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Exact analytical solutions for fully quantized parametric oscillation dynamics
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In this paper, a simple method for obtaining general analytical solutions of the time evolution equations for a fully
quantized parametric oscillation process is developed. Heisenberg’s equations for the signal–idler photon annihilation
operators are converted into a matrix equation equivalent to a two-state Jaynes–Cummings time evolution equation which
has exact analytical solutions. The mean intensity inversion for the coupled signal–idler photon pair is found to undergo
fractional revivals for pump photon in a Fock state, provided both signal and idler photons are in occupied Fock states.
General collapses and revivals occur for interactions with pump photon in a coherent state, but now with both or either of
signal and idler photons in occupied Fock states. An interpretation of the coupled signal–idler photon pair as a circularly
polarized two-state system specified by positive and negative helicity states leads to an appropriate description of photon
polarization state dynamics governed by the underlying Jaynes–Cummings interaction.

Keywords: quantized parametric oscillation; Jaynes–Cummings interaction; collapses; revivals; fractional revivals;
polarization state dynamics

1. Introduction

The fully quantized parametric oscillation/frequency-
conversion process treated in this paper is modeled as a
quantized three-mode interaction governed by a trilinear
Hamiltonian of the form

H =�

(
ωâ†â+ω1â†

1 â1+ω2â†
2 â2+g

(
ââ†

1 â2+â†â†
2 â1

))
,

(1)

where g is a constant coupling parameter. In the present
work, a-mode, a1-mode and a2-mode represent the pump,
signal and idler photons, respectively. The annihilation and
creation operators for the pump, signal and idler photons
are accordingly denoted by (â, â†), (â1, â†

1), (â2, â†
2),

respectively.
Earlier efforts to obtain exact analytical solutions of the

equations of dynamics generated by the trilinear Hamil-
tonian in Equation (1) include the independent works of
Carusotto [1] and Jurco [2]. But their approaches yielded
expressions which were too complicated and discourag-
ing to work with. As a result, further studies of the fully
quantized parametric oscillation process, exemplified by
the works of Drobny and Jex [3], Jyotsna and Agarwal [4]
and others not cited here, focused attention on the numeri-
cal integration methods, which have revealed fundamental
quantum mechanical phenomena of collapses, revivals and
fractional revivals in the time evolution of the mean signal
or idler photon numbers.

*Email: ojakeyo04@yahoo.co.uk

The present paper takes the challenge of developing a
simple procedure for obtaining exact analytical solutions of
the time evolution equations governing the dynamics of the
fully quantized parametric oscillation process based on the
trilinear Hamiltonian in Equation (1). The main motivation
here is that analytical solutions are much easier to work
with and very effective in revealing detailed features of
the dynamics of a system. The current interest in practical
applications of parametric interactions in quantum mechan-
ics based technologies would be highly enhanced by simple
exact analytical expressions describing the time evolution
of the annihilation and creation operators, as well as the
associated state vectors, of a fully quantized parametric
oscillation process.

A transformation of H in Equation (1) to the interaction
frame through a transformation operator Tp(t) according
the transformation law

HI = T †
p H Tp − i�T †

p
dTp

dt
(2a)

for the interaction generated by the quantized pump field
mode, with

Tp(t) = exp
(
−iωâ†ât

)
; T †

p (t)=exp
(

iωâ†ât
)
, (2b)

T †
p âTp = exp(−iωt)â, T †

p â†Tp = exp(iωt)â†;
−i�T † dT

dt
= −�ωâ†â, (2c)
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yields the interaction Hamiltonian HI in the form

HI = �

(
ω1â†

1 â1 + ω2â†
2 â2

+ g
(

exp(−iωt)ââ†
1 â2 + exp(iωt)â†â†

2 â1

))
.

(2d)

The dynamics of the interacting signal–idler photon sys-
tem is described through Heisenberg’s equations for the
annihilation operator pair (â1, â2) generated by HI from
Equation (2d) in the form

i�
dâ1

dt
= �

(
ω1â1 + gâ exp(−iωt)â2

)
, (3a)

i�
dâ2

dt
= �

(
ω1â2 + gâ† exp(iωt)â1

)
. (3b)

These are the time evolution equations governing the
dynamics of signal and idler photons driven by a quantized
pump photon of angular frequency ω in a fully quantized
parametric oscillation process. The task in this paper is to
obtain the appropriate analytical solutions. The procedure
is developed in the next section.

2. The matrix method: Jaynes–Cummings interaction

The form of Equations (3a)–(3b) suggests the introduction
of a two-component annihilation operator column matrix
(which may also be called a two-component operator vec-
tor) B̂ defined by

B̂ =
(

â1
â2

)
; (4a)

to write Equations (3a)–(3b) in the matrix form

i�
dB̂

dt
= HB̂, (4b)

where H is a 2 × 2 Hamiltonian matrix obtained as

H = �

(
ω1 gâ exp(−iωt)

gâ† exp(iωt) ω2

)
. (4c)

Introducing the usual 2 × 2 identity I and Pauli spin
operators Ŝ j = 1

2σ j , j = x, y, z, 0,+,−, in the form

Ŝ0 = 1

2
I ; Ŝz = 1

2
σz; Ŝ+ = 1

2
σ+; Ŝ− = 1

2
σ−,

(5a)
satisfying algebraic relations

Ŝ+ Ŝ− = Ŝ0 + Ŝz; Ŝ− Ŝ+ = Ŝ0 − Ŝz; Ŝz Ŝ+ + Ŝ+ Ŝz = 0;
Ŝz Ŝ− + Ŝ− Ŝz = 0, (5b)

puts the Hamiltonian matrix in Equation (4c) in the form

H=�

{
�12 Ŝ0+ω12 Ŝz +g

(
â exp(−iωt)Ŝ++â† exp(iωt)Ŝ−

)}
,

(6a)

after introducing frequency sum �12 and difference ω12
defined by

�12 = ω1 + ω2; ω12 = ω1 − ω2. (6b)

The Hamiltonian H in Equation (6a) (ignoring the con-
stant ��12 Ŝ0 term) takes the form of the Jaynes–Cummings
interaction Hamiltonian obtained by Knight and Radmore
[5] in their study of the quantum origin of dephasing and
revivals in the coherent state Jaynes–Cummings model.
The Jaynes–Cummings interaction Hamiltonian has also
been obtained in the same form in the excellent textbook
of Nielsen and Chuang [6] on quantum computation and
quantum information. The matrix approach thus simplifies
the problem by converting the equations of dynamics in
a fully quantized parametric oscillation process into the
form of the standard Jaynes–Cummings interaction, which
has exact analytical solutions. This is the main step of the
solution procedure developed in the present paper.

Complete understanding of the two-level Jaynes–
Cummings mode of interaction in the fully quantized
parametric oscillation process may be gained by considering
that, according to Equation (4b), the Jaynes–Cummings
interaction Hamiltonian H generates the dynamics of the
signal–idler photon system by operating on the
two-component operator vector B̂ defined in Equation (4a),
expressed now in the appropriate form

B̂ = â1

(
1
0

)
+ â2

(
0
1

)
= â1|1〉 + â2|2〉 (7a)

after introducing the two-dimensional Hilbert space basis
vectors |1〉 and |2〉 defined as usual by

|1〉 =
(

1
0

)
; |2〉 =

(
0
1

)
. (7b)

It is clear that B̂ takes exactly the form of a two-level
atomic state vector as defined within the standard Jaynes–
Cummings model in quantum optics [5,8–11] and in general
quantum mechanics. The only difference is that the atomic
state vector is weighted by c-number probability ampli-
tudes, while B̂ as presented in Equation (7a) is weighted by
signal–idler photon annihilation operators. In standard pho-
ton dynamics, the basis vectors |1〉 and |2〉 are interpreted
as the basic circular polarization state vectors. In particular,
using the Pauli matrix σz according to

σz =
(

1 0
0 −1

)
; σz |1〉=|1〉 ≡ |+〉; σz |2〉=−|2〉 ≡ |−〉

(7c)
leads to the standard interpretation that |1〉 = |+〉 is a
positive helicity state vector, while |2〉 = |−〉 is a negative
helicity state vector for circularly polarized photons [7].

The two-component vector B̂ is therefore interpreted as
a polarization operator vector for the coupled circularly
polarized signal–idler photon pair. The component annihi-
lation operators â1 and â2 are interpreted as photon intensity
(or photon number) operator amplitudes for signal and idler
photons in positive and negative helicity states |1〉 and |2〉,
respectively. This interpretation is clarified by taking the
Hermitian conjugate

B̂† = 〈1|â†
1 + 〈2|â†

2 (8a)
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to be used with Equation (7a) and

〈 j |k〉 = δ jk, j, k = 1, 2, (8b)

to obtain the total photon intensity (photon number)
operator as

Î = n̂ = B̂† B̂ = â†
1 â1 + â†

2 â2 = Î1 + Î2, (8c)

where Î1 and Î2 are interpreted as the intensity operators
for circularly polarized signal and idler photons initially in
the positive and negative helicity states, respectively. These
intensity operators are defined by

Î1 = â†
1 â1 = n̂1; Î2 = â†

2 â2 = n̂2, (8d)

where n̂1 and n̂2 are the signal and idler photon number
operators, respectively. Additional information on the pho-
ton polarization state interpretation will be given in Sec-
tion 5 below.

The time evolution of B̂ according to Equation (4b) is
then due to the action of the Jaynes–Cummings interac-
tion Hamiltonian H in Equation (6a) on the positive and
negative helicity state vectors |1〉 and |2〉. The underlying
dynamics in a fully quantized parametric oscillation process
is therefore a two-state dynamics characterized by the time
evolution of circularly polarized signal–idler photon pair
state vectors generated by a Jaynes–Cummings interaction
Hamiltonian. The general interpretation is that the coupled
signal–idler photon pair constitutes a composite circularly
polarized two-state system specified by the positive and
negative helicity states interacting with a single-mode quan-
tized pump field equivalent to a Jaynes–Cummings model
for a single two-level atom. In this interpretation, the degen-
erate signal–idler photon pair is understood as a single two-
state circularly polarized photon specified by its positive
and negative helicity states.

The Jaynes–Cummings mode of interaction obtained in
the present work explicitly accounts for the occurrence of
fundamental quantum mechanical phenomena in the form of
general collapses, revivals and fractional revivals, revealed
in studies of the dynamics of a fully quantized paramet-
ric oscillation process using numerical methods [3,4]. The
collapse and revival phenomena have been established as
general quantum mechanical features of the Jaynes–
Cummings mode of interaction in quantum optics [5,8–11].

3. General solution

The general solution of the time evolution Equation (4b)
can now be obtained. To realize the full content of the
Jaynes–Cummings mode of interaction, Equation (4b) is
transformed back to the original frame by applying the
inverse operator T −1

p (t) = T †
p (t) = exp(iωt â†â) defined

earlier in Equation (2b). Using notation Â for the polariza-
tion operator vector in the original frame, the transformation
is applied in the form

Â(t) = T †
p (t)B̂(t); T †

p (0) = 1 ⇒ Â(0) = B̂(0),
(9a)

which is used in Equation (4b) to obtain the effective time
evolution equation in the original frame in the form

i�
d Â

dt
= HJC Â, (9b)

where the Hamiltonian HJC follows from the transformation
in the form

HJC = TpHT †
p − i�Tp

dT †
p

dt
. (9c)

This essentially reverses the general transformation law in
Equation (2a) as expected. Substituting H from
Equation (6a) into Equation (9c) and applying standard
algebraic relations gives the final form

HJC = �

{
ωâ†â +�12 Ŝ0 + ω12 Ŝz + g

(
â Ŝ+ + â† Ŝ−

)}
.

(9d)

Ignoring the constant�12 Ŝ0 term which yields only a global
phase factor, HJC in Equation (9d) is identified as the
standard Jaynes–Cummings Hamiltonian, originally derived
by Jaynes and Cummings [10] to describe the interaction
between a two-level atom and a quantized single-mode
radiation field.

The usual procedure for solving the Jaynes–Cummings
problem in quantum optics [12,13] then applies to
Equation (9b). Adding and subtracting �ωŜz in
Equation (9d) gives

HJC =�ω
(

â†â+ Ŝz

)
+ �

{
�12 Ŝ0+δ Ŝz +g

(
â Ŝ++â† Ŝ−

)}
(10a)

after introducing the frequency detuning δ defined by

δ = ω12 − ω = ω1 − ω2 − ω. (10b)

It is convenient to write HJC as a sum of two components
in the form

HJC = �ωN̂ + H (10c)

after introducing an operator N̂ and interaction Hamiltonian
H defined by

N̂ = â†â+ Ŝz; H =�

{
�12 Ŝ0+δ Ŝz +g

(
â Ŝ++â† Ŝ−

)}
.

(10d)

Using standard algebraic relations for â, â†, Ŝ0, Ŝz , Ŝ+,
Ŝ− easily gives

[�ωN̂ , H ]=0 ⇒ [�ωN̂ , HJC]=0; [H , HJC]=0.

(10e)

Since both components �ωN̂ and H commute with HJC,
they are constants of the motion. The Hamiltonian HJC is
thus time-independent, leading to a solution of the time
evolution Equation (9b) through simple integration giving

Â(t) = UJC(t) Â; Â = Â(0), (11a)
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where the general time evolution operator UJC(t) has been
obtained as

UJC(t) = TN (t)U (t) = Tp(t)U (t); U (t) = T (t)U (t)
(11b)

after applying the commutation of �ωN̂ and H as in
Equation (10e) and using

TN (t) = exp)− iωt N̂ ) = Tp(t)T (t);
Tp(t) = exp(−iωt â†â); T (t) = exp(−iωt Ŝz),

(11c)

U (t) = exp

(
− i

�
Ht

)
. (11d)

The initial polarization operator vector Â = Â(0) follows
from Equations (7a) and (9a) in the form

Â = â1|1〉 + â2|2〉; â1 = â1(0), â2 = â2(0), (12)

which is substituted into Equation (11a) to obtain

Â(t) = â1|1; t〉 + â†
2 |2; t〉, (13a)

where the general time evolving positive and negative he-
licity state vectors |1; t〉 and |2; t〉, respectively, are defined
by

|1; t〉 = UJC(t)|1〉; |2; t〉 = UJC(t)|2〉. (13b)

Reorganizing Â(t) in Equation (13a) in the form

Â(t) = â1(t)|1〉 + â2(t)|2〉 (13c)

gives the desired explicit forms of the time evolving anni-
hilation operators â1(t) and â2(t).

Since the initial operators â1 and â2 are time-independent,
Equation (13a) shows that the time evolution is determined
by the general time evolving helicity state vectors |1; t〉
and |2; t〉 obtained through the action of the time evolution
operator UJC(t) according to Equation (13b).

3.1. Evaluating UJC(t)

To determine the explicit forms of the general time
evolving photon helicity state vectors |1; t〉 and |2; t〉 in
Equation (13b), the time evolution operator UJC(t) is ex-
pressed in an appropriate form. Substituting U (t) from
Equation (11d) into Equation (11b) and using H from Equa-
tion (10d) gives UJC(t) in the form

UJC(t) = exp
(
−i�12 Ŝ0t

)
Tp(t)T (t)D̂(δ, g) (14a)

after considering that the identity I = 2Ŝ0 commutes with
the rest of the operators to effect a factorization as
appropriate. We have introduced a detuning interaction time
evolution operator D̂(δ, g) defined by

D̂(δ, g) = exp
(
−it

{
δ Ŝz + g

(
â Ŝ+ + â†(t)Ŝ−

)})
.

(14b)

To facilitate evaluation of |1; t〉, |2; t〉 in Equation (13b),
D̂(δ, g) is expressed in explicit form to act on |1〉 and |2〉
through expansion of the exponential in Equation (14b) and
then reorganizing into even and odd power terms in the
form

D̂(δ, g) =
∞∑
j=0

(−it)2 j
(
δ Ŝz + g

(
â Ŝ+ + â† Ŝ−

))2 j

(2 j)!

+
∞∑
j=0

(−it)2 j+1
(
δ Ŝz + g

(
â Ŝ+ + â† Ŝ−

))2 j

(2 j + 1)!
×
(
δ Ŝz + g

(
â Ŝ+ + â† Ŝ−

))
, (15a)

where the odd power term has been expressed in a conve-
nient form for ease of evaluation. Writing

(
δ Ŝz +g

(
â Ŝ++â† Ŝ−

))2 j =
{(
δ Ŝz +g

(
â Ŝ++â† Ŝ−

))2
} j

(15b)

and carrying out an expansion using Equation (5b) together
with

Ŝ2
z = 1

4
I ; Ŝ2+ = 0; Ŝ2− = 0; ââ† = â†â + 1 (15c)

gives (Ŝz = Ŝz I )(
δ Ŝz + g

(
â Ŝ+ + â† Ŝ−

))2

=
(

g

(
â†â + Ŝz + 1

2
+ k2

)1/2
)2

I

= (gq̂)2 I (15d)

after introducing a (detuning) parameter k and an operator
q̂ defined by

k2 = δ2

4g2
; q̂ =

(
â†â + Ŝz + 1

2
+ k2

)1/2

. (15e)

Substituting Equation (15d) into Equation (15b) and using
the result in Equation (15a), noting

(−it)2 j = (−1) j t2 j ; (−it)2 j+1 = −i(−1) j t2 j+1,

(16a)

cos x =
∞∑
j=0

(−1) j x2 j

(2 j)! ; sin x =
∞∑
j=0

(−1) j x2 j+1

(2 j + 1)! ;
∞∑
j=0

(−1) j x2 j

(2 j + 1)! = 1

x
sin x (16b)

gives

D̂(δ, g)=cos (gtq̂)I − i

gq̂
sin (gtq̂)

{
δ Ŝz +g

(
â Ŝ++â† Ŝ−

)}
.

(17)

Substituting Equation (17) into Equation (14a) gives the
general time evolution operator UJC(t) in the desired form.
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3.2. Evaluating |1; t〉, |2; t〉, Â(t)

The time evolving helicity state vectors are evaluated by
using Equation (14a) in Equation (13b) and applying

exp
(
−i�12 Ŝ0t

)
= exp

(
− i

2
�12t

)
; Ŝz |1〉 = 1

2
|1〉;

Ŝz |2〉 = −1

2
|2〉, (18a)

exp
(
−iωŜz t

)
|1〉 = exp

(
− i

2
ωt

)
|1〉;

exp
(
−iωŜz t

)
|2〉 = exp

(
i

2
ωt

)
|2〉 (18b)

Ŝ+|1〉=0, Ŝ+|2〉 = |1〉; Ŝ−|1〉 = |2〉, Ŝ−|2〉 = 0

(18c)

to obtain

|1; t〉 = exp

(
− i

2
�12t

)
Tp(t)|δ; g;ωt〉1;

|2; t〉 = exp

(
− i

2
�12t

)
Tp(t)|δ; g;ωt〉2 (19a)

after introducing the signal–idler photon pair helicity co-
herent state vectors |δ; g;ωt〉1 and |δ; g;ωt〉2 respectively
defined by

|δ; g;ωt〉1 = T (t)D̂(δ, g) |1〉;
|δ; g;ωt〉2 = T (t)D̂(δ, g) |2〉 (19b)

and obtained in the form (k = δ/2g)

|k; g;ωt〉1 = exp

(
− i

2
ωt

){(
cos (gtq̂)− i

k

q̂
sin (gtq̂)

)
|1〉

− i
exp(iωt)

q̂
sin (gtq̂) â† |2〉

}
, (19c)

|k; g;ωt〉2 = exp

(
i

2
ωt

){(
cos (gtq̂)+ i

k

q̂
sin (gtq̂)

)
|2〉

− i
exp(−iωt)

q̂
sin (gtq̂) â |1〉

}
, (19d)

where the operator ordering from Equation (17) has been
maintained as appropriate.

Before taking the final step, the spin operator Ŝz is
eliminated from the definition of q̂ in Equation (15e) by ex-
panding the trigonometric functions according to
Equation (16b) and carrying out repeated applications of
q̂2 j-times on |1〉 and |2〉 in the form

q̂2 j |1〉 = q̂2( j−1)q̂2|1〉; q̂2 j |2〉 = q̂2( j−1)q̂2|2〉 (20a)

and then using Ŝz |1〉 = 1
2 |1〉, Ŝz |2〉 = − 1

2 |2〉 from
Equation (18a) to obtain the final results

q̂2 j |1〉=
(

â†â+1+k2
) j |1〉=

((
â†â+1+k2

)1/2
)2 j

|1〉,
(20b)

q̂2 j |2〉 =
(

â†â + k2
) j |2〉 =

((
â†â + k2

)1/2
)2 j

|2〉.
(20c)

Substituting Equations (20b)–(20c) into the appropriate ex-
panded forms of Equations (19c)–(19d) and introducing
operators ĥ1, ĥ0 defined by

ĥ1 =
(

â†â + 1 + k2
)1/2 ; ĥ0 =

(
â†â + k2

)1/2
(21a)

gives

cos(gtq̂)|1〉=cos(gtĥ1)|1〉; cos(gtq̂)|2〉=cos(gtĥ0)|2〉,
(21b)

1

q̂
sin(gtq̂)|1〉 = 1

ĥ1
sin(gtĥ1)|1〉;

1

q̂
sin(gtq̂)|2〉 = 1

ĥ0
sin(gtĥ0)|2〉. (21c)

Substituting Equations (21b)–(21c) into Equations
(19c)–(19d) gives the final form

|k; g;ωt〉1 = exp

(
− i

2
ωt

)
(μ̂1 |1〉 + ν̂0 |2〉);

|k; g;ωt〉2 = exp

(
i

2
ωt

)
(μ̂0 |2〉 + ν̂1 |1〉) (22)

after introducing time evolving operators μ̂1, ν̂1, μ̂0, ν̂0
defined by

μ̂1 = cos (gtĥ1)− i
k

ĥ1
sin (gtĥ1);

ν̂1 = −i
exp(−iωt)

ĥ1
sin (gtĥ1) â, (23a)

μ̂0 = cos (gtĥ0)+ i
k

ĥ0
sin (gtĥ0);

ν̂0 = −i
exp(iωt)

ĥ0
sin (gtĥ0) â† (23b)

with Hermitian conjugates easily obtained as (ĥ†
1 = ĥ1,

ĥ†
0 = ĥ0)

μ̂
†
1 = cos (gtĥ1)+ i

k

ĥ1
sin (gtĥ1);

ν̂
†
1 = i

exp(iωt) â†

ĥ1
sin (gtĥ1), (23c)

μ̂
†
0 = cos (gtĥ0)− i

k

ĥ0
sin (gtĥ0);

ν̂
†
0 = i

exp(−iωt) â

ĥ0
sin (gtĥ0). (23d)

Substituting Equation (22) into Equation (19a) gives

|1; t〉 = exp

(
− i

2
(�12 + ω)t

)
Tp(t)(μ̂1 |1〉 + ν̂0 |2〉),

(24a)

|2; t〉 = exp

(
− i

2
(�12 − ω)t

)
Tp(t)(μ̂0 |2〉 + ν̂1 |1〉),

(24b)
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which are substituted into Equation (13a) to obtain

Â(t) = Tp(t)

{
exp

(
− i

2
(�12 + ω)t

)
(μ̂1 |1〉 + ν̂0 |2〉) â1

+ exp

(
− i

2
(�12 − ω)t

)
(μ̂0 |2〉 + ν̂1 |1〉) â2

}
,

(25a)

which is reorganized in the form

Â(t) = Tp(t)

{
exp

(
− i

2
(�12 + ω)t

)
× (μ̂1â1 + exp(iωt)ν̂1â2) |1〉
+ exp

(
− i

2
(�12 − ω)t

)

× (μ̂0â2 + exp(−iωt)ν̂0â1) |2〉
}
. (25b)

Comparing Equation (25b) with Â(t) = â1(t)|1〉+ â2(t)|2〉
in Equation (13c) gives the general time evolving signal
and idler photon annihilation operators â1(t) and â2(t),
respectively in the form

â1(t) = exp

(
− i

2
(�12 + ω)t

)
Tp(t)

×(μ̂1â1 + exp(iωt)ν̂1â2), (25c)

â2(t) = exp

(
− i

2
(�12 − ω)t

)
Tp(t)

×(μ̂0â2 + exp(−iωt)ν̂0â1). (25d)

These are the desired general time evolution equations for
the annihilation operators of the signal and idler photons in
a fully quantized parametric oscillation process. They are
exact analytical solutions determined within the Heisenberg
picture, where they can be used in the calculation of mean
values of various physical quantities which characterize the
dynamics of a fully quantized parametric oscillation process
governed by the trilinear Hamiltonian H in Equation (1).

4. Mean signal–idler photon intensity

The present study shows that the dynamics of the fully quan-
tized parametric oscillation process is characterized by the
time evolution of the signal–idler photon pair polarization
operator vector Â(t) related to the total intensity operator
Î (t) according to the definition

Î (t) = Â†(t) Â(t), (26a)

which on using the form Â(t) = â1(t)|1〉 + â2(t)|2〉 from
Equation (13a) gives

Î (t) = Î1(t)+ Î2(t) (26b)

with intensity difference operator � Î (t) following as

� Î (t) = Î1(t)− Î2(t), (26c)

where Î1(t) and Î2(t) are the time evolving intensity opera-
tors for circularly polarized signal–idler photons in positive
and negative helicity states, respectively, defined by

Î1(t) = â†
1(t)â1(t); Î2(t) = â†

2(t)â2(t). (26d)

The intensities are the appropriate operators for describing
the dynamics of the fully quantized parametric oscillation
process. Using â1(t) and â2(t) from Equations (25c)–(25d)
in Equation (26 d) gives

Î1(t) =
(
μ̂

†
1â†

1 + exp(−iωt)ν̂†
1 â†

2

)
(μ̂1â1 + exp(iωt)ν̂1â2),

(26e)

Î2(t) =
(
μ̂

†
0â†

2 + exp(iωt)ν̂†
0 â†

1

)
(μ̂0â2 + exp(−iωt)ν̂0â1).

(26f )

To determine the mean signal–idler photon intensity I (t),
its positive/negative helicity components I1(t)/I2(t) and the
mean intensity difference �I (t) in the present work, the
initial states of the signal and idler photons are generally
taken as the Fock (number) states |n1〉 and |n2〉, respectively,
while the pump photon is generated in the Fock state |n〉 or
the coherent state |α〉.

4.1. Pump photon in Fock state

Taking the pump photon to be in the Fock state |n〉, the total
initial state vector of the pump, signal and idler photons
becomes

|nn1n2〉 = |n〉|n1〉|n2〉, n, n1, n2 = 0, 1, 2, 3, ...,
(27a)

which satisfies the usual number state algebra. Using
ĥ1, ĥ0 from Equation (21a) gives

ĥ2
1|n〉 = (â†â + 1 + k2)|n〉 = (n + 1 + k2)|n〉, (27b)

ĥ2
0|n〉 = (â†â + k2)|n〉 = (n + k2)|n〉. (27c)

Taking the expectation values of Equations (26b), (26d),
(26 e) and (26 f) with respect to |nn1n2〉 from
Equation (27a) gives the mean intensities in the form

I (t) = I1(t)+ I2(t); �I (t) = I1(t)− I2(t),

(28a)

I1(t) = < nn1n2| Î1(t)|nn1n2〉
= 〈n|μ̂†

1μ̂1|n〉 n1 + 〈n|ν̂†
1 ν̂1|n〉 n2, (28b)

I2(t) = < nn1n2| Î2(t)|nn1n2〉
= 〈n|μ̂†

0μ̂0|n〉 n2 + 〈n|ν̂†
0 ν̂0|n〉 n1. (28c)

Using μ̂1, ν̂1, ĥ0, ν̂0, together with their Hermitian conju-
gates from Equations (23a)–(23d), expanding the trigono-
metric functions as appropriate and applying the algebraic
results from Equations (27b)–(27c) gives

〈n|μ̂†
1μ̂1|n〉 = |μ1|2; 〈n|ν̂†

1 ν̂1|n〉 = |ν1|2, (29a)

〈n|μ̂†
0μ̂0|n〉 = |μ0|2; 〈n|ν̂†

0 ν̂0|n〉 = |ν0|2, (29b)

where the c-numbers μ1, ν1, μ0 and ν0 are easily obtained
as
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μ̂1|n〉 = μ1|n〉;
μ1 = cos

(
gt (n + 1 + k2)1/2

)
−i

k

(n + 1 + k2)1/2
sin
(

gt (n + 1 + k2)1/2
)
, (29c)

ν̂1|n〉 = ν1|n − 1〉;
ν1 = −i

exp(−iωt)n1/2

(n + k2)1/2
sin
(

gt (n + k2)1/2
)
, (29d)

μ̂0|n〉 = μ0|n〉;
μ0 = cos

(
gt (n + k2)1/2

)
+i

k

(n + k2)1/2
sin
(

gt (n + k2)1/2
)
, (29e)

ν̂0|n〉 = ν0|n + 1〉;
ν0 = −i

exp(iωt)(n + 1)1/2

(n + 1 + k2)1/2
sin
(

gt (n + 1 + k2)1/2
)
.

(29f )

Substituting Equations (29a)–(29b) into Equations
(28b)–(28c) gives

I1(t) = |μ1|2 n1 +|ν1|2 n2; I2(t) = |μ0|2 n2 +|ν0|2 n1,

(30a)
which is used in Equation (28a) to obtain

I (t) = (|μ1|2 + |ν0|2) n1 + (|μ0|2 + |ν1|2) n2,

(30b)

�I (t) = (|μ1|2 − |ν0|2) n1 − (|μ0|2 − |ν1|2) n2.

(30c)

Using explicit expressions from Equations (29c)–(29f) gives

|μ1|2 + |ν0|2 = 1; |μ0|2 + |ν1|2 = 1, (31a)

|μ1|2 − |ν0|2 = cos2
(

gt (n + 1 + k2)1/2
)

−n + 1 − k2

n + 1 + k2
sin2

(
gt (n + 1 + k2)1/2

)
,

(31b)

|μ0|2 − |ν1|2 = cos2
(

gt (n + k2)1/2
)

−n − k2

n + k2
sin2

(
gt (n + k2)1/2

)
, (31c)

which are substituted into Equations (30b)–(30c) to obtain

I (t) = n1 + n2 = I, (32a)

�I (t) = n1

(
cos2

(
gt (n + 1 + k2)1/2

)
−n + 1 − k2

n + 1 + k2
sin2

(
gt (n + 1 + k2)1/2

))

−n2

(
cos2

(
gt (n + k2)1/2

)
−n − k2

n + k2
sin2

(
gt (n + k2)1/2

))
. (32b)

As expected, Equation (32a) shows that the mean signal–
idler photon pair intensity in the fully quantized parametric

oscillation process is conserved. On the other hand, Equa-
tion (32b) shows that the mean intensity inversion (or mean
intensity difference) for circularly polarized signal–idler
photon pair varies with time over different time scales gt (n+
1 + k2)1/2 and gt (n + k2)1/2, associated with positive and
negative helicity channels. Using Equations (29c)–(29f) in
Equation (30a) explicitly shows that the individual mean
photon intensities I1(t) and I2(t) also vary with time over
the different time scales according to the positive and nega-
tive helicity channels. The beating of oscillations at different
Rabi frequencies g(n + 1 + k2)1/2 and g(n + k2)1/2 over
the two different time scales leads to intrinsically quantum
mechanical phenomenon of fractional revivals, which is
displayed in Figure 1 for detuning parameter and photon
number values k = 3, n = 2, n1 = 3 and n2 = 2.

The occurrence of fractional revivals in the dynamics
generated by a pump photon in a Fock state is a remarkable
feature of the exact analytical results obtained through the
simple solution procedure developed in this paper. Earlier
work based on numerical integration of the fully quantized
degenerate parametric process [3,4] never yielded fractional
revivals when the pump photon is taken in a simple Fock
state, leading to the conclusion that this fundamental quan-
tum mechanical phenomenon only occurs when the pump
photon is in either a coherent state or a suitable superposition
of Fock states.

An interesting physical feature of the dynamics of the
fully quantized parametric oscillation process under a Fock
state pump photon is that the fractional revivals persist
even for very large values of pump photon number n and
detuning k as demonstrated in Figure 2 for n = 10,000,
k = 101 (k2 = 10,201). This persistence of fractional
revivals even at very large values of n and k essentially
defies naive mathematical expectation that the time scales
gt (n + 1 + k2)1/2 and gt (n + k2)1/2 would coincide for
large values n � 1, n +1 ≈ n, k2 > n +1, with gt (n +1+
k2)1/2 ≈ gt (n + k2)1/2, which would yield only one mode
of oscillation. The occurrence of the fractional revivals for

Figure 1. Signal–idler intensity inversion over scaled time
τ = gt = 0 → 200, n = 2, k = 3, n1 = 3, n2 = 1. (The
color version of this figure is included in the online version of the
journal.)
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Figure 2. Signal–idler intensity inversion over scaled time
τ = gt = 0 → 6010, n = 10000, k = 101 (k2 = 10201),
n1 = 3, n2 = 1. (The color version of this figure is included in
the online version of the journal.)

values as large as n = 10,000, k2 = 10,201 means that the
mathematical approximation stated above does not apply
here.

The fact that the mean intensity inversion �I (t) in
Equation (32b) is composed of two components, one
associated with the initial signal photon intensity I1 = n1
over the time scale gt (n + 1 + k2)1/2 and the other
associated with initial idler photon intensity I2 = n2 over
the time scale gt (n + k2)1/2 means that, taking the signal
or idler photon to be in an initial vacuum state |n1 = 0〉
(I1 = n1 = 0) or |n2 = 0〉, (I2 = n2 = 0) removes
one component, leaving�I (t) in Equation (32b) with only
one mode of oscillation over a single time scale and the
fractional revivals disappear in such a case. The occurrence
of fractional revivals in the dynamics of a fully quantized
parametric oscillator generated through interaction with a
pump photon in a simple Fock state is directly governed by
the initial intensities (numbers n1, n2) of the signal and idler
photons; taking either of them equal to zero automatically
removes the mechanism responsible for fractional revivals
for a Fock state pump photon.

4.1.1. Resonance

The resonance condition is obtained as
δ = ω1 − ω2 − ω = 0 ⇒ k = 0, (33a)

which is applied in Equation (32b) to obtain the mean inten-
sity inversion for circularly polarized signal–idler photon
pair under resonance to be
�I r (t) = n1 cos

(
2gt (n + 1)1/2

)− n2 cos
(
2gtn1/2).

(33b)

4.1.2. Pump field vacuum: natural spontaneous
parametric oscillations

An important extreme case to consider under the fully quan-
tized model is the quantized pump field vacuum where

n = 0. In this case, setting n = 0 in Equations (29c)–(29f),
(30 c) and (32 b) gives the time varying mean signal–idler
photon intensities I10(t), I20 and �I 0(t) generated under
the pump field vacuum condition in the form

n = 0; I10(t) = n1

(
cos2

(
gt (1 + k2)1/2

)

+ k2

1 + k2
sin2

(
gt (1 + k2)1/2

))
, (34a)

n = 0; I20(t) = n2+n1

(
1

1 + k2
sin2

(
gt (1+k2)1/2

))
,

(34b)

n = 0; �I 0(t) = n1

(
cos2

(
gt (1 + k2)1/2

)

−1 − k2

1 + k2
sin2

(
gt (1 + k2)1/2

))
− n2.

(34c)

The process under n = 0 occurs due to the annihilation of a
vacuum fluctuation generated photon of angular frequency
ω and an idler photon of angular frequency ω2 to emit a
signal photon of angular frequency ω1. This is a natural
spontaneous parametric oscillation process resulting from
fluctuations of the pump field vacuum.

4.2. Pump photon in coherent state

Considering a pump photon generated in a coherent state
|α〉 defined as usual as a superposition of Fock states in the
form

|α〉 =
∞∑

n=0

exp

(
−1

2
|α|2

)
αn

(n!)1/2 |n〉, (35a)

the total initial pump, signal and idler photon state vector
|αn1n2〉 then takes the form

|αn1n2 >=
∞∑

n=0

exp

(
−1

2
|α|2

)
αn

(n!)1/2 |nn1n2〉, (35b)

where the three photon Fock state vector |nn1n2〉 is already
defined in Equation (27a). The mean signal–idler photon
pair intensity inversion �I α(t) is obtained as

�I α(t) = 〈n2n1α|� Î (t)|αn1n2〉, (36a)

where the intensity inversion operator � Î (t) is given by
Equation (26c), with Î1(t), Î2(t) given in Equations
(26e)–(26f). Substituting Equation (35b) into
Equation (36a) and then evaluating the expectation values
with respect to |nn1n2〉 as before gives the final results
for the mean intensity inversion for the coupled circularly
polarized signal–idler photon pair under interaction with a
pump photon in a coherent state in the form

�Iα(t) =
∞∑

n=0

Pn�I (t); Pn = exp
(−|α|2) |α|2n

n! ,

(36b)
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where Pn is the probability distribution for coherent state
pump photons, while�I (t) is the mean intensity inversion
obtained earlier with Fock state pump photon in Equa-
tion (32b). Substituting �I (t) from Equation (32b) into
Equation (36b) gives

�Iα(t) =
∞∑

n=0

exp
(
−|α|2

)
|α|2n

n!
{(

cos2
(

gt (n + 1 + k2)1/2
)

−n + 1 − k2

n + 1 + k2
sin2

(
gt (n + 1 + k2)1/2

))
n1

−
(

cos2
(

gt (n + k2)1/2
)

− n − k2

n + k2

sin2
(

gt (n + k2)1/2
))

n2

}
. (36c)

Under resonance, set k = 0 in Equation (37c) to obtain

�Iαr (t) =
∞∑

n=0

exp
(
−|α|2

)
|α|2n

n!
×
{

n1 cos
(

2gt (n + 1)1/2
)

− n2 cos
(

2gtn1/2
)}
.

(36d)

Notice that besides the original different time scales in
�I (t) as specified earlier, many more time scales now
emerge in �I α(t) in Equation (36c) due to the summation
over the pump photon number n. The beating of these os-
cillations, now enhanced through the summation, causes
the mean intensity inversion �I α(t) to undergo general
collapses and revivals.

The expected collapses and revivals are demonstrated in
Figures 3 and 4, where the mean intensity inversion under
resonance in Equation (36d) is plotted against scaled time
τ = gt for two different values |α|2 = 5 and |α|2 = 25 to
show how the collapse and revival pattern varies with the
pump photon coherent state eigenvalue α.

General collapses and revivals for the off-resonance cases
based on Equation (36c) are demonstrated in Figure 5 for
k = 3, |α|2 = 5. An important feature revealed here is the

Figure 3. Signal–idler intensity inversion over scaled time
τ = gt = 0 → 50, k = 0 (resonance), |α|2 = 5, n1 = 3,
n2 = 1: general collapse and revivals.

Figure 4. Signal–idler intensity inversion over scaled time
τ = gt = 0 → 120, k = 0 (resonance), |α|2 = 25, n1 = 3,
n2 = 1: general collapse and revivals.

Figure 5. Signal–idler intensity inversion over scaled time
τ = gt = 0 → 200, k = 3, |α|2 = 5, n1 = 3, n2 = 1:
long time dynamics; fractional revivals emerge.

emergence of fractional revivals in the long time domain. In
general, the collapse and revival pattern depends on k and
α.

The above diagrams clearly display the general collapses
and revivals deduced from the analytical results in
Equations (36c) and (36d). These results agree with the
numerical integration result of Jyotsna and Agarwal [4] for
a resonant fully quantized degenerate parametric oscillator
under interaction with a coherent state pump photon. The
emergence of fractional revivals in the long time domain
agrees with Averbuck’s [9] analysis of fractional revivals
in the long time behavior of population inversion in the
Jaynes–Cummings model of a two-level atom interacting
with a quantized single-mode radiation field.

These results, together with the results of the previous
section, lead us to the conclusion that the dynamics of
a fully quantized parametric oscillation process generated
by pump photons in either Fock state or coherent state,
is characterized by fractional revivals or general collapses
and revivals. The existence of the general collapses and
revivals, as well as the fractional revivals of exactly the
same form, in fully quantized parametric interactions, has
also been demonstrated in earlier studies based on numerical
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integration of the time evolution equations [3,4].The present
work has explicitly revealed that the collapse and revival
phenomena arise from the Jaynes–Cummings mode of in-
teraction which drives the time evolution of the positive
and negative helicity states of the coupled circularly polar-
ized signal–idler photon pair. The matrix based analytical
results thus fully account for the phenomena observed in
the numerical studies.

5. Polarization state dynamics

It is now clear that the dynamics of the fully quantized
parametric oscillation process is determined by the time
evolution of the positive and negative helicity state vectors
|1; t〉 and |2; t〉 which constitute the general time evolving
circular polarization state vector of the coupled two-state
signal–idler photon pair. In this interpretation, the polariza-
tion state dynamics is generated by the Jaynes–Cummings
Hamiltonian HJC describing an effective interaction
between the two-state circularly polarized signal–idler
photon pair and a single-mode quantized pump field.

The general time evolving polarization state vector |ψ(t)〉
is obtained by applying the general time evolving polariza-
tion operator vector Â(t) on the total initial pump, signal
and idler photon state vector |ψ(0)〉 in the form

|ψ(t)〉 = Â(t)|ψ(0)〉, (37a)

where Â(t) takes the form in Equation (13a) or (13c), with
â1(t) and â2(t) obtained in Equations (25c)–(25d). Taking
the pump, signal and idler photons to be in initial Fock states
|n〉, |n1〉 and n2〉, respectively, gives |ψ(0)〉 in the form

|ψ(0)〉 = |nn1n2〉, (37b)

while taking the pump photon initially in a coherent state
|α〉, with signal–idler photon in initial Fock state |n1n2〉
gives

|ψ(0)〉 = |αn1n2〉, (37c)

where |nn1n2〉 and |αn1n2〉 are defined in Equations (27a)
and (35b), respectively.

5.1. Fock state case

To demonstrate polarization state dynamics, it suffices to
consider only the Fock state case specified by
Equation (37b), noting that the coherent state case specified
by Equation (37c) can be obtained as a simple generaliza-
tion. Substituting |ψ(0)〉 from Equation (37b) and Â(t) from
Equation (13c) into Equation (37a) gives

|ψ(t)〉 = (â1(t)|1〉 + â2(t)|2〉)|nn1n2〉. (38a)

Using â1(t), â2(t) from Equations (25c)–(25d) and
applying the results presented in Equations (29c)–(29f),
together with

Tp(t) = exp(−iωt â†â); Tp(t)|m〉 = exp(−imωt)|m〉;
m = n, n − 1, n + 1 (38b)

gives the general time evolving circular polarization state
vector for the coupled signal–idler photon pair dynamics
under pump photon in the initial Fock state in the form

|ψ(t)〉 = |ψ1(t)〉 + |ψ2(t)〉, (38c)

where the component |ψ1(t)〉 is the general time evolving
polarization state vector for (signal) photons initially in
the positive helicity state |1〉, while |ψ2(t)〉 is the general
time evolving polarization state vector for (idler) photons
initially in the negative helicity state |2〉 obtained as

|ψ1(t)〉 = exp

(
− i

2
(�12 + (2n + 1)ω)t

)
n1/2

1

×(μ1 |n(n1 − 1)n2〉|1〉 + ν0 |(n + 1)(n1 − 1)n2〉|2〉),
(38d)

|ψ2(t)〉 = exp

(
− i

2
(�12 + (2n − 1)ω)t

)
n1/2

2

×(μ0 |nn1(n2 − 1)〉|2〉 + ν1 |(n − 1)n1(n2 − 1)〉|1〉).
(38e)

Reorganizing Equations (38c)–(38e) in the form

|ψ(t)〉 = φ1(t)|1〉 + φ2(t)|2〉 (38f )

yields the time evolving circularly polarized signal–idler
photon intensity amplitudes φ1(t) and φ2(t) in the positive
and negative helicity states, respectively, obtained as

φ1(t) = exp

(
− i

2
(�12 + (2n + 1)ω)t

)

×
(

n1/2
1 μ1 |n(n1 − 1)n2〉 + exp(2iωt)n1/2

2 ν1 |
×(n − 1)n1(n2 − 1)〉

)
, (38g)

φ2(t) = exp

(
− i

2
(�12 + (2n − 1)ω)t

)

×
(

n1/2
2 μ0 |nn1(n2 − 1)〉 + exp(−2iωt)n1/2

1 ν0 |
×(n + 1)(n1 − 1)n2〉

)
. (38h)

Using Equations (38f)–(38h) gives

〈ψ(t)|ψ(t)〉 = ||ψ(t)〉|2 = |φ1(t)|2 + |φ2(t)|2, (39a)

φ
†
1(t)φ1(t) = |φ1(t)|2 = |μ1|2n1 + |ν1|2n2, (39b)

φ
†
2(t)φ2(t) = |φ2(t)|2 = |μ0|2n2 + |ν0|2n1, (39c)

which on comparing with Equations (28a) and (30a) give the
expected mean photon intensities for circularly polarized
signal–idler photon pair in the form

||ψ(t)〉|2 = I (t); |φ1(t)|2 = I1(t); |φ2(t)|2 = I2(t).
(39d)

Within the framework of the photon polarization state
dynamics, the mean photon intensity inversion for the cir-
cularly polarized signal–idler photon pair is obtained as the
expectation value of the discrete operator σz in the form

σ z(t) =< ψ(t)|σz |ψ(t)〉 (39e)
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which on using Equation (38f), together with

〈ψ(t)| = φ
†
1(t)〈1| + φ

†
2(t)〈2|; σz = |1〉〈2| − |2〉〈1|

(39f )
becomes

σ z(t) = |φ1(t)|2 − |φ2(t)|2 = I1(t)− I2(t) = �I (t).
(39g)

This establishes that the mean photon intensity inversion
σ z(t) equals the mean photon intensity difference �I (t)
obtained earlier in Equation (30c), giving

σ z(t) = �I (t) = (|μ1|2 − |ν0|2) n1 − (|μ0|2 − |ν1|2) n2.

(39h)

The final expression for σ z(t) takes the form of �I (t)
obtained in Equation (32b), which need not be written here.
The usefulness of the photon polarization state vectors of
the coupled circularly polarized signal–idler photon pair in
the fully quantized parametric oscillation process in deter-
mining the density matrix and the probability distribution
for studying various physical features, as well as possible
applications in quantum communication technology, can
follow easily from Glauber’s excellent presentation based
on the semi-classical model [7]. The mean photon inten-
sity inversion obtained within the photon polarization state
dynamics as described in the present work may be useful in
the currently developing studies of optical chirality [14].

6. Conclusion

The method developed in this paper is effective in providing
general solutions of appropriate time evolution equations
for annihilation and creation operators of signal and idler
photons in a fully quantized parametric oscillation process
governed by a trilinear Hamiltonian. The exact analytical
results, which have easily revealed the important quantum
mechanical phenomena of collapses and revivals, as well
as fractional revivals, of the time evolving mean intensities
or intensity inversion for the coupled signal–idler photon
pair, will also prove very useful in studying other funda-
mental quantum mechanical features such as squeezing,
photon anti-bunching, super-Poissonian or sub-Poissonian
statistics and others generally associated with parametric

interactions. The underlying signal–idler photon pair polar-
ization state dynamics governed by a Jaynes–Cummings
mode of interaction with pump photon taken in various
quantum states, simplifies the determination of photon
statistics and can provide deeper insights into fundamental
phenomena such as entanglement, decoherence and optical
chirality, which currently attract growing research
interest in relation to their applications in designs of emerg-
ing high precision quantum technologies. The complete
understanding of the dynamics under the fully quantized
trilinear Hamiltonian achieved through the exact analyti-
cal solutions greatly expands the range of possibilities of
observable fundamental features, as well as potential appli-
cations to quantum information processing, quantum com-
putation and other related quantum mechanics based
technologies.
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