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ABSTRACT

Semigroups of composition operators on spaces of analytic functions have

interested mathematicians for many years. The breakthrough in Hardy

spaces was given by Berkson and Porta. On Bergman and Dirichlet

spaces, Siskakis did extensive research whereby he determined semigroup

as well as spectral properties of these operators on the unit disk. Later,

other researchers like Arvanitidis, Bonyo, Blasco, Matache and others

extended the work to Hardy and Bergman spaces of the unit disk and

upper half plane. However, very little is known about sernigroups of

weighted composition operators on Bloch spaces. In this study therefore

we investigated the properties of semigroups of weighted composition op-

erators 011 the Bloch space. In particular, we determined a semigroup

of weighted composition operators on the Bloch space; investigated its

semigroup properties; and determined its spectral properties on the Bloch

space of the unit disk. We used the duality properties of the non reflex-

ive Bergman space to identify a semigroup of composition operators. To

obtain the semigroup properties, we employed the theory of semigroups

of linear operators and functional analysis where we determined infinites-

imal generator of the semigroup and established the strong continuity

property. We then determined the resolvents of the infinitesimal genera-

tor which are obtained as integral operators. Using the spectral mapping

theorems as well as the Hille Yosida theorem, we obtained the spectral

properties of the resulting integral operators. The results of this study

will indeed contribute new knowledge and we hope it will motivate further

research in this area of study.
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Chapter 1

Introduction

1.1 Background of the study

Semigroups of composition operators on spaces of analytic functions was

first studied by Berkson and Porta [8] on the Hardy spaces of the unit

disk and upper half plane. In the said paper, the structure of the semi-

groups was determined and basic properties of semigroups were obtained.

Siskakis extended this study of semigroups of composition operators on

the unit disk to Bergman spaces [29] and Dirichlet spaces [30] where he

proved strong continuity and identified their iufiuitesimal generators in

the spaces. A lot of research has since been done on the semigroups

of weighted composition operators on the Hardy and reflexive Bergman

spaces of the disk. More details can be found in [3, 5, 6, 12, 17, 32].

It was proved in [34] that the dual and predual spaces of L;(JD),ma), the

non-reflexive Bergman space, are respectively given as the Bloch space,

Boo(JD)) and the little Bloch space,Boo,o(JD)) of the disk. In [7], all the

self analytic maps of the upper half plane lU, of the Bergman spaces

were classified according to the location of their fixed points into three
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CHAPTER 1. INTRODUCTION

distinct classes namely; scaling, translation and rotation groups. The cor-

responding groups of weighted composition operators for each group was

defined and their sernigroup and spectral properties studied in detail. For

the rotation group, the induced group of weighted composition operators

(Tt)tEIR are defined on the analytic spaces of the unit disk and are given

by Td(z) = eictf(eiktz) with c, k E JR, k =I O. Both the semigroup and

spectral properties of the group (Tt)tEIR were studied in detail in [7J and

[l l]. But for adjoint properties, Bonyo [llJ considered the reflexive case

of Bergman spaces, that is, for 1 < p < 00. For the non reflexive case,

that is, for p = 1, the analysis of the adjoint group still remains open and

forms the basis of this study.

The study of semigroups of weighted composition operators on the Bloch

and little Bloch space has not been exhaustive. Some of the researches

that have been done on the Bloch spaces include but not limited to the

following: Madigan and Matheson [20] gave sufficient and necessary con-

dition for composition operators to be compact on Bloch space; Shi and

Luo [27] studied compactness and boundedness of composition operators

011 the Bloch spaces of several complex variables. This was followed by

the study of Ohno and Zhao [23] who studied compactness and bounded-

ness of weighted composition operators on Bloch space.

In this research therefore, we studied semi groups of weighted composition

operators on Bloch space which are obtained as adjoints to strongly con-

tinuous groups on L;(ID, m.o) In particular, we determined the semigroup

properties and spectral picture of the semigroup on the Bloch space.
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CHAPTER 1. INTRODUCTION

1.2 Organization of the study

In Chapter 1, we give the background of the study and highlight basic

concepts necessary in the development of other chapters. In Chapter 2, we

highlight the literature review on semigroups of composition operators on

spaces of analytic functions. In Chapter 3, we obtain a group of weighted

composition operators on the Bloch spaces and prove basic semigroup

properties. In Chapter 4, we have obtained the spectral properties of the

groups of isometries obtained in Chapter 3. Finally in Chapter 5, we give

the summary and recommendations for further research.

1.3 Statement of the Problem

Let lD>be an open unit disk of the complex plane C, Boo(lD» the Bloch

space and Boo,o(I[))) the Little Bloch space of analytic functions on lD>.

The study of semigroups of composition operators on reflexive Bergman

spaces L~(lD>, ma), 1 < p < 00, has been done extensively in the literature.

However, on the non-reflexive Bergman space L~(lD>, ma), the study has

not been exhaustive. Specifically, the properties of the adjoints of semi-

groups of composition operators defined on L~(lD>, ma) has not been done

even though the dual and predual are known. In this research therefore,

we studied semigroups of weighted composition operators on the Bloch

space which are obtained as adjoints of strongly continuous groups on the

non-reflexive Bergman space L~(lD>, ma). In particular, we determined

the semigroup and spectral properties of the semigroup of composition

operators 011 the Bloch space of the unit disk.
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CHAPTER 1. INTRODUCTION

1.4 Objectives of the Study

The main objective of this research was to investigate the properties of

semigroups of weighted composition operators on the Bloch space of the

unit disk. The specific objectives were;

1. To determine a semigroup of weighted composition operators on the

Bloch space of the unit disk.

2. To determine the semigroup properties of the semigroup identified

in (1) above.

3. To investigate the spectral properties of the semigroup identified in

(1) above.

1.5 Significance of the Study

The study of the semigroups of weighted composition operators on spaces

of analytic functions have been investigated by many scholars but has not

been fully exhausted. Specifically, on the non-reflexive Bergman space

the analysis of the adjoint group still remains open. It is therefore of

great importance to complete the analysis the adjoint group on the Bloch

space, the dual space of the non-reflexive Bergman space. The results

of this study has contributed new knowledge in this area of mathematics

and we hope will advance further research in this and other related areas.
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CHAPTER 1. INTRODUCTION

1.6 Research Methodology

To determine a semigroup of composition operator on Bloch space Boo,o(lD»),

we used the duality properties of the non reflexive Bergman space, L~(JI), "lna)

as well as the definition of semigroups of weighted composition operators

on L~(JI), ma). Using the duality pairing, we then obtained the adjoint of

this semigroup which naturally constituted a semigroup on the little Bloch

space. To investigate the semigroup properties of composition operators,

we employed the theory of semigroups of linear operators and functional

analysis where we determined the infinitesimal generator of the semigroup

and established the strong continuity property. Using spectral theory, we

obtained the spectrum, point spectrum and resolvent of the infinitesimal

generator which are given as an integral operator. Finally we used the

Hille- Yosida theorem and the spectral mapping theorem to obtain the

spectrum, point spectrum, spectral radius and norm of the resolvent.

1.7 Basic concepts

1.7.1 The unit disk IIJ)and Upper half plane 1U

Let C be the complex plane. The set JI) := {z E C : Izl < 1} is called

the (open) unit disk. Let dA denotes the area measure on JI), normalized

so that the area of JI) is 1. For a E JR, a > -1, we define a positive

Borel measure dm.; on JI) by dmQ(z) = (1-lzI2)QdA(z). dm., is a finite

measure on JI). In fact if 0: = 0, then dmo and dA coincide and we simply

denote it by dA. dm.; can thus be considered as a weighted measure on
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CHAPTER 1. INTRODUCTION

II) and a generalization of dA.

On the other hand, the set 1U:= {w E C : 8'(w) > O} denotes the upper

half of the complex plane C with 8'(w) being the imaginary part of w E C.

We define a weighted measure on 1Uby df-Lo:(w) = (8'(w))O:dA(w) where

wE 1U.

The Cayley transform ?j;(z) = i(J~:) maps the unit disk II) conform ally

onto the upper half plane 1Uwith its inverse ?j;-l(W) = ~~;.For further

details: see [18, 25].

1.7.2 Vector spaces and Normed Spaces

Definition 1.7.1

Let E be a vector space over a field IF. A function 11.11 E -+ IF is called

a norm if it satisfies the following conditions:

1. Ilxll = ° {::}x = 0,

2. IIAxl1 = IAlllxl1 for every x E E and A E IF,

3. Ilx + yll :::; Ilxll + Ilyll for every x, y E E.

The pair (E, 11.11)or simply E is called a normed space.

Definition 1.7.2

A sequence (xn)n <;;; E is said to be convergent if for every E > 0, there

exists a number M such that for every n. ~ M we have Ilxn - z] < E

for all xn, x E E. A sequence of vectors (xn)n <;;; E in a normed space is

called a Cauchy sequence if for every E > 0, there exists a number M

such that Ilxm - xnll < E for all m, n > M.

6



CHAPTER 1. INTRODUCTION

Definition 1.7.3

A normed space E is said to be complete if every Cauchy sequence in

E converges to an element of E. A complete normed space is called a

Banach space.

1.7.3 Hardy and Bergman spaces

Definition 1. 7.4

Let n denote an arbitrary open subset of C and H(n) denote the space

of analytic functions f :n --+ C. In this thesis, we consider n to be either

the unit disk II} or the upper half plane 1lJ. For 1 :S p < 00, the Hardy

spaces of the unit disk are defined by

For every f E HP(II}), we state the well known growth condition;

If(z)1 :S CllfIIHP(~)
(1 -Izl)p

(1.2)

where C is a constant and z E II} [26].

For 1 :S p < 00, c¥ > -1, the weighted Bergman spaces of the unit disk

II}, L{ (II},mOl)' are also defined by

1J,; (III, mol .~ {f E 1i(III) • IIfk(D,mo) ~ (/.If(ZlIPdmo(Z)); < 00 } ,

(1.3)

In particular, L~(II}, maJ = U(II}, mOl) n H(II}), where U(II}, m,,) denotes

the classical Lebesque spaces associated with the weighted measure dm.;
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CHAPTER 1. INTRODUCTION

For every f E ~(j[}), mer), we state the well known growth condition;

(1.4)

where K is a constant, T = 0+2 and z E j[}).p

The Hardy and Bergman spaces together with their norms are Banach

spaces. For p = 2, H2(j[})) and L~(j[}), me» are Hilbert spaces. For a

comprehensive theory of Hardy and Bergman spaces we refer to [14, 18,

34].

1.7.4 Bloch and Little Bloch spaces

The Bloch space of the unit disk, denoted by Boo(j[})) is defined to be the

space of analytic functions 1 on j[}) such that the semi norm

1I/IIB=,dID» = sup {(l-lzI2)1f'(z)l} < 00.zEIIJl
(1.5)

Boo(j[})) is a Banach space with respect to the norm 1I/IIBoo(lIJl):= 11(0)1 +
IlfIIBoo,l(ID»· If f E Boo (D), then it satisifies the growth condition

(
1 1+ Izl)I/(z)1 ~ 1 + 2 log 1 -Izl 1I/IIBoo(lIJl) (1.6)

1/(0)1 < 1I/IIB=(IIJl)

for every z E j[}) [34, page 82].

The Bloch space of the upper half plane is denoted by Boo(lU) and is

8



CHAPTER 1. INTRODUCTION

defined by

Boo(1U) := {J E 1-l(1U) : sup SS(w)I1'(w)1 < oo}.
wEIIJ

The norm is given by IIfllBoo(lIJ) = If(i)1 + IIfllBoo.l(lIJ) where IIfllBoo.1(1IJ) =

SUPwEIIJ SS(w)I1'(w)l· On the other hand, the little Bloch space of the unit

disk JI))is denoted by Boo.o(JI))) and is defined to be the closed subspace of

Boo(JI))) such that Boo,o(JI))) := clBooC[z], where C[z] denotes the analytic

complex polynomials in z, Equivalently

Boo,o(JI))) := {f E 1-l(JI))): lim (1- IzI2)I1'(z)1 = o} . (1.7)
Z.-.71- ,zEI!)

Boo.o(JI))) is also Banach space with respect to the norm II.IIBoo(I!)). If X is

a Banach space and Y s:;; X be its subspace, then we say that Y is dense

in X if its closure is the whole of X. That is, Y = X.

Proposition 1.7.5

{34, Theorem 5.2.2] Boo.o(JI))) iij cloijed subspece of Boo(JI))). Moreover, the

set of polynomials is dense in Boo.o (JI))).

See [14, 25, 34] for more details on Bloch spaces.

1.7.5 Duality of Bergman Spaces

The dual space of a vector space E, denoted by E*, is a set of all linear

maps ¢ : E --7 IF. Elements of E* are called functionals on E. On the

other hand, the predual space is a set of all linear maps ¢ : E* --7 IF. For

1 < p, q < 00, ~ + ~= 1 and ex >-1, the dual space of the Bergman space

IJ,;(JI)), TnoJ is given by
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CHAPTER 1. INTRODUCTION

under the integral pairing

where J E L~([J), mo,) and 9 E L~([J), moJ
For p = 1, the dual space of the Bergman space L;([J), ma) is given by

under the pairing

(1,g) =1J(z)g(z)dma(z),

where J E L~([J), ma) and 9 E Boo([J)). The predual space of L~([J), ma)

is given by

(1.8)

under the pairing

(1,g) = 1J(z)g(z)dmo,(z),

where J E Boo,o([J)) and 9 E L~([J), ma)' We refer to [18, 34] for compre-

hensive account of the theory of duality of Bergman spaces.

1.7.6 Other spaces of analytic functions

A Banach space of all analytic functions in the Hardy space H2([J)) whose

boundary values have bounded mean oscillation is denoted by BMOA.
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More precisely f E H2 (JI)) belongs to B M 0 A if and only if there exists a

constant C > 0 such that

r 1f'(zW(1- IzI2)dA(z) ::; C(I),
JR(I)

for any arc I C oJI), where R(I) is the Carleson rectangle determined by

I with III denoting the length of I. The corresponding BMOA norm is

11111~MOA:= 11(0)12 + sup (1111 r 1J'(zW(l - IzI2)dA(Z)) .
zcn J R(l}

The closure of all polynomials in B M 0 A is denoted by V M 0 A, Vanishing

mean oscillation. Equivalently, V MOA is the subspace of BMOA formed

by those 1E B M 0 A such that

1.7.7 Spectra of Linear operators

Let X and Y be Banach spaces over C . A linear operator T : X -t Y

is a linear mapping of a linear subspace D(T) of X into Y, where D(T)

is the domain of T.

T : X -t Y is said to be a closed operator if its graph {(x, T:x:)Ix E

D(T)} is closed in X x Y and is bounded if there exists C 2 0 such that

IITxl1 ::; Cllxll, for all x E X. We denote the space of linear and bounded

operators from X to Y by £(X, Y), and £(X, X) = £(X)

Let T be closed operator on X, the resolvent set of T, p(T) is given by

p(T) = {.A E C : .AI - T is invertible} where I is the identity operator on

11



CHAPTER 1. INTRODUCTION

X and its spectrum C/(T) = C\p(T). Note that the operator AI - T is

not invertible if it is not bijective.

The spectral radius of T is defined by r(T) = sup{IAI : A E O'(T)} and

it is well known that r(T) ::; IITII.

The point spectrum is given by O'p(T) = {A E C : Tx = AX for some 0 /:

x E D(T)}. For A E p(T), the operator R(A, T) := (AI - T)-l is called

the resolvent of T or simply the resolvent operator. For comprehensive

theory of spectra of linear operators, we refer to [14, 18, 19].

1.7.8 Semigroup of Linear operators

Definition 1. 7.6

Let X be a Banach space. A one parameter family (Ttk:::o ~ £(X) is a

semigroup of bounded linear operator on X if;

1. To = I (Identity operator on X).

2. Tt+s = Tt 0 T, for every t, s ~ O.

(Ttk::o is strongly continuous if limHo+ IITtx - z] = 0 for all x E X. A

strongly continuous semigroup is also called Co- seinigroup.

Definition 1. 7.7

The infinitesimal generator r of (Tdt::::o is defined by

. Ttx - x 0 II'z = lim = !'l (Ttx)
t-4O+ t vX t=O

(1.9)

for each x E D(r), where the domain of r is given by D(r) = {x EX:

12
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Let X and Y be arbitrary Banach spaces and U E L(X, Y) be au invertible

operator. If (Tt)tEIR ~ L(X) is a strongly continuous group, we can gener-

ate a new strongly continuous group (St)tEIR ~ L(Y) by the relation St =

UTtU-1
. In this case if (Tt)tEIR has generator I', then (St)tEIR has generator

6 = UfU-1 with domain D(6) = U D(f) := {y E Y : Uy E D(f)}.

Moreover, O"p(6, Y) = O"p(f, X) and a(6, Y) = O"(f, X). For A in the re-

solvent set p(f, X) := C\O"(f, X), we have that R(A, 6) = UR(A, /),,)U-1.

More details about sernigroups can be found in [14, 16, 24].

1.7.9 Composition operators

A function <P is called self analytic map on II} if it is analytic in II}

and <p(II}) C II}. For t 2:: 0, consider the semigroup of self analytic maps

<Pt : II} --t II}. The semigroup of composition operators induced by <Pt is

defined on 1-£(II}) by C'Pt (f) = f 0 <Pt for all f E 1-£(II}).

The corresponding group of weighted composition operators induced by

<Pt will therefore be defined on 1-£(II}) by

Tt(f)(z) = (<p~(Z))I(f 0 <Pt)(z)

where "( is au appropriately chosen weight and f E 1-£(II}). See [28] for

more details.
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Chapter 2

Literature Review

The theory of seinigroups of bounded linear operators was introduced

by Hille Yosida [33]. The study of semigroups of composition operators

on spaces of analytic functions was first studied by Berkson and Porta

[8] where they considered a composition semigroup on Hardy spaces of

the form Tt(J) = jo'Pt where 'Pt is a semigroup of self analytic functions

mapping the unit disk []l into itself. In that paper, the structure of the

semigroups of the functions Tt was determined and their basic properties

obtained. Siskakis extended this study of semigroups of composition op-

erators on the unit disk []l to Bergman spaces in [29] and Dirichlet spaces

[30] where he proved strong continuity and identifed their infinitesimal

generators in the said spaces. Compactness and conditions for compact-

ness were also given in [32] by Siskakis for the resolvent operators on

Hardy spaces. General information of composition operators on classical

spaces of analytic functious can be obtained ill the excellent monographs

of Cowen and MacCluer [13] and Shapiro [26].

In the recent years, the study of semigroups of composition operators

has been extended to other spaces of analytic functions. Oscar Blasco
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CHAPTER 2. LITERATURE REVIEW

et al [9] studied the maximal subspace in the space of Bounded Mean

Oscillations (BMOA) where a general semigroup of analytic functions on

the unit disk llJ) generates a strongly continuous semigroup of composition

operators. Later, in [10] the same authors studied the maximal spaces

of strong continuity on BMOA and the Bloch spaces for semigroups of

composition operators. The concept of strong continuity of semigroups

of composition operators has also been studied by Arvalo et al [2] on

mixed norm spaces. In their study, the maximal closed linear subspace

in which the semigroups are strongly continuous was obtained. Matache

[21] studied boundedness and compactness of composition operators on

Hardy spaces of the upper half plane. The same author in [22], extended

the study to weighted composition operators on the open unit disk llJ).

Further research on compactness and boundedness of weighted composi-

tion operators was done by Contreras and Hernandez [12] 011 the space

of analytic functions f on llJ) such that f' E HP(llJ)). Eva and Dmitry [17]

showed that if an operator generates a Co-semigroup then it is automat-

ically a semigroup of composition operators. This was an extension of

the earlier work of Avicous et 801 [6] where the author and his co-authors

proved that an (unbounded) operator on the classical Hardy space gener-

ates a Co-semigroup of composition operators if and only if it generates a

quasicontractive semigroup. A Co-semigroup (Ttk:~o is called a quasicon-

tactive sernigroup if there exists a constant w 2': a such that IITt II ::; ewt for

all t 2': O. In [11], Bonyo used the similarity theory of semigroups as well

as spectral theory to obtain resolvents of generators of strongly continu-

ous groups of isornetries on the Hardy and Bergman spaces. These groups

were obtained as weighted composition operators associated with specific

15



CHAPTER 2. LITERATURE REVIEW

automorphisms of the upper-half plane. Other properties of semi groups

of composition operators can be obtained in [31], a review by Siskakis on

Hardy and Bergman spaces. Arevalo and Oliva [3J studied strong conti-

nuity of semigroups of weighted composition operators in several spaces

of analytic functions.

Arvanitidis and Siskakis [5] obtained the semigroup and spectral prop-

erties of semigroups weighted composition operators on the Hardy space
t

of UJof the form Td(z) = e-;; !(<pt(z)) where <Pt(z) = e-tz, z E UJ, and

! E H(UJ).Ballamoole et al [7J obtained the spectrum, generator, adjoint

and decomposability of cesaro-like operator which was identified as the

resolvent for appropriate semigroups of composition operators on Hardy

and weighted Bergman spaces.

The study of semigroups of composition operators on the Bloch and little

Bloch space has not been exhausted. Madigan and Matheson [20J gave

sufficient and necessary condition for composition operators to be com-

pact on Bloch spaces. Shi and Luo [27] studied compactness and bound-

edness of composition operators on the Bloch spaces of several complex

variables. This was followed by the study of Ohuo and Zhao [23] who

studied compactness and boundedness of weighted composition opera-

tors on Bloch space of several complex variables. The spectral picture of

invertible weighted composition operators, when <p is an elliptic automor-

phism in JI), has also been studied by Eklund et al in [15J. The duality

properties of Bergman spaces are well studied in literature. In [34], for

1 < p,q < 00, * + ~ = 1 and Q > -1, the dual space of IJ,:(JI),rna-) is

given as L~(JI), rna-). For p = 1, it is proved in [34J that the dual and pred-

ual spaces of L~(JI), rna-), the non-reflexive Bergman space are respectively

16
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given as the Bloch space, Boo(ID») and the little Bloch space, Boo,o(][})). In

this research, we extended the study of sernigroups of weighted composi-

tion operators to the Bloch space. The following theorems from literature

were useful in the study.

Theorem 2.0.1 (Spectral mapping theorem for resolvents)

Let T be a closed operator on a Banach space X and A E p(T). Then the

following holds;

1. O'(R(A, T))\{O} = (A - O'(T))-l = {'\~I-': tt E O'(T)},

2. O'p(R(/\, T))\ {O} = (A - O'p(T))-l = {,\~v : 'U E O'p(T)},

Theorem 2.0.2 (Spectral mapping theorem for semigroups)

Let (Tt)t;::o be a strongly continuous semigroup on a Banach space X and

I' be its infinitesimal generator then;

Theorem 2.0.3 (Hille- Yosida theorem)

Let X be a Banach space. A linear operator I' is the infinitesimal genera-

tor of a strongly continuous semigtoup of contractions (Tt)t;::o if and only

if;

1. I' is closed and D(r) = X

2. The resolvent set p(f) of I' contains ffi.+ and for every A > 0,

1
IIR(A,f)11 < p:f'

17



CHAPTER 2. LITERATURE REVIEW

In this case, if hEX, then

is norm convergent.

Theorem 2.0.4 (Open mapping theorem)

If X, Yare Banach spaces and T E L(X, Y) be invertible, then the inverse

map T-1 is bounded, that is T-1 E L(X, Y).

Theorem 2.0.5 (Closed graph theorem)

Let X and Y be Banach spaces. Then every closed linear mapping T

X -+ Y is continuous.

18



Chapter 3

Weighted Composition

Operators on the Bloch Space

In this chapter, we determine a semigroup of weighted composition op-

erators on the Bloch space. This semigroup is obtained as the adjoint

of a semigroup of weighted composition operators on the nonreflexive

Bergman space L~(IDl, 'fila} We prove that this semigroup is a strongly

continuous group of isometries on Boo,o(IDl). We also determine its in-

finitesimal generator r on Boo,o(IDl).

3.1 Self analytic maps and Automorphism

groups

A linear fractional map on a Banach space X is a linear transformation

¢ : X -7 IF of the form

¢(z) az + b
cz+ d

19



CHAPTER 3. WEIGHTED COMPOSITION OPERATORS ON THE BLOCH SPACE

where a, b, e, d E IF and ad - be =1= o.
On the complex plane: linear fractional transformations are also called

mob ius transformations. An angle preserving transformation is called

a conformal map while a structure preserving map between Banach

spaces is a Homomorphism. A bijective homomorphism of an object

into itself is an automorphism. The set of all autornorphisms of an

object forms a group. Automorphism groups of Jj)), denoted by Aut(j[)))

consist of analytic functions of the form

<p(z)
a(z - b)
(1- bz)

(3.1)

for all z E ]IJ) and where a and b are constants with 10,1 = 1 and Ibl ~ l.

These functions are called mobius transformations of ]IJ).

Example 3.1.1

Consider the family of analytic functions

where t ?: 0 and z E ]IJ).

Comparing with equation 3.1, for each z E ]IJ), we have a = eit and

b = ~e-it, and therefore ¢t is a mobius transformation of ]IJ): since lal =

20



CHAPTER 3. WEIGHTED COMPOSITION OPERATORS ON THE BLOCH SPACE

leitl = [cos r-t-z siu z] = 1 and Ibl = I~e-itl =~. Moreover,

¢t(z )¢t(z)
eit(z - ~e-it) e-d(z - ~e·it)

1- ~eitz 1- ~e-itz
Izl2 + ~- ~(2~(zeit))
1+ ~lzl2 - ~(2~(ze'it))
41z12 + 1- 4~(zeit)
Izl2 + 4 - 4~(zeit) .

Since [z] < 1, then it follows that 41z12 + 1 ~ Izl2 + 4 for all z E llJl.

Thus l¢t(z)1 ~ 1 and therefore ¢(llJl) <::::: llJl.

A function

'Ij;(z) := i(l + z)
(1 - z) (3.2)

maps the unit disk llJl conformally onto the upper half-plane lU with its

inverse given as

(3.3)

On the other hand, the automorphism groups of the upper half-plane,

Aut(lU), are sets of mob ius transformations of the form

() az + b
<.p?' ---~ - ez+d

where a, b, e, d E R ad - be > O.

Example 3.1.2

Consider the function
z¢(z) =-.

1-z

Thus ¢ is self analytic on lU. Indeed, for each z E U, we have a = 1,
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b = 0, c = -1, d = 1, therefore ad - be = 1 > 0. Moreover,

8'(¢(z))
z z

1=Z- ~
2i

z-zz-z+zz
1-z!R(z)+lzI2

2'i
8'(z) °

11- .z12>

and therefore ¢(lU) S;;;U. So ¢ is an automorphism in U.

A point z E C is called a fixed point if J(z) = z. That is, it does not

change upon application of a map. In [7], all the self analytic maps of

the upper half plane U were characterized according to the location of

their fixed points into three distinct classes namely; scaling, tran,slation

and rotation groups. In particular, they gave the following result,

Theorem 3.1.3

Let <P : JR. -+ Aut(lU) be a nontrivial continuous group homomorphism.

Then exactly one of the following holds:

1. There exists k > 0, k =f. 1, and f E Aut(lU) so that <Pt(z)

J-1(ktJ(z)) for all z E U and t E R

2. There exists k E JR., k =f. 0, and J E Aut(lU) so that <Pt(z)

J-1(f(Z) + kt) for all Z E U and t E R

3. There exists k E JR., k =f. 0, and a conformal mapping g of U onto ][})

such that <Pt(z) = J-1(eikt J(z)) for all z E lU and t E R Equiva-

lently, there exist e E JR.\O and h E Aut(lU) so that

( ) _ ,-1 (h(Z) cos(&t) - Sin(&t))<Pt z - 1 .
h(z) sin(&t) + cos(&t)
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PROOF. See [7: Theorem 2.2J. 0

Thus from assertion 1, we have the scaling group whose self analytic maps

of lIJ are of the form <Pt(z) = ktz for k > 0, k i- 1, and t ERA perfect

example is the one considered in [7, Section 3J or [5J which is given by

<Pt(z) = e-tz. From assertion 2, we have the translation group whose self

analytic maps of lIJ are of the form IPt(z) = z + kt for k E JR, k i- O. Again

we refer to [7, Section 4J for an example, IPt(z) = z + t that is for k = 1.

For assertion 3, we have rotation group defined on the unit disk ID>which

can then be mapped Gad: to the upper half plane lIJ using the Cayley

transform. In this case, the self analytic maps of ID>are of the form

<Pt(z) = e,ktz . We refer to [7, Section 5] for an example, <Pt(z) = e+z,

for k = 1. We can easily show that <Pt is self analytic on ID>.Let z E ID>,

without loss of generality let k = 1, then [e" z] = [z] < 1.

3.2 Composition operators

Let {VI, V2} = {ID>,lIJ} and let LF(Vi, Vj) denote the collection of con-

formal mappings from Vi to Vj. In particular, LF(Vi, Vj) = Aut(Vi) and

if h E LF(Vi, Vj), then 9 E Aut(Vj) H h-1 0 9 0 h E Aut(Vi) is an iso-

morphism from Aut(Vi) into Aut(1tj). For each h E LF(Vi, Vj), define a

weighted composition operator Sit : H(Vj) --t H(Vi) by

ShJ(Z) = (h'(z))' J(h(z)) (3.4)

for all z E Vi,

Note that if 9 E LF(Vi, Vj) and h E LF(Vj, Vi), then ShSg = Sgoh and
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S,~1 = Sh-1 by the Chain Rule. Indeed,

Sh[ (091(z)), J(09(z))]

(hi (z) )'(091 (h(z)))' J[o9(h(z))]

[(090 h)/(Z)]' J[9 0 h(z)]

SgohJ(Z). (3.5)

Clearly S[ = I. Therefore from equation (3.G), we have

which implies that S;:1 = Sh-1.

Following [7], the corresponding groups of weighted composition op-

erators induced by the rotation group CPt on L~(][J), mo,) are defined by

Td(z) = ScpJ(z) = eict J(eiktz) with c, k E JR, k =1= o.
Let k = 1 and c = 'Y= "+2, then the group becomes Td (z) = eiTt J (eit z)p

for all z E ][J) and J E L~(][J), m,,). Both the semigroup and spectral prop-

erties of the group (Tt)tEIR on Hardy and Bergman spaces were studied in

detail in [7] and [11]. For the adjoint properties, Bonyo [11] considered

the reflexive case of Bergman spaces, that is, for 1 < p < 00. For the non

reflexive case, that is, for p = 1, the analysis of the adjoint group still

remains open and forms the basis of this study.

Without loss of generality, we let k = 1 and therefore consider auto-

morphsrn groups of the form CPt(z) = eitz for z E ][J). The corresponding

group of weighted composition operators on L~(][J), m,,) is therefore given

by Td(z) = (eif),f(eitz), where rr = ex + 2. Following [7], this group
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is a strongly continuous group of isometries on L;(]JJ), moJ as seen in the

following theorem.

Theorem 3.2.1

Let Tt be the group of weighted composition operators given by Td(z) =

(e'ictp f(e'itz) for all J E L~(]JJ),ma) and let r be its infinitesimal generator.

Then;

1, (Tt)t~o is a strongly continuous group of isometries on L~(]JJ), ma).

2. rJ(z) = i(cJ(z) + zJ'(z)) with D(f) = {J E ~(]JJ), man·

3. O'(f) = O'p(r) = {i(n + c) : n E Z+} and for each n ~ 0, ker(i(n +
c) - r) = span(zn).

4. Ii ).E p(r), then ran(M;")is R('-\, f)-invariant for every m E Z+

such that m + c > S'(.-\). Infact if h « ran(M;n) then,

R('-\, f)h(z) = Z-i(c+i,\) l' WC+i,\-lh(w)dw = Z'" I" tm+ci,\-lQTnh(tz)dt
, Jo Jo

PROOF. The proof follows immediately from [7, Theorem G.I] by letting

p = 1. o

Now, the predual of L~(]JJ), ma) is given by equation (1.8) as (Boo,o(]JJ)))* ~

L;(]JJ), ma) under the integral pairing

where J E L;(]JJ), ma) and 9 E Boo,o(llJ)).

Thus we obtain the adjoint of (Tt)t~o as follows:

Let 9 E Boo,o(]JJ)), then

25



CHAPTER 3. WEIGHTED COMPOSITION OPERATORS ON THE BLOCH SPACE

The Borel measure dm.; on ]]) is given by drno:(z) = (1 - IzI2)O:dA(z),

then it follows that

By change of variables, let w = eitz so that z = e-itw, and dA(w) =

1<p~12dA(z) = dA(z) then we obtain,

(g, Tin 1(e-it)O:+2g(e-itw)f(w)(1 - le-itwI2)O:dA(w)

j~(e-it)O:+2g(e-'itw)f(w)(1 - IwI2)<>dA(w)

1(e-it)o:+2g( e-iiw )f(w )drno:(w)

1T-tg(w)f(w)dmo:(w)

(T_tg, J).

Therefore, Stg(w) = T_tg(w) = (e-it)O:+2g(e-itw) for all 9 E Boo,o(]])).

This is the adjoint of the semigroup (Ttk~o ~ .c(L~(]]), mo:)) and therefore

by definition it constitutes a sernigroup on Boo,o(]])).
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3.3 Semigroup properties

We now consider the group of weighted composition operators (St)tEIR on

Boo,o(lll») given by;

T_tg(z)

(e-it)o:+2 g( e-it z)

for all 9 E Boo,o(lI»), as determined in section 3.2 above.

Then we give the following results that detail the semigroup properties of

(Stk~o on Boo,o(IDJ).

Proposition 3.3.1

(St)tEIR is a group on Boo,o(IDJ).

PROOF. It suffices to prove that (Stk~o and (S-tk~o are semigroups on

Boo,o(IDJ). To prove that (St)t::::o and (S-t)t::::o are semigroups, we verify for

each case that

1. So = I (Identity operator on Boo,o(IDJ)).

2. Semigroup property: St+s = S, 0 S,

and S-t+-s = S-t 0 S-s respectively for every t, s ~ O.

Case 1: (St)t::::o is a semigroup.

Indeed Sog(z) = (eO)O:+2g(eOz)

identity on Boo ,0 (IDJ).

g(z) This implies that So J, the
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We next proof the semigroup property as follows;

(e-'it),,,+2( Ssg( e-'it z))

(e-it)o+2 (( e-'iS)o+2 g( e-it .e-is z))

(e-'i(s+t))a+2 g( e-i(s+t) z)

S(SH)g(Z),

for all t, s 2:: 0, as desired.

Case 2: (S-tk::o is also a semigroup for S_tg(z) = (eit)a+2g(eitz).

S-og(z) = Sog(z) = g(z), since So = I as shown in Case 1. So, S-o = I,

the identity operator on Boo.o(lI»).

For semigroup property, we have;

(eit)a+2 (Ssg( e'itz))

(eit)".+2 (( eis)o+2 g( eit eis)z)

(ei(s+t) t+2 g( e'i(t+s)z)

S(-t+-s)g(z),

for all t, s 2:: 0, as desired.

Therefore (St)tEIR is a group.

Theorem 3.3.2

(St k~o is strongly continuous on Boo.o (D).

o

PROOF. To prove that (St)t;::o is strongly continuous, we apply density

of polynomials in Boo.o(lI»). see Proposition 1.7.5. Therefore it suffices to
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lim IIStzn - z"IIB o(JI)) = O.t-+O+ 00.

lim (supf l - IzI2)I(Stz" - zn)'I)
t-+O+ zE[JI

lim supl l - IzI2)ln(e-i(a+2+n)t - 1)z"-11
t-+O+ zE[JI

lim supl l _lzI2)lnzn-11Ie-i(a+2+n)t_1I-
t-+O+ zED

And therefore lilllHo+ IIStZn - z" IIBoo.o(D) = 0 as t -+ 0+, as desired. 0

Theorem 3.3.3

The infinitesimal generator I' of (Stk~o is given by fg(z) = -i(-yg(z) +
zg'(z)) with the domain D(f) = {g E Boo,o(]jJ)) : zg'(z) E Boo,o(]jJ))}.

PROOF. To obtain the infinitesimal generator I', we evaluate the limit as

given in equation (1.9). For all 9 E Boo,o(]jJ)), we have

fg(z) 1
. (e-it)Cl:+2g(e-'itz) - g(z)
1m ~~--~--~~~

t-+o+ t

i ((e-it)'-'+2g(e-itz)) Iat t=O

-i(ex + 2) (e-it)"'+2 g( e-it z) - iz( e-it)Cl:+2 g' (e-it z) It=o

-i(ex + 2)g(z) - izg'(z)

-i(-yg(z) + zg'(z)),

which implies that D(f) c {g E Boo,o(]jJ)) : zg'(z) E Boo,o(]jJ))}. Con-

versely: let 9 E Boo,o(]jJ)) be such that zg'(z) E Boo,o(]jJ)), then for z E ]jJ)
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we have by the Fundamental theorem of Calculus,

Stg(z) - g(z)
t

where G(z) = -'i(!)g(z)-izg'(z) is a function in Boo,o(lD»). Thus limHO+ Strg =

limHO+ t J~s.cu and strong continuity of (Ss)s~o implies that lit J; s.cs«:
GII ::; * J; IISsG - Gilds --+ 0+ as t --+ 0+. Thus D(f) ;;2 {g E Boo,o(J]}) :

zg'(z) E Boo,o(J]})}, as desired. 0

Theorem 3.3.4

(St)tEIR is a strongly continuous group of isometries on Boo,o(J]})

PROOF. Following Proposition 3.3.1 and Theorem 3.3.2, it remains to

prove that for each t E JR,the group (St)tElR: is an isometry on Boo, °(J]}). An

isometry is a. mapping between Banach spaces that preserves distances.

Thus, it suffices to prove that for every 9 E Boo ,0 (I!}),
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It follows from the definition that

IStg(O)1 + sup(l - IzI2)I(Stg)'(z)1
zED

I(e-it)"'+2 g(O) I + sup( 1- Iz12) I(e-it)':'+2e-it g' (e-it z) I
zEIll>

Ig(O)1 + sup(l - IzI2)1g'(e-·itz)l·
zEIll>

Now let w = e-itz so that z = eitw then;

IIStg IIBoo.o(Ill» Ig(O)1 + sup{(l - le'itwI21g'(w)l)}
wEill>

Ig(O)1 + sup{(l -lwI2)1g'(w)l}
wEill>

o
Lemma 3.3.5

Every isometry is injective.

PROOF. Let ¢ : S ~ T be a non-injective isometry then there exists

x, yES such that x =I y and ¢(x) = ¢(y). But x =I y =? ds(:r:, y) > 0

while ¢(;r) = ¢(y) =? dT(¢(x), ¢(y)) = 0 which contradicts the notion

that ¢ is an isometry. o
From the result of Theorem 3.3.3, we can deduce that (St)tEIR is surjective

isometry that is, IIStgiIBoo.olll> = IIgIIBoo.o(lIli) for every 9 E Boo,oID>. Precisely

(St)tEIR is invertible isometry since it is bijective (injective and surjective).

Since (St)tEIR is a strongly continuous group of invertible isometries, we

can carry out a complete analysis of the spectral picture. This is done in

the next chapter. We consequently state the following proposition.
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Proposition 3.3.6

Let X be a non-zero Banach space and T E L(X) be an isometry. If T

is invertible, then C/(T) ~ o][JJ and oC/(T) ~ C/ap(T). IfT is non-invertible

isometry then C/(T) = iiJ) and C/ap(T) lies on the boundary of the closed

uuit disc ][JJ.

PROOF. See [1, Proposition 5.2]. o
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Chapter 4

Spectral Properties on the

Bloch space

In this chapter, we obtain the spectrum O"(r), the point spectrum ClTp(r)

as well as the resolvent R(>.., I") ot the infinitesmal generator, r at >...

The resolvent is obtained as an integral operator. We also obtain the

spectrum of the resolvent dR(>", I'j), point spectrum O"p(R(>.., r)) and the

spectral radius r(R(>.., r)) as well as the norm of the resulting resolvents.

We complete this chapter by considering a specific automorphism of 1lJon

4.1 Multiplication operator

Definition 4.1.1

The multiplication operator M; induced on 1-l(]j))) by z E ]j)) is defined by

MzJ := z] for all J in the domain D(Mz) := {f E 1-l(]j))) : z] E 1-l(]j)))}

Definition 4.1.2

The left inverse of Mz on 1-l(]j))) is defined by QJ(z) = f(z)~f(O), (QJ(O) =
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j'(0)).

More generally if QmJ(z) = ,\,00 jk(O) zk-m and QmJ(O) = j'n(o)
, uk=rn k! 1U! '

then M;nQm J = 2:: jkk~O)z", Indeed from the definition it follows that;

L:oo J(k)(O) k-m
k=m k! Z

J(m)(o) 7m-m J(m+1) (0) f(m+2) (0) 2

= ,.~ + ( )' Z + ( )' z + ...m. m + 1 . m + 2 .

j(m)(o)
Hence Q1TtJ(O) = -,-.m.

Now

Thus M;"Qm J (z) = L:~m jkk~O)zk. Moreover, QmM;" J = f.

Proposition 4.1.3

3. Q : Boo,o(lI))) -+ Boo,o(lI))) is bounded, and

4. For m ~ 0, M;'·Boo,o(lI))) = {J E Boo,o(lI))) 1 J(k)(O) = OVk < m}. In

particular, M;'Boo,o (II))) is closed in Boo,o (II))).

PROOF. If J E Boo (II))) , then for all z E II)),

IIMzJIIBoo(JIlJ) = IlzJ(z) IIBoo(lJl) < sup(l -lzI2)I(zJ)'(z)1
zEIIJl
sup(l - IzI2)lzj'(z)1 + (1 - IzI2)IJ(z)l.
zEIJl
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Since Izl < 1 and using growth condition (1.6) then we have

IIMzfllBoo ::; 8UPzEII)(1-lzI2)lz!,(z)I+(1-lzI2) (1 + ~ log C~I=I))IlfIIBoo(II)·
Hence Mzf is bounded. This proves assertion 1.

Further

lim (1 - IzI2)lzJ'(z)1 + (1 - Iz12
) (1 + ~ log (1 + Ilzll)) IlfIIBoo(ll)= 0,

z-+l- 2 1-z

thus we conclude that Mzf E Boo,o(]jJ)). Hence part 2 follows.

If f E Boo,o(]jJ)), then for Izl < 1,

(1 - IzI2)I(Qf(z))'1 = (1 - Iz12) I z!,(z) -,~f:)+ f(O) I

(1-lzI2)lf(z)1 (1-lzI2) (1 + ~lOg(~~I;I))IlfIIBoo(lI)< +------'----,-.,...,------'-----Izl2 Izl2
+ (1 -lzI2)lIfIIBoo(D)

Izl2 '

which tends to zero as [z] ~ 1. Thus Qf E Boo,o(]jJ)).

Now, if f E Boo,a(]jJ)) and f(O) = 0, then f = MzQf E MzBoo,a(]jJ)). The

reverse inclusion is obvious.

Therefore the one-to-one and onto mapping Mz from Boo,a(]jJ)) onto {f E

Boo,o(]jJ)) If(O) = O} is bounded. So the open mapping theorem 2.0.4, im-

plies that the inverse is bounded. It therefore follows that Q : spanl l)EB

MzBoo,a ~ Boo,a is bounded. o
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4.2 Spectral properties

In this section, we obtain the spectrum, point spectrum and the resolvent

of the infinitesimal generator f. We further obtain the resolvents as inte-

gral operator of which we determine the spectra, point spectra, spectral

radius as well as the norm.

Theorem 4.2.1

2. If A E p(r), then M;'Boo,o(lJ)) is R(A, f) invariant't/m E Z+, m >
8'(A). Moreover if h E M~"Boo,o(lJ)) then

PROOF. We begin by proving that the point spectrum of I' is given by

O"p(f) = {-i(J + n) : n E Z+}. For A E O"p(f) is equivalent to fg = Ag

for some 0 f. 9 E Boo,o(lJ)). Substituting for fg(z) we have

-i(Jg(z) + zg'(z)) = Ag(Z)

which implies that

"(g(z) + zg'(z) = iAg(Z)

By simplifying we have

zg'(z) = (iA - "()g(z)
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and therefore

dg = i).. - 'Y g(z).
dz z

By integrating both sides we have

Thus

Ing(z) = (i).. - 'Y) In z + lnc

which implies g(z) = C:::;(iA--Y) But, z" E H(][))) if and only if n E Z+.

Since polynomials are dense in the little Bloch space, Boo,o(][))), it there-

fore follows that z" E Boo,o(][))) if and only if n E Z+. Thus 9 E Boo,o(][)))

if and only if i).. - 'Y = n, for n E Z+ and therefore ap(f) = {)..E C :

i).. - 'Y= 71, ti E Z+}. By simplifying i).. - 'Y= n, we have X = -'i( 'Y+ n).

Therefore, ap (f) = {-i('Y+ n) :n E Z+}, as desired

Next we take note that since St is an invertible isometry, its spectrum

satisfies a(St) s: em. The spectral mapping theorem for strongly contin-

uous groups (Theorem 2.0.2) says et<7(r) s: O'(St). Therefore if ).. E a(r),

then etA E 8][)) implies letAI = 1. Since t 2: 0 then X E iR And so,

a(r) s: iR

We claim that infact ap(f) = a(f).

Fix X E C\ap(f) and let n E Z+. Since polynomials are dense in Boo,o(][)))

then for arbitrary h(z) = zn, h(z) E X(][))) , and by solving the resolvent
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equation (). - f)g = h(z) we have

(). + i'y)g(z) + izg'(z) = h(z).

Multiplying both sides by iz-1 and rearranging we have

'() i().+i'y) () . -lh()9 z - 9 z = -~z zz

which is equivalent to

( 'Y-'iA ( ))' . 'Y-'iA-l h( )z 9 z = -zz z . (4.2)

The equation (). - r)g = h(z) has unique solution which is obtained

by integrating both sides of equation (4.2) and is given by

-i J (z'Y+n-'jA-l )dz

(
-i , ) z'Y+n-iA.

!+ n - z)'

This simplifies to

() ( 1 ) n
9 z = ).+ ib + n) z.

Note that for)' rt (/p(r) and 9 E D(r),

(). - f)g(O) ).g(O) - fg(O)

).g(O) + i'yg(O) + Og'(O)

().+ 'h)g(O).
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More generally, if g(z) = Zm f(z) with f(O) # 0 then

(>. - r)g(z) >.g(z) + i,g(z) + izg'(z)

>'zm J(z) + irzmJ(z) + iz(zm J(z))'

>.z"mJ(z) + irz1rtJ(z) + imz7nJ(z) + iZ"",+l1'(z)

zTn(>.J(z) + irJ(z) + imJ(z) + 1.Z1'(Z)).

(>. - r)g and 9 have the same order of zero at O. Thus M;' Boo ,0 (ll)))is

invariant under >.- r.
With>. E C\crp(r) and let m < -8'(>. + ,). If h = zm J and that

J E Boo,o(IlJ)), then from equation 4.2 we have

Thus (>. - r)g = h has unique solution

g(z) = R(>', r)h(z) = -iz"m 11tffl+-r--iJ..-l (Q'fTlh) (tz)dt (4.3)

as desired and can also be simplified to

R(>', r)h(z) -i 11(i'-iJ..-1(tZ)7n J(tz)dt

-i 11e-iJ..-1h(tz)dt.

Let w = tz then w -7 0 when t -7 0 and w -7 z when t -7 1, and so
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If 1£ E Boo(][J)) and 0 :s: t < 1 then

111l(tz) IIBoo(lD» sup(1-lzI2)tI1l'(tz)1
Izl<1

< sup(I - t2IzI2)I'U'(tz)1
Izl<1

< 1I'UIIBoo(ID»·

Thus

Now, for all m 2: 1

and

1
)"-i'"(

o
o o

o

o o )..-i('"(+m-1)

Therefore, for A tt CTp(r) , the resolvent operator R(A, I') is bounded on

Boo,o(][J)) and so A E p(r). Thus p(r) = C\CTp(r) and hence CTp(r) = CT(r)

as claimed. 0

In the next theorem, we obtain the point spectrum, spectrum and the

spectral radius of the resolvent operator R(A, I")

40



CHAPTER 4. SPECTRAL PROPERTIES ON THE BLOCH SPACE

Theorem 4.2.2

(jp(R(A, f)) = (j(R(A, f)) = I- : Iw - 2!R~>')I = 2!R~>')}' Moreover, r(R(A, f)) =

I!R(>')! and II R( A, r) II = I!R(,\)I'

PROOF. The spectral mapping theorem for resolvents asserts that (j(R(A, r))\{O} =

(A - (j(f))-l = {>'~!t : fJ, E (j(f)}. For A E p(f). Then,

(j(R(A,f)) = {A 1. : mE Z+} U {O}+zm

where tti = 'Y+ n. Let A = Dt(A) + i8'(A) and substitute in the equation

above to get

(j(R(A, r)) = {Dt(A) + 'i(~'L + 8'(A)) : mE Z+ } . (4.G)

Rationalizing the denominator we get

{
Dt(A) - i(m + 8'(A)) }

(j(R(A, f)) = (Dt(A))2 + (m + 8'(A))2 : mE Z+ .

Let
Dt(A) - i(m + 8'(A))w = ..,.....,....:-:--c------c--:-:-::-

(Dt(A))2 + (m + 8'(A))2

then subtracting 2!R
1
(>.)and simplifying we have

=

Dt(A) -i(m+8'(A)) 1---
(Dt(A))2 + (m + 8'(/\))2 2Dt(A)
2Dt(A)(Dt(A) - i(m + 8'(A)) - [(Dt(A))2 + (m + 8'(A))2]

2Dt(A)[(Dt(A))2 + (m + 8'(A))2]
[(Dt(A))2 - (m + 8'(A))2]- 2iDt(A)(m + 8'(A))

2Dt(A) [(Dt(A))2 + (m + 8'(A))2]

1
w - 2Dt(A)
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Finding the magnitude both sides and simplifying we get

1
[(~(A))2 - (m + 8'(A))2]- 2i~(A)(m + 8'(A))) 12

2~(A)[(~(A))2 + (m + 8'(A))2]
[(~(A))2 - (m + 8'(/\))2]2 + 4(~(A))2(m + 8'(A))2

4~(A)2[(~(A))2 + (m + 8'(A))2J2

Since [(~(A))2+(m+8'(A))2]2 = [(~(A))2-(m+8'(A))2]2+4(~(A))2(m+

8'(A))2 then the equation above simplifies to

1

1 12 . 1
w - 2~(A) = 1(2~(A))I2'

That is, Jw - 2W(A) J = 12W
1

(A)I'

Therefore, a(R(A, r)) = {w : Jw - 2W
1

(A) J = 12!R(A)I }.

Similary,

ap(R(A, r)) = (A - ap(f))-l = {A ~ f.l : f.l E ap(r) } U {O}

{w : Iw - 2~~A) 1 = 12~~A)I} .

And therefore ap(R(A, r)) = a(R(A, r)).

Next we prove that the spectral radius r(R(A, f)) = IWtA)1 and IIR(A, f)11 =

1
IW(A)I'

By definition,

T(R(A, f)) sup{lwl : wE a(R(A, f))}

= sup {Iwl : Iw - 2~~A) 1 = 12~~A)I}
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which implies that

1 1
Iwl < 12~(A)1+ 12~(A)1

1
I~(A)I'=

Therefore, r(R(A, r)) = sup {IAI : IAI :S I~(A)I} = PR(A) I

Finally, we prove that IIR( A, r) II = PR(A)I"

Since the spectral radius of an operator is always bounded by its norm,

we have r(R(A, r)) :s IIR(A, r)11 which implies

1
I~(A)I = T(R(A, r)) :s IIR(A, r)ll·

Hille- Yosida theorem (Theorem 2.0.3) asserts that

1
IIR(A,r)ll:S I~(A)I'

Thus
1 1

I~(A)I = r(R(A, r)) :S IIR(A, r)11 :S I~(A)I

SO, IIR(A, r)11 = I~(A)I" o

4.3 Analysis of a Specific Automorphism

Group of the half-plane

From Theorem 3.1.3 assertion 3, we consider f : 1U --+ JD). As defined

earlier by equations (3.2) and (3.3), let J(z) = 'I/J-l(Z) = ;~~and J-l(Z) =
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·tj;(z) =i~~:). For k = 1, let 'Ut(z) = e-itz with corresponding group of

weighted composition operators defined by SUtg(z) = ('U~)'Yg(uAz)). Now

i(1 + e-it(~))
1- e-it(z-'i)

z+t

i((z + i) + e-it(z - i))
(z + i) - e-it(z - i)

'iz(1 + e-it) - (1 - e-it)
(1 - e-it)z + i(1 + e-it)'

From Euler's formula we have

eit = cos t + i sin t (4.7)

and

e-it = cos t - isin t. (4.8)

Adding equations (4.7) and (4.8) we have

2cost = (e" + e-it)

which implies that
t .t . t

2 cos - = (e'"2 + e-'2)
2 (4.9)

Multiplying both sides of equation (4.9) by e-i~ we have

t'l "2 cos -e-"'"2 = 1 + e-",t2 . (4.10)

Subtracting equations (4.7) and (4.8) we have
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which implies that
t .t . t

2i sin - = (e'2 - e-·'2).
2

Multiplying both sides of equation (4.11) by e-i~ we have

(4.11)

t . t ·t
2i sin -e'2 = 1 - e-'2.

2
(4.12)

Now from equations (4.10) and (4.12) we have

<Pt(z)
iz(2 cos ~e-·i~)- (2i sin ~e-i~)

(2i sin ~e-i~)z + 2i cos ~e-i~
2zi cos 1. - 2i sin 1.2 2
2zi sin 1.+ 2i cos 1.

2 2
t . t

Z cos 2 - sin 2
=

z sin ~ + cos ~ .

Therefore

<Pt(z)
t . t

Z cos 2 - sin 2 -1 ( -it ( ))
. t t =I e j z

z sm 2 + cos 2
i: 0 Ut 0 j(z).

In this section we obtain the generator, spectrum, point spectrum and

the resolvent of the automorphism group given above in the following

theorem;

Theorem 4.3.1
?' cosi-sin 1.

Let <Pt E Aut(lIJ) be given by <Pt(z) = - . r+ ~ for 8011 t E JR, z E
z sin 2 cos 2

lIJ, tuul the corresponding group of isometries in Boo,o(lI)) by Sep,g(z) =

(<p~)1g( <Pt(z)). Then

1. Tiie iniitiiteeiiuel generator 6 of ttie group Sept C Boo,o(lIJ) is given
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by -"{zh(z) - ~(1 + z2)h'(z)),

with the domain D(6.) = {h E Boo,o(1U) : "{h(w) + ~(w + i)h'(w) E Boo,o(l[)))}.

3. If It E p(6.) = p(f), then for m E Z+, m > 8'( -(/l + h)) and

h « R(M;"), we have

4. O"(R(/l, 6.)) = O"p(R(/l, 6.)) = l- E C : Iw - 21R~J.L)I= 121R~J.L)1} . More-

over, r(R(/l,6.)) = IIR(/l,6.)11 = "dJ.L)·

PROOF. Since 'Pt(z) = J-1 0 Ut 0 J(z) it follows that Sept= SfSutSf-l =

Sf SUIs;'. If 6. denotes the generator of Septand r be generator of SUt:

then 6. = SffSj1 with domain D(6.) = SfD(f).

Let g' E Boo.o(][))), then 9 E D(r) and define h := Sfg belongs to D(6.)

with 9 = Sj1(h). Then

6.(h(z)) SffSj1h(z) = Sffg(z)

Sf( -hg(z) - izg'(z))

(f'(z))'"1( -hg(f(z)) - iJ(z)g'(f(z))).

As stated earlier J(z) = ~~:implying that /,(z) = (z!~)2 and thus;

6.(h(z)) = ( (2i);? (-hg(f(z)) - iJ(z)g'(f(z))). (4.13)z + z -'"I
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Since f-l(Z) =i\I~;) and (f-I(Z))' = (1~~)2' then we have g(z) =

SjIh(z) = Sf-lh(z) = (1~~;2"'1h(J-I(Z)) implying that

(z + i)2,
g(f(z)) = (.) h(z).2~, (4.14)

Moreover,

g'(z) = 2f'(2i)'(1 _ Z)-2,-lh(J-I(Z)) + (2i)' 2i h'(J-I(Z))
(1 - z)2' (1 - z) 2

(1 ~2:~~'+2(2f'(1- Z)h(J-I(Z)) + 2ih'(J-I(Z)))

implying that

(z + i)2,+l
g'(J(z)) = (2i),+1 (2f'h(z) + (z + i)h'(z)). ((4.15)

Substituting equations (4.14) and (4.15) in equation (4.13) we have

(2i)' ( . (z + i)2, .z - i (z + i)2,+1 ., )
t:.(h(z)) = (z + i)2, . -z" (2i), h(z) - 7Z + i (2i),+1 (2f'h(z) + (z + ~)h (z))

1
= -hh(z) - f'(z - i)h(z) - 2(z - i)(z + i)h'(z)

-fZh(z) - ~(1+ z2)h'(z)).

As stated earlier, the domain of ,6., D(t:.) is given by D(t:.) = SfD(r) =

{Sfg : 9 E D(t:.)}. Now h E D(t:.) implies that SjIh E D(f) which
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implies that (Sf-l h)' E Boo,o(lDl). But

= ( (2i)'Y h(J-1(Z)))'
(1 - z)2'Y

2,(2i)'Y(1- Z)-2'Y-1h(J-1(Z)) + (2i)'Y 2i h'(J-l(Z))
(1 - Z)2'Y (1 - z)2

(2iP ( )-1 -1)) 2i '-1() )(l-z)2'Y 2,(1-z h(J (Z +(l_z)2h(J Z).

Also
·i{1+z)-" _ i

J 0 J-1(Z) = 1-z = Z,
'i{1+z) + i

1-z

(4.16)

then

( )' (2i)'Y ( 2, ( '-1( )) 2i '( '-1( )))
Sf-1h = (1- Z)2'Y 1- J 0 J-1(Z)h j z + (1- J 0 J-l(z))~h j z

(4.17)

By change of variables, let w = J-1(Z) = i\1~:),then from equation (4.16)

we have

J( ) - i (1 + ~~:)_ i(z + i+ z - i) _ _ J J-l()
W - . - -z- 0 .~

1- Z-'I: z + i - z + i
Z+'I.

(4.18)

Substituting equation (4.18) in equation (4.17) we have

Therefore

hE D(,6) ¢:? Sf-1 (1 _2](w) h(w) + (1 _ ~i(w))2 h'(w)) E Boo,o(lDl)

¢:? (1_
2
](w)h(W) + (1- ~~(w))2h'(w)) E Boo,o(lDl).
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By change of variables again we have

f(w) = w - i
w+~ (4.20)

1
hE D(t::,) {:} -(w + i)CYh(w) + 2(w + i)h'(w)) E Boo,o(ll))),

which implies that D(t::,) = {h E Boo,o(ll))) : ,h(w) + ~(w + i)h'(w) E Boo,o(ll)))} ,

The spectrum and point spectrum of t::, are given as ap(t::,) = ap(r) =

a(r) = a(t::,) = {-iCY + n) : n E Z+}.

For the resolvents, if f.J,E p(t::,) = p(r), then for m E Z+, m > 8'( -(f.J, +
'iT)) and if h E R(M;:,"), we have R(f.J" t::,) = SfR(f.J" r)Sjl and so

R(f.J" t::,) h( z) Sf ( -iZi>.+y lz
W-Y-·i>.-lSf-1h(W)dW)

S. (-iZi>.+-Y l' W-y-i>.-l (2i)-Y hU-1(.W))dW)
j 10 (1 - w)2-Y .

S (-iZi>.+Y t (J(W))"I-i>'-l (2i)'Y h(w)_df dW)
f 10 (1 - f(w))2-Y dw

-i ( (2i)~2 (g(Z))i>.+-Y t (w - ~)-Y-i>'-l (2i)-Y (w ~ £)2"1 h(w)d(w)
z + ~ "I 10 w + ~ 2~

(
.) i.>.+-ylz

-i z -.~ (w - i)"l-i>.-l(W + i)"l+i>'+lh(w)dw.
(z + ~)2-y 0

Finally, from Theorems 2.0.1 and 4.1.2 it follows that for all J-l E p(t::,) ,
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the spectrum of R(p,,~) is given by

cy(R(p" ~))

Similarly, the point spectrum is given by

Therefore, dR(p" ~)) = CYp(R(p,,~)) = i- E C : Iw - ~!R~JL) 1= 2!R~JLJ·

Finally, we conclude this section by proving the spectral radius r(R(p" ~)) =

1!R(JL)i and IIR(p,,~)1I = I!R(JL)I·

From the spectrum and Theorem 4.2.2, it is clear that the spectrum of the

resolvent is r(R(p" ~)) = I!R(JL)I. Hille-Yosida theorem yields r(R(p" ~)) =

I!R(JL) I ::; IIR(p" ~) II ::; I!R(JLW

o
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Chapter 5

Summary and

Recommendations

5.1 Summary

In this study, we applied the duality properties of the non-reflexive Bergman

space, L~(]]J), 'ma,) to obtain a semigroup of weighted composition opera-

tors, (Stk~o on the little Bloch space, Boo,o(]]J)). We proved that (St)t~O is

a strongly continuous group of isometries on Boo,o(]]J)) with infinitesimal

generator given in Theorem 3.3.3.

Using the spectral theory of linear operators, we obtained the spectrum,

O'(f), point spectrum, O'p(f) and the resolvent of the infinitesimal gener-

ator ill Theorem 4.1.1. The resolvent operator was given as an integral

operator. Further, we proved that the spectrum and point spectrum of

the infinitesimal generator are equal and they are set of points on the

negative imaginary axis of the complex plane. Consequently, we obtained

the spectrum and point spectrum of the resolvent operator as well as the

spectral radius and the norm of this resolvent in Theorem 4.1.2. This the-
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sis therefore completes our analysis of the adjoint composition semigroup

on L~(ID>, maJ for the case p = 1. The other case when 1 < p < 00 was

considered in [11].

5.2 Recommendations

From the results of this study we recommend the following for further

research;

1. In this thesis, we considered the groups of weighted composition

operators corresponding to the self analytic maps of the rotation

group on B(X),o(ID» and studied their semigroup and spectral-prop-

erties. We therefore recommend the study of groups of weighted

composition operators be extended to the scaling and translation

groups on Boo,o(ID».

2. In this study, we completed our analysis of the adjoint composition

group on the predual of the nonrefiexive Bergman space L;(ID>, ma,).

We recommend the study of groups of weighted composition op-

erators be extended to other spaces of analytic functions like the

Dirichlet spaces, Besov spaces, Lipschitz spaces among others.

3. In this study, we considered a specific automorphism of the unit

disk ID>defined on Boo,o(ID». We recommend an extension of the the

study to more general classes of automorphism of the upper half

plane on the Bloch space.
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