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Multipole expansion of integral 
powers of cosine theta
E. O. Jobunga1* & O. S. Okeyo2

Legendre polynomials form the basis for multipole expansion of spatially varying functions. The 
technique allows for decomposition of the function into two separate parts with one depending on 
the radial coordinates only and the other depending on the angular variables. In this work, the angular 
function cosk θ is expanded in the Legendre polynomial basis and the algorithm for determining the 
corresponding coefficients of the Legendre polynomials is generated. This expansion together with 
the algorithm can be generalized to any case in which a dot product of any two vectors appears. Two 
alternative multipole expansions for the electron–electron Coulomb repulsion term are obtained. It is 
shown that the conventional multipole expansion of the Coulomb repulsion term is a special case for 
one of the expansions generated in this work.

The function xk , where x = cos θ and k is an integer, is generated in any power series expansion involving a dot 
product of any two vectors with θ as an angle between them. The Taylor expansion of the plane wave ei q·r (where 
q is a wave vector of length q and r is a position vector of length r) and Coulomb repulsion term in many-body 
systems are two classic examples where the exponential term xk is present.

The multipole expansion is a powerful mathematical tool useful in decomposing a function whose arguments 
are three-dimensional spatial coordinates into radial and angular parts. This simplifies the solution of physical 
problems by reducing the triple integrals into a one-dimensional integral of the radial part and the two angular 
integrals. The angular integrals are solved using angular momentum algebra  1,2. The multipole expansion involves 
expressing a function as a linear combination of Legendre polynomials, or the related spherical harmonics, with 
the orders of expansion in this case being the orders of the poles in the multipole expansion 3. Many special 
functions, such as ordinary and spherical Bessel  functions3–5, arise naturally as the radial part of a function and 
spherical harmonics as the angular part whenever a function is separated by the multipole expansion series.

In this work, xk is expanded as a function of the Legendre polynomials. The pattern formed by a sequence of 
coefficients of the first few Legendre polynomials is analyzed and consequently a generalization equivalent to 
literature  values3,6 is derived. The generalization is used for the multipole expansion of the plane wave ei q·r and 
electron-electron interaction term 

1

| ri − rj |
 . Two equivalent multipole expansion series for the electron-electron 

interaction are obtained. The conventional multipole expansion of the electron-electron interaction is found to 
be a special case for one of the expansion series.

Theory
The Legendre polynomials Pl(cos θ) of order l, with l a non-negative integer, are smooth functions defined in the 
region −1 ≤ cos θ ≤ +1 . They are usually expressed as a power series,

with real number coefficients ck and where x = cos θ . The summation in Eq. (1), runs from zero (0) for even 
values of l while for odd values, it runs from one (1). The first two Legendre polynomials are P0(x) = 1 and 
P1(x) = x . Higher-order Legendre polynomials can be generated using the following recurrence  relations3 

(1)Pl(x) =

l
∑

k=0 or 1

ck x
k ,

(2a)(l + 1)Pl+1(x) = (2l + 1) x Pl(x)− l Pl−1(x) ,
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In this work, an expansion is done in a reverse process by expressing xk as

in the Legendre polynomial basis and then deriving the functional dependence of the computed real number 
coefficient al(k) on orders l and k. Similar to Eq. (1), the summation runs from zero (0) if k is even and from one 
(1) if k is odd. The first ten (10) Legendre  polynomials3 are expressed in terms of xk , where x = cos θ , in Table 1.

In the reverse process, xk can be expanded by writing it in terms of Pk(cos θ) and lower powers of x, and then 
similarly replacing the lower powers of x with the coresponding functions of Legendre polynomials. This implies 
that the reverse process has to begin with x0 , x1 , up to xk , in the ascending order. Beginning from the first two 
cases, x0 = P0(x) and x1 = P1(x) , already defined in Table 1, the higher order cases of the reverse process are 
evaluated recursively as follows:

In Eqs. (4) and (5), we have substituted for 1 in the expression for x2 , and for x in the expression for x3 , with the 
corresponding predefined lower order cases, respectively. Following the same recursive process, the next higher 
order cases x4 and x5 are evaluated as

and

respectively. Likewise, the expansions of x6 , x7 , x8 , and x9 are obtained as

(2b)x2 − 1

l

d

dx
Pl(x) = x Pl(x)− Pl−1(x) ,

(2c)(2l + 1)Pl(x) =
d

dx
[Pl+1(x)− Pl−1(x)] .

(3)xk =

k
∑

l=0 or 1

al(k) Pl(x)

(4)x2 =
1

3
(2P2(x)+ 1) =

1

3
P0(x)+

2

3
P2(x),

(5)x3 =
1

5
(2P3(x)+ 3x) =

3

5
P1(x)+

2

5
P3(x).

(6)

x4 =
1

35

(

8P4(x)+ 30x2 − 3
)

=
1

35

(

8P4(x)+ 30

[

1

3
P0(x)+

2

3
P2(x)

]

− 3P0(x)

)

=
1

5
P0(x)+

4

7
P2(x)+

8

35
P4(x)

(7)

x5 =
1

63

(

8P5(x)+ 70x3 − 15x
)

=
1

63

(

8P5(x)+ 70

[

3

5
P1(x)+

2

5
P3(x)

]

− 15P1(x)

)

=
3

7
P1(x)+

4

9
P3(x)+

8

63
P5(x)

(8)x6 =
1

7
P0(x)+

10

21
P2(x)+

24

77
P4(x)+

16

231
P6(x),

(9)x7 =
1

3
P1(x)+

14

33
P3(x)+

8

39
P5(x)+

16

429
P7(x),

Table 1.  Legendre polynomials Pl(x)3.

l Pl(x)

0 1

1 x

2 1

2

(

3x
2 − 1

)

3 1

2

(

5x
3 − 3x

)

4 1

8

(

35x
4 − 30x

2 + 3
)

5 1

8

(

63x
5 − 70x

3 + 15x
)

6 1

16

(

231x
6 − 315x

4 + 105x
2 − 5

)

7 1

16

(

429x
7 − 693x

5 + 315x
3 − 35x

)

8 1

128

(

6435x
8 − 12012x

6 + 6930x
4 − 1260x

2 + 35
)

9 1

128

(

12155x
9 − 25740x

7 + 18018x
5 − 4620x

3 + 315x
)
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respectively. The computed expansion coefficients for xk , for 0 ≤ k ≤ 9 , with even and odd powers are listed in 
Table 2.

Results
Our goal in this study is to obtain a multipole expansion of xk , with order k being a non-negative integer and 
where x = cos θ is generated from a dot product of two vectors. The natural basis functions for the multipole 
expansion are the Legendre polynomials, or spherical harmonics which have correspondence relation with the 
Legendre polynomials. In this work, we have chosen the Legendre polynomials as the basis functions.

Table 2 shows the coefficients, al(k) , of the Legendre polynomials, Pl(x) , in the basis expansion of xk computed 
using Eq. (4) up to Eq. (11) for the even and odd values of k and l respectively.

The next task involves forming the sequence of coefficients corresponding to each order of the Legendre 
polynomial and deductively determining the pattern with the considered cases. Noting that k = l, l + 2, · · · , we 
express the sequences for al(k) with the corresponding algebraically deduced parametric dependence on k for 
each sequence as:

Using Eqs. (12)–(19), we then deduced the parametric dependence of each of the sequences of al(k) on l. The 
results determined in this study for each sequence are presented in Table 3 for even and odd values of k and l.

Based on observations of the patterns of al(k) predicted in Table 3, we have derived the generalized pattern

(10)x8 =
1

9
P0(x)+

40

99
P2(x)+

48

143
P4(x)+

64

495
P6(x)+

128

6435
P8(x),

(11)x9 =
3

11
P1(x)+

56

143
P3(x)+

16

65
P5(x)+

192

2431
P7(x)+

128

12155
P9(x),

(12)a0(k) : 1,
1

3
,

1

5
,

1

7
,

1

9
, · · · ,

1

k + 1

(13)a1(k) :
3

3
,

3

5
,

3

7
,

3

9
,

3

11
, · · · ,

3

k + 2

(14)a2(k) :
2

3
,

4

7
,

10

21
,

40

99
, · · · ,

k × 5

(k + 1)× (k + 3)

(15)a3(k) :
2

5
,

4

9
,

14

33
,

56

143
, · · · ,

(k − 1)× 7

(k + 2)× (k + 4)

(16)a4(k) :
8

35
,

24

77
,

48

143
, · · · ,

k × (k − 2)× 9

(k + 1)× (k + 3)× (k + 5)

(17)a5(k) :
8

63
,

8

39
,

16

65
, · · · ,

(k − 1)× (k − 3)× 11

(k + 2)× (k + 4)× (k + 6)

(18)a6(k) :
16

231
,

64

495
, · · · ,

k × (k − 2)× (k − 4)× 13

(k + 1)× (k + 3)× (k + 5)× (k + 7)

(19)a7(k) :
16

429
,

192

2431
, · · · ,

(k − 1)× (k − 3)× (k − 5)× 15

(k + 2)× (k + 4)× (k + 6)× (k + 8)

(20)al(k) =
k!!

(k − l)!!

(k − 1)!!

(k + l + 1)!!
(2l + 1) =

k!

(k − l)!! (k + l + 1)!!
(2l + 1)

Table 2.  Sequence of coefficients, al(k) , of the Legendre polynomials, Pl(x) , computed for the even and odd 
values of l and k in the basis expansion of xk given by Eq. (4) up to Eq. (11).

x
k/al(k) l = 0 l = 2 l = 4 l = 6 l = 8 x

k/al(k) l = 1 l = 3 l = 5 l = 7 l = 9

x
0 1 – – – – x

1 1 – – – –

x
2 1/3 2/3 – – – x

3 3/5 2/5 – – –

x
4 1/5 4/7 8/35 – – x

5 3/7 4/9 8/63 – –

x
6 1/7 10/21 24/77 16/231 – x

7 3/9 14/33 8/39 16/429 –

x
8 1/9 40/99 48/143 64/495 128/6435 x

9 3/11 56/143 16/65 192/2431 128/12155
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for any arbitrary values of k and l. The derived expansion coefficients’ algorithm al(k) given by Eq. (20), inde-
pendently proved in this study, is established to be equivalent to the expansion coefficients for xk cited in Eq. 
(15) in  Mathworld6.

As a standard application, we consider the multipole series expansion of the plane wave, exp [i(q · r )] , and 
the Coulomb repulsion interaction, 1

|ri−rj |
 , on the same footing. In both cases, xk is present in the Taylor expan-

sion of the functions. The multipole series expansion of the plane wave can be expressed as

where Ym
ℓ  are the standard spherical harmonics, the superscript ∗ denotes complex conjugation, and

are the regular spherical Bessel functions with the coefficients al(k) replaced as defined in Eq. (20). Likewise, the 
alternative multipole series expansion of the Coulomb repulsion term is given by

where we have used

and considered

as a spherical Bessel-like function with the coefficient bl(k) = al(k) (2k − 1)!! . One can note the similarity 
between Eqs. (22) and (25), with the difference seen only in the expansion coefficients. It can also be observed that

if the lowest order approximation ( l = k = 0 ) is considered.
The conventional multipole expansion series of the Coulomb repulsion term, on the other hand, can be 

derived by rearranging the terms of the Binomial expansion as

(21)

exp [i(q · r )] =

∞
∑

k=0

(iq r)k xk

k!
=

∞
∑

l=0

∞
∑

k=l,l+2,···

al(k)
(iq r)k

k!
Pl(x) = 4π

∞
∑

l=0

l
∑

m=−l

il jl(q r)Y
m∗
l (q̂)Ym

l (r̂),

(22)jl(q r) =

∞
∑

k=l,l+2,···

ik−l al(k)

(2l + 1) k!
(q r)k =

∞
∑

k=l,l+2,···

ik−l (q r)k

(k − l)!! (k + l + 1)!!

(23)

1

| ri − rj |
=(r2i − 2ri rj x + r2j )

−1/2 =

∞
∑

k=0

(

− 1
2
k

)

(r2i + r2j )
− 1

2−k (−2rirj)
k xk

=
1

√

r2i + r2j

∞
∑

k=0

(

− 1
2
k

)

(

−2rirj

r2i + r2j

)k

xk =
1

√

r2i + r2j

∞
∑

l=0

∞
∑

k=l,l+2,···

bl(k)

k!

(

rirj

r2i + r2j

)k

Pl(x)

=
4π

√

r2i + r2j

∞
∑

l=0

l
∑

m=−l

j̃l(ri , rj)Y
m∗
l

(

r̂i
)

Ym
l

(

r̂j
)

,

(24)
(

− 1
2
k

)

=
(2k − 1)!!

(−2)k k!
,

(25)j̃l(ri , rj) =

∞
∑

k=l,l+2,···

bl(k)

(2l + 1) k!

(

rirj

r2i + r2j

)k

=

∞
∑

k=l,l+2,···

(2k − 1)!!

(k − l)!! (k + l + 1)!!

(

rirj

r2i + r2j

)k

(26)
1

| ri − rj |
≈

1
√

r2i + r2j

Table 3.  Parametric dependence of the coefficients al(k) on k and l for even and odd values of l.

al(k) : Sequence for even k and l al(k) : Sequence for odd k and l

a0(k): 2l+1

k+l+1
a1(k): 2l+1

k+l+1

a2(k): k(2l+1)
(k+l−1)(k+l+1)

a3(k): (k−1)(2l+1)
(k+l−1)(k+l+1)

a4(k): k(k−2)(2l+1)
(k+l−3)(k+l−1)(k+l+1)

a5(k): (k−1)(k−3)(2l+1)
(k+l−3)(k+l−1)(k+l+1)

a6(k): k(k−2)(k−4)(2l+1)
(k+l−5)(k+l−3)(k+l−1)(k+l+1)

a7(k): (k−1)(k−3)(k−5)(2l+1)
(k+l−5)(k+l−3)(k+l−1)(k+l+1)
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where t = r</r> , r< = min(ri, rj) , r> = max(ri, rj) , and n = −1/2.
With the substitution of the series expansion of xk as defined in Eq. (3), and further evaluation of the com-

binatorics using Eq. (24), the summation in Eq. (27) simplifies to

where

According to Eqs. (28) and  (29), the conventional multipole expansion of the Coulomb repulsion term 7–9,

arises from a special case where l = � = k . This therefore implies that the completeness of the conventional 
multipole expansion of the Coulomb repulsion term can only be verified if the higher order terms ( � > l and 
k ≥ � ) of the expansion series are shown to be vanishing. In verifying the completeness of the conventional 
multipole expansion of the Coulomb repulsion term, we expand Eq. (29) further to obtain

It can be shown by Taylor expansion that

Substituting Eq. (32) into Eq. (31), we obtain the function

as a summation of a single index just as the related function presented in Eq. (25). In the conventional form, 
the analytical function given by Eq. (32) is approximated to unity and the series in Eq. (33) is truncated by 
considering the special case of � = l only. The approximation of the analytical function and the truncation of 
the expansion leads to inaccuracy and incompleteness of the conventional multipole expansion of the Coulomb 
repulsion term.

Conclusion
Our goal in this paper is to expand cosk θ in the basis of the Legendre polynomials and consequently use it for the 
multipole expansion of the plane wave as well as the electron-electron repulsion term. The multipole expansion 
method, as a technique for separating a 3D function into a product of radial and angular components, is not 
unique. However, its application to the standard Coulomb interaction term in this paper leads to two unique but 
equivalent multipole expansion series of the electron-electron repulsion term. We show that the conventional 
multipole expansion of the Coulomb repulsion term is a special case in which a three indices’ expansion series 
in the Legendre polynomial basis is truncated to a single-index summation. The alternative multipole expansion 
series of the Coulomb repulsion term, as defined in Eqs. (23) and (25), is a two-indices expansion. These unique 

(27)

1

| ri − rj |
=
(

r2i − 2ri rj x + r2j

)−1/2
=

1

r>

(

1− 2tx + t2
)−1/2

=
1

r>

∞
∑

k=0

(

− 1
2
k

)

(

t2 − 2tx
)k

=
1

r>

∞
∑

k=0

k
∑

�=0

(

− 1
2
k

)(

k
�

)

(

t2
)k−�

(−2tx)� =
1

r>

∞
∑

k=0

k
∑

�=0

n!

(n− k)!�!
(−2)� t2k−� x�,

(28)
1

| ri − rj |
=

1

r>

∞
∑

l=0

hl(t) Pl(x),

(29)

hl(t) =

∞
∑

�≥l,l+2,···

(−2)�al(�)

�!

∞
∑

k≥�,�+1,···

(2k − 1)!!

(−2)k (k − �)!
t2k−�

=

∞
∑

�≥l,l+2,···

(−2)�(2�+ 1)

(�− l)!! (�+ l + 1)!!

∞
∑

k≥�,�+1,···

(2k − 1)!!

(−2)k (k − �)!
t2k−�.

(30)
1

| ri − rj |
=

∞
∑

l=0

rl<

rl+1
>

Pl(x),

(31)

hl(t) =

∞
∑

�≥l,l+2,···

(2�− 1)!!(2�+ 1) t�

(�− l)!! (�+ l + 1)!!

×

∞
∑

k=0

1−
(2�+ 1)

1!

(

t2

2

)

−
(2�+ 3)(2�+ 1)

2!

(

t2

2

)2

+
(2�+ 5)(2�+ 3)(2�+ 1)

3!

(

t2

2

)3

· · ·

=

∞
∑

�≥l,l+2,···

(2�− 1)!!(2�+ 1) t�

(�− l)!! (�+ l + 1)!! (2�!!)
×

∞
∑

k=0

(−1)k
(2�+ k)!!)

k!

(

t2

2

)k

.

(32)
1

[

1+ t2
]�+ 1

2

=
1

(2�!!)

∞
∑

k=0

(−1)k
(2�+ k)!!)

k!

(

t2

2

)k

.

(33)hl(t) =

∞
∑

�≥l,l+2,···

(2�− 1)!!(2�+ 1)

(�− l)!! (�+ l + 1)!!

t�

[

1+ t2
]�+ 1
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multipole expansion series of the Coulomb repulsion term, to the best of our knowledge, have not been reported 
in literature. The application of the derived alternative multipole expansion of the Coulomb repulsion term in 
solving the electron correlation problem in electronic structure theory is a subject of our current research interest.
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