇒ χ(x) = ϕ(x)|0⟩+ ϕ∗(x)|1⟩ ; χ(0) = ϕ(0)|0⟩+ ϕ∗(0)|1⟩ (23a)

where we have recognized the basic spin state vectors |0⟩ and |1⟩ defined by

|0⟩ =
(
1
0

)
; |1⟩ =

(
0
1

)
(23b)

Substituting χ(0) from equation (23a) into equation (12e), we obtain

χ(x) = U(x)χ(0) = ϕ(0)|0;x⟩+ ϕ∗(0)|1;x⟩ (23c)
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where we have introduced space-dependent spin / polarization state vectors |0;x⟩ , |1;x⟩ obtained
according to

|0;x⟩ = U(x)|0⟩ ; |1;x⟩ = U(x)|1⟩ (23d)

Noting that polarization states are specified as positive (+) and negative (−) helicity states, we
introduce appropriate notation for polarization state vectors according to

|+⟩ =
(
1
0

)
; |−⟩ =

(
0
1

)
(23e)

The space-dependent positive and negative helicity polarization state vectors are obtained as

|+;x⟩ = U(x)|+⟩ ; |−;x⟩ = U(x)|−⟩ (23f)

We introduce spin / polarization operators

Ŝ0 =
h̄

2
(|0⟩⟨0|+ |1⟩⟨1|) ; Ŝz =

h̄

2
(|0⟩⟨0| − |1⟩⟨1|) (24a)

Ŝx =
h̄

2
(|0⟩⟨1|+ |1⟩⟨0|) ; Ŝy = − ih̄

2
(|0⟩⟨1| − |1⟩⟨0|) (24b)

Spin / polarization states are described by the mean values of these operators obtained as

Sj = χ†(x)Ŝjχ(x) = χ†(0)U−1(x)ŜjU(x)χ(0) ; j = 0, x, y, z (24c)

where
χ†(x) = χ†(0)U−1(x) ; χ†(0) = ϕ∗(0)⟨0|+ ϕ(0)⟨1| (24d)

The mean parameters Sj can be used to determine the distribution of the spin / polarization states
on appropriately defined geometric surfaces in the semiclassical model of the stationary Schroedinger
equation (1a). Details will be presented in another paper.

5 Conclusion

We have provided a general approximate solution of arbitrary level of accuracy of the semiclassical
model of the stationary Schroedinger equation through factorization and successive boost transforma-
tions of the equivalent matrix equation. The fact that the basic approximation parameter, starting
with the zeroth-order parameter ξ0(x) =

h̄
2p(x)

dp(x)
dx

, reduces progressively under successive boost op-
erations from dynamical frames of lower accuracy to dynamical frames of higher accuracy has led to
the concept of accuracy levels. Each dynamical frame represents an accuracy level and an advance-
ment from a frame of lower accuracy level to a frame of higher accuracy level is achieved through a
boost transformation or an appropriate succession of boost transformations. A boost transformation
operator, T (x), thus provides a mechanism, i.e., a theoretical tool, for improving the accuracy of
an approximation. We have demonstrated in equations (10a)-(10f) that the boost transformations
effectively generate series expansions in terms of derivatives of progressively increasing order of the
basic approximation parameter ξ0(x) =

ξ0(x)
p(x)

= 1
2
w(x), where w(x) is the usual WKB approximation

parameter, sometimes called the adiabatic parameter. The boost transformation procedure is more
elegant compared to perturbation and other expansion methods which are generally tedious.

In the general solution procedure developed in the present paper, the original frame (normally
identified as the laboratory frame) where the stationary Schroedinger equation (1a) is specified is
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classified as the zeroth-order approximation or lowest accuracy dynamical frame. We have estab-
lished that the zeroth-order approximation provides the leading order WKB-approximation, which
is exact in a constant potential where the momentum p is constant. The first-order and higher-order
approximations provide progressively more accurate solutions.

The general solutions obtained in this paper apply to all types of second-order ordinary differential
equations similar to the Schroedinger equation, which are generally expressed in the form of equation
(1c) in mathematics, physics, chemistry, biology, economics and other disciplines where such second-
order processes occur. In the general cases, a suitable expansion parameter is introduced to replace the
quantization parameter h̄ which occurs in the Schroedinger equation. If the function ψ in the equation
equivalent to (1a) is complex, then the general solution is obtained in terms of the components ϕ→ ϕ−
and ϕ∗ → ϕ+ defined according to equations (3a) and (3f).

The space-dependent spin / polarization state vectors introduced here will prove very useful in
describing the stationary quantum states of a system in the semiclassical model, as we will demonstrate
in a future paper.
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