
Ultracold Atom-Ion
Systems in Hybrid Traps

D I S S E R T A T I O N

zur Erlangung des akademischen Grades
doctor rerum naturalium

( Dr. rer. nat. )
im Fach Physik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von

M.Sc.-Phys. Onyango Stephen Okeyo

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Elmar Kulke

Gutachter/innen: 1. Prof. Dr. Alejandro Saenz
2. Prof. Dr. Kurt Busch
3. Dr. hab. Zbigniew Idziaszek

Tag der mündlichen Prüfung: 29.09.2017





Abstract
This thesis deals with the theoretical description of a hybrid system of an
ultracold neutral atom and a single ion. These hybrid atom-ion systems have
attracted significant interest in recent years. They combine the key advantages
of ultracold neutral atoms and ions. In particular, neutral atoms are easily
scalable and can be prepared in large numbers, while trapped ions can be stored
for much longer times and are easy to control. Some of the proposed prospects
of the hybrid quantum systems include sympathetic cooling of trapped ions,
ultracold chemistry, quantum information processing, and atom-ion quantum
simulators. These applications require extremely precise control and thus
very accurate theoretical modeling. A new method that allows for a full six-
dimensional treatment of two particles in spatially separated three-dimensional
trapping potentials was developed. By allowing for the spatial displacement
between the trapping potentials, it is possible to describe the controlled motion
of a single ion through an optical-lattice potential filled with neutral atoms. The
interaction between the neutral atom and the ion is modeled using realistic Born-
Oppenheimer potential curves from ab initio quantum chemistry calculations.
An application of the developed approach to the hybrid atom-ion system of 7Li+2
isotope reveals avoided crossings between the molecular bound states and the
unbound trap states as a function of the separation between the two traps. These
avoided crossings correspond to trap-induced resonances. This finding confirms
the trap-induced resonances predicted earlier based on quantum-defect-theory
calculations. Also, the recently found inelastic confinement-induced resonances
in ultracold neutral atoms are demonstrated to be present in atom-ion systems.
These resonances arise due to the coupling between the center-of-mass and
relative motions. The inelastic confinement-induced resonances could be used
in coherent molecular ion formation and in the determination of atom-ion
scattering properties like the scattering lengths.
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Zusammenfassung
Diese Arbeit beschäftigt sich mit der theoretischen Beschreibung eines
Hybridsystems eines ultrakalten neutralen Atoms und eines einzelnen Ions.
Diese Hybrid-Atom-Ion-Systeme haben in den letzten Jahren großes Interesse
geweckt. Sie verbinden die wichtigsten Vorteile von ultrakalten neutralen
Atomen und Ionen. Neutrale Atome sind leicht skalierbar vor allem und
können in großen Stückzahlen vorbereitet werden, während gefangene Ionen
über längere Zeiten gelagert werden können und leicht kontrollierbar sind.
Einige der vorgeschlagenen Aussichten der hybriden Quantensysteme umfassen
die sympathische Kühlung von eingefangenen Ionen, die ultrakalte Chemie,
das Quantum Informationsverarbeitung, und Atom-Ionen-Quantensimulatoren.
Diese Anwendungen erfordern eine äußerst präzise Steuerung und damit
eine sehr genaue theoretische Modellierung. Eine neue Methode, die eine
vollständige sechsdimensionale Behandlung von zwei Partikeln ermöglicht In
räumlich getrennten dreidimensionalen Fangpotentialen wurde entwickelt.
Indem man die räumliche Verschiebung zwischen den Einfangpotentialen
erlaubt, ist es möglich, die gesteuerte Bewegung eines einzelnen Ions durch ein
optisches Gitterpotential zu beschreiben, das mit neutralen Atomen gefüllt ist.
Die Wechselwirkung zwischen dem neutralen Atom und dem geladenen Ion
wird durch eine realistische Born-Oppenheimer Potentialkurve beschrieben, die
aus ab initio Berechnungen der Quantenchemie stammt. Durch die räumliche
Verschiebung der Fallenpotentiale kann die kontrollierte Bewegung eines
einzelnen Ions durch ein optische Gitter mit ultrakalten Atomen beschrieben
werden. Eines der hier diskutierten Hybridsysteme ist 7Li+2 Isotop, das mit
der neu entwickelten Methode untersucht wird, dabei wurden vermiedene
Kreuzungen im Energiespektrum zwischen molekularen Zuständen und den
Schwingungszuständen des Fallenpotentials als Funktion des Abstandes
zwischen den beide Fallen beobachtet. Diese vermiedenen Kreuzungen
bestätigen die bereits vorhergesagten falleninduzierten Resonanzen, die mithilfe
der Quantendefekttheorie bestimmt wurden. Ebenfalls werden die erst kürzlich
entdeckten inelastischen falleninduzierten Resonanzen in ultrakalten Atomen
auch in den Atom-Ion Systemen beobachtet. Diese Resonanzen entstehen
durch die Kopplung der Relativ- und Schwerpunktsbewegung. Zudem sind sie
von allgemeiner Natur und wurden auch in langreichweitiger wechselwirkenden
System wie z.B dipolaren Systemen und Coulomb wechselwirkenden Systemen
beobachtet. Die inelastischen falleninduzierten Resonanzen können benutzt
werden um kohärent Molekulionen zu bilden und zur Bestimmung des Atom-Ion
Streuverhaltens.
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Chapter 1

Introduction
The experimental realization of a Bose-Einstein condensate (BEC)1 in dilute
alkali atomic gases [1, 2] and the observation of a Fermi-degenerate quantum
gas of 40K atoms [3] have been some of the key moments in the field of atomic
and molecular physics. One of the interesting features of these ultracold samples
is the ability to precisely manipulate them. The interactions between alkali-
metal (one valence electron) atoms can be controlled via magnetic Feshbach
resonances [4], and recently, an orbital Feshbach resonance [5] has been used
to manipulate the interaction between atoms with two valence electrons [6, 7].
Another experimental milestone was the loading of ultracold neutral atomic
gases into an optical lattice (OL) [8, 9]. An OL is an artificial defect-free
crystal of light formed by superimposed counterpropagating laser beams [10].
Unlike real solids, the parameters of an OL are easily tunable via variations
of the laser intensities or the wavelengths. Recently, magnetically assisted
Sisyphus laser cooling, first proposed by Claude Cohen-Tannoudji2, was used
to cool strontium monohydroxid (SrOH) [11] paving the way towards the
study of ultracold polyatomic molecules. Also, hundreds of neutral 133Cs
atoms, have been simultaneously cooled using the so-called cavity cooling
[12]. The advancements in cooling of molecules could be essential in bringing
them (molecules) to the same level of control like in atoms, offering a wide
range of fundamental experiments and applications in quantum computing.
The ability to precisely control the internal states, the external confinements,
and the interatomic interactions of these ultracold atomic samples makes them
ideal candidates for simulating and testing condensed matter theory models
and many-body physics [13–16]. The excellent coherence properties of ultracold
neutral atoms have found topical applications ranging from high precision atomic
clocks [17, 18], quantum information processing [19–22], quantum simulation
[23–25], precision measurements [26, 27], to gravitational sensors [28].

In parallel to the advancements of ultracold neutral atoms, trapped and
laser-cooled ions [29, 30] have also experienced spectacular developments.
Trapped ions provide an excellent controlled single-particle quantum system3.
The individual addressability and longer storage times have placed cold ions
at the forefront of quantum computation [31, 32], quantum simulation [33–35],

1 Nobel Prize in Physics in 2001
2 Nobel Prize in Physics in 1997
3 Nobel Prize in Physics in 2012
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Chapter 1. Introduction

and currently, the most accurate clock in the world is based on the optical
frequency transitions of a single trapped 171Yb+ [36].

Even though trapped ions can be accurately controlled and manipulated,
scaling them to large numbers remains a challenge [37, 38]. However, since
trapped ultracold neutral atoms and ions have complementary experimental
advantages, they can be combined together in to hybrid setups. Such a hybrid
atom-ion system would then exploit the advantages of the two distinct systems
while circumventing the limitations of each individual setup. For example, while
cold ions offer longer decoherence [31] and storage times, faster gate speeds,
and are easy to address and manipulate individually due to the strong Coulomb
interactions, the neutral atoms on the other hand are more scalable and can be
prepared in large numbers.

Since the inception of hybrid mixture of ultracold neutral atoms and ions [39–
41], and the introduction of hybrid traps [42, 43], the field of simultaneously
trapped ultracold neutral atoms and laser-cooled ions in hybrid traps (see
Figure 1.1) has sparked much interest until recent times [44, 45] due to
the aforementioned complementary properties. Theoretical studies of hybrid
atom-ion systems have shown magnetic Feshbach resonances [46] and shape
resonances [47]. Initial prospect to use ultracold neutral atoms to serve as a
refrigerator for the sympathetic cooling of the ions [42, 48] has been realized
experimentally [49–52]. Further prospects include, among others, a hybrid
atom-ion quantum simulator for emulating solid-state physics [53, 54], quantum
computation [55, 56], scanning-tunneling microscope for investigating local
properties of ultracold atomic clouds [57, 58], and the formation of molecular
ions [59], for example by radiative association of cold trapped atoms and ions
[47], are relevant to astrophysics [60] and ultracold chemistry.

Despite all these prospective applications of the ultracold neutral atom
and ion mixture, there are still experimental and theoretical challenges to be
addressed. Experimentally, other than the difficulties in integrating the traps
for the neutral atom and the ion, the micromotion of the ion in the commonly
used radiofrequency (rf) Paul traps remains a big challenge. Suggestions to
minimize and, or circumvent micromotion have included using linear Paul
traps with longitudinal electrostatic confinement [62], or by compensating the
spurious field effects using extra electrodes that generate direct-current electric
fields [63], and optical trapping of the ions [64–68]. Another option put forward
to reduce the effects of micromotion is to use a combination of an ion-atom pair
with large mass ratio [55, 69, 70], however, a recent experiment with atom-ion
species of 87Rb and 88Sr+ which have nearly equal masses [71] found that the
atom-ion energy scale is determined by the force that the atom exerts on the ion
as they collide and not the temperature of the ultracold atoms or micromotion.
The other roadblock facing these atom-ion systems in the current experiments
is the difficulty in accessing the s-wave scattering regime. This is due to the
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Figure 1.1: Schematic of a hybrid atom-ion trap apparatus. The setup is made
of a magnetic-optical trap (MOT) that is concentric with a linear
radiofrequency (rf) ion trap. The insert shows two laser-cooled
40Ca+ ions (blue) in a cloud of ultracold Rb atoms (red-yellow).
Figure taken from [61].

high energies that arise from the long-range nature of their interactions and
the large elastic cross sections [39]. It therefore means that all the application
prospects that would rely on tuning the atom-ion s-wave scattering length are
currently still out of reach.

The difficulty in the theoretical treatment arises from the fact that the
long-range nature of atom-ion polarization potential that scales asymptotically
as 1/r4, is comparable to or larger than the typical trap lengths, preventing the
use of δ-function pseudopotential [72] to model the interaction potential like in
the case of the ultracold neutral atoms. Also, the trapping frequencies for the
atom and the ion are typically quite different with the atom-trap frequencies
being in the order of hundreds of kHz while the ion traps are in the MHz range.
This difference in the frequency leads to a coupling between the relative (rel.)
and center-of-mass (c.m.) motions even within the harmonic approximation of
the trap potentials complicating the theoretical description.

This thesis aims to provide an exact numerical approach for describing the
interaction between a trapped ultracold neutral atom and a single laser-cooled
ion. The attractive feature of the approach is that the interaction between the
two particles is treated in a realistic fashion using Born-Oppenheimer potential

3



Chapter 1. Introduction

curves. The trap potentials are modeled from the periodic form of the OL. The
employed approach allows for the treatment of the trapping potentials for the
atom and the ion within and beyond the harmonic approximation while taking
into account the coupling between the center-of-mass and the relative motions
degree of freedom by means of configuration interaction. Also provided in this
thesis is a method for treating two interacting particles trapped in spatially
separated potentials. The numerical procedure used in the present case extends
the model developed earlier in [73] to study two ultracold neutral atoms confined
in spatially separated three-dimensional optical traps and interacting via central
interatomic interaction potentials.

The remainder of this thesis is organized as follows:

• Chapter 2 reviews the theoretical concepts essential for the understanding
of low-energy collisions.

• Chapter 3 contains the review of the method originally reported in [73]
together with the descriptions of the programs used in the numerical
calculations.

• Chapter 4 contains the extension of the original method to incorporate
the spatial separation between the trap potentials. This is one of the key
achievements of the thesis.

• Chapter 5 is devoted to the construction of the ab initio atom-ion potential
curves and the procedure for manipulating the atom-ion interactions.

• Chapter 6 provides the theoretical description of an atom-ion system
confined in spatially separated quasi 1D- and 3D- harmonic traps and
interacting via realistic central potential. The analysis of the energy
spectrum as a function of the separation distance between the traps of the
neutral atom and the single ion reveals the expected trap-induced shape
resonances. The findings are in agreement with earlier theoretical studies
based on the quantum defect theory and is part of the main results of the
study.

• Chapter 7 contains the other result showing that the so-called inelastic
confinement-induced resonances are present in atom-ion systems. This
type of resonance occurs whenever the center-of-mass and relative motions
are coupled. They had been predicted to occur in ultracold neutral atoms
and also confirmed experimentally. Finding them in atom-ion systems
further confirms the universality of these type of resonances which have also
been predicted in dipolar quantum gases and Coulomb interacting systems.
The coupling of the center-of-mass and relative motions is achieved by
considering both harmonic and anharmonic trapping potentials.

• Chapter 8 provides the summary of the thesis findings and an outlook.
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Chapter 2

Theoretical Background
In this chapter, a brief review of the basic theoretical background essential for
the understanding of low-energy collisions is presented. The chapter begins
with a description of adiabatic and Born-Oppenheimer (BO) approximations.
In section 2.2, optical lattice (OL) trapping potentials are discussed. The basic
scattering theory is given in section 2.3 and the procedure for determining
the scattering length from the asymptotic wavefunction is described in
section 2.3.1. The δ-function pseudopotential routinely used to describe
interatomic interaction in ultracold neutral atoms is found in section 2.3.2.
The phenomena of Feshbach resonances is illustrated in section 2.4 and the
interaction between a neutral atom and a single ion is discussed in section 2.5.
The quantum defect theory (QDT) which was the only method used before to
describe a system of a trapped atom-ion pair is briefly described at the end of
the chapter.

2.1 Born-Oppenheimer approximation

The total spin-independent, non-relativistic Hamiltonian operator Ĥ governing
the motion of n electrons and N nuclei in a molecule can be written as

Ĥ = − 1
2

n∑
i=1
∇2
i −

1
2Mα

N∑
α=1
∇2
α −

n∑
i=1

N∑
α=1

Zα
riα

+
n−1∑
i=1

n∑
j>i

1
rij

+
N−1∑
α=1

N∑
β>α

ZαZβ
Rαβ

= T̂el + T̂nuc + V̂el,nuc + V̂el,el + V̂nuc,nuc (2.1)

where the indices {i, j} refer to the electrons and {α, β} refer to the nuclei.
The first two terms represent the kinetic energy operators of the electrons and
the nuclei, respectively. The third term is the electrostatic interaction between
the electrons and the nuclei, the fourth term is the electron-electron repulsion
and the last term is the Coulomb repulsion between the nuclei. The notation
riα ≡ |ri −Rα| denotes the distance between electron i and nucleus α. Same
definition is true for rij and Rαβ. The charge on nucleus α (β) is denoted by
Zα (Zβ).

Except for the very simplest cases involving only a few particles, the
Schrödinger equation (SE) associated with the general many-body Hamiltonian
(2.1) cannot be solved analytically even for a two-electron system like the helium
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Chapter 2. Theoretical Background

atom because of the nonseparable pairwise attraction and repulsion terms. To
overcome this difficulty, the BO approximation is often adopted. The physical
basis for the BO approximation is the large disparity between the masses of
the nuclei and the electrons. Since electrons are much lighter compared to
nuclei, they move much more rapidly than the nuclei. Therefore, for the coupled
motion of the electron-nuclear system which has significantly different speeds,
it is possible to treat the motion of the electron as if it depends only on the
fixed nuclear geometry. The total wavefunction Ψtot for the system can then be
written formally as a product of the electronic wavefunction Ψel which depends
parametrically on the nuclear position and the nuclear wavefunction ψnuc, i. e.,
Ψtot = Ψel ψnuc. Moreover, the electronic wavefunction must take care of the
particle indistinguishability. To this effect, since the relativistic contributions
and the spin-orbit couplings have been ignored, the total electronic wavefunction
factorizes into spatial and spin wavefunctions, i. e., |Ψel〉 = |ψel〉 |χel〉 .

Thus, the Hamiltonian (2.1) for a system composed of an atom and a
single ion with masses m1 and m2, respectively, after the separation of the
center-of-mass motion1 of the system can be expressed by

Ĥ = T̂nuc + T̂mp + T̂el + V̂(r; R) (2.2)

where
T̂nuc = − 1

2µ ∇
2
R (2.3)

is the kinetic energy operator for the relative motion of the nuclei with reduced
mass µ = m1m2 /Mtot, and the total mass Mtot = m1 +m2. The second term
is the mass polarization2 given by

T̂mp = − 1
2Mtot

n∑
i 6=j
∇i · ∇j , (2.4)

and the third term is the electron kinetic energy operator defined by

T̂el = −1
2

n∑
i=1
∇2
i . (2.5)

R denotes the vector between the nuclei of the atom-ion pair and r defines
the coordinates of the electrons in the center of nucleus mass frame. The last
part V̂(r; R) ≡ V̂el,nuc + V̂el,el + V̂nuc,nuc is essentially the last three terms of
equation (2.1).

1 See derivation in Appendix A.
2 The mass polarization arises from the correlation between electronic momenta when the

motion of the nucleus is considered [74] and can be neglected for low-energy collisions
[75, 76].
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2.1. Born-Oppenheimer approximation

Therefore, combining T̂el and V̂(r; R), the time-independent Schrödinger
equation (TISE) for the nonrelativistic BO electronic Hamiltonian can be
written as

Ĥel(r; R) |ψel, i(r; R)〉 = Eel, i |ψel, i(r; R)〉 i = 1, 2, ... , (2.6)

where Ĥel(r; R) = T̂el + V̂(r; R). For static geometry, the nuclear-nuclear
potential term V̂nuc,nuc reduces to a constant. The electronic energy of the
i-th electronic state is therefore the total energy with fixed nuclei less the
nuclear-nuclear repulsion potential V̂nuc,nuc.

Once the solutions of the electronic Schrödinger equation (SE) (2.6) are
found for a number of different static nuclear configurations, the SE for the
nuclear motion can be obtained as follows. Since the electronic Hamiltonian
Ĥel is self-adjoint, its eigenfunctions form a complete orthonormal set. The
total wavefunction can therefore be expanded in the following way

|Ψtot(r,R) 〉 =
n∑
i=1
|ψnuc, i(R)ψel, i(r; R) 〉 . (2.7)

Inserting the total wavefunction (2.7) into the SE with the full Hamiltonian
(2.2) (without the mass polarization term) leads to

n∑
i=1

(
T̂nuc + Ĥel

)
|ψnuc, i ψel, i 〉 = Etot

n∑
i=1
|ψnuc, i ψel, i 〉 (2.8)

where the arguments r and R have been dropped for brevity. Multiplying
equation (2.8) from the left by 〈ψel, j| and integrating over the electronic
coordinates yields the coupled differential equations

(
T̂nuc+Eel, j+V̂nuc,nuc−Etot

)
|ψnuc, j 〉+

n∑
i=1

Λji |ψnuc, i 〉 = 0 i = 1, 2, ... , (2.9)

where the operator Λji is defined by

Λji = −
2∑

α=1

1
2µα

(
2〈ψel, j |∇α|ψel, i〉∇α︸ ︷︷ ︸

first-order non-adiabatic

+ 〈ψel, j |∇2
α|ψel, i〉︸ ︷︷ ︸

second-order non-adiabatic

)
(2.10)

with the terms under the braces denoting the first- and second-order non-
adiabatic coupling elements.

The coupling in the set of equations (2.9) means that for any i-th equation,
ψnuc, i enters all other equations as the Λjiψnuc, i term. This makes solving the
set of the coupled equations (2.9) very difficult. A simple way to decouple
the equations is to ignore the coupling term Λji. This can be done in two
ways. One way is to neglect the coupling in (2.9) for all i 6= j, i. e., equating

7



Chapter 2. Theoretical Background

all the off-diagonal elements of Λji to zero then only the diagonal terms with
i = j survive. This kind of approximation is referred to as the adiabatic
approximation3. The other way is to assume that the operator Λji is null for
all i without any exception. This means that all the elements of Λji can be
equated to zero, i. e., the diagonal correction is neglected. This introduces the
BO approximation4. With this assumption, it implies that the nuclei moves on
a potential energy curve which is a solution of the electronic SE. These two
approximations lead to the nuclear Schrödinger equations of the form

Ĥnuc ψnuc, j = Ej ψnuc, j j = 1, 2 (2.11)

here, Ĥnuc is the nuclear Hamiltonian. Within the adiabatic approximation,
Ĥnuc takes the form

Ĥnuc = T̂nuc + Eel, j + V̂nuc,nuc −Λjj , (2.12)

while within the BO approximation, it reduces

Ĥnuc = T̂nuc + Eel, j + V̂nuc,nuc . (2.13)

The interaction between an atom and a single ion can involve: an alkali
atom with an alkali-metal ion of the same or different nucleus, an alkali-metal
atom with an alkaline-earth ion, or an alkali-metal atom and a rare-earth
ion. In all these cases, either the atom or both the atom and the ion have
an electron in the outermost shell. The atom-ion interaction can be modeled
within the BO approximation, which involves solving the electronic SE (2.6)
for static nuclear positions and the resulting electronic eigenvalues form the
potential energy curve where the two nuclei move. Solving such a problem in
itself is quite laborious. However, the interaction potential energy curves can
be estimated by numerical ab initio calculations. Alternatively, the Rydberg-
Klein-Rees (RKR) method [77] can be used to obtain the potential energy
curves. This approach gives a pair of turning points for each vibrational energy
of the diatomic molecule based on spectroscopic measurements from which the
potential is constructed.

The ab initio approaches treat the alkali atoms or dimers as an effective
one- and two-electrons system moving in the field of two ionic cores and the
core electrons are described using model potentials or pseudopotentials. Using
numerical methods, for example, the one described in [78], an alkali dimer
cation, for example, Li+2 can be treated as an effective one-electron system

3 Only the ground state i = 0 is often considered in adiabatic approximation. Justification
for this stems from the fact that the electron adjust instantaneously to the nuclear
geometry and occupy only the ground state even for rapidly moving nuclei.

4 The BO approximation breaks down when two or more solutions of the electronic SE
come close together energetically.
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2.1. Born-Oppenheimer approximation

and the resulting one-electron SE solved within the BO approximation using
B spline basis set and prolate spheroidal coordinates, see for example, [79].
Except for simple systems like He2 [80], it is generally very demanding to obtain
high-precision ab initio potential curves. One way to assess the accuracy of
the numerical ab initio data is to compare them with experimental results.
Figure 2.1 shows BO potential curves of the ground state of Li+2 as a function
of internuclear separation. Details how these potentials are constructed is
provided in Chapter 5.

2.1.1 Term symbols for diatomic molecules

A diatomic molecule is formed by two identical (homonuclear) or different
(heteronuclear) atoms that are chemically bonded. The term symbol for a
molecular state of a homonuclear diatomic molecule is expressed as

2S+1Λ(+/−)
Ω,(g/u) (2.14)

Here, S is the total spin quantum number for the molecule and 2S + 1 is
the spin multiplicity. Λ is the projection of the electronic orbital angular
momentum on internuclear axis. In analogy to the angular momentum ~L in
atomic spectra, Λ takes capital Greek letters Λ = Σ,Π,∆,Φ, ... to denote
Λ = 0, 1, 2, 3, ..., respectively. The symbol Ω represents the projection of the
total angular momentum |Λ + Σ| on the internuclear axis. For homonuclear
molecules, an inversion symmetry through the midpoint between the two
nuclei leaves the nuclear configuration of the molecule unchanged and so,
its constituent symmetric (antisymmetric) wavefunctions are denoted gerade
(ungerade) symbolized by a subscript g(u). Reflection symmetry with respect
to a plane containing the internuclear axis yields symmetric (antisymmetric)
wavefunctions represented by a superscript +(−). For heteronuclear systems,
the term symbol does not include the g/u part since they do not have an
inversion center.

The example system for the atom-ion interaction in this thesis is Li+2 . For
this homonuclear system, (Li + Li+), the electronic spin is S = 1/2 for Li and
0 (zero) for Li+ giving a total electronic spin of 1/2 hence the spin multiplicity
for this system is 2(1/2)+1=2, leading to doublet molecular potentials. The
charge can be on either center thus parity transformation leads to symmetric
or antisymmetric electronic wavefunction under symmetrization hence g or u
state (the molecular potential curves for Li+2 are shown in Figure 2.1).
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Chapter 2. Theoretical Background
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Figure 2.1: The BO potential energy curves of the two lowest electronic states
for Li+2 . The internuclear distance is units of Bohr radius a0. The
blue dashed line shows the ab initio potential for the ungerade
state while the red line is the gerade state. These potential energy
curves are taken from Ref. [81].

2.2 Optical lattices

An optical lattice is an artificial crystal of light formed by the standing wave
interference pattern of two or more counterpropagating laser beams. The
resulting interference pattern creates an effective periodic potential that can
trap sufficiently cooled atoms.

When an atom is placed in a laser light field, the electric field E of the
laser oscillating with the complex amplitude E at a frequency ωL, induces an
oscillating electric dipole moment d in the atom. The amplitude d of the dipole
moment is related to the electric field amplitude E at position r by [82]

d (r) = α (ωL)E (r) , (2.15)

where α(ωL) is the complex polarizability, which depends on the laser frequency
ωL and on the energies of the non-resonant excited states of the atom. Here,
r refers to the spatial components of the electric field. The resulting dipole
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2.2. Optical lattices

potential is determined by time averaging over d · E and is given by

Vdip (r) = − 1
2ε0c

Re(α) I(r . (2.16)

Here, ε0 is the vacuum permittivity, c is the speed of light and I = 2 ε0 c |E|2 is
the intensity of the laser beam. If the laser is red-detuned (i. e., its frequency is
less than a specific electronic transition frequency within an atom), the atoms
are attracted towards the regions of high laser intensity corresponding to the
potential minima. However, if the laser is blue-detuned, (i. e., its frequency is
higher than the transition frequency), the atoms are pushed away from the
maxima since the potential minima are at the positions of minimum intensity.
Either way the atoms can be trapped in the bright or dark regions of the optical
lattice.

The periodic potential is obtained by overlapping counterpropagating lasers
to create a standing wave. In particular, superimposing three standing waves,
each formed by two counterpropagating laser fields that are orthogonal to each
other forms a spatially periodic OL potential for the atoms, see Figure 2.2(b),
of the form

VOL =
∑

j=x,y,z
Vj sin2(kjj) , (2.17)

where Vj = − 1
2ε0c

Re{α(ωL)} Ij is the potential depth of the optical lattice in
direction j, kj = 2π/λj is the wave vector, with λj being the wavelength of the
laser creating the OL potential along direction j. The potential depth can also
be expressed in units of the recoil energy Ej

r = ~2k2
j/2m, m being the mass

of the atom. The OL potential can also be expressed in terms of a cos2 (or
π/2-shifted sin2) potential of the form

V cos
OL =

∑
j=x,y,z

Vj cos2(kjj) . (2.18)

Ultracold quantum gases confined in an OL form a fascinating physical
system closely related to many systems in condensed matter and solid-state
physics. Unlike a true crystal, an OL is free from defects and has no phonons.
The OL potential is also directly controllable via the laser intensities and the
wavelengths.

The harmonic trap potential for the atom-ion pair is important to this
thesis. It can be obtained by expanding equation (2.17) in a Taylor series
around the trap minima up to the second order. This will be discussed in
more details later in Chapters 3 and 4 for concentric and off-centered traps,
respectively.
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Chapter 2. Theoretical Background

(a)

(b)

Figure 2.2: Optical lattice potentials formed by superimposing two or three
orthogonal standing waves. (a) For a 2D optical lattice, the atoms
are confined to an array of tightly confining 1D potential tubes.
(b) In the 3D case, the optical lattice can be approximated by
a 3D simple cubic array of tightly confining harmonic oscillator
potentials at each lattice site. The figure and the caption are
taken from Ref. [10].

2.3 Scattering at ultracold temperatures

In this section, a short overview of scattering theory relevant to the topics of
this thesis is given. More comprehensive discussions can be found in standard
quantum mechanics textbooks, e. g., Refs [83, 84].

Consider a two-body quantum scattering problem in free space in which
the two particles interact via a spherically symmetric potential V (r) that tends

12



2.3. Scattering at ultracold temperatures

to zero when r → ∞. The scattering properties can then be determined by
solving the SE with the potential V (r)(

− ~2

2µ∇
2 + V (r)

)
ψ(r) = E ψ(r) . (2.19)

In free space, the problem reduces to the scattering of a particle with an
incident momentum k on the potential V (r) within the center-of-mass frame.
The collision energy is

E = ~2 k2

2µ (2.20)

where µ is the reduced mass of the two particles. If the interaction potential
is nonzero, then the collisions between the two particles result in a scattered
wave whose asymptotic form is given by

ψk(r) ∼ eik·r + f(E, κ̂, n̂) e
ikr

r
, r →∞ . (2.21)

The first part of the wavefunction (2.21) is an incoming plane wave while
the second part describes an outgoing spherical wave that is modulated by
the scattering amplitude f(E, κ̂, n̂). The unit vectors κ̂ = k/k and n̂ = r/r
indicate the directions of the incident plane wave and the scattering amplitude,
respectively. The scattering amplitude contains all information about the
scattering process and is related to the differential scattering cross section via

dσ

dΩ = |f(E, κ̂, n̂)|2 (2.22)

with
σ(E, κ̂) =

∫
|f(E, κ̂, n̂)|2d2n (2.23)

being the total cross section.

For a weak interaction potential, the scattering amplitude can be
determined using the wavefunction with the zeroth-order approximation of
exp(ik · r) and it is given by

f(E, κ̂, n̂) ' − µ

2π~2

∫
d3r′ e−i (k−k′)·r′ V ( r′ ) . (2.24)

The expression given by equation (2.24) above is known as the Born
approximation. Within this approximation, the scattering amplitude is given by
the Fourier transform of the potential with respect to the momentum transfer.
Here, k′ is the momentum of the outgoing plane wave. This approximation
often gives good results for high kinetic energies but it is not exact and does not
account for the effective range of the potential. For low-energy scattering, it is
often useful to expand the incident and scattered wavefunctions in spherical
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Chapter 2. Theoretical Background

coordinates by means of a partial wave expansion,

ψ(r) =
∞∑
l=0

m=l∑
m=−l

Y m
l (θ, φ)uk,l,m(r)

r
, (2.25)

where φ is the azimuthal angle around the z axis, defined as the incident
wavefunction direction and Y m

l (θ, φ) are the spherical harmonic functions.
Because the potential is spherically symmetric, the index m is zero5. Therefore,
the spherical harmonics contributing to the scattering are Y 0

l (θ, φ) ∝ Pl(cos(θ),
where Pl(cos(θ) are the Legendre polynomials. Inserting the expansion
equation (2.25) in to the SE (2.19) leads to a radial SE for the reduced
wavefunction (u ≡ rψ) that describes the collisions of the form[

− ~2

2µ
d2

dr2 − E + Veff (r)
]
uk,l(r) = 0 . (2.26)

The two particles feel an l-dependent effective potential

Veff (r) = V (r) + ~2 l(l + 1)
2µr2 . (2.27)

The second term in equation (2.27) is called the centrifugal barrier. It introduces
an additional repulsive term to the potential for l 6= 0 states. At ultracold
temperatures, the particles are not able to overcome the barrier for higher
partial waves and only the l = 0 contributions are important. The consequence
of this is that, the lower the temperature, the lower the number of the partial
waves that have to be taken into account to describe the collisions. The
scattering for l = 0, 1, ..., are referred to as s-wave, p-wave, etc.

The asymptotic form of the radial wavefunction to equation (2.26) for
kr � 1 is

uk,l(r) ∼ sin
(
kr − lπ2 + δl

)
, r →∞ . (2.28)

From equation (2.28), the radial wavefunction uk,l(r) behaves in the same
manner as a free wave except a possible phase shift δl for the reflected outgoing
wave. Therefore, the effect of the potential V (r) at short-range is seen in the
asymptotic limit r →∞ only as phase shifts δl to the radial wavefunction.

The partial wave expansion (2.25) of the incident and the scattered waves
in equation (2.21) leads to the scattering amplitude f(k, θ) and total cross
section σ(k) of the form

f(k, θ) = 1
2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ) (2.29)

5 This is not fulfilled anymore for dipolar quantum gases where the dipole-dipole interaction
is not negligible or those of polar heteronuclear molecules.
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2.3. Scattering at ultracold temperatures

and
σ(k) = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k) , (2.30)

respectively. The total cross section can also be expressed in terms of the
imaginary part of the forward scattering amplitude f(k, θ = 0) according to

Im f(k, θ = 0) = k

4π σ . (2.31)

The relationship between the forward scattering amplitude and the total cross
section of the scatterer given by equation (2.31) is known as the optical theorem.
It shows that all the scattering information including the differential ones are
already contained in the scattering amplitude for θ = 0.

Also, since the scattering wavefunction must be (anti)symmetric with
respect to exchange of the atom pair, the scattering amplitude f(k, θ)
should be replaced by f(k, θ)± f(k, π − θ), where the (+) term corresponds
to symmetrization for bosons and the (−) part corresponds to the anti-
symmetrization for fermions with 0 ≤ θ ≤ π/2. Therefore, using the properties
of the Legendre polynomials and the (anti)symmetrization requirements, the
expressions for the scattering cross section for polarized bosons and fermions
will then contain only even or odd values of l given by

σ+(k) = 8π
k2

∞∑
l even

(2l + 1) sin2 δl(k) , for bosons , (2.32)

and
σ−(k) = 8π

k2

∞∑
l odd

(2l + 1) sin2 δl(k) , for fermions , (2.33)

respectively.

2.3.1 Scattering length

In the low-energy limit, i. e., kr � 1, we do not resolve the angular properties
of the scattering potential since only the l = 0 partial waves have to be taken
into account. If the energy term E is neglected altogether, then the stationary
radial SE (2.26) for the s-wave can be written as

d2 u(r)
dr2 = 2µ

~2 V (r) u(r) . (2.34)
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Chapter 2. Theoretical Background

Using inner boundary condition u(0) = 0, then for an arbitrary potential V (r)
that obey the asymptotic condition

lim
r→∞

rn V (r) = 0 for n > 3 , (2.35)

the wavefunction u(r) has to be linear such that [85]

ψ(r) = u(r)
r

= b(r − asc)
r

= b
(

1− asc

r

)
, r →∞ , (2.36)

where asc and b are real constants.

The constant asc which is the intersection of the asymptotic straight line
and the r axis will be the definition of the scattering length. This is the
technique used to determine the scattering length values in the present work.
If the phase is chosen such that the wavefunction is real, then the curvature of
the wavefunction will have the same sign as the wavefunction itself in regions
where the potential is repulsive (asc > 0) and an opposite sign in regions where
the potential is attractive (asc < 0). The absolute value of the scattering length
gives the interaction strength. The graphical representation given in Figure 2.3
illustrates how the scattering length can be determined from the intersection of
the asymptotes of the scaled radial wavefunction and the r axis.

In the ultracold regime, the collision between the atoms can be described
to a good approximation by a single parameter, the scattering length [86]. This
greatly simplifies the theoretical description of the atoms in the low-energy
collision regime. The true interaction potential between the atoms can be
replaced by a simple pseudopotential that can reproduce the same scattering
length as the true potential, see discussions in section 2.3.2.

To wrap up the discussion on the scattering lengths, it is noteworthy to
mention that there exists an analytical formula for calculating the scattering
length corresponding to a potential V (r) that decays asymptotically as −Cn/rn,
with n = 4 for atom-ion interaction and n = 6 for interacting pair of neutral
atoms as r → ∞ that was obtained by Gribbakin and Flambaum [88], also
discussed in [89]. The scattering length is calculated (using the Wentzel-
Kramers-Brillouin (WKB) approximation [90]) by matching the semiclassical
wave function inside the potential well with the exact solution in the asymptotic
region. For atom-ion collisions, the scattering length takes the form

asc = −
√
µC4 tan

(
Φ− π

4

)
(2.37)

where C4 is the static dipole polarizability and Φ is the semiclassical phase
given by

Φ =
∫ ∞
r0

√
−µV (r) d r (2.38)
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0

0
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asc > 0

Figure 2.3: Representation of the s-wave radial wavefunction in a spherical
box of radius r with strict boundary conditions (solid line): (a) in
the absence of interactions, (b) with a positive scattering length,
and (c) with a negative scattering length. The dotted red lines in
(b) and (c) denote the interaction potentials. The dashed line is
the extrapolating function u(r) for all r of the asymptotic form
of the radial wave. Its intersection with the axis gives the value
and the sign of the scattering length. Figure and caption adopted
from Ref. [87].

with r0 being the zero energy classical turning point6 obtained from the solution
when the potential V (r) is zero. The phase Φ passes through many cycles of
π at the threshold energy. Gribbakin and Flambaum also showed that the
number of bound states Nbs supported by the potential V (r) is given by

Nbs =
[

Φ
π
− n− 1

2(n− 2)

]
+ 1 (2.39)

where the value inside the square bracket indicates the largest integer. The
value of asc calculated using the intersection of the asymptotic part of the
wavefunction (2.36) or by the numerical integration of the potential V (r) using
equation (2.37) should be the same.

6 As a technical detail, for numerical potential curves, this value must be accurately
determined in order to find the correct scattering length and the phase Φ of the potential.
One can use for example, the ‘FindRoot’ feature of Mathematica to numerically determine
this point.
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Chapter 2. Theoretical Background

2.3.2 Regularized δ-function pseudopotential

The regularized zero-range s-wave (Fermi-Huang) pseudopotential [91, 92]
given by equation (2.42) is often used to model two-body interaction potentials
for sufficiently low-energy scattering. This potential can be obtained from
equation (2.36) as follows: we seek a solution of the form V (r) ∝ δ(r) and use
the trick ∂

∂r
(r ψ(r)) = b to find the exact form of V (r), i. e., from the source

equation ∇2 1
r

= 4πδ(r), we have

∇2 ψ(r) = −4π asc δ(r) b (2.40)

substituting for b in (2.40) gives

∇2 ψ(r) = −4π asc δ(r) b = −4π asc δ(r)
∂

∂r
(r ψ(r)) (2.41)

dropping ψ(r) from both sides yields the Fermi-Huang δ pseudopotential

Vpseudo(r) = 4π ~2 asc

m
δ(r) ∂

∂r
r . (2.42)

The pseudopotential Vpseudo(r) is simple and can be used to replace the exact
potential V (r) provided it gives the same scattering length as V (r) and allows
for the Born approximation treatment [87]. For a system of two ultracold neutral
atoms trapped in harmonic potentials, analytical solutions to the SE exists
if the interaction potential is modeled using the δ-function pseudopotential
[93–97]. However, for a system composed of an ultracold neutral atom and a
single ion, the δ-function pseudopotential approximation does not hold anymore
[72]. This is discussed later in section 2.5. The prefix pseudo implies that
it is not a true potential like the actual interaction between the two atoms,
but simply an operator that accounts for the phase shift of the interatomic
interaction potential V (r) at the same time giving a good approximation of the
eigenvalues and the corresponding eigenfunctions of the SE when used instead
of the actual interaction potential.

2.4 Feshbach resonances

A Feshbach resonance in ultracold collisions arises when the scattering state
of two atoms colliding in the open channel resonantly couple to a molecular
bound state in the closed channel [4]. A two-channel model for a Feshbach
resonance is illustrated schematically in Figure 2.4. The open channel (red) is
the interaction potential along which the colliding atoms scatter. The closed
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2.4. Feshbach resonances

0

Figure 2.4: Schematic illustration of a two-channel model for a Feshbach
resonance. A Feshbach resonance arises if the energy of the free
atoms in the open channel (red) couples resonantly with the
energy of the bound state in the closed channel (blue). The
resonance can be controlled by modifying the relative position of
scattering and bound states using an external magnetic field.

channel (blue) contains the resonant bound state whose dissociation energy
threshold is above that of the colliding atoms in the open channel. If the
scattering and the bound states have different magnetic moments, an applied
magnetic field shifts the two channels with respect to each other and so to the
energy difference between them owing to the Zeeman effect. This modification
of the collision potential results in a change of the scattering length asc.

The scattering length is related to the applied magnetic field B by [98]

asc(B) = abg

(
1− ∆B

B − B0

)
, (2.43)

where abg is the off-resonant background scattering length of the open channel,
∆B is the width and B0 is the position of the resonance. Equation (2.43)
shows that very large positive and negative values of asc can be realized with
magnetic Feshbach resonances. This tunability of the interactions that Feshbach
resonances facilitate remains one of the cornerstones of ultracold atomic physics.
A quantitative introduction to the theory of Feshbach resonances can be found
e. g., in Refs. [4, 99].
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Generally, the accurate calculation of magnetic Feshbach resonances entails
solving a complex multi-channel problem. However, a Feshbach resonance can
be described in terms of its entrance-channel component, e. g., the method
developed in [100] for mimicking the variation of the scattering length at a
Feshbach resonance with single-channel approach. The procedure used in this
thesis is the variation of the steep repulsive inner wall of the BO potential
curve of the atom-ion interaction potential. This will be described in details in
Chapter 5.

Finally, let us remark that magnetic Feshbach resonances have been
predicted theoretically for the hybrid atom-ion systems [46] but reaching the
s-wave collision regime in current experiments has not been possible due to the
higher energies that arise from the long-range nature of their interactions (see
section 2.5) and the large elastic cross section.

2.5 Atom-ion polarization potential

At large internuclear separations between the atom-ion pair, the interaction
potential can be expressed in terms of the multipole expansion ∑Cn/r

n where
Cn is the leading van der Waals coefficient. The dominant interaction between
the two particles can be understood as follows. A singly charged ion with
elementary charge e creates an electric field

ε(r) = e

4π ε0 r2 (2.44)

at a distance r where ε0 is the vacuum permittivity. This electric field induces
a dipole moment

d(r) = 4π ε0 α ε(r) (2.45)

in a neutral atom where α is the atom’s static electric dipole polarizability.
The long-range behavior of the atom-ion potential is therefore characterized by
the interaction between the charge of the ion and the dipole moment of the
atom for states without permanent quadrupole moment. The dominant term
of this polarization potential Vpol is well known at large distances and is given
by [101]

lim
r→∞

Vpol(r) ' −
1
2 d(r) ε(r) ∼ −C4

r4 (2.46)

where C4 = αe2/(8πε0). However, the short-range behavior of Vpol is more
complicated and is not well known. Equation (2.46) is only valid for separation
distances larger than the radius that defines the characteristic size of the inner
core region of the atom-ion complex. This characteristic radius of the atom-ion
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2.5. Atom-ion polarization potential

potential is defined by [72]

R∗ =
√

2µC4/~2 . (2.47)

The length scale R∗ is useful in the characterization of atom-ion properties such
as the size of the least bound states [102], the interaction range and provides a
limit for typical scattering length values [44]. Another characterization of the
atom-ion interaction is given by the characteristic energy E∗ which is defined
by [72]

E∗ = ~2/(2µR∗2) . (2.48)

This energy scale sets the energy spacing for the loosely bound states and
the onset of the s-wave scattering of the atom-ion collisions. As already
mentioned in section 2.4, the atom-ion s-wave scattering length has not been
measured in current experiments. This is due to the very low temperatures
required for the onset of atom-ion s-wave scattering. To illustrate this,
consider an example of Li+2 potential, using equations (2.48) and (2.47) with
C4 = 164 a.u, the characteristic energy E∗ = 23.54 µK× kB where µK stands
for microkelvin and kB is the Boltzmann constant. Despite the fact that this
energy is in the microkelvin range and that it is possible to cool neutral atoms
to much lower temperatures up to the nanokelvin regime, the typical atom-ion
collision energies are presently technically limited to energies on the order of
mK×kB or higher [44].

The polarization potential (2.46) diverges for r → 0. In this limit
of small separations, the higher terms like the exchange forces begin to
dominate the atom-ion interaction which becomes strongly repulsive and as
already pointed out, the exact form of the potential becomes complicated [72].
In the case of ultracold neutral atoms, the characteristic length of the trapping
potential is typically much larger than the characteristic radius (2.47) of
the interatomic interaction hence the justification to describe the atom-atom
interaction using the δ-function pseudopotential (2.42). However, for the atom-
ion system, the characteristic range R∗ of the polarization potential (2.46) is
comparable to or larger than the typical size of the trap potentials preventing
the use of the contact pseudopotential to describe the interaction [72, 103].
Using the example of Li+2 , the characteristic length, R∗ ≈ 1024 a0. Therefore,
an atom confined in an isotropic harmonic potential with length

lj =
√
~/(mjωj), (2.49)

at a frequency say ωa = 2 π × 100 kHz has a trap length, la ≈ 904 a0, while
the length of an ion trap confined with a frequency of ωi = 2 π × 200 kHz is
li ≈ 639 a0, (a0 is the Bohr radius). Both of these two trap lengths are smaller
than the atom-ion characteristic length R∗.
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C h a pt er 2. T h e or eti c al B a c k gr o u n d

P ol ari z e d at o mI on

r R ∗

(r ) ≡ − C 4 r 4

r

/V p ol

(r )V

0

Fi g u r e 2. 5: T h e l o n g-r a n g e p art of t h e at o m-i o n i nt er a cti o n p ot e nti al is gi v e n
b y t h e p ol ari z ati o n p ot e nti al V p ol (r ). At dist a n c es s m all er t h a n
t h e p ot e nti al mi ni m u m r 0 , r e p ulsi v e t er ms st art t o d o mi n at e.
Q u a nt u m d ef e ct t h e or y r e pl a c es t h e a ct u al p ot e nti al V (r ) (s oli d
y ell o w li n e) wit h a r ef er e n c e p ot e nti al V p ol (r ) ( d as h e d gr e e n
li n e) a n d i n cl u d es t h e s h ort-r a n g e e ff e cts usi n g a q u a nt u m- d ef e ct
p ar a m et er r el at e d t o t h e s h ort-r a n g e p h as e of t h e r el ati v e w a v e
f u n cti o n. T h e c h ar a ct eristi c r a n g e R ∗ of t h e i nt er a cti o n is t y pi c all y
m u c h l ar g er t h a n r 0 . Fi g ur e a n d c a pti o n ar e t a k e n fr o m R ef. [5 6 ].
T h e bl u e s oli d li n e h as b e e n i n cl u d e d t o i n di c at e t h e f ull at o m-i o n
p ot e nti al o bt ai n e d b y m er gi n g t h e a b i niti o d at a f or t h e s h ort-
r a n g e wit h t h e k n o w n l o n g-r a n g e p art.

T h e Q D T a p pr o a c h, bri e fl y dis c uss e d i n s e cti o n 2. 6, h as b e e n us e d [ 7 2 ] t o
d es cri b e tr a p p e d at o m-i o n s yst e ms w h er e t h e d et ails of t h e i nt er a cti o n at s h ort
s e p ar ati o n dist a n c es is n ot k n o w n a n d t h e ps e u d o p ot e nti al is n ot a p pli c a bl e.
A s c h e m ati c ill ustr ati o n of at o m-i o n i nt er a cti o n is s h o w n i n Fi g ur e 2. 5. I n
t his t h esis, t h e at o m-i o n i nt er a cti o n p ot e nti al is d es cri b e d b y usi n g a r e alisti c
i nt er a cti o n p ot e nti al n u m eri c all y pr o vi d e d b y a B or n- O p p e n h ei m er c ur v e.

2. 6 Q u a n t u m d ef e c t t h e o r y

Q u a nt u m d ef e ct t h e or y is a w ell est a blis h e d a n d a p o w erf ul c o n c e pt i n at o mi c
p h ysi cs. It pr o vi d es a t e c h ni q u e f or d es cri bi n g s c att eri n g pr o c ess es w h e n t h e
e x a ct f or m of t h e i nt er p arti cl e i nt er a cti o n at s h ort dist a n c es is u n k n o w n. A
d et ail e d a c c o u nt of t h e hist or y of t h e d e v el o p m e nt of Q D T a n d m ulti c h a n n el
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2.6. Quantum defect theory

QDT can be found in [104–107]. Applications of this method to the atom-ion
system can be found in [46, 56, 72, 102, 108–110] and the references therein.

In this section, the basic features of QDT are highlighted following [72]
where a hybrid trapped atom-ion system was investigated theoretically for the
first time. Consider a single atom and a single ion trapped in a harmonic
potential whose relative motion part is given by

Vt = 1
2 µω

2 r2 (2.50)

where ω is the trapping frequency. Including the trap potential (2.50) in the
radial SE (2.26) gives[

− d2

dr2 + 2µ
~2

(
~2 l(l + 1)

2µr2 + 1
2µω

2 r2 + V (r)− E
)]
uk,l(r) = 0 . (2.51)

The basic idea of QDT is to replace the true interaction V (r) by a reference
potential that produces the correct asymptotic behavior, in this case, the
polarization potential (2.46). At short distances when r → 0, the energy of
the trapping potential becomes negligible compared to that of the atom-ion
interaction. Also, the wavefunction becomes independent of the total energy
and the relative orbital angular momentum [111]. Therefore, the only dominant
energy is the polarization term −C4/r

4 and the resulting SE becomes[
d2

dr2 +
(
R∗

r2

)2 ]
ul(r) = 0 (2.52)

whose solution is
ul(r) = r sin

[
R∗

r
+ ϕ

]
(2.53)

for small r and ϕ is the short-range phase that depends on the internal structure
of the atom and the ion. The phase ϕ constitutes the quantum defect parameter
that define the phase of the oscillation. When k = 0, the solution (2.53) becomes
valid for all r. Using the asymptotic behavior for the zero-energy solution (2.36)
in equation (2.53), the relationship between the short-range phase and the
s-wave scattering length is found to be

asc = −R∗ cot ϕ . (2.54)

The quantum defect parameter ϕ can then be calculated if the value of the
scattering length is known.
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Chapter 3

Numerical Techniques
The description of the method for theoretically treating two ultracold neutral
atoms interacting via a central potential while trapped in a finite three-
dimensional (3D) optical lattice is given in [73]. The model was developed by
Sergey Grishkevich (first introduced in [112, 113]) and it allows for the full
numerical description of a pair of trapped atoms using realistic interatomic
interaction potentials, typically Born-Oppenheimer curves. The salient features
of the approach is reviewed in this chapter following closely the original work
in [73]. The motivation for doing this is to provide the underlying features of the
method before its extension to incorporate trap potentials that are off-centered
which is the topic of discussion in the next chapter. In addition, the method in
this chapter will be used in the discussion in Chapter 7. The description of the
programs used to perform the calculations is also given.

3.1 Hamiltonian

The Hamiltonian describing two interacting atoms i = 1, 2 with mass mi

trapped in a three-dimensional optical lattice is given by

Ĥ(r1, r2) = T̂1(r1) + T̂2(r2) + V̂(1)
trap(r1) + V̂(2)

trap(r2) + Ûint(r1, r2) (3.1)

where T̂i is the kinetic energy operator for atom i, V̂(i)
trap denotes the sinusoidal-

like trapping potential experienced by atom i, and Ûint is the atom-atom
interaction potential. The trapping potential is that of an OL (already discussed
in Chapter 2) given by

V̂(i)
trap(ri) =

∑
c=x,y,z

V (i)
c sin2(kcci) (3.2)

here, c refers to the Cartesian coordinates x, y, and z.

Solving the SE associated with the Hamiltonian (3.1) is complicated.
This is due to the dependence of Ûint on all six coordinates describing
the two-particle system, even if the interatomic interaction is central, i. e.,
Ûint(r1, r2) = Ûint(|r1 − r2|). Therefore, the interaction term expressed in
the absolute Cartesian coordinates leads to very laborious six-dimensional
integrals. Treating this problem within the center-of-mass (c.m.) and relative
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Chapter 3. Numerical Techniques

(rel.) motion coordinates turns out to be convenient. The apparent advantage of
formulating the problem within the c.m. and the rel. motion coordinates is that
it allows for the inclusion of realistic interaction potentials without having to
deal with six-dimensional integrals. This is due to the fact that the interaction
potential acts only on the relative motion coordinate. Therefore, the dimensions
of Ûint reduce from six to three. Furthermore, when spherical coordinates are
adopted like in the present case, the interaction potential becomes a function
of the radial coordinate only.

The rel.-motion and c.m. coordinates r and R, respectively, are defined as

r = r1 − r2 (3.3)
R = µ1 r1 + µ2 r2 (3.4)

with the dimensionless parameters µi = mi/(m1 +m2). However, the transition
to the c.m. and the rel. motion coordinates frame complicates the treatment of
the trapping potential equation (3.2) because the original separability in the
absolute Cartesian coordinates is lost. Complete separability in the c.m. and
relative-motion coordinates exists only within the harmonic approximation
for the trap potential for two identical particles in the same internal state.
In such a case, an analytical solution of the SE for two particles in isotropic
and anisotropic harmonic traps exists if the atom-atom interaction potential is
replaced by a δ-function pseudopotential that reproduces the two-body zero-
energy s-wave scattering asymptotically [93–97]. Noteworthy, even in a purely
harmonic trap potential, the center-of-mass and relative-motion coordinates do
not separate if the two particles are not identical or if they experience different
trapping potentials.

Performing a Taylor series expansion of the trapping potential (3.2) around
the origin in Cartesian c.m. and rel. coordinates allow for the splitting of the
trap potential according to

V̂(R, r) = V̂c.m.(R) + v̂rel.(r) + Ŵ(R, r) (3.5)

where V̂c.m. and v̂rel. are the separable parts of the trap potential containing
only the c.m. and the rel. motion coordinates, respectively. The coupling
terms between the c.m. and the rel. motions are contained in Ŵ(R, r). The
corresponding components of the trap potential (3.5) are given by [73]

V̂c.m.(R) = −1
2

2∑
s=1

∑
c=x,y,z

V s
c

n∑
k=1

Ccos
0kcsR

2k
c (3.6)

v̂rel.(r) = −1
2

2∑
s=1

∑
c=x,y,z

V s
c

n∑
t=1

Ccos
t0cs r

2t
c (3.7)
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3.1. Hamiltonian

Ŵ(R, r) = 1
2

2∑
s=1

∑
c=x,y,z

V s
c

[
(−1)ηs

n−1∑
j=0

n−1−j∑
i=0

Csin
ijcsR

2i+1
c r2j+1

c

−
n∑
t=1

n−t∑
k=1

Ccos
tkcsR

2k
c r2t

c

]
(3.8)

where ηs = s+ (−1)s−1. The coefficients Ccos
tkcs and Csin

ijcs are defined by

Ccos
tkcs = (−1)k+t

(2k)!(2t)! (2kc)2(k+t) µ2t
ηs ,

Csin
ijcs = (−1)i+j

(2i+ 1)!(2j + 1)! (2kc)2(i+j+1) µ2j+1
ηs . (3.9)

As discussed in Chapter 2, the OL can also be expressed in terms of
a cos2 potential. The expressions for the cos2 trap potentials in c.m. and
rel. coordinates are the same like the ones given in equations (3.6) - (3.8) but
with opposite sign and an extra equation for the constant part (see equations
(43) - (46) in Ref. [73]). The infinite Taylor expansion of the sin2 (cos2) is
restricted up to the (2n)th degree with the orders n = 1, 2, 3, ... , where n should
be odd (even) in the sin2 (cos2) cases so that the OL potential V̂trap → +∞ and
the wavefunctions decay exponentially as r →∞. The upper panel of Figure 3.1
shows the lattice form sin2 (red solid line). The second order expansion gives
the harmonic trap potential (blue line). The sixth order expansion gives the
sextic potential (green line). This sextic form of trap potential reproduces
a very good approximation for a single-well of the sin2 potential and thus of
the OL compared to the harmonic approximation. The 4th order expansion
(black dashed line) tends to −∞ for all x values going to ±∞. Therefore, the
expansion to this order results in unphysical negative-energy states. The lower
panel shows the alternative lattice form cos2 (red line) together with the 6th-
(green dashed line) and the 12th- order (blue solid line) expansions of the Taylor
series.

Another unique feature of the program is that it provides for the flexibility
on the form of periodic potential to use, i. e., one can use either a sin2 or a
cos2 or a combination of both depending on the trap geometry of interest.
For example, an atom-ion system composed of an ultracold neutral atom in a
double-well potential and an ion trapped in an harmonic potential at the center
of the atom cloud (like the one investigated in [55]) can be realized by Taylor
expanding a cos2 potential up to the 12th order to obtain a double-well potential
together with a sin2 potential expanded up to the 2nd order for a single-well
potential as shown in Figure 3.2. It is also possible to use the program to
simulate other forms of generic confinement potentials for example those with
Gaussian shapes.
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Figure 3.1: Top: The sin2(x) function (red solid line) together with the 2nd-
(blue line), 4th- (black dashed line) and 6th- order (green solid)
expansion of the Taylor series.
Bottom: The cos2(x) function (red) together with the 6th- (green
dashed line) and the 12th- order (blue solid line) expansion of the
Taylor series.

After performing the Taylor expansion of the trap potential around the
origin and the transformation of the Hamiltonian (3.1) into c.m.-rel. motions
frame, the resulting Hamiltonian takes the form

Ĥ(R, r) = Ĥc.m.(R) + ĥrel.(r) + Ŵ(R, r) (3.10)
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Figure 3.2: A double-well potential (red line) realized from the Taylor
expansion of a cos2-like potential up to the 12th order and an
harmonic potential (black line) obtained by Taylor expanding a
sin2-like lattice up to the second order along the x direction.

with
Ĥc.m.(R) = T̂kin(R) + V̂c.m.(R) , (3.11)

ĥrel.(r) = t̂kin(r) + v̂rel.(r) + Ûint(r) . (3.12)

Here, T̂kin and t̂kin denote the kinetic-energy operators of the c.m. and the
relative motion coordinates, respectively. The formulation of the problem
in the c.m. and rel.-motion coordinates and the Taylor expansion of the OL
potential means that all the separable terms of the OL are contained in the
c.m. and rel. Hamiltonian (3.11) and (3.12), respectively. The nonseparable
terms represented by the products of the c.m. and rel.-motion coordinates
are contained in the coupling term Ŵ. The main achievement of recasting
the problem to the c.m.-rel.-motion coordinates is that realistic interatomic
interaction potential can be used to describe the interaction Ûint.

3.2 Implementation of the method

The stationary solutions of the SE is numerically solved using the procedure
introduced by Grishkevich et al. [73]. Within this approach, the Hamiltonian
(3.1) is first transformed into the c.m., the rel., and the coupled parts as described
above. Resulting Hamiltonians in c.m.-rel. coordinates are transformed to
spherical coordinates. The c.m. and the rel. motion wavefunctions are then
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expressed in basis functions that are products of spherical harmonics for the
angular part and B splines for the radial part. In a configuration-interaction
(CI) procedure, the eigenfunctions of the c.m. and rel. motions are used to
determine the eigenfunctions of the full lattice Hamiltonian (3.10). These steps
are outlined in the following.

3.2.1 Orbital calculations

In this stage, called orbitals (in analogy to electronic-structure calculations
where single-particle wavefunctions are referred to as orbitals), the eigenstates
and eigenvalues of the c.m. and the rel. motion Hamiltonians (3.11) and
(3.12) are calculated independently by solving numerically the corresponding
generalized (due to the nonorthogonality of the B splines) eigenvalue equations

Ĥc.m.|ψj〉 = εc.m.j |ψj〉 (3.13)

and
ĥrel.|ϕi〉 = εrel.

i |ϕi〉 . (3.14)

The eigenfunctions of the c.m. and rel. parts are expressed in a basis of
spherical harmonics Y M

L (Y m
l ) and B splines Bβ (Bα) of order kc.m. (krel.), i. e.,

the corresponding eigenfunctions for the c.m. and rel. motions are

ψj(R,Θ,Φ) =
NR∑
β=1

NL∑
L=0

L∑
M=−L

Cj,βLM
Bβ(R)
R

Y M
L (Θ,Φ) (3.15)

and

ϕi(r, θ, φ) =
Nr∑
α=1

Nl∑
l=0

l∑
m=−l

Ci,αlm
Bα(r)
r

Y m
l (θ, φ) (3.16)

where NR (Nr) and NL (Nl) are the number of B splines and orbital quantum
numbers for c.m. (rel.) motions, respectively.

3.2.2 Exact diagonalization

The second step involves using the obtained wavefunctions ψ(R) and ϕ(r) from
the c.m. and the rel. motion Schrödinger equations (3.13) and (3.14) to form
configuration state functions

Φκ(R, r) = ϕiκ(r)ψjκ (R) . (3.17)
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3.2. Implementation of the method

The stationary SE
Ĥ |Ψi〉 = Ei |Ψi〉 , (3.18)

with the full Hamiltonian (3.10) is solved by expanding Ψ in terms of the
configurations (3.17)

Ψi(R, r) =
∑
κ

Ci,κ Φκ(R, r) . (3.19)

The configurations (3.19) in spherical c.m.-rel. coordinates are given by the
superposition

Ψ(r, θ, φ, R,Θ,Φ) =
∑

a

∑
b
Kab ϕ

a(r, θ, φ)ψb(R,Θ,Φ) (3.20)

where, the short-hand notations a ≡ α, l,m, b ≡ β, L,M , and Kab have been
introduced for compactness. Kab denote the expansion coefficients for different
configurations.

Inserting the expansion (3.20) into the SE (3.18), then multiplying from the
left with Φ∗κ, and integrating over r and R yields an ordinary matrix eigenvalue
equation

HCi = Ei Ci (3.21)

which is then diagonalized in the configuration basis from the products of the
eigensolutions of ĥrel. and Ĥc.m.. The corresponding matrices for the eigenvalue
problems (3.13), (3.14), and (3.21) are given in Appendix C.

B splines have the advantage of being compact in space leading to sparse
Hamiltonian matrices and the expansion of the trap in terms of spherical
harmonics leads to an analytical form of the matrix elements except those of
the numerically defined interatomic interaction.

3.2.3 Symmetry of the system

The Hamiltonian of two atoms confined in an orthorhombic sin2- or cos2-type
periodic potential is invariant under the symmetry operations of the D2h point
group. The symmetry operations of D2h are

S = {E, C2(x), C2(y), C2(z), σ(xy), σ(xz), σ(yz), i} (3.22)

where E is the identity, Cn(α) is the rotation about 2π/n along the α axis
(α = x, y, z), σ(αβ) is the reflection on the αβ plane (α 6= β = x, y, z), and i is
the inversion, i. e., point reflection at the origin. These symmetry elements are
shown in Figure 3.3.
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Figure 3.3: The symmetry elements of two particles trapped in a sin2-like
potential interacting via a central potential. The shown operations
together with the identity E form the D2h point group. Figure
taken from [73].

The symmetry group D2h has eight irreducible representations (IRs) Γ σ

with
σ ∈ {Ag, B1g, B2g, B3g, Au, B1u, B2u, B3u} . (3.23)

The character of these IRs are indicated in Table 3.1. Since the terms depending
on the radial coordinate are totally symmetric, the symmetry operations affect
only the angular part. Therefore, the behavior of the symmetry is determined by
the spherical harmonic functions only. Table 3.2 shows the corresponding D2h
group operations on the spherical coordinates together with the corresponding
transformations of the spherical harmonics.

The symmetry-adapted basis functions are constructed from the
superposition of the spherical harmonics with restrictions on l and m values. A
more exhaustive details on the symmetry of the problem is discussed in [73].
Using Tables 3.1 and 3.2, the eight sets of orthonormal linear combination
of the spherical harmonics are constructed by projecting the IRs Γσ onto the
spherical harmonics Y m

l . The resulting symmetry-adapted basis functions of
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3.2. Implementation of the method

Table 3.1: The character table of the symmetry group D2h

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)

Ag 1 1 1 1 1 1 1 1

B1g 1 1 -1 -1 1 1 -1 -1

B2g 1 -1 1 -1 1 -1 1 -1

B3g 1 -1 -1 1 1 -1 -1 1

Au 1 1 1 1 -1 -1 -1 -1

B1u 1 1 -1 -1 -1 -1 1 1

B2u 1 -1 1 -1 -1 1 -1 1

B3u 1 -1 -1 1 -1 1 1 -1

Table 3.2: Results of the D2h group operations on the spherical coordinates
together with the corresponding transformations of the spherical
harmonics.

Symmetry Spherical Y m
l

(θ′ + θ,φ′ + φ) Y m
l (θ′ + θ, φ′ + φ)

E (θ, φ) Y m
l (θ, φ)

C2(z) (θ, π + φ) (−1)m Y m
l (θ, φ)

C2(y) (π − θ, π − φ) (−1)l+m Y −ml (θ, φ)

C2(x) (π − θ, 2π − φ) (−1)l Y −ml (θ, φ)

i (π − θ, π + φ) (−1)l Y m
l (θ, φ)

σ(xy) (π − θ, φ) (−1)l+m Y m
l (θ, φ)

σ(xz) (θ, 2π − φ) (−1)m Y −ml (θ, φ)

σ(yz) (θ, π − φ) Y −ml (θ, φ)
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the relative motion are

ϕ
Ag
i =

Nr∑
α=1

Nl∑
l=0,{2}

l∑
m=0,{2}

c̃
Ag
i,αlm r

−1 Bα(r)Y +
lm (3.24)

ϕ
B1g
i =

Nr∑
α=1

Nl∑
l=2,{2}

l∑
m=2,{2}

c̃
B1g
i,αlm r

−1 Bα(r)Y +
lm (3.25)

ϕ
B2g
i =

Nr∑
α=1

Nl∑
l=2,{2}

l∑
m=1,{2}

c̃
B2g
i,αlm r

−1 Bα(r)Y −
lm (3.26)

ϕ
B3g
i =

Nr∑
α=1

Nl∑
l=2,{2}

l∑
m=1,{2}

c̃
B3g
i,αlm r

−1 Bα(r)Y +
lm (3.27)

ϕAui =
Nr∑
α=1

Nl∑
l=3,{2}

l∑
m=2,{2}

c̃Aui,αlm r
−1 Bα(r)Y −

lm (3.28)

ϕB1u
i =

Nr∑
α=1

Nl∑
l=1,{2}

l∑
m=0,{2}

c̃B1u
i,αlm r

−1 Bα(r)Y +
lm (3.29)

ϕB2u
i =

Nr∑
α=1

Nl∑
l=1,{2}

l∑
m=1,{2}

c̃B2u
i,αlm r

−1 Bα(r)Y +
lm (3.30)

ϕB3u
i =

Nr∑
α=1

Nl∑
l=1,{2}

l∑
m=1,{2}

c̃B3u
i,αlm r

−1 Bα(r)Y −
lm (3.31)

where the notations

Y +
l0 = Y −

l0 = Y 0
l (θ, φ) , (3.32)

Y ±
lm = Y m

l (θ, φ)± Y −ml (θ, φ) for m 6= 0 (3.33)

are introduced for compactness, the 2 in the curly brackets (e. g., in the
summation index l = i, {2}) means that the index is increasing in steps of two,
i. e., l = i, i+ 2, ... . The center-of-mass symmetry-adapted basis functions are
analogous.

The symmetry-adapted configurations are constructed from the product
of the c.m. and the rel. motion orbitals. The product Table 3.3 shows how
the c.m. and rel. functions can be selectively combined to form a configuration
of desired symmetry, for example, a configuration with B3g can be formed
by the product ϕ

B2g
iκ ψ

B1g
jκ . When considering identical bosons (fermions),

the rel. motion wavefunction has to be symmetric (antisymmetric) under
inversion i, i. e., all gerade (ungerade) basis functions σ ∈ {Ag, B1g, B2g, B3g}
(σ ∈ {Au, B1u, B2u, B3u}) are allowed for identical bosons (fermions).

The symmetry considerations reduce the computational efforts drastically.
The eight IRs can be treated independently of each other leading to a reduction
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Table 3.3: Product table of the D2h point group

⊗ Ag B1g B2g B3g Au B1u B2u B3u

Ag Ag B1g B2g B3g Au B1u B2u B3u

B1g B1g Ag B3g B2g B1u Au B3u B2u

B2g B2g B3g Ag B1g B2u B3u Au B1u

B3g B3g B2g B1g Ag B3u B2u B1u Au

Au Au B1u B2u B3u Ag B1g B2g B3g

B1u B1u Au B3u B2u B1g Ag B3g B2g

B2u B2u B3u Au B1u B2g B3g Ag B1g

B3u B3u B2u B1u Au B3g B2g B1g Ag

of the size of the matrices to be diagonalized by a factor of approximately 64.
The possibility of the particle indistinguishability that is accounted for by
the symmetry considerations also reduces the number of possible orbital
combinations by a factor of two in the case of indistinguishable atoms. For
identical bosons or fermions, often not all the symmetries have to be considered
leading to a further reduction of the numerical efforts.

Finally, a recent extension of the program allows for the restriction of
m quantum numbers in the spherical harmonics basis Y m

l instead of using the
full m space in the expansion of the wavefunctions in equations (3.15) and (3.16).
This implementation1 dramatically reduces the computation requirements in
objects with spherical symmetry and in systems of low dimensions, e.g., in quasi-
1D systems where the preferred direction is along the z axis. A system with
strong anisotropy along an axis requires a large number of spherical harmonics
to describe. However, if the anisotropy is along the z direction, then spherical
harmonics with m < l are sufficient. This way, m quantum number runs up
to a maximum value mmax and not l. When all spherical harmonics are used
(mmax = l), the basis size increases quadratically with l, however, with the
m restriction, the basis size increases only linearly with l with the slope defined
by mmax.

1 Extra information on the implementation of the m quantum numbers for the program is
given in Chapter 4 of the M.Sc thesis of Bruno Schulz [114] (thesis written in German).
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3.3 Description of the codes

The stationary Schrödinger equation with the full Hamiltonian (3.10) is solved
using the program TwoAtInOL of the AMO group at the Institute of Physics,
Humboldt-University of Berlin. The code TwoAtInOL has two main subcodes.
The orbital and the configuration codes. The orbital code solves the Schrödinger
equations for the separable parts of the Hamiltonian while the configuration
code solves the problem with the full Hamiltonian using configurations built
from the eigenvectors of the c.m. and rel. motions. The details of each of the
calculations is provided in the following.

3.3.1 Orbital calculations

The first stage called orbital calculations involves solving the Schrödinger
equations for the separable parts of the Hamiltonians (3.13) and (3.14). This
is performed using the code otagsd2hm. This code is run by supplying input
files for the basis, the interatomic interaction potential, and the trap potentials.
The basis file contains the information about the number and order of B splines
as well as their knot sequence, and the upper limits of angular momentum in
the spherical harmonic expansions in equations (3.15) and (3.16). The order
and type of knot sequence of the B splines determine the density of the basis
functions within a given range. The implementation of the code allow for
linear distributions, geometric distributions, or certain combination of both.
An example sample basis file is given in Appendix D.1.1.

The parameters contained in the trap-potential file include the polarizability
of the trapped atoms, the wavelength, and the intensity of the laser fields forming
the OL potential. In the original program, both ultracold atoms were trapped
in optical lattices formed by the same standing laser fields, however, the code
was modified to allow for the simulation of atomic traps with a more general
anharmonic potential (not just a sin2 or a cos2) and it is this version that
is used in the present case. The Taylor expansion coefficients appearing in
equations (3.6) - (3.8) are calculated for each particle. This way, it is possible
to realize e. g., OL traps for each particle with different polarizability, intensity
and wavelength. The general format and an example sample of the generic
trap input is given in Appendix D.1.2. The interaction potential is generally
known numerically but other potentials, e. g., a square-well potential can also
be used with the code provided the choice of the knot sequence for the B splines
are distributed such that the discontinuities of the square-well potential are
resolved by the basis function.

An example of orbital calculation for two identical noninteracting 7Li atoms
confined in isotropic harmonic trap potentials at a frequency of 2 π× 22 kHz in
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x, y, and z directions is given in Appendix D.1.3. The harmonic trap potential
is obtained by Taylor expanding the sin2 potential (3.2) up to the second order.
When interaction is included, the B splines for the relative motion wavefunction
can be described by a combination of linear and geometric knot sequence. A
linear knot sequence can be used to represent the highly oscillatory interaction
range region and an ascending geometric progression sequence for the remaining
region.

3.3.2 Configuration interaction calculations

The second step entails using the eigenvectors ψ and ϕ from the orbital
calculation to build the configurations (3.17). This is done using the
configuration interaction (CI) code citaold2hm. Here, the active orbitals for
the center-of-mass and relative-motions required to form particular symmetry-
adapted configuration according to the product Table 3.3 of the D2h is specified.
A sample of configuration input file for the orbital calculation example given
in Appendix D.1.3 is found in Appendix D.2.1. In this example, the Ag
symmetry-adapted configuration is formed from the product ϕAgiκ ψ

Ag
jκ . In this

particular example, the coupling term Ŵ is zero, hence, sufficiently converged
CI calculations were found by using only 10 orbitals each for the rel. and
center-of-mass (see Appendix D.2.2). However, if a coupling between the
center-of-mass and relative motions is present, the convergence depends on the
strength of the coupling.

3.4 Convergence study

In order to explore the numerical stability of the code in the case of different
trap frequencies which is typical of atom-ion experiments where the ion is tightly
trapped compared to the neutral atom, a case of two noninteracting particles in
an isotropic harmonic confinement is considered. For this particular system, the
eigenvalues are the usual 3D-harmonic oscillator states in spherical coordinates
given by E = (k + 3/2)~ω, where k ≡ 2n+ l with the degeneracy of eigenstate
k being (k + 2)(k + 4)/8. For the Ag symmetry considered here, k takes only
even values k = 0, 2, 4, ... . The trap potential in c.m.-rel. coordinates is given
by

Vho = ωrel.r
2 + Ωc.m.R

2 +WRrRr (3.34)
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where the coefficients

Ωc.m. =
√
m1

2 ω2
1 + m2

2 ω2
2 , (3.35)

ωrel. =
√
m2 ω2

1 +m1 ω2
2

m1 +m2
, (3.36)

WRr = µ(ω2
1 − ω2

2) . (3.37)

Ωc.m. and ωrel. denote the c.m. and rel. frequencies, respectively, and WRr is
the coupling coefficient. In the case when the two frequencies ω1 = ω2, the
coupling is zero, otherwise, the coupling is non-zero whenever ω1 6= ω2. This is
true for physical cases of distinguishable particles or indistinguishable particles
in different quantum states.

The present convergence study is performed in relation to the difference
between the harmonic trap frequencies of the two particles. The exact ground
state energy for each frequency ratio ω2/ω1 is compared with the results
obtained by varying the number of configurations in the CI calculation shown
in Tables 3.4 - 3.9. Since the frequencies are different, a coupling between
the c.m. and the rel. motions exists. In order to account for this coupling, all
symmetries have to be considered while forming the CI expansion. In each
calculation, an equal number of active c.m. and rel. orbitals have been used to
build the configurations as indicated in the first columns of the tables. The
adopted notation is understood as follows. For a given number N of active
orbitals, the configurations are built from N/2 relative and N/2 center-of-
mass orbitals. In all the cases considered, B splines of order eight distributed
in a linear knot sequence covering the entire box range have been used. The
convergence for the lowest-lying 10 energy levels of the orbital calculations using
the specified basis sets for each ratio is achieved within at least 10 significant
digits. Furthermore, the ground state energies of the orbitals are converged up
to 14 decimal places.

In general, the numerical demands increase with an increase in the ratio
ω2/ω1 between the two traps. This is because the strength of the coupled
Hamiltonian matrices become much larger with the increase in the c.m.-
rel. coupling due to the difference in the two frequencies. Table 3.5 presents the
ground-state energy of two particles when their trapping frequencies differ by a
factor of two. In this case, the coupling is about 0.154 ~ωrel. Using 80 rel. and
80 c.m. orbitals to build the CI configurations, the ground-state energy deviates
from the exact value by about 4.80474× 10−4 %. Increasing the CI basis size by
including more c.m. and rel. orbitals leads to an improved convergence as can
be seen when 480 rel. and 480 c.m. orbitals are used. However, this large basis
increases the computation demands drastically, the CI vector length for this case
is in the order of 28800 and the required memory to store the matrix is 4.7GB.
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Table 3.4: Total energy for the ground state of two identical particles in an
isotropic trapping potentials with ω2 = 1.4ω1, computed with
different numbers of configurations. A box size of

√
3× 10000 a0

was used with 116 and 112 B splines for rel. and c.m. orbitals,
respectively. The spherical harmonics are expanded up to l = m =
8.

No. of active orbitals Enumerical (~ωrel.) % error
(rel. & c.m. )

160 2.95918177291824 4.80474× 10−8

320 2.95918177149732 3.00744× 10−11

480 2.95918177149666 7.77371× 10−12

640 2.95918177149646 1.02049× 10−12

Exact 2.95918177149643

Table 3.5: Same as Table 3.4 with ω2 = 2ω1. Box size =
√

3 × 10000 a0,
l = m = 8, number of B splines: rel. = 178 c.m. = 156.

No. of active orbitals Enumerical (~ωrel.) % error
(rel. & c.m. )

160 2.84605544840627 1.95157× 10−4

320 2.84604995245749 2.04866× 10−6

480 2.84604991284280 6.56744× 10−7

640 2.84604989454073 1.36747× 10−8

800 2.84604989416138 3.45731× 10−10

960 2.84604989415934 2.74063× 10−10

Exact 2.84604989415154

The computation time is about 23 hours using one processor of a computer
with 256GB of memory. This duration initially appears to be a small amount of
time, but when one has to calculate an energy spectrum that typically consists
of a number of individual calculations (typically about 100) the total duration
and storage can be enormous. Table 3.6 shows a calculation when the two
frequencies still differ by a factor of two but with a larger basis set. The orbital
calculations are performed using spherical harmonics up to l = m = 20. Again
this leads to an improved accuracy especially for higher-lying states, the first
100 states are converged to at least 13 significant digits. However, the energy
of the first few trap states for l = m = 8 and l = m = 20 are the same. The
difference in the numerical values between the CI energy of the ground state
for the two calculations is however not huge for the same basis specification.
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Table 3.6: Same as Table 3.4 with ω2 = 2ω1. Box size =
√

3 × 10000 a0,
l = m = 20, number of B splines: rel. = 142 c.m. = 134.

No. of active orbitals Enumerical (~ωrel.) % error
(rel. & c.m. )

160 2.84605544840627 1.95157× 10−4

320 2.84604995245689 2.04864× 10−6

480 2.84604991619802 7.74634× 10−7

640 2.84604989458938 1.53841× 10−8

800 2.84604989430111 5.25534× 10−9

960 2.84604989415666 1.79895× 10−10

Exact 2.84604989415154

Table 3.7: Same as Table 3.4 with ω2 = 5ω1. Box size =
√

3 × 8000 a0,
l = m = 10, number of B splines: rel. = 139 c.m. = 134.

No. of active orbitals Enumerical (~ωrel.) % error
(rel. & c.m. )

160 2.50819578144978 4.82539× 10−1

320 2.49879510314456 1.05932× 10−1

480 2.49846125612169 9.25574× 10−2

640 2.49662677548041 1.90651× 10−2

800 2.49624053760155 3.59171× 10−3

960 2.49623039329331 3.18532× 10−3

Exact 2.49615088301353

Table 3.8: Same as Table 3.4 with ω2 = 10ω1. Box size =
√

3 × 10000 a0,
l = m = 10, number of B splines: rel. = 178 c.m. = 156.

No. of active orbitals Enumerical (~ωrel.) % error
(rel. & c.m. )

320 2.35336239296042 1.35625
480 2.35273077948814 1.32905
640 2.33716592002395 6.58694× 10−1

800 2.33596893148222 6.07141× 10−1

960 2.32910757073461 3.11631× 10−1

Exact 2.32187189760996
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Table 3.9: Same as Table 3.4 with ω2 = 100ω1. Box size =
√

3 × 2000 a0,
l = m = 10, number of B splines: rel. = 164 c.m. = 109.

No. of active orbitals Enumerical (~ωrel.) % error
(rel. & c.m. )

320 2.28666527996175 6.73250
480 2.28029321190800 6.43508
640 2.25502301914193 5.25556
800 2.23364633916061 4.25778
960 2.22896130272769 4.03911

Exact 2.14242642835172

For a large frequency difference, i.e., ω2 = 100ω1, the c.m. and rel. become
strongly coupled with a coupling of about 0.858 ~ωrel. Increasing the basis
size does not lead to a drastic improvement in the accuracy. An analysis of
the wavefunctions in the c.m. and rel. coordinates can be used to visualize the
distribution of the wavefunction along the c.m. and rel. axes. Figure 3.4 shows
the contour plot of the wavefunction for the frequency ratio ω2/ω1 equal to 1,
2, 5, and 10. As the ratio between the frequencies of the two traps increases,
the wavefunction turns around the center and becomes more localized. This
is due to the increase in the c.m. and rel. frequencies making the trap walls
tighter. A larger ratio of ω2/ω1 = 1000 has a coupling of about 0.878 ~ωrel. and
the CI calculation would demand more computer memory and computation
time. In the present case, it was not possible to obtain improved accuracy with
these extreme frequency differences between the two traps. Finally, it should be
remarked that an orbital calculation is generally not very demanding compared
to a CI calculation if coupling has to be accounted for. The ability to restrict
the m quantum number in the spherical-harmonic expansion allows for the
study of anisotropic cases provided the ratio between the two traps is not large.
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Figure 3.4: Contour plots of the wavefunction in center-of-mass and relative-
motion coordinates for two 7Li atoms in a harmonic trap potential
when the ratio ω2/ω1 is 1 (top left), 2 (top right), 5 (bottom left),
and 10 (bottom right).
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Chapter 4

Description of Two Particles in
Spatially Displaced Traps
In this chapter, a theoretical method for describing two particles that are
confined in spatially separated traps while interacting via realistic central
(isotropic) potential is presented. The approach outlined here is an extension of
the previous model detailed in [73] which has been introduced in Chapter 3. The
implementation to incorporate the spatial displacement of the trap potentials
is an essential methodological component of the present study. The extension
makes it possible to vary the position of the minimum of one of the traps with
respect to each other. The remainder of the chapter is organized as follows.
In section 4.1, the two-particle Hamiltonian is introduced. In particular, the
description of the trapping potential within the center-of-mass and relative-
motion coordinates together with the Taylor expansion of the trap potential
is presented in section 4.1.1, then the transformation of the final form of the
trap potentials to spherical coordinates is given in section 4.1.2. The matrix
elements of the trap potentials to be calculated are presented in section 4.1.3.
The implementation of symmetry into the method is described in section 4.2
and a discussion on the influence of the trap displacement term on the center-of-
mass and relative-motion trap potentials is given in section 4.3. In section 4.4,
the check of the implementation of the method is given using an example of
two noninteracting particles in separated harmonic traps. The chapter ends
with a brief summary in section 4.5.

4.1 Hamiltonian

The Hamiltonian describing two interacting particles confined in separated trap
potentials that are located at positions d1 and d2, respectively, is given by

Ĥ(r1, r2) = T̂1(r1)+T̂2(r2)+V̂trap,1(r1−d1)+V̂trap,2(r2−d2)+Û(|r1−r2|) (4.1)

where T̂s and V̂trap,s with s = 1, 2 are the respective kinetic energy operators
and trapping potentials for the two particles. The last term Û(|r1 − r2|) is the
interparticle interaction potential. Note that the Hamiltonian equation (4.1)
reduces to that given in (3.1) when d1 = d2 = 0.
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Figure 4.1: Schematic representation of two one-dimensional harmonic-trap
potentials for an atom and an ion located at points dz1 and dz2,
respectively, and the centers of the traps are separated by a
distance d along the z direction.

The trapping potential for two spatially separated1 traps can be modeled
from a periodic sin2-like potential of the form

V̂sin
trap,s (rs) =

2∑
s= 1

∑
c=x,y,z

V (s)
c sin2{kc [cs + (−1)s−1dc s]} (4.2)

where kc = 2π/λc is the wave vector associated with the wavelength λc of the
laser creating the potential along coordinate c = x, y, and z. V (s)

c = I(s)
c αs is

the potential depth with I(s)
c being the laser intensity in c direction and αs is the

polarizability of particle s. The traps are located at positions dc1 and dc2 along
the x, y, and z spatial coordinates with the separation vector between them
being defined as d = dc2 − dc1. A schematic illustration of two separated
(harmonic) traps along the z direction is shown in Figure 4.1. Here, the
following convention is adopted. Whenever the distance between the two traps
is zero (d = 0), then both traps will be located at the origin, otherwise, the
first trap, V̂trap,1, will always be on the left of the second trap, V̂trap,2. This
convention (enforced by the condition (−1)s−1) ensures that both traps are
actually located at different points along c for all d 6= 0 and not just displaced
to the same point from the origin. It is important to remind that when both
traps are located at the origin, then the description of the problem follows the
discussions given in the preceding chapter.

1 Separation here refers to the distance between the centers of the trap minima. For
example, in Figure 4.1, the separation distance is the length d.
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Equation (4.2) is essentially an OL potential already discussed in the
previous chapters. In order to use the theoretical model in [73] to describe two
particles whose Hamiltonian is given by equation (4.1) with the trap potential
(4.2), similar steps are followed, i. e., the Hamiltonian is transformed from the
absolute Cartesian coordinates to the center-of-mass and relative-motion frame.
The trap potential equation (4.2) is Taylor expanded around the minima of
the trap centers unlike in the original model where the expansion is performed
around the origin where both traps are located. The resulting Hamiltonian will
then have parts that depend on the center-of-mass, relative coordinates, and
a coupled part. The Hamiltonians in the center-of-mass and relative-motion
coordinates are then transformed to spherical coordinates, then the Schrödinger
equations for the c.m. and rel. motion Hamiltonians are independently solved
and their solutions used to form configurations for solving the SE with the
full Hamiltonian that include the coupling part. In the following, the Taylor
expansion of the trap potential (4.2) in c.m. and rel.-motion coordinates is
discussed.

4.1.1 Taylor expansion of trap potential

Using equations (3.3) and (3.4), the trap potential (4.2) in c.m.-rel.-motion
coordinates frame becomes

V̂sin(R, r) =
2∑

s= 1

∑
c=x,y,z

V s
c sin2{kc[Rc + (−1)s(µηsrc) + (−1)s−1dc s]} (4.3)

where ηs = s+ (−1)s−1. Clearly, the new coordinates complicate the expression
for the trap potential since the original separability in absolute Cartesian
coordinates is lost. This is the price to pay in order to be able to describe the
interaction between the two particles using realistic interatomic interaction
potentials. It turns out that some separation within the c.m.-rel. frame is
achievable by performing a Taylor series expansion of equation (4.3) around
the minimum of the trap centers i. e., at Rc = rc = (−1)sdc s.

Restricting the Taylor expansion to the order 2n with n = 1, 2, 3, ..., and
using the relation

(r + d)2n =
2n∑
n′=0

(
2n
n′

)
rn
′
d 2n−n′

=
n∑

n′=1

(2n)! d (2n−2n′+1)

(2n′ − 1)! (2n− 2n′ + 1)! r
2n′−1

+
n∑

n′=1

(2n)! d 2n−2n′

(2n′)! (2n− 2n′)! r
2n′ + d 2n (4.4)
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from the binomial theorem, the terms of the Taylor approximated trap
potential (4.3) can be separated into parts containing the constant term
from the separation distance, the center-of-mass, the relative-motion, and
the nonseparable terms according to

V̂trap (R, r) = v̂sin
0 + V̂sin

c.m.(R) + V̂sin
rel.(r) + Ŵsin(R, r) . (4.5)

Specifically, the terms in equation (4.5) are given by

v̂sin
0 = −1

2

2∑
s= 1

∑
c=x,y,z

V s
c

n∑
n′= 1

(−1)n′ (2kc s)2n′(dc s)2n′

(2n′)! , (4.6)

V̂sin
c.m.(R) = −1

2

2∑
s= 1

∑
c=x,y,z

V s
c

n∑
k= 1

[
Ceven

0kcsR
2k
c + (−1)s−1Codd

0kcsR
2k−1
c

]
, (4.7)

v̂sin
rel.(r) = −1

2

2∑
s= 1

∑
c=x,y,z

V s
c

n∑
t= 1

[
Ceven
t0cs r

2t
c − Codd

t0csr
2t−1
c

]
, (4.8)

and

Ŵsin(R, r) = 1
2

2∑
s= 1

∑
c=x,y,z

V s
c

(−1)s−1
n−1∑
j= 0

n−1−j∑
i= 0

CijcsR
2i+1
c r2j+1

c

−
n∑

t= 1

n−t∑
k= 1

CtkcsR
2k
c r2t

c +
n−1∑
k= 1

n−1−k∑
j= 0

CkjcsR
2k
c r2j+1

c

+ (−1)s
n−1∑
t= 1

n−1−t∑
i= 0

CitcsR
2i+1
c r2t

c

 . (4.9)

Equation (4.6) is the constant part of the trap potential arising from the
separation distance term. The center-of-mass and relative motion parts of
the trap potential are given by equation (4.7) and (4.8), respectively, and
equation (4.9) is the coupling part. Other than the constant term v̂sin

0 , the
set of equations (4.7) - (4.9) take a similar structure like those given in
equations (3.6) - (3.8). The components of the trap potential after the Taylor
expansion in the present case compared with those in the original formulation
are the extra terms with the odd powers in the c.m. and rel. motion equations
(4.7) and (4.8) which are absent when the traps are centered at the origin. The
first two terms inside the square bracket (with the coefficients Cijcs and Ctkcs)
in the expression for the coupling term (4.9) are similar to those in the coupling
equation (3.8) without the trap separation except that the coefficients have been
modified by the separation distance term (see equations (4.10) - (4.17) below).
In these two terms, the products of the center-of-mass and the relative-motion
have odd-odd (R2i+1

c r2j+1
c ) and even-even (R2k

c r2t
c ) powers only. After the

inclusion of the trap separation, two extra sums arise with products of even
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c.m. and odd rel. (coefficients given by Ckjcs) and even rel. and odd c.m. orders
(coefficients given by Citcs). The coefficients of the Taylor expansion appearing
in equations (4.7) - (4.9) are defined by

Ceven
0kcs =

n∑
n′= 1

(−1)n′ (2kc s)
2n′(dc s)2(n′−k)

(2k)!(2n′ − 2k)! , (4.10)

Codd
0kcs =

n∑
n′= 1

(−1)n′ 2
2n′+1(kc s)2n′(dc s)2(n′−k)+1

(2k)!(2n′ − 2k + 1)! k, (4.11)

Ceven
t0cs =

n∑
n′= 1

(−1)n′ (2kc s)
2n′(dc s)2(n′−t)

(2t)!(2n′ − 2t)! (µηs)2t, (4.12)

Codd
t0cs =

n∑
n′= 1

(−1)n′ 2
2n′+1(kc s)2n′(dc s)2(n′−t)+1

(2t)!(2n′ − 2t+ 1)! t (µηs)2t−1, (4.13)

Cijcs =
n∑

n′=1
(−1)n′ (2kc s)2n′(dc s)2(n′−i−j−1)

(2i+ 1)!(2j + 1)!(2(n′ − i− j − 1))!(µηs)
2j+1, (4.14)

Ctkcs =
n∑

n′= 1
(−1)n′ (2kc s)2n′ (dc s)2(n′−t−k)

(2t)! (2k)! (2(n′ − t− k))! (µηs)2t, (4.15)

Ckjcs =
n∑

n′= 1
(−1)n′ (2kc s)2n′ (dc s)2(n′−k−j)−1

(2k)! (2j + 1)! (2(n′ − k − j)− 1)! (µηs)2j+1, (4.16)

Citcs =
n∑

n′= 1
(−1)n′ (2kc s)2n′ (dc s)2(n′−i−t)−1

(2t)! (2i+ 1)! (2(n′ − i− t)− 1))! (µηs)2t . (4.17)

In the numerical implementation, the coefficients (4.10) - (4.17) are calculated
for each order of the expansion2 in the same way described in section 3.2.1.

Similarly, the expression for the alternative cos2 lattice for the trap potential
is given by

V̂cos
trap,s (rs) =

2∑
s= 1

∑
c=x,y,z

V (s)
c sin2{kc [cs + (−1)s−1dc s + π

2 ]} . (4.18)

Transforming equation (4.18) to c.m.-rel.-motion coordinates leads to a splitting
into parts containing a constant, center-of-mass, relative motion, and coupled

2 A sample of input file with the expansion coefficients is given in Appendix D.3
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terms similar to equations (4.6) - (4.9) but with opposite signs,

v̂cos
0 = 1

2

2∑
s= 1

∑
c=x,y,z

V s
c

[
2 +

n∑
n′= 1

(−1)n′ (2kc s)2n′(dc s)2n′

(2n′)!

]
, (4.19)

V̂cos
c.m.(R) = 1

2

2∑
s= 1

∑
c=x,y,z

V s
c

n∑
k= 1

[
Ceven

0kcsR
2k
c + (−1)s−1 Codd

0kcsR
2k−1
c

]
, (4.20)

v̂cos
rel.(r) = 1

2

2∑
s= 1

∑
c=x,y,z

V s
c

n∑
t= 1

[
Ceven
t0cs r

2t
c − Codd

t0csr
2t−1
c

]
, (4.21)

Ŵcos(R, r) = −1
2

2∑
s= 1

∑
c=x,y,z

V s
c

(−1)s−1
n−1∑
j= 0

n−1−j∑
i= 0

CijcsR
2i+1
c r2j+1

c

−
n∑

t= 1

n−t∑
k= 1

CtkcsR
2k
c r2t

c +
n−1∑
k= 1

n−1−k∑
j= 0

CkjcsR
2k
c r2j+1

c

+ (−1)s
n−1∑
t= 1

n−1−t∑
i= 0

CitcsR
2i+1
c r2t

c

 . (4.22)

The components of the sin2 lattice potential (4.2) given by the set of
equations (4.6) - (4.9) and those of the cos2 lattice of equation (4.18) given by
equations (4.19) - (4.22) allow for the realization of two traps located at any
point along the x, y, and z directions. This modification of the trap potential
to include the spatial displacement is an essential achievement of this thesis.
The Hamiltonian takes the same form given in equations (3.10) - (3.12), i. e.,

Ĥ(R, r) = Ĥc.m.(R) + ĥrel.(r) + Ŵ(R, r) (4.23)

where
Ĥc.m.(R) = T̂kin(R) + V̂c.m.(R) , (4.24)

ĥrel.(r) = t̂kin(r) + v̂rel.(r) + Ûint(r) . (4.25)

and the components of the trap potentials V̂c.m., v̂rel.(r), and Ŵ(R, r) are given
by equations, (4.7), (4.8), and (4.9), respectively for sin2-like potentials. For
cos2-like potentials, the corresponding trap components are given by equations
(4.20) - (4.22) At this point, the theoretical treatment follows the same procedure
described in sections 3.2.1 and 3.2.2 in Chapter 3. In the following section, the
transformation of the trap potentials to spherical coordinates is described.
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4.1. Hamiltonian

4.1.2 Trap potentials in spherical coordinates

After the shift to the center-of-mass and relative-motion coordinates,
the resulting Hamiltonian is transformed to spherical coordinates. The
transformation equations from and to Cartesian coordinates are

x = r sin θ cosϕ,
y = r sin θ sinϕ,
z = r cos θ,

(4.26)

and
r =

√
x2 + y2 + z2, 0 ≤ r,

θ = cos−1
(

z√
x2 + y2 + z2

)
, 0 ≤ θ ≤ π ,

φ = tan−1
(
y

x

)
, 0 ≤ ϕ ≤ π.

(4.27)

The trapping potentials in spherical c.m.-rel.-motion coordinates are
modified by the displacement term and take the form

V̂(R,Θ,Φ) = −1
2

2∑
s=1

∑
c=x,y,z

V s
c

n∑
k=1

{
Ceven

0kcsR
2k

2k∑
L=0,{2}

L∑
M=−L,{2}

Yc
LMkY

M
L (Θ,Φ)

+ Codd
0kcsR

2k−1
2k−1∑

L=1,{2}

[
Ỹc
L0kY

0
L (Θ,Φ) +

L∑
M=−L,{2}

Ỹc
LMkY

M
L (Θ,Φ)

]}

(4.28)

and

v̂(r, θ, φ) = −1
2

2∑
s=1

∑
c=x,y,z

V s
c

n∑
t=1

{
Ceven
t0cs r

2t
2t∑

l=0,{2}

l∑
m=−l,{2}

Yc
lmtY

m
l (θ, φ)

+ Codd
t0cs r

2t−1
2t−1∑
l=1,{2}

[
Ỹc
l0tY

0
l (θ, φ) +

l∑
m=−l,{2}

Ỹc
lmtY

m
l (θ, φ)

]}

(4.29)
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while the coupling term of the trap potential is given by

Ŵ(R,Θ,Φ, r, θ, φ) =

1
2

2∑
s=1

∑
c=x,y,z

V s
c

(−1)s−1
n−1∑
j=0

n−1−j∑
i=0

CijcsR
2i+1r2j+1

×
2i+1∑

L=1,{2}

[
Ỹc
L0iY

0
L (Θ,Φ) +

L∑
M=−L,{2}

Ỹc
LMiY

M
L (Θ,Φ)

]

×
2j+1∑
l=1,{2}

[
Ỹc
l0jY

0
l (θ, φ) +

l∑
m=−l,{2}

Ỹc
lmjY

m
l (θ, φ)

]
−


n∑
t=1

n−t∑
k=1

CtkcsR
2kr2t

2t∑
l=0,{2}

l∑
m=−l,{2}

Yc
lmtY

m
l (θ, φ)

×
2k∑

L=0,{2}

L∑
M=−L,{2}

Yc
LMkY

M
L (Θ,Φ)


+


n−1∑
k=1

n−1−k∑
j=0

CkjcsR
2kr2j+1

2k∑
L=0,{2}

L∑
M=−L,{2}

Yc
LMkY

M
L (Θ,Φ)

×
2j+1∑

L=1,{2}

[
Ỹc
L0jY

0
L (Θ,Φ) +

L∑
M=−L,{2}

Ỹc
LMjY

M
L (Θ,Φ)

]
+


n−1∑
t=1

n−1−t∑
i=0

CitcsR
2i+1r2t

2t∑
l=0,{2}

l∑
m=−l,{2}

Yc
lmtY

m
l (θ, φ)

×
[
Ỹc
L0iY

0
L (Θ,Φ) +

L∑
M=−L,{2}

Ỹc
LMiY

M
L (Θ,Φ)

]
 . (4.30)

Here, the sums, e. g.,
2t∑

l=0,{2}
imply that the index runs in steps of 2, i. e.,

2t∑
l=0,2,4,...

.

The auxiliary coefficients Yc
αβγ and Ỹc

αβγ arise from the expansion of the OL
potential in spherical harmonics. They are calculated in the same way like
in the original work in [73] and are given in Appendix B. For all m 6= 0,
Ỹx
l0j = Ỹy

l0j = 0 and Ỹz
lmj = 0 in equation (4.30). A similar argument is implied

in equations (4.28) and (4.29). After the transformation to c.m.-rel. coordinates
and the Taylor expansion of the trap potentials around the trap minima, the
full Hamiltonian in spherical c.m. and rel.-motion coordinates take a similar
structure like the original model and are written as

Ĥ(r, θ, φ, R,Θ,Φ) = ĥrel.(r, θ, φ) + Ĥc.m.(R,Θ,Φ) + Ŵ(r, θ, φ, R,Θ,Φ) (4.31)
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4.1. Hamiltonian

where the center-of-mass motion Hamiltonian Ĥc.m. is given by

Ĥc.m.(R,Θ,Φ) = − 1
2M

[
∂2

∂R2 + 2
R

∂

∂R
− Î2

c.m.
R2

]
+ V̂c.m.(R,Θ,Φ) (4.32)

and the relative-motion Hamiltonian given by

ĥrel.(r, θ, φ) = − 1
2µ

[
∂2

∂r2 + 2
r

∂

∂r
− Î2

rel.
r2

]
+ v̂rel.(r, θ, φ) + Ûint(r) . (4.33)

The set of equations (4.28) - (4.30) and their corresponding implementation
in the original model in Ref. [73] is a central result of the present thesis. The
matrix elements to be calculated are described in the following.

4.1.3 Matrix elements

As already pointed out, the new formulation to include the spatial displacement
of the traps affects only the trapping potential component of the original model.
The matrix elements to be calculated except those of the trap potentials are
exactly the same like those without trap separation and are given in Appendix C.
Here, the expressions for the matrix elements of the trap potentials after the
transformation to spherical coordinates are explicitly given.

The matrix elements of the trap potentials (4.28) and (4.29) are

[vrel.(r, θ, φ)]a a′ = −1
2

2∑
s=1

∑
c={x,y,z}

V s
c

n∑
t=1


[
Ceven
t0cs B2t

αα′

2t∑
lt=0,{2}

lt∑
mt=−lt,{2}

×

Yc
ltmttA

m′

ltll′

(
lt l l′

mt m −m′
)(

lt l l′

0 0 0

)]

+
[
Codd
t0cs B2t−1

αα′

2t−1∑
lt=1,{2}

{
Ỹc
lt0t

(
lt l l′

0 m m′

)
+

lt∑
mj=−lt,{2}

Ỹc
ltmtt

(
lt l l′

mt m −m′
)}

Am′

ltll′

(
lt l l′

0 0 0

)]
(4.34)
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and

[Vc.m.(R,Θ,Φ)]b b′ = −1
2

2∑
s=1

∑
c={x,y,z}

V s
c

n∑
k=1


[
Ceven

0kcs B2k
β β′

2k∑
Lk=0,{2}

Lk∑
Mk=−Lk,{2}

×

Yc
LkMkk

AM ′

LkLL′

(
Lk L L′

Mk M −M ′

)(
Lk L L′

0 0 0

)]

+
[
Codd

0kcs B2k−1
β β′

2k−1∑
Lk=1,{2}

{
Ỹc
Lk0k

(
Lk L L′

0 M M ′

)
+

Lk∑
Mk=−Lk,{2}

Ỹc
LkMkk

(
Lk L L′

Mk M −M ′

)}
AM ′

LkLL′

(
Lk L L′

0 0 0

)] ,
(4.35)

while the matrix elements that couple the center-of-mass and relative motions
are

Ŵκ,κ′ = 1
2

2∑
s=1

∑
c=x,y,z

V s
c

[
Wo o +We e +We o +Wo e

]
. (4.36)

The terms in the sum in equation (4.36) are each given by

Wo o = (−1)s−1
n−1∑
j=0

Cijcs

Nr−1∑
α=2

Nl∑
l=0

l∑
m=−l

c̃ rel.
pκ,a

Nr−1∑
α′=2

Nl∑
l′=0

l∑
m′=−l

c̃ rel.
pκ′ ,a′B

2j+1
αα′

×
2j+1∑

lj=1,{2}


Ỹc

lj0j

 lj l l′

0 m m′

+
lj∑

mj=−lj ,{2}
Ỹc
ljmjj

 lj l l′

mj m −m′



× Am′

lj ll′

 lj l l′

0 0 0


n−1−j∑
i=0

NR−1∑
β=2

NL∑
L=0

L∑
M=−L

C̃c.m.
qκ,b

NR−1∑
β′=2

NL∑
L′=0

L′∑
M ′=−L′

B2i+1
β β′

×
2i+1∑

Li=1,{2}


Ỹc

Li0i

 Li L L′

0 M M ′

+
Li∑

Mi=−Li,{2}
Ỹc
LiMii

 Li L L′

Mi M −M ′



× AM ′

LiLL′

 Li L L′

0 0 0

 , (4.37)
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We e =
n∑
t=1

Ctkcs

Nr−1∑
α=2

Nl∑
l=0

l∑
m=−l

c̃ rel.
pκ,a

Nr−1∑
α′=2

Nl∑
l′=0

l∑
m′=−l

c̃ rel.
pκ′ ,a′B

2t
αα′

×
2t∑

lt=0,{2}

lt∑
mt=−lt,{2}

Yc
ltmttA

m′

ltll′

 lt l l′

mt m −m′

 lt l l′

0 0 0


×

n−t∑
k=1

NR−1∑
β=2

NL∑
L=0

L∑
M=−L

C̃ c.m.
qκ,b

NR−1∑
β′=2

NL∑
L′=0

L′∑
M ′=−L′

C̃ c.m.
qκ′ ,b′B

2k
β β′

×
2k∑

Lk=0,{2}

Lk∑
Mk=−Lk,{2}

Yc
LkMkk

AM ′

LkLL′

 Lk L L′

Mk M −M ′

 Lk L L′

0 0 0

,
(4.38)

We o =
n−1∑
k=1

Ckjcs

NR−1∑
β=2

NL∑
L=0

L∑
M=−L

C̃ c.m.
qκ,b

NR−1∑
β′=2

NL∑
L′=0

L∑
M ′=−L

C̃ c.m.
qκ′ ,b′B

2k
β β′

×
2k∑

Lk=0,{2}

Lk∑
Mk=−Lk,{2}

Yc
LkMkk

AM ′

LkLL′

 Lk L L′

Mk M −M ′

 Lk L L′

0 0 0


×

n−1−k∑
j=0

Nr−1∑
α=2

Nl∑
l=0

l∑
m=−l

c̃ rel.
pκ,a

Nr−1∑
α′=2

Nl∑
l′=0

l′∑
m′=−l′

c̃ rel.
pκ′ ,a′B

2j+1
α,α′

×
2j+1∑

lj=1,{2}


Ỹc

lj0j

 lj l l′

0 m m′

+
lj∑

mj=−lj ,{2}
Ỹc
ljmjj

 lj l l′

mj m −m′



×Am′

lj ll′

 lj l l′

0 0 0

, (4.39)
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Wo e = (−1)s
n−1∑
t=1

Citcs

Nr−1∑
α=2

Nl∑
l=0

l∑
m=−l

c̃ rel.
pκ,a

Nr−1∑
α′=2

nl∑
l′=0

l∑
m′=−l

c̃ rel.
pκ′ ,a′B

2t
αα′

×
2t∑

lt=0,{2}

lt∑
mt=−lt,{2}

Yc
ltmttA

m′

ltll′

 lt l l′

mt m −m′

 lt l l′

0 0 0


×

n−1−t∑
i=0

NR−1∑
β=2

NL∑
L=0

L∑
M=−L

C̃ c.m.
qκ,b

NR−1∑
β′=2

NL∑
L′=0

L′∑
M ′=−L′

C̃ c.m.
pκ′ ,b′B

2i+1
β β′

×
2i+1∑

li=1,{2}


Ỹc

li0i

 Li L L′

0 M M ′

+
Li∑

mj=−Li,{2}
Ỹc
LiMii

 Li L L′

Mi M −M ′



× AM ′

LiLL′

 Li L L′

0 0 0

 (4.40)

where

Aa
b c d = (−1)a

√
(2b+ 1)(2c+ 1)(2d+ 1)

4π , (4.41)

and Bλαα′ (Bλβ β′) denote the integrals over B splines and their derivatives
for rel. (c.m.), see equations (C.6) and (C.5). The components Wo o, We e,
We o , and Wo e in equation (4.36) correspondingly denote the terms where the
products of center-of-mass and relative-motion both have odd-odd, even-even,
even-odd, or odd-even powers.

4.2 Symmetry implementation

Choosing the vector connecting the centers of the two traps such that it is
parallel to one of the Cartesian axes and if the displacement of the two traps is
restricted along one axis of the optical lattice, the symmetry in the directions
orthogonal to the displacement axis remain unaffected. In the case where the
two particles are confined in isotropic harmonic traps at the same center, the
problem has spherical symmetry. While when both particles are trapped in
an anisotropic confinement e. g., ωx 6= ωy = ωz, then the system possesses
cylindrical symmetry. Moreover, if the traps of the two particles are displaced
from each other, then system posses cylindrical symmetry. When the particles
are displaced while confined in identical isotropic traps, they will have equivalent
points at either ends of the displacement axis, a horizontal mirror plane, and
an infinite number of two-fold rotation axes perpendicular to the principal
axis [115]. In this case, such a system will posses the D∞h point group symmetry.
However, if the two traps are different for both particles, then the symmetry
elements are C∞ and vertical mirror planes hence the point group for this
case is C∞v. It should be noted that since the original code was designed for
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Table 4.1: Character table for the C2v point group.

C2v E C2(z) σv(xz) σv(yz) linear, quadratic
rotations

A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 Rz xy

B1 1 -1 1 -1 x, Ry xz

B2 1 -1 -1 1 y, Rx yz

orthorhombic symmetry due to the orthogonal optical lattice potentials which
has D2h symmetry, it was convenient to implement the C2v symmetry even
though only single-well potentials are considered in the present study. Higher
order symmetries as D∞h and, or C∞v could still in principle be implemented.

To implement symmetry into the extension method incorporating spatial
displacement of the trap potentials, an assumption is made that the confining
potentials are solely displaced along the z direction. Then, symmetry can be
accounted for by considering a system whose potential energy is symmetric
in the x and y directions, but without symmetry in the remaining z direction.
The system and thus its Hamiltonian is therefore invariant under the symmetry
operations of the C2v point group. The symmetry group C2v has four irreducible
representations

Ir = {A1, A2, B1, B2} . (4.42)

The symmetry operations of the C2v point group includes the identity operation
E, a rotation about π along z axis, C2, and two vertical mirror planes
σv and σ′v. These symmetry elements are shown in Figure 4.2. Thus, the
system eigenfunctions belong to the different irreducible representations and
have different symmetries: the A1 eigenfunctions are completely symmetric
with respect to the xz and yz planes, while the eigenfunctions that belong to
the A2 irreducible representations are completely antisymmetric with respect
to those planes. The B1 (B2) eigenfunctions are symmetric (antisymmetric)
with respect to the xz plane and antisymmetric (symmetric) with respect to
the yz plane.

55



Chapter 4. Description of Two Particles in Spatially Displaced Traps

Figure 4.2: The symmetry operations of the point group C2v. The reflection
through the xz and yz planes, and C2 is a π rotation around the
z axis. The complete operations includes the identity E.

The symmetry-adapted basis functions for the relative-motion Hamiltonian
(4.33) after the symmetry considerations are given by

ψA1
i =

Nr∑
α=1

Nl∑
l=0,{2}

l∑
m=0,{2}

c̃A1
i,αlm

Bα(r)
r

Y +
lm , (4.43)

ψA2
i =

Nr∑
α=1

Nl∑
l=2,{2}

l∑
m=2,{2}

c̃A2
i,αlm

Bα(r)
r

Y −
lm , (4.44)

ψB1
i =

Nr∑
α=1

Nl∑
l=1,{2}

l∑
m=1,{2}

c̃B1
i,αlm

Bα(r)
r

Y +
lm , (4.45)

ψB2
i =

Nr∑
α=1

Nl∑
l=1,{2}

l∑
m=1,{2}

c̃B2
i,αlm

Bα(r)
r

Y −
lm , (4.46)
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Table 4.2: Product table for the irreducible representations of C2v

⊗ A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

where Y +
l0 = Y −

l0 = Y 0
l (θ, φ) and Y ±

lm = Y m
l (θ, φ)± Y −ml (θ, φ) for m 6= 0. The

expressions for the symmetry-adapted basis functions for the center-of-mass
are analogous.

The configurations for solving the full Hamiltonian (4.31) are formed from
the products of c.m. and rel. eigensolutions. The irreducible representations
of these products are specified in Table 4.2. By using the symmetry adapted
basis functions, the size of the total Hamiltonian matrix N is formed by 4
blocks of size N /4 and since the diagonalization of a matrix scales as N 3, the
diagonalization of the Hamiltonian matrix in a symmetrized basis set would
require 4×

(
N
4

)3
= N 3

16 operations. Therefore, the dimensions of the matrices
to be diagonalized reduces by a factor of about 16 and the required storage
memory reduce by a factor of 4.

4.3 Influence of the displacement term on
the energies

The two traps can be displaced in a number of ways. One trap can be fixed
while moving the second trap and vice versa or both can be displaced with
respect to each other. In each situation, the displacement term contributes
differently to the center-of-mass and relative motion energies depending on
the frequency of each trap and the respective masses of the two particles. In
general, when the masses of the two particles are not equal, m1 6= m2, and the
trap frequencies ω1 6= ω2, the contribution from the displacement term to both
rel. and c.m. energies is the same regardless of the choice of trap displacement.
However, the total energy of the two particles will be the same irrespective of
the manner in which the two traps are displaced.

To demonstrate how the different displacement options for the two traps
influences the c.m. and rel. energies, an example of two identical particles each
with mass m in an isotropic harmonic trap potential with frequency ω are
considered. When one trap is fixed at the origin while displacing the second one,
then the distance of separation will have an equal contribution of 1/4mω2 d2 to
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both c.m. and rel. energies. This is true if the order is reversed, i. e., second trap
fixed while displacing the first trap. The trap potential for c.m. and rel. motions
are respectively given by

V̂c.m.(~R ) = 1
2 M ω2

(
d

2 −R
)2

(4.47)

v̂rel.(~r ) = 1
2 µω

2 (d− r)2 (4.48)

where µ is the reduced mass and M is the total mass for the two particles.

The other alternative of displacing the two traps relative to each other is by
moving them in opposite directions away from the origin in equal steps. This
way, the two traps remain equidistant from each other with the origin remaining
at the middle of the line joining the centers of the two traps. The setup can
be visualized as depicted in Figure 4.1. Assuming the two particles have equal
mass and that they are trapped at the same frequency, the displacement term
enter only the relative motion energy. This is because the position of the
center-of-mass does not change and always remain at the origin. The harmonic
trap potential for c.m. and rel. takes the following form (the same form as in
ref [116]),

V̂c.m.(~R ) = 1
2 M ω2 R2, (4.49)

v̂rel.(~r ) = 1
2 µω

2 (r − d)2 . (4.50)

4.4 Test of implementation: non-
interacting case

To verify whether the implementation of the method has been done correctly, the
special case of two noninteracting particles is considered. When the particles do
not interact, they see only the trap potential and the total energy is independent
of the separation between the them. Besides providing a minimum check for
the correctness of the implementation, this calculation provides also important
information on the convergence behavior.

Consider two noninteracting 7Li atoms confined in isotropic harmonic-trap
potentials with the same trap frequency. The eigenvalues and eigenfunctions
for this system are those of the harmonic oscillator. Taking the polarizability
of the two atoms α = 164 a.u., wavelength λ = 1000 nm and intensity
I = 1000 W cm−2, these parameters yields a trap with depth V0 = 5.896Er
the recoil energy Er = ~2k2/2m, and frequency ω ≈ 2π × 22 kHz in x, y, and
z directions. The box size should be chosen such that it contains both traps
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Figure 4.3: Total energy spectrum for the A1 symmetry of two non-interacting
particles in an isotropic harmonic trap potential as a function of
trap separation along z direction. Each particle is trapped at a
frequency ω ≈ 2π × 22 kHz.

at the desired maximum separation distance. Also, since harmonic potentials
extend to +∞, the states of interest should fit into this finite box. Definitely,
larger trap separations will require more B splines and larger box sizes. In
this example, a box size of

√
3× 40000 a0 is used with a maximum separation

between the two traps being 10 lz where lz ≈ 2730 a0 is the length of the
harmonic trap along the z direction defined by equation (2.49). 300 B splines
of order 8 distributed in a linear knot sequence to cover the entire box, and
the spherical harmonics expanded upto l = 30 with m = 0 for both rel. and
c.m. in the orbital calculations. The traps are displaced along the z direction
equidistant from each with the origin at the middle (see Figure 4.1). The results
of the total energy as a function of the trap displacement is shown in Figure 4.3
for the A1 symmetry. The energy spectra show the first 10 energy level. From
this example, the eigenvalues are sufficiently converged with respect to the
analytical energies of two harmonic oscillators. In fact, the first twenty lowest
states are converged to at least the fifth digit with this basis specification. From
the spectrum it is seen that the total energy for the two particles is independent
of the separation between them. This is expected because the two particles do
not interact.

Figure 4.4 shows the cuts through the six-dimensional wavefunctions for the
ground state of the two particles along the z direction (x1 = x2 = y1 = y2 = 0)
for zero (left) and 10 lz (right) trap separations, respectively. When the two
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Figure 4.4: Cut of the two-particle density as a function of z1 and z2 (x1 =
x2 = y1 = y2 = 0) scaled by the trap length along the z direction.
The left plot shows the case of non-separated traps, d = 0, while
the right plot is for the case when the two particles are separated
by a distance d = 10 lz.

traps are not separated, the wavefunctions of the two particles overlap since
they share the same point as shown on the left plot. As the separation distance
between the two traps increases, the particles become clearly separated and
ultimately reside exclusively in different traps (right plot of Figure 4.4).

Finally, it is important to remind that the same conclusions are true if
both traps were moved such that they remained equidistant from each other
with the origin at the middle. As already discussed in Chapter 3, whenever
ω1 6= ω2, a coupling exists between c.m. and rel. motions. The computation
demands for the CI calculations increases as the coupling strength between the
motions increases. With the m restriction implementation in the code, it is
possible to consider anisotropic confinements.

4.5 Summary

In this chapter, an extension of the original method for describing two ultracold
atoms in an optical-lattice potential and interacting among each other with
central interatomic interaction potentials has been extended to include the
possibility to spatially separate the trap potentials confining each of the two
particles. For numerical efficiency, symmetry was implemented. It should be
noted that the C2v symmetry implementation was motivated by the structure
of the original method that was designed for orthorhombic symmetry of the
optical lattice. The much higher and more efficient D∞h and C∞v symmetries
could still in principle be implemented. The present code is therefore limited
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to orthorhombic lattices for example where one of the particles is trapped in
a periodic (optical) lattice and the displacement has to be along one of the
crystal axes. In order to profit from the m restriction, the displacement of the
two traps is chosen along the z direction.

Finally, even though the present study aims to describe an ion-atom system,
a straightforward application of the present method is simulating neutral atoms
in polarization-synthesized optical lattices [117]. State-selective OL shift can
be realized by varying the lattice spacing between the atoms such that they
are in different hyperfine states. This way, the lattice sites acts as storage and
shift registers in atom-sorting schemes [118].
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Chapter 5

Atom-Ion Interaction Potentials
The generic example for the realistic atom-ion interaction used in the present
study is the ungerade electronic state of Li+2 . The construction details about
these potential curves together with the manipulation technique used to vary
the scattering length values are provided in this chapter.

5.1 Ab initio potential energy curves for Li+
2

The full interaction potential for the atom-ion system can be split into two
parts: the short-range part and the long-range part. The short-range region
USR(r) for internuclear distances ranging from 1.0 to 100 a0 is constructed
from the recently published ab initio data of Li+2 potential energy curves in
Ref. [81] generously supplied by M. Bouledroua [119]. These potentials were
calculated using a method similar to the one mentioned at the end of section 2.1
in Chapter 2, i. e., the Li+2 system is treated as an effective one-active electron
moving in the field of two ionic cores and their interactions described by effective
potentials while the wavefunctions are expanded on a set of generalized Slater-
type orbitals expressed in prolate spheroidal coordinates, more details can
be found in Ref. [120]. A cubic spline fitting1 numerical scheme was used to
interpolate the ab initio data points to obtain the short-range potential as a
function of the internuclear separation.

The long-range part Ug,u(r) is given by [39]

Ug,u(r) = Udisp(r)∓ Uexc(r) (5.1)

with ∓ for gerade (g) and ungerade (u), respectively. The first term Udisp(r)
is the dispersion potential introduced earlier in equation (2.46). For Li+2 , the
higher order Van der Waals coefficients are known and the dispersion potential
is given (in atomic units) by

Udisp(r) = −1
2

(
C4

r4 + C6

r6 + C8

r8

)
(5.2)

where the coefficients C4, C6, and C8 are the dipole, quadrupole, and octupole
polarizabilities, respectively. The second term of equation (5.1) is the exchange

1 This form of interpolation is suitable for data points where the curvature changes sign.
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Table 5.1: The scattering length values for the gerade and the ungerade
electronic states of Li+2 potential. The literature values are taken
from [45, 122].

gerade ungerade

Present
(a0)

Literature
(a0)

Present
(a0)

Literature
(a0)

6Li + 6Li+ -477 -918 -1429 -1425
7Li + 7Li+ -5356 14337 1264 1262

interaction. The exchange energy basically accounts for the exponentially small
energy difference between two asymptotically degenerate states of a diatomic
molecule or molecular ion, a general procedure for calculating exchange energies
for one-active-electron diatomic ions can be found e. g., in [121]. For the
purposes of constructing the atom-ion potentials used in this thesis, the form
of the exchange energy given in [81] is used. It is explicitly given by

Uexc(r) = 1
2A

2r
2
β
−1e−βr (5.3)

where A is the amplitude of the asymptotic wavefunction, and the parameter
β is determined from the ionization energy EI using β = (2EI)1/2.

The short-range data points were smoothly merged with the long-range
part to obtain the full potential, i. e., V (r) = USR(r) + Ug,u(r). The values of
the parameters appearing in the dispersion equation (5.2) and the exchange
equation (5.3) are all taken from [81]. These values (in atomic units)
are: C4 = 164.19, C6 = 1393, C8 = 38710, β = 0.630, and A = 0.815.
Fitting the interpolated ab initio points to the dispersion form (5.2) yielded
C4 = 164.18999999916, C6 = 3393.0000155742, and C8 = 38709.92748
which agree with the values given in [81]. The resulting potentials were already
shown in Figure 2.1.

After constructing the full atom-ion interaction potentials, the scattering-
length values and the number of bound states supported by the two potentials
was determined. The scattering length values shown in Table 5.1 are obtained
from the point of intersection of the extrapolated radial wavefunction and the
r axis from equation (2.36) as described in section 2.3.1. The same values
are found using the semiclassical treatment given by equation (2.37). The
values of the scattering length for the ungerade electronic state of 6Li and 7Li
isotopes agree fairly well to those in [45, 122]. However, the gerade values are
not agreeing. In the case of 6Li isotope, the magnitudes are different, while
for the 7Li isotope, both the magnitude and the sign differ. A reason for this
deviation could not be found by the author.
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Using equation (2.39), the number of bound states for the gerade and
the ungerade electronic states for the 6Li isotope are found to be 78 and
17, respectively. For the 7Li isotope, the gerade and the ungerade potentials
correspondingly have 84 and 19 bound states. A similar number of bound states
for both isotopes is obtained if the radial SE (2.26) is solved for the trap-free
case with l = 0 using the two potentials. The obtained number of bound states
are comparable to those in [123] where it is reported (without specifying the
isotopes) that the gerade state has 85 vibrational levels while the ungerade
should have more than 14 levels.

Since the value of scattering length for ungerade potentials for both 6Li
and 7Li isotopes agree fairly well compared to those reported in literature, this
electronic state is chosen to model the atom-ion interaction in this thesis. Also,
the relatively small number bound states supported by this particular potential
means that less number of B splines are required to describe it.

5.2 Manipulation of the interaction potentials

As already mentioned in section 2.4, the accurate calculation of magnetic
Feshbach resonances is a very laborious multi-channel (MC) problem. However,
this complicated MC problem can be reduced to one parameter, i. e., the
scattering length. The variation of the scattering length can then be related to
the variation of the magnetic field. Single-channel (SC) approximations have
been developed to describe the collisions of two atoms in resonant magnetic
fields where the MC calculations are too demanding. One such SC approach is
found in [100]. The idea underlying the SC approach is to vary the interaction
strength artificially through a controlled manipulation of the Hamiltonian

Ĥ (r) = − 1
2µ

∂2

∂ r2 + V (r) (5.4)

where the reduced mass µ or the interaction potential V (r) can be modified.
Each of these modifications lead to a shift of the energy of the least bound
state relative to the atom-ion potential threshold. Whenever a bound or a
virtual2 state crosses the dissociation threshold, the scattering length diverges.
Single-channel techniques can be used to manipulate the energy of the bound
or the virtual state in order to vary the scattering length.

The approach used in the present study follows the technique described in
[100] where the strong-repulsive inner wall of the atom-ion potential is modified

2 When a real bound state is lifted into the continuum, it turns into a virtual state.

65



Chapter 5. Atom-Ion Interaction Potentials

-1.2 -0.8 -0.4 0 0.4
s - parameter (a0)

-8×104
-5×104
-2×104

0

2×104
5×104
8×104

a s
c
(a

0)

Figure 5.1: Scattering length asc as a function of the inner wall shift, s-
parameter, for the ungerade 7Li + 7Li+ potential. Modifying
the inner wall continuously changes the scattering length from
−∞ to −∞. This correspond to tuning the atom-ion interaction
from strongly attractive via almost noninteracting to strongly
repulsive.

by replacing V (r) by

V s(r) =

V (r − s r − re
rc − re

) , r ≤ re ,

V (r) , r > re ,
(5.5)

where re is the equilibrium internuclear distance, rc is the threshold crossing
point, and s is the parameter denoting the shifting of the inner wall. The
systematic shifting of the repulsive inner wall leads to a change in scattering
length. Figure 5.1 shows a graph of the s-wave scattering length as a function
of the s-parameter. In this case, the s-parameter is varied around one SC
resonance. It is also possible to vary the s-parameter over two branches of
scattering length, i. e., asc ∈ [−∞, 0] and asc ∈ [0,∞].

The inner wall shifted BO curves for the interaction of 7Li in the ungerade
electronic state is given in Figure 5.2 (a) for s = −0.5210587 a0 (black), s = 0
(red), and s = 0.3037423 a0 (green). The corresponding SC wavefunctions
associated with each shift as given in Figure 5.2 (b).

66



5.2. Manipulation of the interaction potentials

10 20 30 40 50
R (a0)

-0.0008

-0.0004

0

0.0004

0.0008

W
av
e 
f 
nc
tio

n
ψ
[a

0-1
/2
]

asc = -200 a0
asc = 1264 a0
asc = 20000 a0

10 20 30 40 50
R (a0)

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

En
er
gy

 (a
. 
.)

s = -0.5210587
s = 0.0
s = 0.3037423

Figure 5.2: (a) Shifted Born-Oppenheimer curves for the interaction of 7Li
in the 2Σ+

u electronic state. (b) Single channel wavefunctions
for asc = −200 a0 (attractive), asc = 1264 a0 (repulsive), and
asc = 20000 a0 (strongly repulsive), corresponding to the shifted
potentials given in part (a) with s = −0.5210587 a0, s = 0, and
s = 0.3037423 a0.

67



Chapter 5. Atom-Ion Interaction Potentials

Table 5.2: Sample s-parameters and the corresponding scattering-length
values for the ungerade electronic state of the 7Li + 7Li+ potential.

s-paramter (a0) asc (a0)

-0.026362681122 1136.07123338988
-0.019587014042 1167.53312619044
-0.013349688033 1197.37919251038
-0.007571419132 1225.82871430544
-0.002189243241 1253.05804466889
0.002847676772 1279.21128495351
0.007580978309 1304.40780877984
0.012045193091 1328.74769907233
0.016269277337 1352.31575712239
0.020277751011 1375.18450813941
0.024091560169 1397.41650412312
0.027728739454 1419.06610223174
0.031204927848 1440.18085766712

The mimicking of the variation of the s-wave scattering length at a Feshbach
resonance using the inner wall shift is performed as follows: The scattering
length values are calculated from the asymptotic solution given by equation
(2.36) for various values of the s-parameter using the program3 scatlength.f90.
A sample resulting values of asc for each s-parameter are shown in Table 5.2
(plotted in Figure 5.1), the first column are the s-parameter values while the
second column are the corresponding s-wave scattering length values. From
this data, for any given s-parameter value the corresponding asc is obtained by
interpolation, e. g., if a potential whose interaction strength is characterized by
asc = 1397.41650412312 a0 is required, then the atom-ion potential V (r) is
shifted by s = 0.024091560169 a0 and the required potential is obtained from
equation (5.5) using this new s-parameter value.

Finally, as a technical detail, generally the potential curves are extremely
sensitive. One has to be very careful when merging the ab initio data points
and the long-range part when constructing the complete potentials. One way of
finding out if this merging has been done properly is to check the wavefunction
in the regions where the two sets of data are joined. The other way is to fit the
final potentials to the long-range form and compare the resulting coefficients
with the known theoretical values. Also, during the manipulation process
discussed above, if the values re and rc are not accurately determined, one will
end up with wrong results e. g., a possible kink in the energy spectrum analysis
because the scattering length could change sign when actually no bound or
virtual state has crossed the threshold due to the incorrect value of re and or
rc. It is worthy to remind that rc should be determined accurately numerically

3 Located in ∼/TwoAtInOL/asc. Run instructions are found on the script files inside the
code directory.
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and should not be taken simply as the value of the internuclear separation
with the last negative value as r → 0. The same applies to the equilibrium
distance4,5 re.

4 After cubic spline interpolation of the ab initio data, the equilibrium values for
the gerade and ungerade electronic states were found to be 5.86067959444027 a0
and 18.7946443223160 a0, respectively, compared to 5.85999999999992 a0 and
18.7900000000001 a0 from the original data.

5 This stage of mapping the s parameter with the corresponding scattering-length values
took a considerable amount of time during the study. A program based on an existing
one for the lowest triplet and singlet states of two lithium atoms was developed to shift
the inner wall of the Li+2 potentials.
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Chapter 6

Systems of trapped atoms and
ions
The formulation and implementation of the extension presented in Chapter 4
was done in a general manner. In this chapter, the developed approach is
used to investigate a system composed of an ultracold neutral atom and a
single ion confined in separated harmonic trapping potentials. The interaction
between the atom-ion pair is modeled using as a generic example the ungerade
electronic state of 7Li isotope published in [81]. The construction details and
the motivation for the choice of this potential is discussed in Chapter 5. In this
chapter, states and energy spectra belonging to the irreducible representation
A1 of the C2v point group are considered.

6.1 Model Hamiltonian

The system of interest is composed of a single neutral atom and a single
ion. The two particles are confined in separate trapping potentials. The ion
traps conventionally used in experiments are the radiofrequency (rf) traps.
These rf traps use a combination of static and time varying electric fields to
confine the ions [29]. As already pointed in Chapter 1, the time varying fields
in the rf traps continuously push and pull the ion back and forth leading to fast
oscillations called micromotion. Assuming that the micromotion is averaged out,
and the typical deep nature of the rf traps, the ion is to a good approximation
trapped in a time-independent harmonic potential provided it is close to the
ground state of the potential well. Single neutral atoms on the other hand can
be trapped in experiments using for example optical lattices. If the atom trap
is also assumed to be well approximated by a harmonic potential, then the
Hamiltonian (in atomic units) for the trapped atom-ion system can be written
as

Ĥ(r1, r2 ) = 1
2

2∑
j=1

−∇2

mj

+mjω
2
⊥j ρ

2
j+mjω

2
j (zj−dj)2

+Û(|r1−r2|) (6.1)

where ρ2 = x2 +y2, ω⊥ is the transverse frequency, and d is the distance between
the two trap minima, as before. The harmonic confinement is obtained from the
Taylor expansion of equation (4.2) up to the second order. The trap frequencies

71



Chapter 6. Systems of trapped atoms and ions

Figure 6.1: Schematic illustration of the trap-induced resonance. (a) Two
particles trapped in a harmonic potential will experience an
effective potential (blue line) given by the sum of the trap
and interaction potentials at zero trap separation. (b) As the
separation between the two traps increases, the least bound
molecular state Ebound becomes resonant with the trap vibrational
states Etrap resulting in a trap-induced resonance. For large
separations, the relative coordinate is bound by the trap potential.

for the atom-ion pair are assumed to be equal in the present discussions hence
no coupling exists between c.m. and rel. motions.

Transforming the two-body Hamiltonian (6.1) to c.m.-rel.-motion
coordinates (using equations (3.3) and (3.4)), and taking the vector of the
trap separation to point along the positive z direction, the relative motion part
of the Hamiltonian (6.1) becomes

Ĥrel. = − 1
2µ ∇

2
r + 1

2 µω
2
[
ρ2 + (z− dz)2

]
+ Û(r), (6.2)

while the center-of-mass part is given by

Ĥc.m. = − 1
2M ∇

2
R + 1

2 M ω2

ρ2 +
(

Z− dz
2

)2
. (6.3)

In the present numerical calculations, the two traps are displaced by fixing the
atom trap at the origin while the ion trap is moved along the z coordinate away
from the origin.

Figure 6.1 (a) shows the relative part of the effective potential given by
the sum of the trap potential at zero separation (dz = 0) and the interaction
potential energy Û(r). As the separation between the two traps is increased,
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the molecular bound state Ebound of the molecular interaction potential is raised
up. At certain trap separation distance (dz = d), see Figure 6.1 (b), the bound
state Ebound and the trap eigenstate Etrap become resonant leading to a trap-
induced resonance (TIR) [116, 124]. This kind of resonance was first reported
by Stock et al. where they investigated the controlled collisions between two
trapped but separated atoms [116]. In that work, the interaction between
the ultracold neutral atoms is treated using an energy-dependent δ-function
pseudopotential model. The trap-induced resonances have also been reported
for a system consisting of 87Rb atom and 40Ca+ ion stored in separate traps [72]
by Idziaszek et al. where the atom-ion interaction is treated using quantum
defect theory. These trap-induced resonances show up as avoided crossings in
the energy spectrum as a function of the trap separation. TIRs offer means for
controlling interactions between ultracold atoms with applications e. g. in the
design of quantum logic gates.

6.2 Results and discussions

The interaction between a neutral ultracold atom and a single ion is described
based on the eigenenergy spectrum as a function of the trap separation. The
single-channel approach in [100] described in Chapter 5 is used to manipulate
the repulsive inner wall part of the ungerade Li+2 in order to realize the required
s-wave scattering length values. The discussions are grouped into two cases.
In one case, the distance between the two traps is varied for fixed interaction
strengths. The second case is for fixed trap separation and varying interaction
strengths.

The first result discussed is when the atom-ion pair is confined in 3D
spherically symmetric harmonic traps for fixed interaction strengths. The
7Li - 7Li+ pair is trapped at equal frequencies ω = 2π × 22 kHz. Each of the
two traps has a depth Vc = 5.8955Er. These trapping parameters are realized
by using wavelength λ = 1000 nm and intensity I = 1000 W cm−2 in x, y, and,
z directions.

Figure 6.2 shows the rel.-motion energy spectrum for 7Li atom-ion pair
with an interaction strength characterized by the s-wave scattering length
asc = 2000 a0 as a function of separation distance d. The energy spectrum is
qualitatively different from the case of noninteracting particles (see Section 4.4)
going from zero to positive trap separations. At zero trap separation, the energy
of the least molecular bound state (blue line) is positioned at −1.5576 ~ωz.
This is a consequence of the large positive scattering length. As the separation
between the two traps is increased, the molecular and vibrational trap states
change in a rather pronounced fashion. The molecular state increases in energy
as it get pulled up and at around d ≈ 2.59 lz, it becomes resonant with the first
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vibrational trap state resulting in an avoided crossing. The avoided crossings
correspond to the trap-induced resonances [116]. As the separation between the
atom and ion traps is increased further, more avoided crossings are observed as
the molecular bound state become resonant with the higher-lying vibrational
trap states. The avoided crossings associated with the higher-lying states follow
approximately the quadratic shape of the harmonic trapping potential confining
the atom-ion pair. The position of the lowest TIR is approximately located at
the point where the sum of the molecular bound state energy and the trapping
potential at zero trap separation equals the lowest vibrational trap state of
the harmonic oscillator energy. Beyond the resonance position, as the distance
between the atom-ion pair is increased, the two particles acquires noninteracting
harmonic oscillator states.

In Figure 6.3, the presented energy spectrum is for the interaction strength
with asc = 4000 a0. For this larger positive scattering-length value, the molecular
bound state is much closer to the dissociation threshold. The least bound
molecular state is at −2.2983 × 10−2 ~ωz, compared to when asc = 2000 a0.
Therefore, the molecular bound state becomes resonant with the trap states at
smaller trap separations for large positive scattering lengths. The spectrum is
generally similar to the one given in Figure 6.2 except that the avoided crossings
are much wider and occur at relatively smaller trap separation distances. The
lowest trap-induced resonance appears at d ≈ 1.95 lz with an energy gap
of about 0.5 ~ωz compared to an energy gap of 0.14723 ~ωz if the s-wave
scattering length is 2000 a0. In general, the position and size of the avoided
crossings leading to the TIRs depends strongly on the energy of the molecular
bound state [116]. For example, when the scattering length is negative, the
molecular state is deeply bound and far away from the dissociation threshold.
Figure 6.4 shows the eigenenergy spectrum versus the separation distance
between the atom and ion traps when the interaction strength is characterized
by asc = −1000 a0. For this value of the scattering length, the energy of the
least bound state is −105.6097 ~ωz for zero trap separation. Therefore, for
such an attractive interaction, trap-induced resonances are not observed in the
energy spectrum.

The energy spectrum for the full Hamiltonian is given by the sum of the rel.
and c.m. Hamiltonians (6.3) - (6.2). Since the trap frequencies for the atom and
the ion are equal, no coupling exists between the c.m. and rel. motions. Also,
since the two harmonic traps are identical, the displacement term does not enter
the coupling equation (4.9). Therefore, the full spectrum that incorporates the
c.m. is similar to those of relative motion except that it is shifted up by the
center-of-mass excitations as shown in Figure 6.5.

Another observation is that the states with positive energies E/~ωz at zero
trap separation split into two branches as the distance between the atom-ion
traps increases for repulsive atom-ion interactions (Figures 6.2 - 6.3). The
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Figure 6.2: The relative motion energy spectrum as a function of separation d
between the atom and ion traps for asc = 2000 a0. The trap-
induced resonances show up as avoided crossings between the
bound and vibrational trap states. The TIR associated with the
crossing between the bound and lowest trap state is at d ≈ 2.59 lz.
As the separation between the atom and ion traps increases, the
molecular bound state becomes resonant with the higher-lying
vibrational trap states resulting in more avoided crossings. After
the resonance, i. e., for larger separations, the atom-ion pair
acquires noninteracting harmonic oscillator states represented by
the horizontal lines. The energies and the separation distance
have been correspondingly scaled by ~ωz and lz. The basis set
used for the calculation is specified in Table E.1.

splitting behavior can be understood from the analysis of the corresponding
eigenstates of the branches. Depending on the symmetry of the state, the rising
(lowering) branch corresponds to the antisymmetric (symmetric) eigenstate
where the atom-ion pair is localized in trap regions where they experience
attraction (repulsion) [72]. The rel.-motion eigenstates corresponding to the
two lowest states with positive E/~ωz in Figure 6.3 are shown in Figure 6.6.
The full 6D-wavefunctions cuts along the z axis for the lowest splitting states
is given in Figure 6.7 for asc = 4000 a0. The 6D wavefunctions in the absolute
coordinates offers the visualization of the two particles in the two branches.
The wavefunction for the branch splitting upwards with increasing energy is
given by the plot on the right in Figure 6.7. It is observed that the atom-ion
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Figure 6.3: Similar to Figure 6.2 but with asc = 4000 a0. A trap-induced
resonance occurs at d ≈ 1.95 lz. The energy gap between the
resonant states are much larger compared to the case of asc =
2000 a0 shown in Figure 6.2. The basis set used for the calculation
is specified in Table E.2.

pair are close together implying an attraction between them while on the left,
which corresponds to the lowering branch, the two particles are repelling and
far from each other. Figure 6.8 shows the relative motion wavefunction for
zero trap separation on the left and the right panel shows the case when the
traps are separated by 3.67 lz with asc = 4000 a0. At zero trap separation,
the least bound state of the atom-ion pair is highly oscillating, after crossing
the trap-induced resonance position, the two particles become noninteracting
and the wavefunction become that of harmonic oscillator centered at 3.67 lz.
This explains the horizontal lines in the eigenenergy spectra after the avoided
crossings where the atom and ion do not interact and see only their respective
trap potentials.

Next, the analysis of the energy spectra for various interaction strengths at
fixed trap separations is considered. When the distance between the two traps
is fixed, and the interaction strength between the atom and the ion is varied
from strongly attractive (asc � 0) to strongly repulsive (asc � 0), the spectrum
exhibits a different structure compared to when the interaction strength is
fixed for varying separations. Figure 6.10 presents the energy spectrum of
the relative motion for spherically symmetric harmonic trap potential for

76



6.2. Results and discussions

0 1 2 3 4 5
d / l

z

0

1

2

3

4

5

E
 
/ 
h

_

w
z

Figure 6.4: The relative motion energy spectrum for asc = −1000 a0. The trap-
induced resonances are not observed because the least molecular
bound state is far from the threshold. The basis set used for the
calculation is specified in Table E.1.

separations d/lz = 0, 0.3, 1.8, and 3.6. If the separation distance between the
two traps becomes comparable to or larger than the trap length lz, the bound
state (black line bending downwards to negative infinity for lz/asc → +∞) is
pushed up and forms avoided crossings with the trap state as seen in Figure 6.10
for d/lz = 1.8 and 3.6 where the separation distance is larger than the trap
length. Figures 6.11 and 6.12 shows the energy spectra when anisotropy in
introduced in the transversal direction such that ωx = ωy = 5ωz. Spectra for
ωx = ωy = 10ωz are given in Figures 6.13 and 6.14. For these anisotropic
geometry, additional resonances which are induced by the trap anisotropy are
observed in the excited states.

The cuts of the full 6D wavefunctions along the z direction for the first
trap-induced state for d/lz = 0, 0.37, 1.83, and 3.67 given in Figure 6.9. When
the two traps are not separated, the neutral atom and the ion share the same
location but since the interaction is repulsive (asc = 4000 a0), the density plot
shows two regions of large probability of finding the atom-ion pair away from
the z1 = z2 diagonal. As the separation between the two particles increases, the
pair begins to occupy regions closer to the diagonal and at 3.67 lz each particle
resides in different regions along the z direction.
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Figure 6.5: The CI energy spectrum for asc = 4000 a0. The energy spectrum
is similar to that of the relative motion in Figure 6.3 but the
eigenstates are shifted up by the center-of-mass excitations.
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Figure 6.6: Eigenstates of the relative motion of the atom-ion pair at trap
separation d = 0.66 lz for the two lowest states with positive
E/~ωz in Figure 6.3. The blue (green) eigenfunction corresponds
to the rising (lower) state represented by the blue (green) line in
the eigenenergy spectrum for asc = 4000 a0.
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Figure 6.7: Cuts along the direction of the trap displacement through the
six-dimensional ab initio wavefunction for the first (left) and
second (right) trap states for trap separation d = 0.66 lz when
asc = 4000 a0. The left plot shows the atom-ion pair in the region
where they repel each other. This is the state corresponding to
the lowering branch. On the right, the atom-ion are in the region
of attraction hence closer to each other along the z direction. This
is the state represented by the rising branch.
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Figure 6.8: Scaled wavefunction of the relative motion of the least bound
state at zero trap separation (left figure) and the first trap state
(right) for trap separation d = 3.67 lz for asc = 4000 a0. The insert
on the left figure shows the magnified view for the least bound
state.
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Figure 6.9: Cuts along the z direction through the full six-dimensional ab
initio eigenstates for the atom-ion pair at separation distances
d/lz = 0, 0.37, 1.83, 3.67 for asc = 4000 a0. From these
wavefunctions, it is observed how the atom-ion pair initially
close together when the traps are not separated become separated
in space at large trap separation distances where they are only
bound by the traps.

6.3 Conclusion

In this chapter, the description of a system comprising of a neutral ultracold
atom and a single ion trapped in spatially separated harmonic traps has been
presented. The atom-ion interaction has been treated in a realistic fashion using
Born-Oppenheimer potential curve of Li+2 . As an application of the developed
method to study atom-ion systems, the energy spectrum against separation
distance between the atom and the ion confined in a harmonic trap has been
analyzed and the expected trap-induced resonances have been observed. This
is consistent with previous studies on the atom-ion systems. The key feature
of the approach is that it allows for treating the atom-ion interactions in a
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Figure 6.10: The eigenenergy spectrum for the hybrid atom-ion system of
Li+2 confined in an isotropic spherical harmonic trap potential as
a function of the inverse scattering length for trap separations
d/lz = 0, 0.3, 1.8, 3.6 . lz =

√
~/(µωz) is the relative motion trap

length along z direction. The spectrum for d = 0 was obtained
with the basis set specified in Table E.3, while the basis set in
Table E.4 was used for the remaining three calculations.

realistic manner. The interaction between the atom-ion pair can be controlled
using the TIRs. It is possible to pass through the resonance adiabatically by
slowly varying the distance between the two traps thus converting the trap
vibrational states into molecular bound states. Another application of this kind
of resonances is in the production of ultracold molecular ions for species where
sympathetic cooling using ultracold neutral atoms is not effective or possible.

Even though only the case for the identical trap frequency for the atom and
ion traps have been discussed, the basic feature of the trap-induced resonance
should remain unchanged when trap frequencies are different. In fact, for the
most general case of different trap frequencies, the center-of-mass and relative-
motions are coupled already at zero separation. This coupling of the r.m and
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Figure 6.11: Energy spectrum for interacting atom-ion pair in harmonic
traps for ωx = ωy = 5ωz and trap separations d = 0 (top) and
d = 0.3 lz (bottom). Both spectra were calculated using the
basis set specified in Table E.4.
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Figure 6.12: Energy spectrum for interacting atom-ion pair in harmonic traps
for ωx = ωy = 5ωz and trap separations d = 1.8 lz (top) and
d = 3.6 lz (bottom). The spectrum for d = 0 and d = 0.3 lz were
calculated using the basis set specified in Tables E.5 and E.6,
respectively.
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Figure 6.13: Energy spectrum for interacting atom-ion pair in harmonic
traps for ωx = ωy = 10ωz and trap separations d = 0 (top) and
d = 0.3 lz (bottom). The spectrum for d = 0 and d = 0.3 lz were
calculated using the basis set specified in Tables E.4 and E.6,
respectively.

84



6.3. Conclusion

-5 -4 -3 -2 -1 0 1 2 3 4 5
l
z
 / a

sc

-1

0

1

2

3

E
 
/ 
h

_

w
z

-5 -4 -3 -2 -1 0 1 2 3 4 5
l
z
 / a

sc

-1

0

1

2

3

E
 
/ 
h

_

 w
z

Figure 6.14: Energy spectrum for interacting atom-ion pair in harmonic traps
for ωx = ωy = 10ωz and trap separations d = 1.8 lz (top) and
d = 3.6 lz (bottom). Both spectra were calculated using the
basis set specified in Table E.7.
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c.m. leads to another kind of resonance known as the inelastic confinement-
induced resonances. These inelastic confinement-induced resonances have been
reported in ultracold neutral atoms [125, 126], dipolar gases [127] and Coulombic
systems [128]. It is shown in the next chapter that they are also present in
atom-ion systems.
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Chapter 7

Atom-Ion Inelastic Confinement-
Induced Resonances
It has been shown that the coupling of center-of-mass and relative motion
for a system of two ultracold neutral atoms in single-well potentials leads to
inelastic confinement-induced resonances (ICIRs) [125]. These resonances were
confirmed in a dedicated experiment [126] where it was established that the
c.m.-rel. coupling leads to coherent molecule formation, losses, and heating in
ultracold neutral atomic gases. The ICIRs are universal and have since been
demonstrated to be present in collisions of atomic species with dipolar magnetic
interactions [127], and in Coulomb-interacting systems such as excitons in
quantum-dot systems [128]. In this chapter, the existence of ICIRs in atom-
ion systems is demonstrated. The significance of these ICIRs relies on their
potential use as a tool to control the interactions between ultracold neutral
atoms and ions. In addition, the ICIRs can be manipulated via a variation
of the scattering length and the geometry of the trap. Therefore, they could
provide an alternative strategy that can be used to experimentally determine
the atom-ion scattering length in the vicinity of the ICIR.

In the following discussions, the coupling between the center-of-mass and
relative motion is realized in two ways: sextic potentials resulting from a Taylor
expansion of a sin2-like potential up to the sixth degree, and harmonic trapping
potentials with different frequencies. The atom and the ion traps are both
centered at the origin and the original method [73] reviewed in Chapter 3 is
used to describe the two particles. Since it has been established that the most
pronounced ICIRs are contained in the lowest-lying state [129], and that the
ICIR involving the ground trap state are contained in the Ag spectrum, only
the spectra of Ag symmetry are presented in this chapter. Like in the previous
chapter, a generic example for the realistic atom-ion interaction is modeled
using the ungerade electronic state of the Li+2 potential.

The remainder of the chapter is organized as follows. First, the basic
concepts of confinement-induced resonance (CIR) [130] are recapitulated
in section 7.1. This kind of resonance will be referred to as elastic CIR
following [129] to distinguish it from the inelastic CIR which will be described
in section 7.2. The results are discussed in section 7.3 where the ab initio
calculations showing the presence of inelastic CIR in hybrid mixture of an
ultracold neutral atom and an ion in sextic and harmonic traps are discussed
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in sections 7.3.1 and 7.3.2, respectively. Finally, the chapter ends with a brief
summary and an outlook in section 7.4.

7.1 Elastic confinement-induced resonances

The interest in low-dimensional quantum systems arises from their fascinating
phenomena not encountered in three dimensions e. g., a one-dimensional (1D)
gas of impenetrable Bosons, the Tonks-Girardeau (TG) gas [131, 132], acquires
Fermionic properties [133–135]. In 1998, Olshanii considered a two-body s-wave
scattering problem in a quasi-1D harmonic trap with symmetric transversal
confinement. He developed a mapping of the relative-motion Hamiltonian

hrel. = − ~2

2µ∇
2
r + 1

2 µ
[
ω2
⊥ρ

2 + ω2
zz

2
]

+ 4π~2 asc

m
δ(r) ∂

∂r
r , (7.1)

where ρ2 = x2 +y2 and ω⊥ is the transversal confinement onto the corresponding
pure 1D Hamiltonian

h1D = − ~2

2µ∇
2
z + 1

2µω
2
zz

2 + g1D δ(z) , (7.2)

where g1D is the coupling strength defined by [130]

g1D = − ~2

µ a1D
= 2 asc ~2

µ d2
⊥

1
1 + ζ(1

2)asc
d⊥

. (7.3)

Here, d⊥ =
√
~/(mω⊥) is the harmonic-oscillator trap length along the

transversal direction, a1D is the one-dimensional scattering length, and ζ(x) is
the Hurwitz zeta function. In equation (7.1), asc is the 3D s-wave scattering
length as before, while m is the atomic mass, and the last term is the atom-atom
interaction which is approximated by a contact Fermi pseudopotential.

In a quasi-1D confinement, ω⊥ � ωz, therefore, only the ground state of
the transversal motion is significantly populated. The Hamiltonian for a pure
1D confinement say along the z direction is given by (7.2). An elastic CIR
resonance occurs when the three-dimensional scattering length asc approaches
the characteristic trap length d⊥ i. e., when one maps the effective 1D coupling
strength constant g1D of 1D to the 3D s-wave scattering length asc, then at the
specific ratio

d⊥
asc

= −ζ
(1

2

)
≈ 1.4603 . . . , (7.4)

the coupling constant g1D in equation (7.3) diverges leading to the (elastic)
confinement-induced resonance [130, 136]. These elastic CIRs are universal and
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independent of the atomic species. They depend solely on the geometry of
the trap and can be used to tune the effective interparticle interaction. An
analogous derivation of the effective two-dimensional interaction strength g2D by
Petrov et al. in Ref. [137] showed similar divergence behavior. The experimental
evidence of elastic CIRs have since been reported for bosonic [133–135] and
fermionic [138] systems. These elastic CIRs are characterized by the properties
of the relative-motion energy spectrum of systems of reduced dimensionality.

Recently, a study of elastic confinement-induced resonance for ultracold
atom-ion systems was reported in Ref. [139]. In that work, elastic CIR in a
system consisting of a tightly trapped ion and a moving neutral atom in a
waveguide was theoretically investigated. The conditions for the appearance of
elastic CIR in ultracold atom-ion systems is investigated for two regimes. First,
when the characteristic interaction length is much less than the length of the
transverse harmonic trap, i. e., when R∗ � d⊥, the position of the elastic CIR
is at

d⊥
asc

= 1.4603− 0.6531
(
ma

µ

)(
E||
~ω⊥

)
. (7.5)

The second case when R∗ � d⊥, the CIR position is given by

d⊥
asc

= 1.4603 + ∆
(
R∗

d⊥

)
− 0.32655

(
ma

µ

)(
d⊥
R∗

)2 (
E||
E∗

)
(7.6)

where ma is the atomic mass, µ is the reduced mass for the atom-ion pair, E|| is
the longitudinal energy, while R∗ and E∗ denote the characteristic length and
energy, see equations (2.48) and (2.47). The term ∆

(
R∗/d⊥

)
in equation (7.6)

denotes the shift in the position of elastic CIR with increase in the ratio R∗/d⊥.
Unlike the resonance position given by (7.4), the position of the elastic CIR
given by equations (7.5) and (7.6) for an atom-ion pair depends on the ratio of
the masses between the two species.

7.2 Inelastic confinement-induced resonances

The origin of the inelastic CIRs can be traced back to the debate initiated from
the observations of the experiment reported in Ref. [140]. In that experiment,
loss features close to the elastic CIR were observed in strongly interacting
quantum gas of 133Cs atoms in an isotropic quasi-1D confinement. However,
when an anisotropy was introduced in the transversal confinement, a splitting
of the CIR was observed, (as shown in Figure 7.1). This splitting could not be
explained by the theory of elastic CIR [130, 136] that predicts only one elastic
CIR, red dashed line in Figure 7.1, regardless on how large the transverse
anisotropy. Also, in the same experiment of Haller et al. [140], a resonance was
observed for repulsive (asc > 0) interaction in quasi-2D confinement. In another
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Figure 7.1: Positions of confinement-induced resonances as a function of the
scattering length for different values of transversal anisotropy
in quasi-1D. The experimental positions are compared to
the predicted confinement-induced resonance positions o f the
Olshanii model of elastic confinement-induced resonance (RMH
model) [130] and the inelastic confinement-induced resonance
(CRC model) [125]. Plot taken from [125].

experiment adopting radio-frequency spectroscopy by Fröhlich et al. [141],
a resonance was observed for attractive (asc < 0) interactions in quasi-2D
confinement. The observation of the resonance for positive scattering length in
quasi-2D confinement in Ref. [140] was in contradiction to previous theoretical
studies on 2D systems that predicted the appearance of an elastic CIR only for
attractive but not repulsive interactions [137, 142]. Furthermore, a theoretical
investigation of elastic CIR under transversely anisotropic confinement [97]
found a discrepancy between Olshanii’s model [130, 136] and experiment [140].

These contradictions between theory and experiment, namely, the splitting
of the elastic CIR for transversal anisotropy in quasi-1D and the observed
resonance for quasi-2D confinement for repulsive interactions were eventually
explained using the theoretical model, denoted by CRC (blue line) in Figure 7.1,
first introduced in [125]. This model agreed with the observed splitting of the
resonance with increasing anisotropy in the transversal confinement in Ref. [140].
It was established that the observed resonances originated from the possible
molecule (dimer) formation due to the coupling of the center-of-mass and
relative-motions. The splitting of the resonance was established to be due to the
transversal anisotropy of the trap states that make the crossings nondegenerate.
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Figure 7.2: The energy spectrum illustrating the mechanisms of inelastic
confinement-induced resonances. Top left plot shows the relative-
motion eigenenergy spectrum for two neutral atoms interacting
via a δ pseudopotential and confined in a 3D harmonic trapping
potential as a function of inverse scattering length scaled by
the harmonic oscillator length dH0. Top right is the complete
spectrum that includes the center-of-mass excitations. When
the c.m.-rel. coupling W = 0, the trap and the molecular bound
states with the c.m. excitations cross diabatically. A non vanishing
coupling between the c.m. and rel. makes the crossings between
the trap and the c.m. excitations become avoided. Lower plot
shows a sketch of an avoided energy crossing between a trap state
and a molecular bound state with c.m. excitation. Plots adopted
from Ref. [129].
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The plots in Figure 7.2 can be used to understand the mechanism of the
ICIRs. The top left plot shows the eigenenergy spectrum of the relative-motion
Hamiltonian (3.12) for a pair of ultracold neutral atoms confined in an isotropic
harmonic trapping potential and interacting via the δ pseudopotential (2.42).
The spectrum consists of a bound state (red line labeled ψb) and the trap
states (the almost horizontal lines, with the green line labeled ψ1 being the
lowest-lying trap state). The plot on the top right shows the spectrum for the
full Hamiltonian (3.10) where the center-of-mass energies have been included.
From the inserts of the complete energy spectrum (top right), when the coupling
W = 0, the trap states and the molecular bound states with center-of-mass
excitations cross diabatically. However, when a coupling is introduced, i. e.,
W 6= 0, for example two identical particles confined in harmonic trapping
potentials with different frequencies, the crossings become avoided allowing for
an adiabatic transition of the trap state into a molecular state (see bottom
panel of Figure 7.2). It is this c.m.-rel. coupling that leads to the inelastic
confinement-induced resonances [125, 129]. The molecular states at the ICIR
are true eigenstates of the full Hamiltonian (3.10) and couple with the trap state
with c.m. excitations. Unlike the elastic CIRs where only a single resonance is
present, a number of resonances occur in the case of inelastic CIRs due to the
infinite number of center-of-mass excitations [129]. A detailed description of the
theory of the inelastic confinement-induced resonances for a pair of ultracold
neutral atoms in single- and multi-well potentials can be found in Ref. [143].

7.3 Results and discussion

Having described the basics of the ICIRs, the ab initio results are discussed in
this section. Following previous studies [125–129] of the ICIRs in single-well
potentials, it is natural to consider the effects of the anharmonicity of the
trap potential by using sextic potentials (see Figure 3.1). Sextic potentials
provide a good approximation for describing the c.m.-rel. coupling in single-well
potentials [113]. Moreover, sextic potentials are well suited for the description
involving an all optical trapping of the ions e. g., 3D optical trapping of single
ions in OL [66]. As has already been pointed out, the c.m.-rel. coupling is also
present in the case of identical particles seeing different trapping potentials and
in heteronuclear atoms [144] in harmonic confinement. This particular case is
investigated by considering a neutral atom and a single ion both confined in
harmonic trapping potentials with different trap frequencies.
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7.3.1 Quasi-1D sextic trapping potential

The sextic potentials are obtained by Taylor expanding the sin2-like potential
equation (3.2) up to the sixth degree. The corresponding trap potential in
c.m.-rel. coordinates (for zero trap separation) is expressed as

V (R , r ) = Vc.m.(R ) + Vrel.(r ) +W (R, r ) , (7.7)

with the individual components given by

Vc.m.(R ) =
∑

c=x,y,z
Vc

[
2k2

cR
2
c −

2
3k

4
cR

4
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]
, (7.8)
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∑
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, (7.9)

W (R, r ) =
∑

c=x,y,z
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2
cr

4
c

]
. (7.10)

The full six-dimensional description of the atom-ion problem is performed
following the procedure outlined in Chapter 3, i. e., the trap potentials equations
(7.8) and (7.9) are respectively substituted in the Hamiltonian equations
(3.11) - (3.12) then transformed to spherical coordinates. The product of
the solutions (orbitals) of the resulting Schrödinger equations are then used
to form configuration for incorporating the coupling part (7.10) of the full
Hamiltonian (3.10).

7.3.1.1 Eigenenergy spectrum

In Figure 7.3 the eigenenergy spectrum of the relative-motion Hamiltonian
equation (3.12) as a function of the inverse scattering length asc (scaled by
the trap length d⊥) for trap potential (7.9) is shown. The variation of the
scattering length is done by continuously varying the repulsive steep inner wall
part of the ungerade electronic state of 7Li+ − 7Li potential curve as described
in Chapter 5. This variation represents a single-channel model for mimicking
the variation of the s-wave scattering length at a Feshbach resonance [100].
The trap specification parameters gives an anisotropy ratio of ωx = ωy = 10ωz
which is well within the quasi-1D regime [95]. The relative-motion spectrum
has a bound state (red line) bending downwards to negative infinity as asc → 0+

and trap states represented by the almost horizontal lines. The green line in
Figure 7.3 is the first trap state.

Figure 7.4 shows the energy spectrum of the full coupled Hamiltonian (3.10).
The c.m. energies are added to each of the relative-motion energies leading to an
infinite number molecular bound states (all states bending downwards to −∞).
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Figure 7.3: Relative-motion eigenenergy spectrum for the hybrid atom-ion
system of 7Li+ - 7Li pair confined in sextic trap potential for a
varying s-wave scattering length. The parameters for the trap
potential are: wavelength λx = λy = λz = 1000 nm, intensity
Ix = Iy = 5000 W cm−2 and Iz = 50 W cm−2 giving a potential
depth of 29.477Er in the x and y directions and 0.295Er in the
z direction. The basis set used for the calculation is specified
in Table E.8.

The plot on the right is the magnified part showing the avoided crossing that
is responsible for the inelastic CIR. The labels (a) - (b) on the zoomed part
of Figure 7.4 are only used to denote the positions of the wavefunctions for the
atom-ion pair to be discussed later in section 7.3.1.2. The crossings between the
ground trap state and the transversely excited bound state becomes avoided at
around d⊥/asc ≈ 1.007, the approximate position of the ICIR. If one presumes
a loss experiment involving a single ultracold neutral atom and an ion, when
an inelastic CIR is observed for example when the ratio of the trap length to
the scattering length is say 1.007, then the value of the scattering length can
be determined using this information.

In this example calculation, an isotropic transversal confinement trapping
has been used hence only a single resonance is observed due to the degeneracy
of the transversal excitation. If a transition is made to the nondegenerate
case, i. e., an anisotropic transverse confinement where ωx 6= ωy � ωz, then
a splitting of the resonance is observed in the eigenenergy spectrum. This
transition to anisotropic confinement can be applied in understanding the
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Figure 7.4: Eigenenergy spectrum of the full Hamiltonian for Li+2 pair confined
in identical sextic trapping potentials. The magnified view on the
right shows the avoided crossings that causes the inelastic CIRs.
For this particular example, the most pronounced resonance occurs
at d⊥/asc ≈ 1.007. Converged CI calculations were obtained using
the basis specifications given in Table E.8.

Figure 7.5: Sketch illustrating the transition from an anisotropic transverse
confinement (a) to the case of isotropic confinement (b).
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Figure 7.6: Cuts through the wavefunction density along the x-y plane
(|Ψ(z1, z2;x1 = x2 = y1 = y2 = 0|2) for the states labeled (a)-(d)
in Figure 7.4. The plots have been scaled by the trap length lz
along the z direction. In (a) and (d), the atom-ion pair are
unbound. When the two particles pass through the crossing
adiabatically, they transform into bound states, marked (b) and
(c) and they posses no c.m. excitations.

physical interpretation of the almost vertical blue line going through the
avoided crossing in Figure 7.4. To visualize how the almost vertical line arise,
consider the sketch shown in Figure 7.5. On the left side is a case of nondegerate
transverse excitation where the transversal confinement is anisotropic. As the
degeneracy is lifted, the bending curve (blue line in Figure 7.5 (a)) is squeezed
together until it becomes almost vertical (Figure 7.5 (b)) in the case of full
degeneracy of the transverse excitation i. e., when the particles are experience
a transverse isotropic confinement.
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7.3.1.2 Wavefunction analysis

To conclude the discussions about the sextic trap confinement, the behavior
of the ab initio wavefunctions are investigated for the states labeled (a) - (d)
in Figure 7.4. These states are expressed by their corresponding six-dimensional
wavefunctions in absolute coordinates as shown in Figure 7.6. The atom-ion
pair in the state labeled (a) in Figure 7.4 are unbound when the ratio of the
transversal confinement to scattering length d⊥/asc = 0.994. This is seen in
the cut though the trap state density along the z direction of the full 6D ab
initio wavefunction in the top panel (Figure 7.6 (a)). For this interaction
strength, the atom-ion pair exhibit a large probability to be off-diagonal i. e.,
they are separated from each other away from the trap elongation direction.
As the interaction strength reduces, the repulsion between the atom-ion pair
decreases and they get closer and closer forming a molecular bound state
at d⊥/asc = 1.013 (plot labeled (c)). The occupation of bound state is only
possible because the excess binding energy can be transferred into the center-
of-mass excitation energy [125, 129]. This redistribution of the binding energy
is an inelastic process and that is why the resonances induced by the c.m.-
rel. coupling are called inelastic CIRs [125]. From the states labeled (a) and (c),
one sees how the unbound atom-ion pair transforms into a bound pair after
passing through the crossing adiabatically. Similar observations hold for the
state labeled (b) and (d) where d⊥/asc = 1.003 and d⊥/asc = 1.019, respectively.
In this case, the bound atom-ion pair become unbound after crossing the
resonance. Noteworthy, the bound atom-ion pair (Figure 7.6 (b) and (c)) posses
no center-of-mass excitations in the z direction.

7.3.2 Quasi-1D harmonic trapping potential

In the following, the phenomena of inelastic CIRs is explored in atom-ion
systems within the harmonic approximation of the trapping potentials. The
coupling between the c.m. and rel. motions is achieved by considering two traps
with different frequencies. Even though the typical values of the frequency
in atom and ion traps are quite different, the considered coupling between
the c.m. and rel. is relatively weak. This is because the coupled Hamiltonian
matrices become much larger and harder to diagonalize with the increase in the
coupling. The chosen ratio between the ion and atom trap frequencies ωi/ωa of
1.4 and 2 considered here were chosen such that the computational efforts are
manageable.

To obtain the harmonic confinement for the atom and the ion, the sin2-like
potential (3.2) is Taylor expanded around the origin up to the second order.
The resulting form of the trap potential in c.m.-rel. coordinates takes a similar
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form as given in [144, 145] and is expressed as

V (R , r ) =
[
ma

2 ω2
a+

mi

2 ω2
i

]
R2+

[
ma

2 ω2
aµ

2
i+
mi

2 ω2
i µ

2
a

]
r2+µ (ω2

a−ω2
i )Rr (7.11)

where ω2
j = 2Ijαjk2

j/mj is the trap frequency for particle j, and the last term
is the coupling part. Clearly, the coupling is present whenever ωa 6= ωi. In
general, a difference in trap frequencies can be simulated by varying either the
polarizability, intensity, or wavelength. Since the model atom-ion interaction
considered involves homonuclear atoms, it is realistic to consider varying either
the wavelength or the intensity. Either way, since the inelastic CIR is a
phenomenon purely due to c.m.-rel. coupling, the results are independent of
which parameter is modified to simulate different frequencies of the two traps.
In the present case, the same intensity is used for both the atom and the ion
while varying the wavelength of the two traps.

A case similar to that of sextic confinement discussed above is considered,
i. e., an isotropic quasi-1D confinement with ωx = ωy = 10ωz. This is obtained
using harmonic potential with parameters Ix = Iy = 5000 W cm−2 and Iz = 50
W cm−2 for both the atom and the ion. A wavelength λ = 1000 nm for the
atom trap and λ = 500 nm for the ion trap results in a frequency difference
ωi/ωa = 2. The relative-motion eigenenergy spectrum shown in Figure 7.7 is
similar to that of the sextic trap (Figure 7.3). It has a single bound state (the
state bending downwards to negative infinity as asc → 0+) and trap states
represented by the almost horizontal lines. In Figure 7.8 the eigenenergy
spectrum for the full Hamiltonian incorporating the c.m.-rel. coupling is shown.
Again, the spectrum is similar to that of the sextic confinement and exhibits
an infinite number of c.m. excitations. Because the two particles are trapped at
different frequencies, the c.m. and rel. motions couple even within the harmonic
approximation leading to an inelastic CIR. This is shown in the zoomed part
on the right of Figure 7.8 where the coupling between rel. and c.m. motions
makes the crossings avoided leading to an inelastic CIR at d⊥/asc ≈ 1.078.

The existence of the inelastic CIR within harmonic approximation of the
trap potential further demonstrates that the ICIRs are universal and occur
whenever the c.m. and rel. motions do not separate. In Figure 7.9, a case
when the atom and ion are trapped in harmonic potentials whose frequencies
differ by a factor of 1.4 is presented. The potentials are modeled using the
wavelengths of 1000 nm and 714 nm for the atoms and ion traps, respectively,
and the same values of intensity I as the case of ωi/ωa = 2 above. For this
ratio, the eigenenergy spectrum Figure 7.9 shows an inelastic CIR located at
d⊥/asc ≈ 1.054. The ICIR occurs at slightly stronger repulsive interactions
when ratio ωi/ωa is 1.4 compared to when it is 2.0. Moreover, the resonance
when the ratio ωi/ωa = 2 is slightly broader (0.01145 ~ω⊥) compared to when
the ratio ωi/ωa = 1.4 which produces a resonance whose width is approximately
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Figure 7.7: Relative-motion energy spectrum of an atom-ion of 7Li+-7Li pair
confined in harmonic trap potentials with the frequency ratio
ωi/ωa = 2. The basis set used in the calculation is specified
in Table E.9.

0.00181 ~ω⊥. In general, a stronger c.m.-rel. motion coupling of the c.m. excited
bound states with trap states should lead to more broader inelastic resonances.
The dependence of the ICIR position on the frequency is similar to that of the
atom-ion elastic CIR that depends on the ratio of the masses. The wavefunction
analysis for harmonic confinement is analogous to those presented for the sextic
trap confinement in section 7.3.1. They are therefore not repeated. Finally, the
adiabatic spectrum for two neutral 7Li atoms confined in isotropic quasi-1D
harmonic traps whose frequencies differ by a factor of two is shown in Figure 7.10.
The inelastic CIR occurs at a larger ratio d⊥/asc ≈ 1.348 for the neutral atoms
compared to the atom-ion case where the resonance is at d⊥/asc ≈ 1.054. This
could be attributed to the long-range nature of atom-ion interactions compared
to the neutral atom case.

7.4 Conclusion and remarks

In conclusion, it has been demonstrated that inelastic confinement-induced
resonances are present in systems composed of ultracold neutral atoms and ions.
The resonances occur due to the c.m.-rel. coupling of trap states and center-of-
mass excited bound states. The coupling in the single-well potentials has been
explored by considering anharmonic sextic traps as well as harmonic traps with
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ωi/ωa = 1.4. The inelastic CIR occurs at d⊥/asc ≈ 1.054. The
basis set used in the calculation is specified in Table E.10.

1.25 1.3 1.35 1.4 1.45
d

⊥
/a

sc

2.155

2.16

2.165

2.17

2.175

E
 /

 h_

 ω
⊥

Figure 7.10: Ab initio energy spectrum for two neutral 7Li atoms confined
in isotropic quasi-1D harmonic trap with frequency between
the two traps differing by a factor of 2. The ICIR occurs at
d⊥/asc ≈ 1.348. The basis set used in the calculation is specified
in Table E.11.
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Chapter 8

Summary and Outlook
A theoretical model that allows for an accurate description of the controlled
motion of a single ion through an optical lattice with ultracold neutral atoms
was developed. The model eliminates the need to approximate the unknown
short-range interaction details of the atom-ion pair. This is achieved by treating
the interaction between the neutral atom and the ion using realistic interatomic
interaction potentials given by Born-Oppenheimer curves. The coupling between
center-of-mass and relative motion degrees of freedom due to the external
trapping potentials is incorporated in a configuration-interaction fashion to
solve the full six-dimensional Schrödinger equation.

The developed approach is based on the original model in [73]. However,
in the original, both ultracold particles (atoms) were supposed to be trapped in
optical lattices formed by the same standing laser fields. In order to simulate
trapping conditions for an atom-ion pair where the trapping frequencies are
generally different, the code was modified in such a way that the ion may be
trapped in a tighter ion trap, while the neutral atom is positioned in a (finite)
optical lattice. With this modification, it is possible to achieve different trap
geometries for the atom and the ion. A convergence study was performed
to explore the numerical stability of the code for various trapping frequency
ratios. By comparing the analytical and numerical ground state energy for
two noninteracting particles in harmonic trapping potentials with different
frequencies, it was found that the convergence of the numerical eigenvalues
improves with an increase of the CI basis. Furthermore, in order to account
for the coupling, all symmetries have to be considered while forming the CI
expansion. It was established that the coupled Hamiltonian matrices become
much larger and harder to diagonalize with the increase in the ratio between
the two traps.

A methodological achievement of the present study is the extension and
implementation of the original code to incorporate the spatial displacement
of the trap potentials. Even though higher and more efficient D∞h and C∞v
symmetries could have been used in the symmetry implementation in the code,
coding and implementing the C2v symmetry was reasonably not so demanding
because the original method that was designed for orthorhombic symmetry of
the optical lattice. Using this new code to study a system of ultracold neutral
atom and an ion in harmonic trap potentials
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The interaction between a neutral atom and a single ion was modeled using
the ungerade electronic state of Li+2 potentials recently published in [81]. The
choice for this particular state was motivated by the fact that it is shallow
supporting few bound states thus relatively less number of B splines are required
to describe the interaction range with this state. The other reason why this
state was chosen is because its s-wave scattering length value, calculated from
the point of intersection of extrapolated radial asymptotic wavefunction and
the r axis compares well with those reported in literature [45, 122]. A code was
developed to mimic the single-channel approach [100] for the Li+2 potentials.
This stage took a considerable amount of time while mapping the inner shift
to the corresponding scattering length values. It was established that the
construction of the complete potential curves has to be done carefully to obtain
a smooth fit between the short- and long-range parts of the interaction.

An application of the modified codes to the case of atom-ion systems was
performed in which the two particles are confined in separated harmonic trapping
potentials. The eigenenergy spectrum for the hybrid atom-ion system of the
7Li isotope reveals the expected trap-induced resonances. These resonances
show up as avoided crossings between the molecular and vibrational trap states
in the energy spectrum as a function of the trap separation. The findings are
consistent with other theoretical studies based on quantum defect theory [72]
thus validating the developed approach.

The other finding from the present study is the realization of the inelastic
confinement-induced resonances in atom-ion systems. It was shown that this
resonance exists even within harmonic approximation of the trapping potential
when the trap frequencies for the two particles are different. This inelastic
confinement-induced resonances could presently be useful in providing an
alternative means of controlling the atom-ion interactions since the s-wave
scattering regime has not been accessed experimentally. They could also offer
a means of producing molecular ions for species where sympathetic cooling is
not effective or possible.

Even though it was not feasible to simulate realistic atom-ion trapping like
in experiments where the frequencies of the two particles differ by several orders
of magnitude, the findings of the present study gives an overview on possible
trap frequencies that can be handled by the program. One perspective that
can be explored in future is how the inelastic confinement-induced resonances
behave when the trap potentials are displaced relative to each other. This
can be straightforwardly be performed without any modification to code. A
similar study could be on the influence of the trap-induced resonances from
the coupling of the center-of-mass and relative-motions. Generally, its observed
features should remain but, as established for the inelastic confinement-induced
resonances, the position and the size of the resonance are expected to change
for different frequency ratio. A model that predicts the position and widths
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of the resonance would be useful compared to performing the time consuming
and computationally demanding ab initio calculations.

Another interesting application where the method incorporating the trap
displacement can be used is simulating a system of neutral atoms in polarization-
synthesized optical lattices [117] where state-selective optical lattice shift can
be realized by varying the lattice spacing between the atoms such that they
are in different hyperfine states. This way, the lattice sites acts as storage and
shift registers in atom-sorting schemes [118]. The developed model can be used
to simulate a hybrid atom-ion simulator [55] where the quantum dynamics of
a neutral atom in a double-well potential interacting with an ion in a single
well can be investigated. The adiabatic simulation should in principle be
straightforward even though this was not investigated and the present studies
focused mainly on single-well potentials. Finally, a more natural extension of
the program for the displaced traps is to include time-dependence. This is
however not trivial but such an extension would go in hand in simulating for
example a universal quantum gate by calculating the paths diabatically. A
starting point could be the time-dependent extension of the original method [73]
provided in Ref. [146].
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Appendix A

Separation of the center of mass
coordinates for a N-electron
atom
Consider an atom (or an ion) whose nucleus has a charge Z and mass M , with
N electrons of mass m. The kinetic energy operator of the atom can be written
as

T̂ = − ~2

2M ∇
2
R0 +

N∑
i=1

(
− ~2

2m ∇
2
Ri

)
(A.1)

where R0 denote the coordinates of the nucleus with respect to a fixed origin
and Ri represent the coordinates of the electrons.

Introducing the relative-motion coordinates of the electrons with respect
to the nucleus according to,

ri = Ri −R0 , (A.2)

and the center-of-mass system of coordinates,

R = MR0 +mR1 +mR2 + · · ·+mRN

M +Nm
, (A.3)

in the expansion of the first order Laplace operators appearing in equation
(A.1), it can be shown using chain rule that

∇R0 =
(

M

M +Nm

)
∇R −

N∑
i=1
∇ri ≡ µM ∇R −

N∑
i=1
∇ri , (A.4)

∇Ri
=

(
m

M +Nm

)
∇R +∇ri ≡ µm∇R +∇ri , (A.5)

hence, the second order partial derivative become

∇2
R0 = µ2

M∇2
R − 2µM

N∑
i=1
∇R · ∇ri

+
(

N∑
i=0
∇ri

)2

(A.6)

∇2
Ri

= µ2
m∇2

R + 2µm∇R · ∇ri
+∇2

ri . (A.7)
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atom

Substituting the Laplace operator equations (A.6) and (A.7) into the kinetic
energy equation (A.1) gives

T̂ = − ~2

2M

µ2
M∇2

R − 2µM
N∑
i=1
∇R · ∇ri

+
(

N∑
i=0
∇ri

)2


+
N∑
i=1

− ~2

2m

(
µ2
m∇2

R + 2µm∇R · ∇ri
+∇2

ri

)
= −~2

2

 1
M +Nm

∇2
R +

N∑
i=1

1
µi
∇2

ri + 1
Mtot

N∑
i, j>i

∇ri · ∇rj︸ ︷︷ ︸
Ĥmp

 (A.8)

where, Mtot is the total mass of all nuclei, the first term identifies the kinetic
energy of the center-of-mass and the second term denotes the kinetic energy
of the individual independent particles, while the last term under the brace
is the mass polarization. The mass polarization is a kinetic energy correction
term that results from the coupling of correlated particle motion. For identical
particles, equation (A.8) reduces to that given in [147].

108



Appendix B

Spherical Harmonic Projections
The presentations given here are taken from the original work [73]. The contents
presented contains the details for calculating the projection coefficients of the
expansion of the spherical harmonics. The auxiliary functions of the spherical
harmonics are the same for both the original code reviewed in Chapter 3 and
the extension of the code to incorporate the trap displacement in Chapter 4.
For completeness the calculation details of these coefficients are reproduced in
this appendix.

Any function of angular arguments can be presented as

F (θ, φ) =
∞∑
l=0

l∑
m=−l

YlmtY
m
l (θ, φ) , (B.1)

with the coefficients Ylmt defined as

Ylmt = (−1)mAl−m
π∫

0

dθ

2π∫
0

dφ sin(θ)F (θ, φ)P−ml (cos(θ))e−imφ . (B.2)

There are three Ylmt coefficients for each Cartesian coordinate (index c):

Yx
lmt = (−1)mAl−m

π∫
0

dθ

2π∫
0

dφ sin(θ) cos2t(φ) sin2t(θ)

× P−ml (cos(θ))e−imφ , (B.3)

Yy
lmt = (−1)mAl−m

π∫
0

dθ

2π∫
0

dφ sin(θ) sin2t(φ) sin2t(θ)

× P−ml (cos(θ))e−imφ , (B.4)

Yz
lmt = (−1)mAl−m

π∫
0

dθ

2π∫
0

dφ sin(θ) cos2t(θ)

× P−ml (cos(θ))e−imφ. (B.5)

Using the Euler formula for cos2t(φ) together with the Binomial theorem,
Yx
lmt is evaluated as follows
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Yx
lmt = (−1)mAl−m

1
22t

2t∑
k=0

(
2t
k

) π∫
0

d θ sin(θ) sin2t(θ)P−ml (cos(θ))

×
2π∫
0

dφ ei(2k−2t−m)φ

= (−1)mAl−m
π

22t−1

2t∑
k=0

(
2t
k

) 1∫
−1

dx(1− x2)tP−ml (x)δ2k−2t−m, 0

= (−1)mAl−m
π

22t−1 2tt+ m

2

1∫
−1

dx(1− x2)tP−ml (x). (B.6)

Since the index k is an integer and 0 ≤ k ≤ 2t, then −2t ≤ m ≤ 2t and m is
always even. Since the integrand in the integral of (B.6) is symmetric around
zero in [−1, 1], then it is non-zero only if the integrand is a symmetric function.
If it is antisymmetric then it is zero. The parity property of the associated
Legendre function Pm

l (x) is the following. It is even if l + |m| is even and it is
odd if l+ |m| odd. Once m is even, then the only possible case is when l is even.
Physical restrictions on l are l ≥ 0 and |m| ≤ l. The functions P |m|≤l,|m|≤2t

l>2t (x)
are oscillatory and the contributions of the negative and the positive parts
of the integrand within the interval [−1, 1] are equal and the integral is zero.
Therefore, another restriction on l is l ≤ 2t. Such combination of l,m, t indices
allow for the analytical calculation of integral (B.6). Using the formula [148]

1∫
0

xλP2m(x)dx =
(−1)mΓ[m− 1

2λ]Γ[ 1
2 + 1

2λ]
2Γ[−1

2λ]Γ[m+ 3
2 + 1

2λ] , with [Reλ > −1] (B.7)
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and from the relations between gamma functions and the factorials one obtains

Yx
lmt = (−1)mAl−m

π

22t−1

(
2t

t+ m
2

)

×
π2−mΓ[t+ 1− 1

2m]Γ[t+ 1 + 1
2m]

Γ[t+ 1 + 1
2 l + 1

2 ]Γ[t+ 1− 1
2 l]Γ[ 1

2m+ 1
2 l + 1]Γ[ 1

2m−
1
2 l + 1

2 ]

= (−1)
l+m

2 2−m2 −t+2Al−m π

(
2t

t+ m
2

)
(t− m

2 )!(t+ m
2 )!(l −m− 1)!!

(t− l
2)!( l2 + m

2 )!(2t+ l + 1)!!
,

with (B.8)
l,m− even integers,
−2t ≤ m ≤ 2t,
|m| ≤ l,

l ≤ 2t. (B.9)

Here, due to the limitations on the indices, there are no “problematic”
Gamma functions. The last term in denominator is calculated with using
the formula [148]

Γ
[1
2 − n

]
= (−1)n 2n

√
π

(2n− 1)!! , n ≥ 0 ∈ Integers . (B.10)

For integral Yy
lmt derivation is the following

Yy
lmt = (−1)mAl−m

(−1)t
22t

2t∑
k=0

(
2t
k

)
(−1)2t−k

π∫
0

d θ sin(θ) sin2t(θ)

× P−ml (cos(θ))
2π∫
0

dφ ei(2k−2t−m)φ

= (−1)mAl−m
(−1)tπ
22t−1

2t∑
k=0

(
2t
k

)
(−1)2t−k

1∫
−1

dx(1− x2)t

× P−ml (x)δ2k−2t−m, 0

= (−1)mAl−m(−1)2t−m2
π

22t−1

(
2t

t+ m
2

) 1∫
−1

dx(1− x2)tP−ml (x)

= (−1)m2 Yx
lmt . (B.11)
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Appendix B. Spherical Harmonic Projections

Using equation (B.7) for Yz
lmt, one can derive

Yz
lmt = (−1)mAl−m

1∫
−1

dx x2tP−ml (x)
2π∫
0

dφ e−imφ

= Al0 4πδm,0
1∫

0

dx x2tP 0
l (x)

= Al02πδm,0
(−1) l2 Γ[ l2 −

1
22t]Γ[ 1

2 + 1
22t]

Γ[−1
22t]Γ[ l2 + 3

2 + 1
22t]

= Al0 2πδm,0
(−1) l2 Γ[ l2 − t]Γ[ 1

2 + t]
Γ[−t]Γ[ l2 + 3

2 + t]

= Al0 2π(−1) l2 δm,0
Γ[ 1

2 + t]
l/2−1∏
i=0

(−t+ i)

Γ[ l2 + 3
2 + t]

= Al0 (−1) l2πδm,0
2 l

2 +2(2t− 1)!!
(l + 2t+ 1)!!

l/2−1∏
i=0

(−t+ i) . (B.12)

Here, the formula
P−ml = (−1)m (l −m)!

(l +m)!P
m
l (B.13)

is applied to Γ
[
−t+ l

2

]
because l

2 is a natural number. l is even because x2t

is an even function and the Legendre polynomial must also be even. Due to the
symmetry of the integrand, the limitation on l index is l ≤ 2t. For the coupling
terms (4.9), the expansion coefficients are the same for the terms R2k

c r
2t
c and

different for R2i+1
c r2j+1

c . There are three new coefficients to be derived:

Ỹx
lmj = (−1)mAl−m

π∫
0

dθ

2π∫
0

dφ sin(θ) cos2j+1(φ) sin2j+1(θ)

× P−ml (cos(θ))e−imφ , (B.14)

Ỹy
lmj = (−1)mAl−m

π∫
0

dθ

2π∫
0

dφ sin(θ) sin2j+1(φ) sin2j+1(θ)

× P−ml (cos(θ))e−imφ , (B.15)

Ỹz
lmj = (−1)mAl−m

π∫
0

dθ

2π∫
0

dφ sin(θ) cos2j+1(θ)

× P−ml (cos(θ))e−imφ. (B.16)

112



Applying Euler formula for cos2j+1(φ) and Binomial theorem, the coefficient
Ỹx
lmj can be found after evaluation of the following integral

Ỹx
lmj = (−1)mAl−m

1
22j+1

2j+1∑
k=0

(
2j + 1
k

) π∫
0

dθ sin (θ) sin2j+1(θ)P−ml (cos(θ))

×
2π∫
0

dφ eikφe−i(2j+1−k)φe−imφ(−1)mAl−m
1

22j+1

2j+1∑
k=0

(
2j + 1
k

)

×
1∫
−1

dx(1− x2)j+ 1
2P−ml (x)× 2π δ2k−2j−m−1,0

= (−1)mAl−m
π

22j

(
2j + 1
j + m+1

2

) 1∫
−1

dx (1− x2)j+ 1
2P−ml (x) . (B.17)

• Since 0 ≤ k ≤ 2j+1 is an integer, then m can only be an odd integer −2j−
1 ≤ m ≤ 2j + 1.

• Since (1− x2)j+1 is an even function in [−1, 1], then l+ |m| must be even
therefore l is odd.

• Character of integrand is such that negative and positive contributions of
constituent functions give zero overlap in the integration interval when
l > 2j + 1.

With these limitation of indices, the formula (B.7) can be applied leading to
the equation

Ỹx
lmj = (−1)mAl−m

π

22j

(
2j + 1
j + m+1

2

)

×
π2mΓ[j + 3

2 + m
2 ]Γ[j + 3

2 −
m
2 ]

Γ[j + l
2 + 2]Γ[j + 3

2 −
l
2 ]Γ[−m

2 + l
2 + 1]Γ[−m

2 −
l
2 + 1

2 ]

= (−1)mAl−m(−1)
l−m

2
π

22j

(
2j + 1
j + m+1

2

)

×
2

2j+3−m
2 (2j + 1−m

2 )!(2j + 1 +m

2 )!(l −m− 1)!!

(2j + l + 2)!!(2j+1−l
2 )!(m+l

2 )!
. (B.18)

Again, due to limitations for indices there are no problematic gamma functions
and factorials. For integral Ỹy

lmj derivations are similar giving to the following
result

Ỹy
lmj = i (−1)

m−3
2 Ỹx

lmj , (B.19)
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with the same limitations for indices for Ỹx
lmj. Finally for the z component

coefficient is

Ỹz
lmj = Al02πδm,0

1∫
−1

dx x2j+1P 0
l (x) = Al04πδm,0

1∫
0

dx x2j+1P 0
l (x)

= Al04πδm,0(−1) l−1
2

Γ[−j + l−1
2 ]Γ[j + 3

2 ]
2Γ[−j]Γ[ l2 + j + 2]

= Al04πδm,0(−2) l−1
2

(2j + 1)!!
(2j + l + 2)!!

l−3
2∏
i=0

(−j + i) . (B.20)
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Appendix C

Matrix elements
The contents presented in this appendix are taken from section 3 (a) in [73].
The extension of the original method to incorporate the spatial separation
of the trap potential affects only the trapping potential component of the
code. The other parts remain the same and they are given in this appendix for
completeness purposes.

After the transformation to spherical coordinates, the matrices
corresponding to the eigenvalue problems in equations (3.13), (3.14), and
(3.17) are

hrel.
a,a′ = 〈ϕa|ĥrel.|ϕa′〉 , srel.

a,a′ = 〈ϕa|ϕa′〉 , (C.1)
hc.m.

b,b′ = 〈ψb|ĥc.m.|ψb′〉 , sc.m.
b,b′ = 〈ψb|ψb′〉 (C.2)

and
Hκ,κ′ = 〈Φκ|Ĥ|Φκ′〉. (C.3)

The overlap matrix elements between configurations is

Sκ,κ′ = 〈Φκ|Φκ′〉
= 〈ϕiκψjκ |ϕiκ′ψjκ′ 〉 = δi

κ
,iκ′

δj
κ
,jκ′

= δκ,κ′ . (C.4)

For compactness reasons, the integrals over B splines and their derivatives are
denoted as

Bλ∂µα∂να′ =
∞∫
0

dr rλ
∂µBα(r)
∂rµ

∂νBα′(r)
∂rν

(C.5)

and

Bλ∂µβ ∂νβ′ =
∞∫
0

dRRλ∂
µBβ(R)
∂Rµ

∂νBβ′(R)
∂Rν

(C.6)

for c.m. and rel. motion, respectively. The integrals that occur in the
Hamiltonian are described in the following.
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Appendix C. Matrix elements

C.1 Overlap

The overlap matrices between the basis functions of the center-of-mass and
relative motions are not identity because of the nonorthogonality of B Splines.
They are given by

srel.
a,a′ = Bαα′

∫
Ω
dΩY m

l
∗(θ, φ)Y m′

l′ (θ, φ) = Bαα′δll′δmm′ (C.7)

and, similarly,
sc.m.

b,b′ = Bββ′δLL′δMM ′ . (C.8)

C.2 Kinetic energy

Using the solutions of the angular momentum squared operators of the
spherical harmonics, Î2

rel.Y
m
l (θ, φ) = l(l + 1)Y m

l (θ, φ) and Î2
c.m.Y

M
L (Θ,Φ) =

L(L+ 1)Y M
L (Θ,Φ), the kinetic-energy operators for the relative motions is

trel.
a,a′ = − 1

2µ B∂2αα′ δll′δmm′ +
1

2µl(l + 1)B−2
αα′ δll′δmm′

= 1
2µ

(
B∂1α∂1α′ + l(l + 1)B−2

αα′

)
δll′δmm′ (C.9)

and analogously

tc.m.b,b′ = 1
2M

(
B∂1β ∂1β′ + L(L+ 1)B−2

ββ′

)
δLL′δMM ′ (C.10)

for the center-of-mass motion.

C.3 Interparticle interaction

The matrix elements of the interparticle interaction potential are

ua,a′ = δll′δmm′

∞∫
0

dr u(r)Bα(r)Bα′(r) . (C.11)
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C.4. Trap potential

C.4 Trap potential

Using the identity Y mt
lt
∗ (θ, φ) = (−1)mt Y −mtlt

(θ, φ), the product of two spherical
harmonics can be expressed as a sum of products between a spherical harmonic
and the 3j-Wigner symbols,

Y m
l (θ, φ)Y mt

lt
(θ, φ) =

∑
lt,mt

A0
lt l lt

(
lt l lt
mt m mt

)(
lt l lt
0 0 0

)
Y mt
lt
∗(θ, φ) (C.12)

where the coefficient Aa
b c d is defined in equation (4.41).

The Gaunt coefficient is then obtained as [149, 150]
∫

Ω
dΩY m

l (θ, φ)Y mt
lt

(θ, φ)Y m′

l′
∗(θ, φ) =

∑
lt,mt

Amt
lt l lt

(
lt l lt
mt m mt

)(
lt l lt
0 0 0

)

×
∫

Ω
dΩY −mtlt

(θ, φ)Y m′

l′
∗(θ, φ)︸ ︷︷ ︸

δltl′ δ−mtm′

= Am′

lt l l′

(
lt l l′

mt m −m′
)(

lt l l′

0 0 0

)
. (C.13)

Using equation (C.13), the angular parts for the matrix elements of the c.m. and
rel. motion trapping potential equations (3.6) and (3.7) can be calculated
according to

V c.m.
b,b′ = −1

2

2∑
s=1

∑
c=x,y,z

V s
c

n∑
k=1

Ccos
0kcs B2k

β β′

2k∑
Lk=0,{2}

Lk∑
Mk=−Lk,{2}

× Yc
LkMkk

AM ′

Lk LL′

(
Lk L L′

Mk M −M ′

)(
Lk L L′

0 0 0

)
(C.14)

and

vrel.
a,a′ = −1

2

2∑
s=1

∑
c=x,y,z

V s
c

n∑
t=1

Ccos
t0cs B2t

αα′

2t∑
lt=0,{2}

lt∑
mt=−lt,{2}

× Yc
ltmttA

m′

lt l l′

(
lt l l′

mt m −m′
)(

lt l l′

0 0 0

)
(C.15)

for the c.m. and rel. matrix elements, respectively. The relative overlap and
Hamiltonian matrices in equation (C.1) can then be obtained using equations
(C.7), (C.9), (C.11), and (C.15). Using these matrices in the eigenvalue
equation (3.14) yields the uncoupled eigenenergies and eigenfunctions of the
rel. motion after diagonalization. Similarly, equations (C.8), (C.10), and (C.14)
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provide the overlap and Hamiltonian matrices in equation (3.13), thus the
eigenenergies and eigenfunctions of the uncoupled c.m. motion can be found.

C.5 Matrix elements of the coupled
Hamiltonian

The total Hamiltonian is given by the sum of the uncoupled Hamiltonians of
rel. and c.m. motion, and the coupling term Ŵ (3.10). The contributions of
the separated parts is given by

〈Φκ|ĥc.m. + ĥrel.|Φκ′〉 = 〈ϕiκψjκ |ĥc.m. + ĥrel.|ϕiκ′ψjκ′ 〉
= (εrel.

iκ + εc.m.jκ ) δi
κ
,iκ′

δj
κ
,jκ′

. (C.16)

The Hamiltonian matrix elements Hκ,κ′ in equation (C.3) is obtained after
determining the coupling matrix Ŵ
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C.5. Matrix elements of the coupled Hamiltonian

Wκ,κ′ = 1
2

2∑
s=1

∑
c=x,y,z

V s
c

(−1)ηs
n−1∑
j=0

(−1)j (2kcµηs)2j+1

(2j + 1)!

Nr−1∑
α=2

Nl∑
l=0

l∑
m=−l

c̃rel.
pκ,a

×
Nr−1∑
α′=2

Nl∑
l′=0

l∑
m′=−l

c̃rel.
pκ′ ,a′ B

2j+1
αα′

2j+1∑
lj=1,{2}


[
Ỹc
lj0j

(
lj l l′

0 m m′

)

+
lj∑

mj=−lj ,{2}
Ỹc
ljmjj

(
lj l l′

mj m −m′
)]

Am′

lj ll′

(
lj l l′

0 0 0

)
×

n−1−j∑
i=0

(−1)i (2kc)
2i+1

(2i+ 1)!

NR−1∑
β=2

NL∑
L=0

L∑
M=−L

c̃c.m.
qκ,b

NR−1∑
β′=2

NL∑
L′=0

L′∑
M ′=−L′

c̃c.m.
qκ′ ,b′

× B2i+1
β β′

2i+1∑
Li=1,{2}


[
Ỹc
Li0i

(
Li L L′

0 M M ′

)

+
Li∑

Mi=−Li,{2}
Ỹc
LiMii

(
Li L L′

Mi M −M ′

)]
AM ′

LiLL′

(
Li L L′

0 0 0

)
−

n∑
t=1

(−1)t (2kcµηs)
2t

(2t)!

Nr−1∑
α=2

Nl∑
l=0

l∑
m=−l

c̃rel.
pκ,a

Nr−1∑
α′=2

Nl∑
l′=0

l∑
m′=−l

c̃rel.
pκ′ ,a′ B

2t
αα′

×
2t∑

lt=0,{2}

lt∑
mt=−lt,{2}

Yc
ltmttA

m′

ltll′

(
lt l l′

mt m −m′
)(

lt l l′

0 0 0

)

×
n−t∑
k=1

(−1)k (2kc)2k

(2k)!

NR−1∑
β=2

NL∑
L=0

L∑
M=−L

c̃c.m.
qκ,b

NR−1∑
β′=2

NL∑
L′=0

L′∑
M ′=−L′

c̃c.m.
qκ′ ,b′ B

2k
β β′

×
2k∑

Lk=0,{2}

Lk∑
Mk=−Lk,{2}

Yc
LkMkk

AM ′

LkLL′

(
Lk L L′

Mk M −M ′

)(
Lk L L′

0 0 0

) .
(C.17)
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Appendix D

Code Description
This appendix contains the details of the input files for the orbital and
configuration interaction codes described in section 3.3. Examples of how to
control the programs are presented in the following sections. More instructions
can be obtained from the script files that run the programs and the input files
in the corresponding code directories.

D.1 Orbital calculations

This part of the program is located in ∼/TwoAtInOL/d2h/orbit and can be
launched from the console using for example the following command line

otagsd2h.csh Li7Li7_b_x20000_y20000_z20000_110rm8g1l0m0_110CM8g1L0M0 no_interaction
Li7a164_Li7a164_k1_1000_1000_1000_k2_1000_1000_1000_i1_1000_1000_1000_i2_1000_1000_1000_222_222
D V m64 X clea
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D.1.1 Basis file

TwoAtInOL/d2h/orbit/basis/
Li7Li7_b_x20000_y20000_z20000_110rm8g1l0m0_110CM8g1L0M0.dba

*********************************************************************
*
START

*-----
*
BASIS SPECIFICATION:

*--------------------
*
Maximum value of x : 20000 !Box in x (in a.u)
Maximum value of y : 20000 !Box in y (in a.u)
Maximum value of z : 20000 !Box in z (in a.u)
Order of the B-spline for r : 8
Number of B-splines for r : 110
Type of knot vector for r : 1 !1 linear
Parameter for the grid specification : 15.50
Maximum value of the angular momentum l : 0

*
Order of the B-spline for R : 8
Number of B-splines for R : 110
Type of knot vector for R : 1 !1 linear
Parameter for the grid specification : 15.50
Maximum value of the angular momentum L : 0

*
Maximum value of the angular momentum m : 0 !r.m. angular momentum
Maximum value of the angular momentum M : 0 !c.m. angular momentum

*
PARAMETERS OF THE ATOMS:

*-----------------------
Statistics : 2 !Bosons
Name of the first element : Li7
Name of the second element : Li7
Mass of the first particle : 7.01600455 !In Daltons
Mass of the second particle : 7.01600455 !In Daltons

*
PARAMETERS OF THE MOLECULAR POTENTIAL:

*--------------------------------------
Range of rotational quantum numbers J (begin, end) : 0 0
Electronic angular and spin momenta (projected on z) : 0 0

*
END

*********************************************************************
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D.1. Orbital calculations

D.1.2 Generic trap potential input file

The Taylor expansion coefficient file have the following structure.

Name o f atom 1
Name o f atom 2
P o l a r i z a b i l i t y o f atom 1
P o l a r i z a b i l i t y o f atom 2
Tota l number o f c o e f f i c i e n t s
Order o f the Tay lo r e x p a n s i o n t r a p 1 i n the x d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 1 i n the y d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 1 i n the z d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 2 i n the x d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 2 i n the y d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 2 i n the z d i r e c t i o n
C o e f f i c i e n t o f o r d e r 0 i n X ( c .m. )
C o e f f i c i e n t o f o r d e r 1 i n X ( c .m. )
C o e f f i c i e n t o f o r d e r 2 i n X ( c .m. )
C o e f f i c i e n t o f o r d e r 3 i n X ( c .m. )

...
C o e f f i c i e n t o f o r d e r 0 i n x ( r e l . )
C o e f f i c i e n t o f o r d e r 1 i n x ( r e l . )
C o e f f i c i e n t o f o r d e r 2 i n x ( r e l . )
C o e f f i c i e n t o f o r d e r 3 i n x ( r e l . )

...
C o e f f i c i e n t o f o r d e r 0 i n Y ( c .m. )
C o e f f i c i e n t o f o r d e r 1 i n Y ( c .m. )
C o e f f i c i e n t o f o r d e r 2 i n Y ( c .m. )
C o e f f i c i e n t o f o r d e r 3 i n Y ( c .m. )

...
C o e f f i c i e n t o f o r d e r 0 i n y ( r e l . )
C o e f f i c i e n t o f o r d e r 1 i n y ( r e l . )
C o e f f i c i e n t o f o r d e r 2 i n y ( r e l . )
C o e f f i c i e n t o f o r d e r 3 i n y ( r e l . )

...
C o e f f i c i e n t o f o r d e r 0 i n Z ( c .m. )
C o e f f i c i e n t o f o r d e r 1 i n Z ( c .m. )
C o e f f i c i e n t o f o r d e r 2 i n Z ( c .m. )
C o e f f i c i e n t o f o r d e r 3 i n Z ( c .m. )

...
C o e f f i c i e n t o f o r d e r 0 i n z ( r e l . )
C o e f f i c i e n t o f o r d e r 1 i n z ( r e l . )
C o e f f i c i e n t o f o r d e r 2 i n z ( r e l . )
C o e f f i c i e n t o f o r d e r 3 i n z ( r e l . )

...
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The following is an example of coefficient file for harmonic trap with
λ = I = 1000 in x, y, and z directions. The wavelength is in units of
nanometer (nm) while the units of intensity is W cm−2. The Taylor expansion
coefficients are given by the set of equations (3.9).

TwoAtInOL/d2h/orbit/trap/
Li7a164_Li7a164_k1_1000_1000_1000_k2_1000_1000_1000_i1_1000_1000_1000_i2_1000_1000_1000_222_222.coeff

Li7 ! Name of the first element
Li7 ! Name of the second element
164 ! Polarizability of first element
164 ! Polarizability of second element
18 ! Total number of coefficients
2 ! Maximum order Taylor expansion trap 1 in the x direction
2 ! Maximum order Taylor expansion trap 1 in the y direction
2 ! Maximum order Taylor expansion trap 1 in the z direction
2 ! Maximum order Taylor expansion trap 2 in the x direction
2 ! Maximum order Taylor expansion trap 2 in the y direction
2 ! Maximum order Taylor expansion trap 2 in the z direction
5.6336802026899768970564322670943953394923870242355e-18
0
0
1.4084200506724942242641080667735988348730967560589e-18
0
0
5.6336802026899768970564322670943953394923870242355e-18
0
0
1.4084200506724942242641080667735988348730967560589e-18
0
0
5.6336802026899768970564322670943953394923870242355e-18
0
0
1.4084200506724942242641080667735988348730967560589e-18

These coefficients are calculated using a Mathematica script located in
TwoAtInOL/d2h/input files/mathematica coeff script
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D.1.3 Orbital sample calculation

The output from the orbital calculations using the basis and the generic
trap potential in sections D.1.1 and D.1.2, respectively, corresponding to the
command line given at the beginning of the section D.1 is shown below.

REL VECTOR LENGTH: 108
COM VECTOR LENGTH: 108

diagonalization took: 0 s.
rm:Ag

1 1.50000000000000 3.148200444094844E-011
2 3.50000000000037 7.345801036222093E-011
3 5.50000000000845 1.154340162836552E-010
4 7.50000000008834 1.574100222065966E-010
5 9.50000000060652 1.993860281387368E-010
6 11.5000000031319 2.413620341130038E-010
7 13.5000000131166 2.833380402438285E-010
8 15.5000000468122 3.253140468722967E-010
9 17.5000001473125 3.672900549028619E-010

10 19.5000004188899 4.092660665239930E-010

diagonalization took: 0 s.
CM:Ag

1 1.50000000000000 3.148200444094854E-011
2 3.50000000000044 7.345801036222244E-011
3 5.50000000000855 1.154340162836573E-010
4 7.50000000008829 1.574100222065955E-010
5 9.50000000060642 1.993860281387347E-010
6 11.5000000031318 2.413620341130025E-010
7 13.5000000131167 2.833380402438302E-010
8 15.5000000468124 3.253140468722990E-010
9 17.5000001473127 3.672900549028644E-010

10 19.5000004188899 4.092660665239939E-010

The eigenvalues in the first columns have been scaled using the harmonic
oscillator trap frequency ~ωrel for rel. motion and ~ωc.m. for c.m. values while
the second column are the unscaled energies in Hartree for this example of
l = m = 0 only the Ag symmetry results are present. The analytical values
for an isotropic 3D harmonic oscillator is

(
n+ 3

2

)
~ω where n = 0, 1, 2, · · · as

shown below (the c.m. and rel. motion eigenvalue are the same).

1 1.50000000000000 3.148200444094851E-011
2 3.50000000000000 7.345801036221318E-011
3 5.50000000000000 1.154340162834779E-010
4 7.50000000000000 1.574100222047425E-010
5 9.50000000000000 1.993860281260072E-010
6 11.5000000000000 2.413620340472719E-010
7 13.5000000000000 2.833380399685366E-010
8 15.5000000000000 3.253140458898012E-010
9 17.5000000000000 3.672900518110659E-010

10 19.5000000000000 4.092660577323306E-010
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D.2 Configuration-interaction calculations

Program is located in ∼/TwoAtInOL/d2h/config and can be launched with
the command

citaold2hm.csh Li7Li7_b_x20000_y20000_z20000_110rm8g1l0m0_110CM8g1L0M0
no_interaction Li7a164_Li7a164_kx1000_ky1000_kz1000_ix1000_iy1000_iz1000
sin sin sin 2 2 2 Ag_vs_Li7Li7_1-10_1_10 D V m64 X clea

D.2.1 Configuration input file

TwoAtInOL/d2h/config/input/Ag_vs_Li7Li7_1-10_1_10.dci

******************************************************
*

ACTIVE ORBITALS:
*-----------------
*

RELATIVE COORDINATE:
*--------------------

ag: [1->10] ! include Ag r.m. eigenstates 1 to 10
b1g: [0]
b2g: [0]
b3g: [0]
au: [0]
b1u: [0]
b2u: [0]
b3u: [0]

*
CENTER-OF-MASS COORDINATE:

*--------------------------
Ag: [1->10] ! include Ag c.m. eigenstates 1 to 10
B1g: [0]
B2g: [0]
B3g: [0]
Au: [0]
B1u: [0]
B2u: [0]
B3u: [0]

*
END

******************************************************
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D.2.2 CI sample calculation

The CI results from the configuration input file given above for the orbital
calculations in section D.1.3 is given below.

CI VECTOR LENGTH: 100
NUMBER OF rm ACTIVE ORBITALS: 10
NUMBER OF CM ACTIVE ORBITALS: 10

diagonalization took: 0 s.

1 3.00000000000000 6.296400888189698E-011
2 5.00000000000037 1.049400148031695E-010
3 5.00000000000044 1.049400148031709E-010
4 7.00000000000081 1.469160207244434E-010
5 7.00000000000845 1.469160207246038E-010
6 7.00000000000855 1.469160207246057E-010
7 9.00000000000889 1.888920266458776E-010
8 9.00000000000892 1.888920266458782E-010
9 9.00000000008829 1.888920266475440E-010

10 9.00000000008834 1.888920266475451E-010
11 11.0000000000170 2.308680325673125E-010
12 11.0000000000887 2.308680325688165E-010
13 11.0000000000888 2.308680325688190E-010
14 11.0000000006064 2.308680325796831E-010
15 11.0000000006065 2.308680325796853E-010
16 13.0000000000967 2.728440384902507E-010
17 13.0000000000969 2.728440384902538E-010
18 13.0000000006068 2.728440385009556E-010
19 13.0000000006070 2.728440385009592E-010
20 13.0000000031318 2.728440385539510E-010

The analytical eigenvalues for the full Hamiltonian is the total of the c.m. and
rel. motion eigenvalues since there is no coupling. They are given below where
the first column has been scaled by the rel. motion trap frequency.

1 3.00000000000000 6.296400888189701E-11
2 5.00000000000000 1.049400148031617E-10
3 5.00000000000000 1.049400148031617E-10
4 7.00000000000000 1.469160207244264E-10
5 7.00000000000000 1.469160207244264E-10
6 7.00000000000000 1.469160207244264E-10
7 9.00000000000000 1.888920266456910E-10
8 9.00000000000000 1.888920266456910E-10
9 9.00000000000000 1.888920266456910E-10

10 9.00000000000000 1.888920266456910E-10
11 11.0000000000000 2.308680325669557E-10
12 11.0000000000000 2.308680325669557E-10
13 11.0000000000000 2.308680325669557E-10
14 11.0000000000000 2.308680325669557E-10
15 11.0000000000000 2.308680325669557E-10
16 13.0000000000000 2.728440384882204E-10
17 13.0000000000000 2.728440384882204E-10
18 13.0000000000000 2.728440384882204E-10
19 13.0000000000000 2.728440384882204E-10
20 13.0000000000000 2.728440384882204E-10
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D.3 C2v Program

The run procedure for both the orbital and the CI calculation for the
new programs otagsc2vm and citagsc2vm are similar like the one for D2h
symmetry adapted codes described in the previous section. The two programs
correspondingly solves the orbital and configuration-interaction parts of the
problem. The basis file structure for this new code is exactly the same as
that described in section D.1.1. The trap potential form is also similar to the
generic version in section D.1.2 but includes the trap separation component as
shown below.

Name o f atom 1
Name o f atom 2
P o l a r i z a b i l i t y o f atom 1
P o l a r i z a b i l i t y o f atom 2
Tota l number o f c o e f f i c i e n t s
Order o f the Tay lo r e x p a n s i o n t r a p 1 i n the x d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 1 i n the y d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 1 i n the z d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 2 i n the x d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 2 i n the y d i r e c t i o n
Order o f the Tay lo r e x p a n s i o n t r a p 2 i n the z d i r e c t i o n
Trap s e p a r a t i o n i n z d i r e c t i o n
C o e f f i c i e n t o f o r d e r 0 i n X ( c .m. )
C o e f f i c i e n t o f o r d e r 1 i n X ( c .m. )
C o e f f i c i e n t o f o r d e r 2 i n X ( c .m. )
C o e f f i c i e n t o f o r d e r 3 i n X ( c .m. )

...
C o e f f i c i e n t o f o r d e r 0 i n x ( r e l . )
C o e f f i c i e n t o f o r d e r 1 i n x ( r e l . )
C o e f f i c i e n t o f o r d e r 2 i n x ( r e l . )
C o e f f i c i e n t o f o r d e r 3 i n x ( r e l . )

...
C o e f f i c i e n t o f o r d e r 0 i n Y ( c .m. )
C o e f f i c i e n t o f o r d e r 1 i n Y ( c .m. )
C o e f f i c i e n t o f o r d e r 2 i n Y ( c .m. )
C o e f f i c i e n t o f o r d e r 3 i n Y ( c .m. )

...
C o e f f i c i e n t o f o r d e r 0 i n y ( r e l . )
C o e f f i c i e n t o f o r d e r 1 i n y ( r e l . )
C o e f f i c i e n t o f o r d e r 2 i n y ( r e l . )
C o e f f i c i e n t o f o r d e r 3 i n y ( r e l . )

...
C o e f f i c i e n t o f o r d e r 0 i n Z ( c .m. )
C o e f f i c i e n t o f o r d e r 1 i n Z ( c .m. )
C o e f f i c i e n t o f o r d e r 2 i n Z ( c .m. )
C o e f f i c i e n t o f o r d e r 3 i n Z ( c .m. )

...
C o e f f i c i e n t o f o r d e r 0 i n z ( r e l . )
C o e f f i c i e n t o f o r d e r 1 i n z ( r e l . )
C o e f f i c i e n t o f o r d e r 2 i n z ( r e l . )
C o e f f i c i e n t o f o r d e r 3 i n z ( r e l . )

...
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D.3. C2v Program

These coefficients are calculated using Mathematica script located in
TwoAtInOL/c2v/input files/mathematica coeff script for the C2v code.
The following commands

TwoAtInOL/c2v/orbit> otagsc2vm.csh Li7Li7_b_x20000_y20000_z20000_110rm8g1l0m0_110CM8g1L0M0 no_interaction
Li7a164_Li7a164_k1_1000_1000_1000_k2_1000_1000_1000_i1_1000_1000_1000_i2_1000_1000_1000_222_222_d4000
D V m64 X clea

TwoAtInOL/c2v/config> citagsc2vm.csh Li7Li7_b_x20000_y20000_z20000_110rm8g1l0m0_110CM8g1L0M0 no_interaction
Li7a164_Li7a164_k1_1000_1000_1000_k2_1000_1000_1000_i1_1000_1000_1000_i2_1000_1000_1000_222_222_d4000
Ag_vs_Li7Li7_1-10_1_10 D V m64 X clea

can be used as an example, for performing the orbital and CI calculations,
respectively. Sample input file for the generic trap potential for two harmonic
traps separated by a distance of 4000 a0 along the z direction takes the
following structure.

L i7 ! Name o f the f i r s t e l ement
L i 7 ! Name o f the second e lement
164 ! P o l a r i z a b i l i t y o f f i r s t e l ement
164 ! P o l a r i z a b i l i t y o f second e lement
18 ! Tota l number o f c o e f f i c i e n t s
2 ! Maximum o r d e r Tay lo r e x p a n s i o n t r a p 1 i n the x d i r e c t i o n
2 ! Maximum o r d e r Tay lo r e x p a n s i o n t r a p 1 i n the y d i r e c t i o n
2 ! Maximum o r d e r Tay lo r e x p a n s i o n t r a p 1 i n the z d i r e c t i o n
2 ! Maximum o r d e r Tay lo r e x p a n s i o n t r a p 2 i n the x d i r e c t i o n
2 ! Maximum o r d e r Tay lo r e x p a n s i o n t r a p 2 i n the y d i r e c t i o n
2 ! Maximum o r d e r Tay lo r e x p a n s i o n t r a p 2 i n the z d i r e c t i o n
4000 ! Trap s e p a r a t i o n i n z d i r e c t i o n
2.2534720810759907588225729068377581357969548096942 e−11
0
5.6336802026899768970564322670943953394923870242355 e−18
0
0
1.4084200506724942242641080667735988348730967560589 e−18
2.2534720810759907588225729068377581357969548096942 e−11
0
5.6336802026899768970564322670943953394923870242355 e−18
0
0
1.4084200506724942242641080667735988348730967560589 e−18
2.2534720810759907588225729068377581357969548096942 e−11
0
5.6336802026899768970564322670943953394923870242355 e−18
−1.1267360405379953794112864534188790678984774048471 e−14
0
1.4084200506724942242641080667735988348730967560589 e−18

129





Appendix E

Basis Sets
Relative motion basis set

B splines
Number 240
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 60
mmax 0

Center-of-mass motion basis set
B splines

Number 160
Order 8
Knot sequence linear

Spherical harmonics
LMAX 60
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 40000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Table E.1: Basis set No. E.1.
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Relative motion basis set
B splines

Number 240
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 60
mmax 0

Center-of-mass motion basis set
B splines

Number 240
Order 8
Knot sequence linear

Spherical harmonics
LMAX 60
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 40000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Configuration interaction
Relative motion active orbitals

Number of bound states 1
Total number of states 20
Symmetry a1

Center-of-mass active orbitals
A1 symmetry 20

Table E.2: Basis set No. E.2.
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Relative motion basis set
B splines

Number 200
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 0
mmax 0

Center-of-mass motion basis set
B splines

Number 200
Order 8
Knot sequence linear

Spherical harmonics
LMAX 0
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 20000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Table E.3: Basis set No. E.3.
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Relative motion basis set
B splines

Number 240
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 50
mmax 0

Center-of-mass motion basis set
B splines

Number 160
Order 8
Knot sequence linear

Spherical harmonics
LMAX 50
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 40000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Table E.4: Basis set No. E.4.

134



Relative motion basis set
B splines

Number 240
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 60
mmax 0

Center-of-mass motion basis set
B splines

Number 160
Order 8
Knot sequence linear

Spherical harmonics
LMAX 60
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 40000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Table E.5: Basis set No. E.5.
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Relative motion basis set
B splines

Number 240
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 80
mmax 0

Center-of-mass motion basis set
B splines

Number 180
Order 8
Knot sequence linear

Spherical harmonics
LMAX 80
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 40000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Table E.6: Basis set No. E.6.
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Relative motion basis set
B splines

Number 240
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 100
mmax 0

Center-of-mass motion basis set
B splines

Number 180
Order 8
Knot sequence linear

Spherical harmonics
LMAX 100
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 40000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Table E.7: Basis set No. E.7.
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Relative motion basis set
B splines

Number 160
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 60
mmax 0

Center-of-mass motion basis set
B splines

Number 100
Order 8
Knot sequence linear

Spherical harmonics
LMAX 60
MMAX 0

Box size and atomic specification
Box size [a.u.]

√
12 · 15000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Configuration interaction
Relative motion active orbitals

Number of bound states 1
Total number of states 100
Symmetry ag

Center-of-mass active orbitals
Ag symmetry 41

Table E.8: Basis set No. E.8.
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Relative motion basis set
B splines

Number 180
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 70
mmax 2

Center-of-mass motion basis set
B splines

Number 100
Order 8
Knot sequence linear

Spherical harmonics
LMAX 70
MMAX 2

Box size and atomic specification
Box size [a.u.]

√
12 · 15000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Configuration interaction
Relative motion active orbitals

Number of bound states 1
Total number of states 256
Symmetry ag

Center-of-mass active orbitals
Ag symmetry 240

Table E.9: Basis set No. E.9.
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Relative motion basis set
B splines

Number 160
Order 8
Knot sequence 30.50 (linear+geometric)

Spherical harmonics
lmax 60
mmax 2

Center-of-mass motion basis set
B splines

Number 100
Order 8
Knot sequence linear

Spherical harmonics
LMAX 60
MMAX 2

Box size and atomic specification
Box size [a.u.]

√
12 · 15000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Configuration interaction
Relative motion active orbitals

Number of bound states 1
Total number of states 176
Symmetry ag

Center-of-mass active orbitals
Ag symmetry 160

Table E.10: Basis set No. E.10.
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Relative motion basis set
B splines

Number 120
Order 8
Knot sequence 15.50 (linear+geometric)

Spherical harmonics
lmax 50
mmax 2

Center-of-mass motion basis set
B splines

Number 80
Order 8
Knot sequence linear

Spherical harmonics
LMAX 50
MMAX 2

Box size and atomic specification
Box size [a.u.]

√
12 · 15000

Mass of 7Li in Dalton 7.01600455
Polarizability [a.u.] 164

Configuration interaction
Relative motion active orbitals

Number of bound states 1
Total number of states 256
Symmetry ag

Center-of-mass active orbitals
Ag symmetry 240

Table E.11: Basis set No. E.11.
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Abbreviations
AMO Arbeitsgruppe Moderne Optik
a.u. Atomic unit
BEC Bose-Einstein condensate
BO Born-Oppenheimer
c.m. Center-of-mass
CI Configuration interaction
CIR Confinement-induced resonance
ICIR Inelastic confinement-induced resonance
IR Irreducible representation
MC Multi-channel
OL Optical lattice
QDT Quantum defect theory
rel. Relative motion
RKR Rydberg-Klein-Rees
SE Schrödinger equation
SC Single-channel
TISE Time-independent Schrödinger equation
TIR Trap-induced resonance
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Naturwissenschaftlichen Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt
der Humboldt-Universität zu Berlin Nr. 126/2014 am 18.11.2014, habe ich zur
Kenntnis genommen.

Berlin, 03. August 2017 ................................

Onyango Stephen Okeyo

163





Acknowledgment
First, I would like to express my deepest gratitude and special appreciation
to my supervisor Prof. Dr. Alejandro Saenz who has supported me during the
entire study. I would like to thank you for the guidance, constructive criticism,
encouragement and the mentorship. You were very patient with me especially
at times when my progress was slow. I am also very thankful for the financial
support you offered me during the last months of the study. I will forever
remain indebted to you for the life-time opportunity.

Second, I am truly grateful to have met Dr. Fabio Revuelta during the
first few months of the research. I do not have a better way to express my
appreciation to you because words cannot express how grateful I am. Your
insightful comments, the tremendous advice, were very helpful during various
stages of my research. You are my role model, mentor, and above all, a good
friend. Thank you very much.

A heartfelt thanks to all members of AMO group members more so
Dr. Simon Sala and Bruno Schulz who introduced me to the codes. Sincere
gratitude to Alvaro Magaña and Johann Förster for all technical assistance and
of course the friendship. To my Kenyan colleague Eric Jobunga, it was nice to
have a friend like you. I can’t forget to thank all my Kenyan friends in Berlin.
You guys made my stay in Berlin enjoyable.

I am also grateful to Dr. Moncef Bouledroua for supplying me with the
numerical potential curves.

Very special thanks to the Kenyan and German governments for the PhD
scholarship through the joint collaboration of the National Commission for
Science, Technology and Innovation (NACOSTI) and the German Academic
Exchange Service (DAAD).

Finally, I would like to thank my family: my parents and siblings, I am
very happy for the continuous encouragement and unparalleled love especially
during the most difficult and dark moments. A special thanks to my dear
wife Susan for persevering years of my absence, you have been a source of
strength and inspiration, your constant encouragement gave me hope whenever
everything seemed hopeless, and more importantly, you have taken good care
of our sons Steve Jnr. and Owen Otieno. Thank you.

165


	Abstract
	Zusammenfassung
	1 Introduction
	2 Theoretical Background
	2.1 Born-Oppenheimer approximation
	2.1.1 Term symbols for diatomic molecules

	2.2 Optical lattices
	2.3 Scattering at ultracold temperatures 
	2.3.1 Scattering length
	2.3.2  

	2.4 Feshbach resonances
	2.5 Atom-ion polarization potential
	2.6 Quantum defect theory

	3 Numerical Techniques
	3.1 Hamiltonian
	3.2 Implementation of the method
	3.2.1 Orbital calculations
	3.2.2 Exact diagonalization
	3.2.3 Symmetry of the system

	3.3 Description of the codes
	3.3.1 Orbital calculations
	3.3.2 Configuration interaction calculations

	3.4 Convergence study

	4 Description of Two Particles in Spatially Displaced Traps
	4.1 Hamiltonian
	4.1.1 Taylor expansion of trap potential
	4.1.2 Trap potentials in spherical coordinates
	4.1.3 Matrix elements

	4.2 Symmetry implementation
	4.3 Influence of the displacement term on the energies
	4.4 Test of implementation: non-interacting case
	4.5 Summary

	5 Atom-Ion Interaction Potentials
	5.1 Ab initio potential energy curves for Li
	5.2 Manipulation of the interaction potentials

	6 Systems of trapped atoms and ions
	6.1 Model Hamiltonian
	6.2 Results and discussions
	6.3 Conclusion 

	7 Atom-Ion Inelastic Confinement-Induced Resonances
	7.1 Elastic confinement-induced resonances
	7.2 Inelastic confinement-induced resonances
	7.3 Results and discussion
	7.3.1 Quasi-1D sextic trapping potential
	7.3.1.1 Eigenenergy spectrum
	7.3.1.2 Wavefunction analysis

	7.3.2 Quasi-1D harmonic trapping potential

	7.4 Conclusion and remarks

	8 Summary and Outlook
	Appendices
	A 
	B Spherical Harmonic Projections
	C Matrix elements
	C.1 Overlap
	C.2 Kinetic energy
	C.3 Interparticle interaction
	C.4 Trap potential
	C.5 Matrix elements of the coupled Hamiltonian

	D Code Description
	D.1 Orbital calculations
	D.1.1 Basis file
	D.1.2 Generic trap potential input file
	D.1.3 Orbital sample calculation

	D.2 Configuration-interaction calculations
	D.2.1 Configuration input file
	D.2.2 CI sample calculation

	D.3 

	E Basis Sets
	Abbreviations
	List of Figures
	List of Tables
	Bibliography
	Erklärung
	Acknowledgment



