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Abstract

Reproducing kernels for spaces of analytic functions continues to be of

interest to many mathematicians. Most studies have concentrated on the

analytic spaces of the unit disk. Reproducing kernels for the Bergman,

Hardy and Dirichlet spaces of the unit disk have been extensively de-

termined. There has been a growing interest on the analytic spaces of

the upper half plane in the recent past. For instance, the Bergman and

the Szegö kernels of the upper half plane have recently been determined.

However, the theory of the Dirichlet space of the upper half plane is not

well established in literature. In this study therefore, we have determined

the reproducing kernel for the Dirichlet space of the upper half plane us-

ing the Cayley transform to construct an invertible isometry between the

corresponding spaces of the unit disk and that of the upper half plane.

By applying Cauchy-Schwarz inequality, we have established the growth

condition for functions in the Dirichlet space of the upper half plane. We

have then constructed an integral operator of the Cesàro type which is

acting on the Dirichlet space of the upper half plane using the approach

of strongly continuous semigroups of composition operators on Banach

spaces. Moreover, we have determined the spectra and norm properties

of the Cesàro type operator using the spectral mapping theorems as well

as the Hille-Yosida theorem. Results of this study have contributed new

knowledge to this area of mathematics and will advance further research

on this and related areas.
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4.2.1 Cesàro - Type operator . . . . . . . . . . . . . . . . 51

Chapter 5 Summary and Recommendations 55

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . 56

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



Index of Notations
C Complex plane. . . . . . . 4

D Unit disk. . . . . . . . . . 4

dA Area measure. . . . . . . 4

U Upper half plane. . . . . . 4

= Imaginary part of a com-

plex number. . . . . . . 4

ψ Cayley transform. . . . . . 4

Ω Open subset of C. . . . . 5

H(Ω) Space of holomorphic

functions on Ω. . . . . 5

Hp(D) Hardy space of the unit

disk. . . . . . . . . . . 5

Hp(U) Hardy space of the up-

per half plane. . . . . . 6

Lpa(D) Bergman space of the

unit disk. . . . . . . . . 6

Lpa(U) Bergman space of the

upper half plane. . . . 7

D(D) Dirichlet space of the

unit disk. . . . . . . . . 7

D(U) Dirichlet space of the

upper half plane. . . . 8

H Hilbert space. . . . . . . . 9

K Reproducing kernel. . . . 10

dom(T ) Domain of T . . . . . 11

ρ(T ) Resolvent set of T . . . 11

σ(T ) Spectrum of T . . . . . 11

r(T ) Spectral radius of T . . 11

σp(T ) Point spectrum of T . . 12

Γ Infinitesimal generator. . . 13

R(λ,Γ) Resolvent operator . 21

∂D Boundary of the unit disk. 22

< Real part of a complex num-

ber. . . . . . . . . . . . 27

Kω(z) := K(z, ω) Reproduc-

ing kernel. . . . . . . . 28

KD(z, ω) Reproducing kernel

for the Dirichlet space

of the unit disk. . . . . 32

KU(z, ω) Reproducing kernel

for the Dirichlet space

of the upper half plane. 36
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Chapter 1

Introduction

1.1 Background of the study

The notion of the reproducing kernel was first introduced early in the

20th century by Zaremba [34] in 1907 in his work concerning boundary

value problems for harmonic and biharmonic functions. Zaremba was

the first to introduce, in a particular case, the kernel corresponding to

a class of functions, and to state its reproducing property. He however

did not develop any theory nor give a name to the kernels he introduced.

Mercer [19] in 1909, examined functions which satisfy the reproducing

property in the theory of integral equations. He considered continuous

kernels of positive definite integral operators under the name “positive

definite kernels” and this has been used by many others interested in in-

tegral equations. Mercer [19] gave a connection of the theory of integral

equations to reproducing kernels and determined functions which satisfy a

reproducing property in the theory of integral equations thus characteriz-

ing his kernels among all the continuous kernels of integral equations. The

idea of the reproducing kernel remained untouched for several years until
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Introduction

in 1921 when it appeared in the dissertations of three Berlin mathemati-

cians, Szegö (1921), Bergman (1922) and Bochher (1922). In 1935, Moore

[21] examined the positive definite kernels in his general analysis under

the name “positive hermitian matrices” with a kind of generalization of

integral equations. Moore [20] proved that for every positive Hermitian

matrix, there corresponds a class of functions forming a Hilbert space

with scalar product 〈f, g〉 and in which the kernel has the reproducing

property f(y) = 〈f(x), K(x, y)〉∀x, y ∈ H. The subject was developed

systematically in the early 1950’s by Aronszajin [5] and Bergman [9]. In

particular, Bergman [9] introduced reproducing kernels in one variable

and in several variables for the class of harmonic and analytical functions

and he called them kernel functions. He further noticed the reproducing

property of these kernels but did not use their basic characteristic prop-

erty as is done in the present. The original idea of Zaremba to apply

the kernels to the solution of boundary value theorem was developed by

Bergman and Schiffer [10]. In their work, the kernel was shown to be a

powerful tool for solving boundary value problems of Partial Differential

Equations of elliptic type. Further, by application of kernels to conformal

mapping of multiply connected domains, some useful results were ob-

tained by Bergman and Schiffer. Many important results were achieved

by the use of these kernels in the theory of one and several complex vari-

ables; in conformal mapping of simply and multiply connected domains;

in pseudo-conformal mappings; in the study of invariant Riemannian met-

rics and in other subjects. The reproducing kernel of analytic spaces of

the unit disk is well captured in literature. Bergman [10] determined the

reproducing kernel of the Bergman spaces on the unit disk also known
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Introduction

as the Bergman kernel. Szegö [33] also computed the reproducing ker-

nel of the Hardy space on the unit disk also known as the Szegö kernel.

The reproducing kernel for the Dirichlet space of the unit disk is also

well defined in literature [15]. The study of Reproducing kernels for the

analytic spaces of the upper half plane has not been extensively done. Re-

cently Bonyo [11] determined the reproducing kernels for the Hardy and

Bergman spaces of the upper half plane. However, the reproducing kernel

for the Dirichlet space of the upper half plane has not been determined.

We shall work out this reproducing kernel and the corresponding growth

condition for the functions in the Dirichlet space of the upper half plane.

The thesis is organized as follows:

In chapter 1, we give the necessary background to the study and high-

light some basic concepts needed for development of other chapters. The

problem statement, study objectives, significance of the study as well as

the methods employed in solving the problems of the study; are given in

this chapter. In chapter 2, a review of related literature on reproducing

kernels and integral operators on spaces of analytic functions is given.

Known theorems that are applied in this study are also stated. In chap-

ter 3, we compute the reproducing kernel for the Dirichlet space of the

upper half plane and establish the growth condition for functions in the

Dirichlet space of the upper half plane. In chapter 4, we study scaling

groups on the Dirichlet space of the upper half plane. We then construct

a Cesàro operator acting on the Dirichlet space of the upper half plane

and investigate its properties. Finally in chapter 5, we give a summary

and make recommendations for further research.
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Introduction

1.2 Basic concepts

1.2.1 The unit disk D and Upper half plane U

Let C be the complex plane. The set D = {z ∈ C : |z| < 1} is known

as the (open) unit disk of the complex plane. Also let dA(z) = 1
π
dxdy

for z = x + iy denote the area measure on D normalized so that the

area of D is one. The set U = {ω ∈ C : =(ω) > 0} is the upper half

plane of the complex plane where =(ω) denotes the imaginary part of the

complex number ω. Also dA(ω) shall denote the area Lebesgue measure

on U. The function ψ(z) = i(1+z)
1−z is referred to as the Cayley transform

and maps the unit disc D conformally onto the upper half-plane U and

its inverse is ψ−1(ω) = ω−i
ω+i

. For more details see [36].

1.2.2 Analytic Functions

Let Ω ⊂ C be an open set and let f : Ω → C be a complex function.

Then, f is said to be differentiable at a point z◦ ∈ Ω if the limit

f ′(z◦) = lim
∆z→0

f(z◦ + ∆z)− f(z◦)

∆z

exists. Also, the function f is said to be analytic in an open domain Ω if

its derivative f ′(z) exists for all z ∈ Ω. A function that is analytic on the

whole complex plane, that is to say Ω = C is called an entire function.

The function f is said to be holomorphic if it is complex differentiable

at every point in Ω. A biholomorphism is a map that is bijective and

holomorphic with an inverse that is also holomorphic. A biholomorphic
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map of Ω into itself is called an automorphism. The automorphism groups

denoted by Aut(Ω) consists of all biholomorphic mappings of Aut(Ω) with

composition of maps being their group operation. For details see [23, 36].

1.2.3 Spaces of Analytic Functions of interest

LetX be a Hausdorff topological space and f a continuous complex valued

function on X. If f is compact, ‖f‖ is finite. In this case, we say a

sequence fn converges uniformly on X if ‖fn − fm‖ → 0 as n,m →

∞, n,m ∈ N. We shall mean by a Fréchet space X, a topological vector

space with the following properties

(i) There is countable increasing family of norms ‖ · ‖n on X which

induce topology

(ii) The topology is metric and X is complete in this metric.

For an open subset Ω of C, let H(Ω) denote the Fréchet space of analytic

functions f : Ω → C endowed with the topology of uniform convergence

on compact subsets of Ω.

(i) Hardy spaces For 1 ≤ p < ∞, the Hardy spaces of the unit disk,

Hp(D) , are defined as

Hp(D) :=

{
f ∈ H(D) : ‖f‖Hp(D) := sup

0<r<1

1

2π

(∫ π

−π
|f(reiθ)|pdθ

) 1
p

<∞

}
,

(1.1)
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while the Hardy spaces of the upper half plane, Hp(U), are defined

as

Hp(U) :=

{
f ∈ H(U) : ‖f‖Hp(U) := sup

y>0

(∫ ∞
−∞
|f(x+ iy)|pdx

) 1
p

<∞

}
.

(1.2)

Hardy spaces, Hp(·), are Banach spaces with respect to their re-

spective norms ‖ · ‖Hp(·). If p = 2, H2(·) is a Hilbert space with

inner product defined on the unit disk by : For each f, g ∈ H2(D),

〈f, g〉H2(D) =
1

2π

∫ π

−π
f(reiθ)g(reiθ)dθ.

For f ∈ Hp(D), f satisfies the growth condition

|f(z)| ≤ C‖f‖p
(1− |z|)

1
p

, (1.3)

where C is a constant and z ∈ D, while for f ∈ Hp(U), f satisfies

the growth condition

|f(ω)| ≤ Cp‖f‖p
(=(ω))γ

, (1.4)

where Cp is a constant, ω ∈ U and γ = 1
p
.

(ii) Bergman spaces For 1 ≤ p <∞, the Bergman spaces of the unit

disk, Lpa(D), are defined by

Lpa(D) :=

{
f ∈ H(D) : ‖f‖Lp

a(D) :=

(∫
D
|f(z)|pdA(z)

) 1
p

<∞

}
,

(1.5)
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while the Bergman spaces of the upper half plane, Lpa(U), are de-

fined by

Lpa(U) :=

{
f ∈ H(U) : ‖f‖Lp

a(U) :=

(∫
U
|f(ω)|pdA(ω)

) 1
p

<∞

}
.

(1.6)

Bergman spaces, Lpa(·), are also Banach spaces with respect to their

respective norms ‖ · ‖Lp
a(·) and L2

a(·) is a Hilbert space with inner

product defined on the unit disk given by : For each f, g ∈ L2
a(D)

〈f, g〉L2
a(D) =

∫
D
f(z)g(z)dA(z),

and on the upper half plane by : For every f, g ∈ L2
a(U)

〈f, g〉L2
a(U) =

∫
U
f(ω)g(ω)dA(ω).

If f ∈ Lpa(D), then f satisfies the well known growth condition

|f(z)| ≤ K‖g‖
(1− |z|2)γ

, (1.7)

where K is a constant, γ = 2
p

and z ∈ D, while for f ∈ Lpa(U), f

satisfies the growth condition

|f(ω)| ≤ Cp‖f‖p
(=(ω))γ

, (1.8)

where Cp is a constant, ω ∈ U and γ = 2
p
.

(iii) Dirichlet spaces The Dirichlet space of the unit disk, D(D), is
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defined by

D(D) :=

{
f ∈ H(D) : ‖f‖2

D1(D) =

∫
D
|f ′(z)|2dA(z) <∞

}
, (1.9)

with its norm given by ‖f‖2
D(D) = |f(0)|2 + ‖f‖2

D1(D) and where

‖.‖D1(D) is a seminorm on D(D).

The corresponding Dirichlet space of the upper half plane, D(U),

is given by

D(U) :=

{
f ∈ H(U) : ‖f‖2

D1(U) =

∫
U
|f ′(ω)|2dA(ω) <∞

}
, (1.10)

and the norm is given by ‖f‖2
D(U) = |f(i)|2 +‖f‖2

D1(U) where ‖.‖D1(U)

is a seminorm on D(U). The Dirichlet space, D(·), is a Banach space

with respect to its norm ‖ · ‖D(·) and is a Hilbert space with inner

product defined on the unit disk by

〈f, g〉D(D) = 〈f(0), g(0)〉+
∫
D
f ′(z)g′(z)dA(z),∀f, g ∈ D(D), (1.11)

and on the upper half plane by

〈f, g〉D(U) = 〈f(i), g(i)〉+
∫
U
f ′(ω)g′(ω)dA(ω),∀f, g ∈ D(U). (1.12)

Remark 1.2.1

In fact if f = g, then the equations (1.11) and (1.12) coincide with

the norms on D(D) and D(U) respectively. Indeed, for (1.11),

〈f, f〉D(D) = 〈f(0), f(0)〉+

∫
D
f ′(z)f ′(z)dA(z),
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which yields

‖f‖2
D(D) = |f(0)|2 +

∫
D
|f ′(z)|2dA(z),

while for (1.12),

〈f, f〉D(U) = 〈f(i), f(i)〉+

∫
U
f ′(ω)f ′(ω)dA(ω),

yielding

‖f‖2
D(U) = |f(i)|2 +

∫
U
|f ′(ω)|2dA(ω).

For f ∈ D(D), then f satisfies the growth condition

|f(z)| ≤ c‖f‖

√
log

1

1− |z|2
, (1.13)

where c is a constant and z ∈ D.

The growth condition for functions in D(U) is not explicitly known in

literature. We refer to [15, 24, 36] for details.

1.2.4 Reproducing Kernels

Let H denote a Hilbert space of functions with inner product 〈., .〉H

defined on an open set Ω ⊆ C. A function k : Ω × Ω → C is a kernel if

there exists a Hilbert space H and a function φ such that for any α, β ∈ Ω,

k(α, β) = 〈φ(α), φ(β)〉H given that ∀α ∈ Ω, φ(α) ∈ H.

We call a reproducing kernel for H a complex function K : Ω × Ω → C

such that if we put Kω(z) = K(z, ω), then the following two properties

9
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hold;

1. For every ω ∈ Ω, the function Kω belongs to H, and,

2. For all f ∈ H and ω ∈ Ω, we have f(ω) = 〈f,Kω〉H.

For comprehensive details we refer to [22, 28].

1.2.5 Integral Operators

Let X be a subset of Rd, d ∈ R and K : X ×X → C be a reproducing

kernel satisfying the assumptions stated in subsection 1.2.4. Let dA be a

probability measure on X and denote by L2(X) the space of square inte-

grable (complex) functions with norm ‖f‖2 = 〈f, f〉 =
∫
X
|f(x)|2dA(x).

We define an integral operator LK : L2(X)→ L2(X) by

(LKf)(x) =

∫
X

K(x, s)f(s)dA(s). (1.14)

K is the integral kernel or simply the symbol of the integral operator. We

refer to [2, 14, 22, 13] for details.

Example 1.2.2

(i) Volterra Type Integral Operators. A volterra type integral

operator on a space of holomorphic functions of the disk, H(D),

induced by a holomorphic symbol g : D → C is a bounded linear

operator defined by

Vgf(z) =

∫ z

0

f(ξ)g′(ξ)dξ, (1.15)

for z ∈ D and f ∈ H(D).

(ii) Cesàro operators. For a function f(z) analytic on the unit disc,

10
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the Cesàro operator C : H(D)→ H(D) is a bounded linear operator

defined by

Cf(z) =
1

z

∫ z

0

f(ζ)

1− ζ
dζ, (1.16)

for all z ∈ D and f ∈ H(D). For a function f analytic on the upper

half plane, the Cesàro operator is defined by

g(ω) = C(f)(ω) =
1

ω

∫ ω

0

f(ζ)dζ, (1.17)

for ω ∈ U.

(iii) Hankel operator. A Hankel operator on H2 is a bounded linear

operator defined by T = PJMφ for some φ ∈ L∞, where P is the

orthogonal projection of L2 to H2, J is the operator on L2 given

by Jf(z) = f(z̄) and Mφ is the multiplication operator defined as

Mφf(z) = φ(z)f(z). In this terminology T is said to be induced by

the symbol φ ∈ L∞ and is denoted as T = Tφ.

1.2.6 Spectra of Linear operators

Let (X, ‖.‖) and (Y, ‖.‖) be Banach spaces over C. A linear operator

T : X → Y is a linear mapping of a linear subspace dom(T ) of X into Y ,

where dom(T ) is the domain of T .

T is said to be a closed operator if its graph {(x, Tx)| x ∈ dom(T )} is

closed in X × Y .

Let T be closed operator on X, the resolvent set of T , ρ(T ) is given by

ρ(T ) = {λ ∈ C : λI - T is invertible} and its spectrum σ(T ) = C\ρ(T ).

The spectral radius of T is defined by r(T ) = sup{|λ| : λ ∈ σ(T )}. The
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point spectrum σp(T ) = {λ ∈ C : Tx = λx for some 0 6= x ∈ dom(T )}.

For λ ∈ ρ(T ), the operator R(λ, T ) := (λI − T )−1 is called the resolvent

operator of T or simply the resolvent operator. Given two normed vector

spaces, V and W , a linear isometry is a linear map T : V → W that

preserves norms:

‖Tv‖ = ‖v‖

∀v ∈ V . In an inner product space, the definition reduces to

〈v, v〉 = 〈Tv, Tv〉

∀v ∈ V , equivalent to T ∗T = IV where T ∗ is the adjoint of T . This also

implies that isometries preserve inner products, as

〈Tu, Tv〉 = 〈u, T ∗Tv〉 = 〈u, v〉.

A unitary operator is a bounded linear operator T : H→ H that satisfies

T ∗T = TT ∗ = I. The condition T ∗T = I defines an isometry. Thus a

unitary operator is a bounded linear operator that is a surjective isometry.

1.2.7 Semigroups of Linear operators

Let X be a Banach space. A one parameter family (Tt)t≥0 is a semigroup

of bounded linear operators on X if

(i) To = I (Identity operator on X)

(ii) Tt+s = Tt ◦ Ts for every t, s ≥ 0.

12
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If (Tt)t≥0 and (Tt)t≤0 are both semigroups on X, we say that (Tt)t∈R is a

group on X.

The semigroup, (Tt)t≥0, of bounded linear operators on X is said to be

strongly continuous if limt→0+‖Ttx− x‖ = 0 for all x ∈ X.

The infinitesimal generator Γ of (Tt)t≥0 is defined by

Γx = lim
t→0+

Ttx− x
t

=
∂

∂t
(Ttx)

∣∣∣∣
t=0

(1.18)

for each x ∈ dom(Γ), where the domain of Γ is given by

dom(Γ) =

{
x ∈ X : lim

t→0+

Ttx− x
t

exists.

}

A strongly continuous semigroup is also called C◦- semigroup. For details,

see [16, 23, 31].

1.2.8 Composition Operators and Semigroups

Suppose that ϕ is a function analytic on an open subset Ω of C such that

ϕ : Ω→ Ω, then ϕ is referred to as a self analytic map. For a parameter

t ≥ 0, a family (ϕt)t≥0 of self analytic maps on Ω is a semigroup if it

satisfies the following conditions;

(i) ϕ◦(z) = z, the identity map of Ω, that is ϕ0 = I.

(ii) ϕt+s = ϕt ◦ ϕs for every t, s ≥ 0,

(iii) The map (t, z)→ ϕt(z) is jointly continuous on [0,∞)× Ω.

If both (ϕt)t≥0 and (ϕt)t≤0 are semigroups, then (ϕt)t∈R is said to be a
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group.

The composition operator Cϕ induced by ϕ and is acting on H(Ω) is

defined by

Cϕf = f ◦ ϕ, for all f ∈ H(Ω).

On the other hand, the composition semigroup Cϕt induced by the semi-

group (ϕt)t≥0 is defined by

Cϕt(f) = f ◦ ϕt for all f ∈ H(Ω).

We refer to [29, 31] for more details.

1.3 Statement of the Problem

The study of reproducing kernels for spaces of analytic functions has

mainly been considered on the analytic spaces of the unit disk as compared

to their counterparts on the upper half plane. The reproducing kernels

for the Hardy, Bergman and Dirichlet spaces of the unit disk are well

established in literature. Recently, the reproducing kernels for the Hardy

and the Bergman spaces of the upper half plane were determined. For

the Dirichlet space of the upper half plane, the reproducing kernel has

not been adequately determined. Moreover, the growth condition for the

functions in the Dirichlet space of the upper half plane is not explicitly

known. In this study therefore, we have determined this reproducing

kernel and as a consequence, established the growth condition for the

functions in the Dirichlet space of the upper half plane. We have further
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constructed an integral operator of the Cesàro type which is acting on the

Dirichlet space of the upper half plane and investigated its properties.

1.4 Objectives of the Study

The main objective of this study was to determine the reproducing kernel

for the Dirichlet space of the upper half plane and investigate its conse-

quences. The specific objectives were;

(i) To determine the reproducing kernel for the Dirichlet space of the

upper half plane.

(ii) To establish the growth condition for the functions in the Dirichlet

space of the upper half plane.

(iii) To construct a Cesàro type operator on the Dirichlet space of the

upper half plane.

(iv) To investigate the properties of the Cesàro type operator constructed

in (iii) above.

1.5 Significance of the Study

Reproducing kernel spaces and integral operators have been researched

on by many mathematicians. However, studies on reproducing kernel and

integral operators for the Dirichlet space of the upper half plane is not

vast in literature. Results of this study can be applied in the study of
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integral equations and in solving boundary value problems. The results

have also contributed new knowledge to this area of mathematics thereby

adding to the existing literature and will advance further research on this

and other related areas.

1.6 Research Methodology

The reproducing kernel for the Dirichlet space of the unit disk is known

in literature. Using the Cayley transform, we constructed an invertible

isometry from Dirichlet space of the unit disk to the Dirichlet space of

the upper half plane. The constructed invertible isometry enabled us to

transform the reproducing kernel of the unit disk to the reproducing kernel

of the upper half plane thereby achieving our first specific objective.

To establish the growth condition for functions of the Dirichlet space of

the upper half plane, we used the obtained reproducing kernel and then

applied the Cauchy-Schwarz inequality to obtain the norm bound.

We constructed an integral operator of the Cesàro type which is acting

on the Dirichlet space of the upper half plane by using the approach

of strongly continuous semigroups of composition operators on Banach

space. Specifically, we applied the Laplace transform which gave the

resolvents of the infinitesimal generator in terms of an integral of the

underlying group.

To investigate the properties of the constructed integral operator, we

applied spectral mapping theorem for strongly continuous groups and

for resolvents and determined the spectra of the integral operator. We

further applied characterization by the Hille-Yosida theorem to get the
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norm property of the integral operator.
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Chapter 2

Literature Review

The theory of reproducing kernels corresponding to classes of analytic

functions was first introduced in 1921 by Szegö [33] in his paper deal-

ing with typical reproducing kernels. He [33] determined the reproducing

kernel for the Hardy space of the unit disk and named it as the Szegö

kernel. The Szegö kernel has played a fundamental role in potential the-

ory and complex analysis as seen by Bell in [8]. In 1922, Bergman [9] also

determined the Bergman kernel, the reproducing kernel for the Bergman

space of the unit disk, as part of his work in his doctoral dissertation.

The reproducing property of the Bergman kernel function is a very im-

portant property that plays an important role in the intrinsic geometry

of domains. The Bergman and Szegö kernels on the unit disc have been

extensively studied in literature. For example, Singh [30] in 1960, deter-

mined an integral equation associated with the Szegö kernel. Hua [17] in

1963 computed the explicit forms of the Bergman kernel using the holo-

morphic automorphism group. Saitoh [27] in 1977 determined the relation

between the magnitudes of the exact Bergman kernel and a product of

two kernels of Szegö type. He turned this method to the establishment
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of a positive definiteness of a period matrix of a product of two kernels

of Szego type which led to some completeness theorems of such prod-

ucts. Bell [8] in 2000, showed the fundamental role of the Szegö kernel

in potential theory and complex analysis. In particular, Bell showed that

the Szegö and Bergman kernels associated to a finitely connected domain

in the plane are generated by only three holomorphic functions of one

complex variable. Bell further established that many other important

functions of potential theory and conformal mapping theory are rational

combinations of the same three basic functions. In 2012, Ahn and Park

[1], on the other hand showed that the main part of the explicit form of

the Bergman kernel on the unit disk is a polynomial whose coefficients

are combinations of stirling numbers of the second kind. The theory of

reproducing kernel for the Dirichlet space of the unit disk is vast in lit-

erature. Ross in his article [26] computed the reproducing kernel for the

Dirichlet space of the unit disk and further established the growth condi-

tions for functions of the Dirichlet space of the unit disk. Arcozzi et al, in

their paper [4] noted that the reproducing kernel for the Dirichlet space

of the disk satisfies some estimates which are important in applications

and reveal its geometric nature.

The reproducing kernels for spaces of analytic functions on the upper half

plane had not been determined until in 2020 when Bonyo [11] did. He de-

termined the Bergman kernel and also computed the Szegö kernel for H2

on the upper half plane of the respective spaces. He also used the com-

puted reproducing kernels to establish a weighted Bergman projection on

the weighted Bergman space and a Cauchy-Szegö projection. However,

not much has been done on the Dirichlet space of the upper half plane.
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Specifically, the reproducing kernel of the Dirichlet space on the upper

half plane has not been determined. We shall therefore compute this re-

producing kernel and as a consequence, establish the growth condition for

the functions in the Dirichlet space of the upper half plane.

Much has been done concerning integral operators on analytic spaces of

the unit disk. Rochberg and Zhijian [25] in 1992 studied Toeplitz opera-

tors on the Dirichlet spaces of the unit disk. They obtained necessary and

sufficient conditions on the symbols for the operator to be bounded and

compact. Siskasis [32] in 1996 studied semigroup operators on Dirichlet

spaces. In 2009, Liankuo [35] also studied Hankel operators on the Dirich-

let space of the disk and showed their relation to the Hankel operators on

the Bergman space, L2
a and Hardy space, H2. Brevig et al [12] studied

the Volterra operator on Hardy spaces of the Dirichlet series associated

with an analytic function on the unit disk. Recently, there has been in-

terest on integral operators on analytic spaces of the upper half planes.

In 2010, Arvanitidis and Siskasis in [6] studied the Cesàro operators on

Hardy spaces of the upper half plane. In 2016, Ballamoole et al [7] con-

structed Cesàro like operators associated with strongly continuous groups

of invertible isometries on the Hardy and Bergman spaces of the upper

half plane. Agwang [3] in 2020 proved that the group of weighted compo-

sition operators induced by continuous automorphism groups of the upper

half plane is strongly continuous on the weighted Dirichlet space of the

upper half plane. However, integral operators on the Dirichlet space of

the upper half plane is not well captured in literature. Therefore, in our

study, we shall also construct an integral operator on the Dirichlet space

of the upper half plane and investigate its properties.
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The following known results from literature will be used in this study.

For details, we refer to [4, 15, 16, 18, 23, 26].

Theorem 2.0.1 (Cauchy-Schwarz Inequality)

Let E be an inner product space over C. Then for all u, v ∈ E,

|〈u, v〉| ≤ ‖u‖‖v‖.

Theorem 2.0.2 (Minkowski’s Inequality)

Let p > 1. Then the integral form of Minkowski’s inequality is given as

(∫ b

a

|f(t) + g(t)|pdt
) 1

p

≤
(∫ b

a

|f(t)|pdt
) 1

p

+

(∫ b

a

|g(t)|pdt
) 1

p

,

for continuous functions f and g on [a, b].

Theorem 2.0.3 (Laplace Transform)

Let X be a Banach space and Γ be the infinitesimal generator of a strongly

continuous semigroup of contractions (Tt)t≥0 ⊆ L(X). Then for λ > 0

and h ∈ X, the Laplace transform is the resolvent operator, R(λ,Γ)

given by

R(λ,Γ)h =

∫ ∞
0

e−λtTthdt, (2.1)

with convergence in norm.

Theorem 2.0.4 (Parseval’s theorem)

Suppose f and g are two complex-valued functions on R of period 2π

that are square integrable (with respect to the Lebesgue measure) over

intervals of period length, with Fourier series

h(x) =
∞∑

n=−∞

Cne
inx
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and

g(x) =
∞∑

n=−∞

γne
inx

respectively. Then

1

2π

∫ π

−π
h(x)g(x)dx =

∞∑
n=−∞

Cnγ̄n,

1

2π

∫ π

−π
|h(x)|2dx =

∞∑
n=−∞

|Cn|2.

Theorem 2.0.5 (Spectrum of an invertible and non-invertible isometry)

Let T be an arbitrary operator on a Banach space X. If T is an invertible

isometry, then

σ(T ) ⊆ ∂D, (2.2)

where ∂D denotes the boundary of the unit disk which is a unit circle.

For a non-invertible isometry T ,

σ(T ) = D.

Theorem 2.0.6 (Hille-Yosida)

A linear operator Γ is the infinitesimal generator of a strongly continuous

semigroup of contractions (Tt)t≥0 ⊆ L(X) if and only if;

(i) Γ is closed and dom(Γ) = X.

(ii) The resolvent set ρ(Γ) of Γ contains R+ and for every λ ≥ 0,

‖R(λ,Γ)‖ ≤ 1
λ
.

Theorem 2.0.7 (Spectral mapping theorem for resolvents)

Let T be a closed operator on a Banach space X and λ ∈ ρ(T ). Then the

following hold;
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1. σ(R(λ, T )) \ {0} = (λ− σ(T ))−1 =
{

1
λ−µ : µ ∈ σ(T )

}
,

2. σp(R(λ, T )) \ {0} = (λ− σp(T ))−1 =
{

1
λ−µ : µ ∈ σp(T )

}
.

Theorem 2.0.8 (Spectral mapping theorem for semigroups)

Let (Tt)t≥0 be a strongly continuous semigroup and Γ be its infinitesimal

generator. Then;

σ(Tt) ⊃ etσ(Γ),

and for point spectrum;

etσp(Γ) = σp(Tt).

Theorem 2.0.9 (Closed graph theorem)

Let X and Y be Banach spaces. Then every closed linear mapping T :

X → Y is continuous.

Theorem 2.0.10 (Fatou’s lemma)

Let X be a measurable set, A a sigma algebra and µ a positive measure on

the measurable space (X,A). If (X,A, µ) is a measure space and suppose

fn : X → [0,∞) is measurable for all n ∈ N, then;

∫
X

lim inf fndµ ≤ lim inf
∫
X
fndµ.

Theorem 2.0.11 (Classification theorem for the Aut(U))

Let ϕ : R → Aut(U) be a nontrivial continuous group homomorphism.

Then exactly one of the following cases holds:

1. There exists k ∈ R, k 6= 0, and g ∈ Aut(U) so that ϕt(z) =

g−1(g(z) + kt) for all z ∈ U and t ∈ R.
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2. There exists k > 0, k 6= 0, and g ∈ Aut(U) so that ϕt(z) =

g−1(ktg(z)) for all z ∈ U and t ∈ R.

3. There exists k > 0, k 6= 0, and a conformal mapping g of U onto D

such that ϕt(z) = g−1(eiktg(z)) for all z ∈ U and t ∈ R.

24



Chapter 3

Reproducing kernel for the

Dirichlet space of the upper

half plane, D(U)

3.1 Introduction

In this chapter, we determine the reproducing kernel for the Dirichlet

space of the upper half plane. We construct an invertible isometry from

Dirichlet space of the disk, D(D) to Dirichlet space of the upper half plane,

D(U) in Proposition 3.1.1 that will help in computing the reproducing

kernel for the Dirichlet space of the upper half plane. Thereafter, we use

the reproducing kernel for the Dirichlet space of the unit disk, KD(D),

as well as the obtained invertible isometry from the Dirichlet space of

the unit disk to the Dirichlet space of the upper half plane, to establish

the reproducing kernel for the Dirichlet space of the upper half plane,

KD(U). We consequently establish the growth condition for functions in

the Dirichlet space of the upper half plane. We first start by proving some
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elementary results.

Proposition 3.1.1

For f ∈ D(U), ‖f‖D(U) = ‖f ◦ψ‖D(D). In particular, f ∈ D(U) if and only

if f ◦ ψ ∈ D(D).

Proof. For f ∈ D(U), we have we have from the definition (see section

1.2.3) that

‖f‖2
D(U) = |f(i)|2 +

∫
U
|f ′(ω)|2dA(ω) <∞.

Now by change of variables, if ψ is the Cayley transform, we let ω = ψ(z),

then dA(ω) = |ψ′(z)|2dA(z). Therefore

‖f‖2
D(U) = |f(ψ(0))|2 +

∫
D
|f ′(ψ(z))|2|ψ′(z)|2dA(z)

= |(f ◦ ψ)(0)|2 +

∫
D
|ψ′f ′(ψ(z))|2dA(z)

= |(f ◦ ψ)(0)|2 +

∫
D
|(f ◦ ψ)′(z)|2dA(z)

= ‖f ◦ ψ‖2
D(D),

which completes the proof. �

The next two propositions give examples of analytic functions and the

conditions they must satisfy to belong to D(D) and D(U) respectively.

We first give the following Lemma that highlights the condition necessary

for a function on the unit disk to be bounded.

Lemma 3.1.2 ([36])

Suppose z ∈ D, c is real, t > 1, and

Ic,t(z) =

∫
D

(1− |w|2)t

|1− zw̄|2+t+c
dA(w).
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If c < 0, then as a function of z, Ic,t(z) is bounded above and below on D.

Proposition 3.1.3

Let θ ∈ R, η ∈ C and z ∈ D, then (eiθ − z)η ∈ D(D) if and only if

<(η) > 0.

Proof. Given θ ∈ R, η ∈ C and z ∈ D, we recall

(eiθ − z)η ∈ D(D)⇔
∫
D
|((eiθ − z)η)′|2dA(z) <∞.

But

∫
D
|((eiθ − z)η)′|2dA(z) =

∫
D
|η(eiθ − z)η−1(−1)|2dA(z),

=

∫
D
|η|2|(eiθ − z)η−1|2dA(z),

=

∫
D
|η|2|1− ze−iθ|2<(η−1)dA(z).

Thus ∫
D
|((eiθ − z)η)′|2dA(z) =

∫
D
|η|2 dA(z)

|1− ze−iθ|−2<(η−1)
. (3.1)

It follows from Lemma 3.1.2 with t = 0 and c = −2<(η − 1) − 2 that

(3.1) is bounded if and only if −2<(η − 1)− 2 < 0. That is, if and only

if <(η) > 0. �

Proposition 3.1.4

For λ, ν ∈ C, let f(ω) = (ω − c)λ(ω + i)ν .

Then f ∈ D(U) if and only if 0 < <(λ) < −<(ν).

Proof. Recall from Proposition 3.1.1 that, f ∈ D(U) if and only if
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f ◦ ψ ∈ D(D). Now, let g(z) = f(ψ(z)). Then

g(z) = f(ψ(z)),

= (ψ(z)− c)λ(ψ(z) + i)ν ,

=

(
i(1 + z)

1− z
− c
)λ(

i(1 + z)

1− z
+ i

)ν
,

=

(
zi+ zc+ i− c

1− z

)λ(
2i

1− z

)ν
,

=
(z(c+ i)− 1(c− i))λ

(1− z)λ+ν
· (2i)ν ,

= (c+ i)λ
(z − c−i

c+i
)λ

(1− z)λ+ν
· (2i)ν ,

= k
(z − c−i

c+i
)λ

(1− z)λ+ν
,

where k = (c+ i)λ(2i)ν is a constant.

Since
∣∣ c−i
c+i

∣∣2 = c−i
c+i
· c+i
c−i = 1, it follows that c−i

c+i
∈ ∂D and therefore there

exists θ ∈ R such that c−i
c+i

= eiθ. It follows from Proposition 3.1.3 that

g(z) ∈ D(D) if and only if <(λ) > 0 and <(−λ − ν) > 0. That is,

0 < <(λ) < −<(ν), as desired. �

3.2 Reproducing Kernels for the Dirichlet

spaces

Let H denote a Hilbert space of functions with inner product 〈., .〉H de-

fined on an open set Ω ⊆ C. We call a reproducing kernel for H as a

complex function K : Ω × Ω → C such that if we put Kω(z) := K(z, ω)

, then the following two properties hold;
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1. For every ω ∈ Ω, the function Kω belongs to H, and,

2. For all f ∈ H and ω ∈ Ω, we have f(ω) = 〈f,Kω〉H

It is clear that the above two properties imply that such a kernel K sat-

isfies the identity K(z, ω) = K(ω, z) for all z, ω ∈ Ω. Indeed,

K(z, ω) = Kω(z) = 〈Kω, Kz〉

= 〈Kz, Kω〉 = Kz(ω) = K(ω, z).

3.2.1 Dirichlet space of the unit disk

An analytic function f on the open unit disk D belongs to the classical

Dirichlet space D if it has the finite Dirichlet integral as given in equation

(1.9). In particular, the Dirichlet space of the unit disk D(D), consists of

those analytic function f ∈ H(D) for which
∫
D |f

′(z)|2dA(z) < ∞ with

the norm given by

‖f‖2
D(D) = |f(0)|2 + ‖f‖2

D1(D),

where ‖f‖2
D1(D) :=

∫
D |f

′(z)|2dA(z). Clearly, ‖ · ‖D1(D) is a seminorm on

D(D). Indeed, for f ∈ D(D),

‖f‖2
D1(D) = 0 ⇔

∫
D
|f ′(z)|2dA(z) = 0

⇔ |f ′(z)|2 = 0⇔ f ′(z) = 0

⇔ f(z) = k
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where k is any constant. Also for λ ∈ C and f ∈ D(D), we have that

‖λf‖2
D1(D) =

∫
D
|(λf)′(z)|2dA(z)

=

∫
D
|λ|2|f ′(z)|2dA(z)

= |λ|2
∫
D
|f ′(z)|2dA(z)

= |λ|2‖f‖2
D1(D).

Finally, for the triangle inequality by application of Minkowski’s inequal-

ity, (Theorem 2.0.2), have that for f, g ∈ D(D),

‖f + g‖D1(D) ≤ ‖f‖D1(D) + ‖g‖D1(D).

‖f + g‖D1(D) =

(∫
D
|(f + g)′(z)|2dA(z)

) 1
2

≤
(∫

D
|f ′(z)|2dA(z)

) 1
2

+

(∫
D
|g′(z)|2dA(z)

) 1
2

,

= ‖f‖D1(D) + ‖g‖D1(D).

Therefore ‖ · ‖D1(D) is a seminorm on D(D) as claimed. Moreover, ‖ · ‖2
D(D)

is a norm on D(D). Indeed,

‖f‖2
D(D) = 0 ⇔ |f(0)|2 + ‖f‖2

D1(D) = 0

⇔ f(0) = 0 and f ′(z) = 0

⇔ f(0) = 0 and f(z) = k for any constant k

⇔ f(z) = 0,
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which together with the fact that ‖ · ‖D1(D) is a seminorm on D(D) shows

that ‖ · ‖D(D) is a norm on D(D) as claimed.

We now work out the formula for the function f in terms of the Taylor

coefficients of f in the next proposition.

Proposition 3.2.1

Let f ∈ H(D) be such that f(z) =
∑

n≥0 anz
n, then

‖f‖2
D1(D) =

∑
n≥1 n|an|2.

Proof. Writing the area integral in polar co-ordinates, we have

‖f‖2
D1(D) =

∫
D

∣∣∣∣∣∑
n≥1

nanz
n−1

∣∣∣∣∣
2

dA(z)

=
1

π

∫ 1

0

∫ 2π

0

∣∣∣∣∣∑
n≥1

nanr
n−1ei(n−1)θ

∣∣∣∣∣
2

dθrdr

for z = reiθ. Parseval’s theorem, (Theorem 2.0.4), with

h(θ) =
∑
n≥1

nanr
n−1ei(n−1)θ

and

Cn = nanr
n−1,

implies that for each r ∈ (0, 1),

∫ 2π

0

∣∣∣∣∣∑
n≥1

nanr
n−1ei(n−1)θ

∣∣∣∣∣
2

dθ = 2π
∑
n≥1

|nanrn−1|2|ei(n−1)θ|2 = 2π
∑
n≥1

n2|an|2r2n−2.

(3.2)
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Then

‖f‖2
D1(D) = 2

∫ 1

0

∑
n≥1

n2|an|2r2n−2rdr

= 2
∑
n≥1

n2|an|2
∫ 1

0

r2n−1dr

= 2
∑
n≥1

n2|an|2
(
r2n

2n

∣∣∣∣1
0

)
=

∑
n≥1

n|an|2,

as desired. �

The next proposition gives the reproducing kernel for the Dirichlet space

of the unit disk.

Proposition 3.2.2 ([15])

The reproducing kernel for the Dirichlet space of the unit disk, D(D), is

given by

KD(z, ω) =
1

zω̄
log

1

1− zω̄
, (3.3)

where z, ω ∈ D.

As a consequence we have the growth condition for functions on the

Dirichlet space of the unit disk.

Corollary 3.2.3

For every f ∈ D(D), we have

|f(z)| ≤ c‖f‖

√
log

1

1− |z|2
, (3.4)

where c is a constant.
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Proof. Let f ∈ D(D) andKz(ω) = 1
zω̄

log 1
1−zω̄ be the reproducing kernel

for D(D), then by Cauchy-Schwarz Inequality, (Theorem 2.0.1),

|f(z)| = |〈f,Kz〉|,

≤ ‖f‖‖Kz‖,

= ‖f‖〈Kz, Kz〉
1
2 ,

which implies that

|f(z)| ≤ ‖f‖Kz(z)
1
2 . (3.5)

From (3.3), we can rewrite Kz(z)
1
2 as

Kz(z)
1
2 =

(
1

zz̄
log

1

1− zz̄

) 1
2

(3.6)

=

(
1

|z|2
log

1

1− |z|2

) 1
2

(3.7)

and therefore equation (3.5) becomes

|f(z)| ≤ ‖f‖
(

1

|z|2
log

1

1− |z|2

) 1
2

which can be simplified further as

|f(z)| ≤ c‖f‖

√
log

1

1− |z|2
,

where c = 1
|z| and ‖f‖ = ‖f‖D(D). This completes the proof. �

Remark 3.2.4

Equation (3.4) is the growth condition for functions in the Dirichlet space

of the disk, D(D).
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The function KD on D(D) has been exhaustively studied in literature. See

for instance [8, 30, 17, 27]. In the next section we study the Dirichlet space

of the upper half plane, then compute the corresponding reproducing

kernel for the Dirichlet space of the upper half plane; which has not

been explicitly determined in literature. Consequently, we determine the

growth condition for functions in the Dirichlet space of the upper half

plane.

3.2.2 Dirichlet space of the upper half plane

Just as in the case of the unit disk, the Dirichlet space of the upper half

plane D(U) consists of those analytic functions f ∈ H(U) satisfying

‖f‖2
D1(U) =

∫
U
|f ′(ω)|2dA(ω) <∞,

with the norm given by

‖f‖2
D(U) = |f(i)|2 + ‖f‖2

D1(U),

while ‖ · ‖D1(U) is a seminorm on D(U). Now for f ∈ D(U),

‖f‖2
D1(U) = 0 ⇔

∫
U
|f ′(ω)|2dA(ω) = 0

⇔ |f ′(ω)|2 = 0

⇔ f ′(ω) = 0

⇔ f(ω) = c
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for any constant c. Thus, together with some other seminorm properties,

it follows that ‖ · ‖D1(U) is seminorm on D(U) as claimed. Moreover,

‖ · ‖D(U) is a norm on D(U) since for all f ∈ D(U),

‖f‖2
D(U) = 0 ⇔ |f(i)|2 + ‖f‖2

D1(U) = 0

⇔ f(i) = 0 and f ′(ω) = 0

⇔ f(i) = 0 and f(ω) = k for any constant k

⇔ f(i) = 0 and f(ω) = 0

⇔ f = 0,

which demonstrates that ‖ · ‖D(U) is a norm on D(U), as claimed.

In the next section we compute the reproducing kernel for the Dirich-

let space of the upper half plane using an invertible isometry from the

Dirichlet space of the unit disk to the Dirichlet space of the upper half

plane, then transforming KD to KU but first we establish the relationship

between functions on D(U) and L2
a(U) in the following Lemma.

Lemma 3.2.5

A function f ∈ D(U) if and only if f ′ ∈ L2
a(U).

Proof. By definition of D(U), (see section 1.2.3) f ∈ D(U) if and only

if

‖f‖2
D1(U) =

∫
U
|f ′(ω)|2dA(ω) <∞,

Also, by definition of L2
a(U), (see section 1.2.3) f ′ ∈ L2

a(U) if and only if

‖f ′‖2
L2
a(U) =

∫
U
|f ′(ω)|2dA(ω) <∞.

This implies that f ∈ D(U) if and only if f ′ ∈ L2
a(U), as desired. �
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We now show that the composition operator Cψ induced by ψ is invertible.

Proposition 3.2.6

Let Cψ : H(U)→ H(D) be the composition operator induced by ψ. Then

C−1
ψ = Cψ−1 .

Proof. Let T = Cψ be the composition by ψ and T−1 = Cψ−1 compo-

sition by ψ−1. That is, for f ∈ H(U) and g ∈ H(D), Tf = f ◦ ψ and

T−1g = g ◦ ψ−1. Then for every g ∈ H(D), we have

T−1g(z) = g(ψ−1(z)).

But

T−1(Tf)(z) = (Tf)(ψ−1(z)) = f(ψ(ψ−1(z))) = f(z),

Moreover

T (T−1g)(ξ) = (T−1g)(ψ(ξ)) = g(ψ−1(ψ(ξ))) = g(ξ).

This shows that Cψ is invertible with C−1
ψ = Cψ−1 , as desired. �

We now compute the reproducing kernel for the Dirichlet space of the

upper half plane, D(U), in the next theorem.

Theorem 3.2.7

The reproducing kernel for the Dirichlet space of the upper half plane,

D(U) is given by

KU(z, ω) =
(z + i)(ω̄ − i)
(z − i)(ω̄ + i)

log
i(z + i)(ω̄ − i)

2(z − ω̄)
, (3.8)

z, ω ∈ U.
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Proof. Let KU and KD be the reproducing kernels for the Dirichlet

space of the upper half plane and the unit disk respectively. Then KD is

given by equation (3.3). We need to work out KU. The Cayley transform

ψ(z) = i(1+z)
1−z maps the unit disk conformally onto the upper half plane

with inverse ψ−1(ω) = ω−i
ω+i

. It follows from Propositions 3.1.1 and 3.2.6

that Tf(ξ) = f(ψ(ξ)) is an isometric isomorphism of D(U) onto D(D).

Also, by Proposition 3.2.6 and from the fact that D(·) is a Hilbert space,

it then follows that T is unitary, that is, T ∗ = T−1.

For every ξ ∈ D, we have using the definition of KD

Tf(ξ) = f(ψ(ξ)) = 〈Tf,KD,ξ〉D(D) = 〈f, T−1KD,ξ〉D(U). (3.9)

We now work out T−1KD,ξ. For z ∈ U, we have

T−1KD,ξ(z) = KD,ξ(ψ
−1(z)). (3.10)

By equation (3.3),

KD,ξ(ψ
−1(z)) =

1

( z−i
z+i

)ξ̄
log

1

1− ( z−i
z+i

)ξ̄

=
z + i

(z − i)ξ̄
log

z + i

(z + i)− (z − i)ξ̄

=
z + i

(z − i)ξ̄
log

z + i

z + i− zξ̄ + iξ̄

=
z + i

(z − i)ξ̄
log

z + i

z(1− ξ̄) + i(1 + ξ̄)

=
z + i

(z − i)ξ̄
log

z + i

(1− ξ̄)
(
z + i(1+ξ̄

1−ξ̄ )
)

=
z + i

(z − i)ξ̄
log

z + i

(1− ξ̄)
(
z − ψ(ξ)

) .
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Therefore,

Tf(ξ) = f(ψ(ξ)) =
〈
f, T−1KD,ξ

〉
D(U)

,

=

〈
f,

z + i

(z − i)ξ̄
log

z + i

(1− ξ̄)(z − ψ(ξ)

〉
,

which implies that f(ψ(ξ)) =
〈
f, z+i

(z−i)ξ̄ log z+i

(1−ξ̄)(z−ψ(ξ))

〉
and thus

f(ω) =

〈
f,

z + i

(z − i)ψ−1(ω)
log

z + i

(1− ψ−1(ω))(z − ω̄

〉
, (3.11)

where ω = ψ(ξ) and ω ∈ U. But ψ−1(ω) = ω−i
ω+i

and so

KU,ω(z) =
z + i

(z − i)( ω̄+i
ω̄−i)

log
z + i(

1− ω̄+i
ω̄−i

)
(z − ω̄)

,

=
(z + i)(ω̄ − i)
(z − i)(ω̄ + i)

log
(z + i)(ω̄ − i)

(ω − i− ω − i)(z − ω̄)
,

=
(z + i)(ω̄ − i)
(z − i)(ω̄ + i)

log
(z + i)(ω̄ − i)
−2i(z − ω̄)

=
(z + i)(ω̄ − i)
(z − i)(ω̄ + i)

log
i(z + i)(ω̄ − i)

2(z − ω̄)
.

This completes the proof. �

As a consequence to the Theorem 3.2.7 above, we explicitly determine

the growth condition for functions in the Dirichlet space of the upper half

plane.

Corollary 3.2.8

For f ∈ D(U), we have

|f(ω)| ≤ c‖f‖

√
log
|ω + i|2
4=(ω)

, (3.12)
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where c is a constant, and =(ω) ∈ U denotes the imaginary part of ω ∈ U.

Proof. By Cauchy-Schwarz inequality, (Theorem 2.0.1), we have that

for every f ∈ D(U),

|f(ω)| = |〈f,Kω〉|

≤ ‖f‖‖Kω‖

= ‖f‖〈Kω, Kω〉
1
2

It therefore follows that

|f(ω)| ≤ ‖f‖Kω(ω)
1
2 . (3.13)

Now

Kω(ω)
1
2 =

(
(ω + i)(ω̄ − i)
(ω − i)(ω̄ + i)

log
(ω + i)(ω̄ − i)
−2i(ω − ω̄)

) 1
2

=

(
|ω + i|2

|ω − i|2
log

|ω + i|2

−2i(ω − ω̄)

) 1
2

=

(∣∣∣∣ω + i

ω − i

∣∣∣∣2 log
|ω + i|2

4=(ω)

) 1
2

=

∣∣∣∣ω + i

ω − i

∣∣∣∣ (log
|ω + i|2

4=(ω)

) 1
2

= c

√
log
|ω + i|2
4=(ω)

,

where c =
∣∣ω+i
ω−i

∣∣ is some constant.
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It follows from (3.13) that

|f(ω)| ≤ c‖f‖

√
log
|ω + i|2
4=(ω)

,

where ‖f‖ = ‖f‖D(U). This completes the proof. �
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Chapter 4

Cesàro - Type operator on

Dirichlet space of the upper

half plane.

4.1 Introduction

In this chapter, we construct an integral operator of the Cesàro type

on the Dirichlet space of the upper half plane. We first note that the

automorphisms of the upper half plane were classified into three groups

[7, Theorem 2.0.11], that is the scaling, the translation and the rotation

groups depending on the location of their fixed points. In this study, we

first consider groups of composition operators associated with the scaling

group. We determine the group of composition operator on the Dirichlet

space of the upper half plane D(U) associated with the scaling group and

investigate if it is an isometry on D(U). We then investigate both the

semigroup and spectral properties of the composition semigroup. Finally,

we construct a Cesàro - type operator on D(U) that we obtain as the
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resolvent of the infinitesimal generator then determine the spectral and

norm properties of the operator. We first start by proving some results

on composition operators corresponding to the scaling group.

4.2 Scaling group

The automorphisms of this group are in the form ϕt(ω) = (kt(ω)) for all

ω ∈ U and k, t ∈ R where k > 0, k 6= 1. We consider the self analytic

map ϕt : U→ U of the form ϕt(ω) = e−tω for ω ∈ U. We note that ϕt is

analytic on U. Indeed, analytic maps on U are of the form ψ(ω) = aω+b
cω+d

where a, b, c, d ∈ R with ad− bc > 0.

For ϕt(ω) = e−tω; a = e−t, b = c = 0 and d = 1. Thus ad − bc = e−t − 0

= e−t > 0 and so ϕt is analytic on U.

The composition semigroup induced by the scaling group and acting on

D(U) is defined as

Cϕtf(ω) = f ◦ ϕt(ω)

= f(e−tω), (4.1)

for all f ∈ D(U).

We begin by proving that the functions given by (4.1) form a group on

D(U).

Proposition 4.2.1

The functions (Cϕt)t∈R form a group on D(U) under composition.

Proof. We prove that both (Cϕt)t≤0 and (Cϕt)t≥0 are semigroups on

D(U). Clearly, Cϕ0(ω) = I (Identity) since f(e0ω) = f(ω). Also, for
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every f ∈ D(U), t, s ≥ 0,

Cϕt ◦ Cϕsf(ω) = Cϕt(Cϕsf(ω))

= Cϕt(f(ϕs(ω)))

= f(ϕs(ϕt(ω)))

= f(ϕs(e
−t(ω)))

= f(e−se−tω)

= f(e−(s+t)ω)

= Cϕs+tf(ω).

Therefore (Cϕt)t≥0 is a semigroup on U. It can similarly be shown that

(Cϕt)t≤0 is a semigroup on D(U). Thus (Cϕt)t∈R is a group on D(U) as

desired. �

Next, we show that the operator Cϕt at t ∈ R fails to be an isometry on

D(U).

Proposition 4.2.2

The operator Cϕt fails to be an isometry on D(U).

Proof. By norm definition,

‖Cϕtf‖2
D(U) = ‖f ◦ ϕt‖2

D(U) = |f ◦ ϕt(i)|2 +

∫
U
|(f ◦ ϕt)′(ω)|2dA(ω). (4.2)

But (f ◦ϕt)(ω) = f(e−tω). Thus (f ◦ϕt)′(ω) = e−tf ′(e−tω) implying that

|(f ◦ ϕt)′(ω)|2 = e−2t|f ′(e−tω)|2 and |f ◦ ϕt(i)|2 = |f(e−t)(i)|2.

By change of variables, we let z = e−tω, then, ω = etz. Applying the

Jacobian, dA(z) = |ϕ′t(ω)|2dA(ω). But ϕt(ω) = e−tω, therefore dA(z) =
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e−2tdA(ω) and dA(ω) = e2tdA(z).

Substituting these in (4.2), we get

‖Cϕtf‖2
D(U) = |f(e−ti)|2 +

∫
U
|(f ◦ ϕt)′(ω)|2dA(ω).

= |f(e−ti)|2 +

∫
U
e−2t|f ′(e−tω)|2dA(ω).

= |f(e−ti)|2 +

∫
U
e−2t|f ′(z)|2e2tdA(z).

= |f(e−ti)|2 +

∫
U
|f ′(z)|2dA(z).

But |f(e−ti)|2 +
∫
U |f

′(z)|2dA(z) 6= ‖f‖2
D(U). Thus, at each t ∈ R, the

functions Cϕt fail to be an isometry on D(U). �

Remark 4.2.3

Because of Proposition 4.2.2, we consider D◦(U), the subspace of D(U)

consisting of functions vanishing at i, f(i) = 0, defined as D◦(U) = {f ∈

D(U) : f(i) = 0} with the norm defined as ‖f‖2
D◦(U) =

∫
U |f

′(ω)|2dA(ω).

However, Cϕtf(i) = f(e−ti) 6= 0, and so Cϕt does not map D◦(U) into

D◦(U) as expected for our semigroups. Therefore, we apply a correction

factor and redefine Cϕt as

Ĉϕtf(z) = f(e−tz)− f(e−ti). (4.3)

Now Ĉϕtf(i) = f(e−ti) − f(e−ti) = 0 as desired so that indeed Ĉϕt :

D◦(U) → D◦(U). From now henceforth, we shall focus our attention on

the semigroup (Ĉϕt)t≥0 and study its properties in detail.

We now show that (4.3) is a group on D◦(U) and investigate its semigroup
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properties.

Proposition 4.2.4

The functions (Ĉϕt)t∈R form a group on D◦(U).

Proof. It suffices to show that both (Ĉϕt)t≥0 and (Ĉϕt)t≤0 are semi-

groups on D◦(U).

Indeed, for f ∈ D◦(U),

Ĉϕ0f(z) = f(e0)− f(e0i)

= f(z)− f(i)

= f(z),

and so Ĉϕ0 = I.

Also, for every f ∈ D◦(U), t, s ≥ 0,

(Ĉϕt ◦ Ĉϕs)f(z) = Ĉϕt(Ĉϕsf(z))

= Ĉϕsf(e−tz)− Ĉϕsf(e−ti)

= f(e−se−tz)− f(e−se−ti)−
(
f(e−se−ti)− f(e−se−ti)

)
= f(e−(s+t)z)− f(e−(s+t)i)

= Ĉϕs+tf(z).

Therefore Ĉϕt ◦ Ĉϕs = Ĉϕt+s and hence (Ĉϕt)t≥0 is a semigroup on D◦(U).

We can similarly show that (Ĉϕt)t≤0 is also a semigroup on D◦(U). Thus,

(Ĉϕt)t∈R is a group on D◦(U). �

Proposition 4.2.5

The operator Ĉϕt is an isometry on D◦(U).
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Proof. By norm definition,

‖Ĉϕtf‖2
D◦(U) =

∫
U
|(Ĉϕtf)′(ω)|2dA(ω) (4.4)

=

∫
U

∣∣∣(f(e−tω)− f(e−ti)
)′∣∣∣2 dA(ω)

=

∫
U

∣∣e−tf ′(e−tω)
∣∣2 dA(ω).

By change of variables, we let z = e−tω, then, ω = etz and applying the

Jacobian, dA(z) = e−2tdA(ω), implying that dA(ω) = e2tdA(z).

Substituting them in (4.4),

‖Ĉϕtf‖2
D◦(U) =

∫
U
e−2t|f ′(e−tω)|2dA(ω)

=

∫
U
e−2t|f ′(z)|2e2tdA(z)

=

∫
U
|f ′(z)|2dA(z)

= ‖f‖2
D◦(U).

This completes our proof. �

Next, we prove that the operator Ĉϕt is strongly continuous on the Dirich-

let space of the upper half plane D◦(U).

Proposition 4.2.6

The operator Ĉϕt is strongly continuous on D◦(U).

Proof. It is known that ‖Ĉϕtf‖2
D◦(U) =

∫
U |f

′(ω)|2dA(ω). To prove

strong continuity of (Ĉϕt)t∈R, it suffices to show that

limt→0+ ‖Ĉϕtf − f‖D◦(U) = 0 for all f ∈ D◦(U). That is to say that,∫
U |(Ĉϕtf − f)′(ω)|2 dA(ω)→ 0 as t→ 0+ which is equivalent to showing

that limt→0+
∫
U |(Ĉϕtf − f)′(ω)|2dA(ω) = 0.
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Let f ∈ D◦(U) and suppose that tn → 0 in R. Let fn = Ĉϕtnf , then

fn(z)→ f(z) on compact subsets of U and f ′n → f ′ for each n.

Let gn(z) := 2(|f ′|2+|f ′n|2)−|f ′−f ′n|2, then gn ≥ 0 and gn(z)→ 22|f ′(z)|2

on D◦(U) as n→∞.

By Fatou’s lemma, we have

∫
U

22|f ′(ω)2dA(ω) =

∫
U

lim inf gndA(ω)

≤ lim inf

∫
U
gndA(ω)

= lim inf

∫
U

2(|f ′|2 + |f ′n|2)− |f ′ − f ′n|2)dA(ω)

= 2

∫
U
|f ′|2dA+ 2

∫
U
|f ′n|2dA− lim sup

n

∫
U
|f ′ − f ′n|dA(ω)

= 22

∫
U
|f ′(z)|2dA− lim sup

n

∫
U
|f ′ − f ′n|dA(ω)

Thus 0 ≤ − lim supn
∫
U |f

′ − f ′n|2dA ≤ 0, implying that lim supn
∫
U |f

′ −

f ′n|2dA(ω) = 0.

Hence limn

∫
U |f

′ − f ′n|2dA(ω) = 0, that is

limn

∫
U ‖Ĉϕtnf − f‖

2dA(ω) = 0.

Therefore, ‖Ĉϕtf − f‖D◦(U) → 0 as t → 0, implying that (Ĉϕt)t∈R is

strongly continuous as desired. �

We have shown that (Ĉϕt)t∈R is a strongly continuous group of isome-

tries on D◦(U). We now obtain the infinitesimal generator Γ of (Ĉϕt)t∈R

and investigate some of its properties. In particular, we determine the

resolvent operator as an integral operator of the Cesàro type and then

determine the point spectrum, spectrum and spectral radius as well as

the norm of the operator.
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Proposition 4.2.7

The infinitesimal generator Γ of (Ĉϕt)t≥0 is given by

Γf(ω) = −ωf ′(ω) + if ′(i),

with its domain dom(Γ) = {f ∈ D(U) : ωf ′(ω) ∈ D(U)}.

Proof. If f ∈ dom(Γ) in D(U), then growth condition in (3.12) implies

that for all ω ∈ U and f ∈ D(U),

Γf(ω) = lim
t→0+

(f(e−tω)− f(e−ti))− f(ω)

t

=
∂

∂t
(f(e−tω)− f(e−ti))

∣∣∣∣
t=0

= −e−tωf ′(e−tω) + ie−tf ′(e−ti)
∣∣
t=0

= −ωf ′(ω) + if ′(i)

This shows that dom(Γ) ⊆ {f ∈ D(U) : ωf ′(ω) ∈ D(U)}. Conversely, let

f ∈ D(U) such that ωf ′(ω) ∈ D(U). Then for ω ∈ U, and by fundamental

theorem of calculus, we have,

Ĉϕtf(ω)− f(ω) =

∫ t

0

∂

∂s
(f(e−sω)− f(e−si))ds

=

∫ t

0

−e−sωf ′(e−sω) + e−sif ′(e−si))ds

=

∫ t

0

e−s(−ωf ′(ω) + if ′(i))ds

=

∫ t

0

ĈϕsF (ω)ds,

where F (ω) = −ωf ′(ω)+ if ′(i) is a function in D(U). Thus limt→0
Ĉϕtf−f

t

= limt→0
1
t

∫ t
0
Cϕs(F )ds and strong continuity of (Ĉϕt)t∈R implies that
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1
t

∫ t
0
‖ĈϕtF − F‖ds → 0 as t→ 0. Thus

dom(Γ) ⊇ {f ∈ D(U) : ωf ′(ω) ∈ D(U)} completing the proof. �

We now investigate the spectral properties of the infinitesimal generator.

We start by computing the point spectrum of the infinitesimal generator

but first we give the Lemma below which states the condition necessary

for a function to be in Bergman space.

Lemma 4.2.8 ([7])

Let X denote the space Lpa(U), 1 ≤ p < ∞. If c ∈ R and λ, v ∈ C, then

f(ω) = (ω − c)λ(w + i)v ∈ X if and only if <(λ + v) < −1 < <(λ). In

particular, (ω − c)λ /∈ X for any λ ∈ C, and (ω + i)v ∈ X if and only if

<(v) < −1.

Proposition 4.2.9

Let Γ be the infinitesimal generator of the group (Ĉϕt)t∈R, then the point

spectrum σp(Γ) of Γ is empty, that is, σp(Γ) = ∅.

Proof. Let λ be an eigenvalue of Γ and let f be a corresponding eigen-

vector. The eigenvalue equation Γ(f) = λf is equivalent to the differential

equation

−zf ′(z) + if ′(i) = λf(z).

To solve the differential equation, we let if ′(i) = B so that

−zf ′(z)− λf(z) = −B.

Dividing through by z yields

f ′(z) + λ
f(z)

z
=
B

z
.
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This is a first order differential equation whose solution is obtained by

using an integrating factor technique as,

f(z) =
B

λ
+ Cz−λ,

where B = if ′(i) and C is an arbitrary constant.

It remains to find for which λ′s is f ∈ D◦(U) given that f(z) = B
λ

+Cz−λ.

But f ∈ D◦(U) if and only if f ′ ∈ L2
a(U). By differentiation, f ′(z) =

−λCz−(λ+1). It follows clearly from Lemma 4.2.8, that f ′ ∈ L2
a(U) if and

only if <(λ) < −1 < <(λ). No such λ exists and so σp(Γ) = ∅. �

We now compute the spectrum of the infinitesimal generator, σ(Γ).

Proposition 4.2.10

Let Γ be the infinitesimal generator of (Ĉϕt)t≥0. Then σ(Γ) ⊆ iR.

Proof. Since (Ĉϕt) is an invertible isometry, (Theorem 2.0.5), σ(Ĉϕt) ⊆

∂D and by spectral mapping theorem for semigroups, (Theorem 2.0.8),

etσ(Γ) ⊆ σ(Ĉϕt). Thus

etσ(Γ) ⊆ σ(Ĉϕt) ⊆ ∂D.

Let λ ∈ σ(Γ), then

|eλt| = 1.

This shows that

et<(λ) = 1 ⇒ t<(λ) = 0

⇒ <(λ) = 0.
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So λ ∈ iR implying that σ(Γ) ⊆ iR. �

4.2.1 Cesàro - Type operator

We obtain the Cesáro type operator on the Dirichlet space of the upper

half plane. Since σ(Γ) ⊆ iR, we can consider a point λ = 1 in the

resolvent set, ρ(Γ), and obtain the resolvent operator given by the Laplace

transform.

Theorem 4.2.11

Let Γ be the infinitesimal generator of (Ĉϕt)t∈R, then the following holds;

(a) The resolvent operator C = R(1,Γ) on D◦(U) is given by

Ch(z) = R(1,Γ)h(z) =
1

z

∫ z

0

(
h(ω)− h(

ω

z
i)
)
dω (4.5)

The operator C is a Cesàro type operator which is a difference of

two Cesàro operators.

(b) σ(C) ⊆ {ω : |ω − 1
2
| = 1

2
}

(c) ‖C‖ ≤ 1

(d) r(C) ≤ 1

Proof. To prove (a), we consider a point λ = 1. Then λ ∈ ρ(Γ) since

σ(Γ) ⊆ iR. The resolvent operator, R(λ,Γ), is therefore given by the

Laplace transform, (Theorem 2.0.3),

R(λ,Γ)h =
∫∞

0
e−λtĈϕthdt with convergence in norm.
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Cesàro - Type operator on D(U)

Now

R(λ,Γ)h(z) =

∫ ∞
0

e−λt(h(e−tz)− h(e−ti))dt.

By change of variables, we let ω = e−tz. Then e−t = ω
z
, dw = −e−tzdt,

t = 0⇒ ω = z, t =∞⇒ ω = 0.

Therefore

R(λ,Γ)h(z) =

∫ 0

z

(
ω

z
)λ(h(ω)− h(

ω

z
i))
−1

ω
dω.

=

∫ z

0

(
ω

z
)λ
(
h(ω)− h(

ω

z
i)
) 1

ω
dω.

Taking λ = 1, we obtain

R(1,Γ)h(z) =

∫ z

0

ω

z

(
h(ω)− h(

ω

z
i)
) dω
ω

=
1

z

∫ z

0

(
h(ω)− h(

ω

z
i)
)
dω,

which is a difference of two Cesàro operators.

To prove (b), we apply the spectral mapping theorem, (Theorem 2.0.7),

for the resolvents which asserts that

σ(R(λ, T ))\{0} = (λ− σ(T ))−1 =

{
1

λ− µ
: µ ∈ σ(T )

}
(4.6)

Thus,

σ(R(1,Γ))\{0} ⊆
{

1

1− ir
: r ∈ R

}
. (4.7)

Rationalizing the denominator and simplifying we get,

1

1− ir
=

{
1

1− ir
· 1 + ir

1 + ir
: r ∈ R

}
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=

{
1 + ir

1 + r2
: r ∈ R

}
.

Letting ω = 1+ir
1+r2

and subtracting 1
2
, we get

w − 1

2
=

1 + ir

1 + r2
− 1

2

=
2(1 + ir)− (1 + r2)

2(1 + r2)

=
1 + 2ir − r2

2 + 2r2

=
(r − i)(−r + i)

2(r + i)(r − i)

=
−r + i

2(r + i)
.

Getting the magnitude on both sides of the equation and simplifying, we

get

∣∣∣∣ω − 1

2

∣∣∣∣2 =

∣∣∣∣ −r + i

2(r + i)

∣∣∣∣2
=

∣∣∣∣ r2 + 1

4(r2 + 1)

∣∣∣∣∣∣∣∣ω − 1

2

∣∣∣∣2 =
1

4

ω − 1

2
=

1

2

σ(C) ⊆
{
ω :

∣∣∣∣ω − 1

2

∣∣∣∣ =
1

2
}

For (c), we apply the Hille Yosida theorem, (Theorem 2.0.6)

‖R(1,Γ)‖ ≤ 1,
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implying that

‖C‖ ≤ 1. (4.8)

For (d), we use (4.8) and the fact that r(C) ≤ ‖C‖ ≤ 1. Clearly,

r(C) ≤ 1.

This completes our proof. �
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Chapter 5

Summary and

Recommendations

5.1 Summary

In this study, we determined the reproducing kernel for the Dirichlet space

of the upper half plane using the Cayley transform to construct an invert-

ible isometry from the Dirichlet space of the disk to the Dirichlet space of

the upper half plane then transformed the reproducing kernel of the disk

to the reproducing kernel of the upper half plane as given in Theorem

3.2.7. We then used the reproducing kernel of the Dirichlet space of the

upper half plane and applied the Cauchy-Schwarz inequality to establish

the growth condition for the functions in the Dirichlet space of the upper

half plane as it is shown in Corollary 3.2.8.

Using the approach of strongly continuous semigroups on Banach spaces

and considering the group of composition operators associated with the

scaling group, we computed the infinitesimal generator of the composi-

tion semigroup as seen in Proposition 4.2.7. We further established that
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Summary and Recommendations

the point spectrum of the infinitesimal generator is empty, see Proposi-

tion 4.2.9 and that it’s spectrum is contained in the imaginary axis of the

complex plane as shown in Proposition 4.2.10. Moreover, we constructed

an integral operator of the Cesáro type acting on the Dirichlet space of

the upper half plane. We specifically applied the Laplace transform which

gave the resolvent of the infinitesimal generator in terms of a Cesáro type

integral operator, see Theorem 4.2.11. Consequently, we determined the

spectrum of the Cesáro type integral operator using the spectral mapping

theorems for resolvents. We applied characterization by Hille-Yosida the-

orem to obtain the upper bound of the norm and spectral radius of the

integral operator.

5.2 Recommendations

From the results of this thesis, we recommend the following for further

research.

(i) In this study, we determined the reproducing kernel for the Dirichlet

space of the upper half plane and established the growth conditions

for the functions in the Dirichlet space of the upper half plane. We

recommend an extension of the study touching on the properties of

the obtained reproducing kernel such as geometric perspectives and

duality relations.

(ii) We considered the group of composition operators corresponding

to the self analytic maps defined on the scaling group of D◦(U)

and studied their semigroup and spectral properties in this work.
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Summary and Recommendations

We therefore recommend further investigation on the composition

operators associated with the rotation group and translation group

defined on D(U).

(iii) The spectral properties of the constructed Cesáro type integral oper-

ator, C was also investigated in the study but we did not completely

characterize the operator based on the spectral properties. We rec-

ommend an extension of the study that will focus further on the

spectral analysis of the Cesáro type operator and the infinitesimal

generator.

(iv) We computed the reproducing kernel for the Dirichlet space of the

upper half plane. We recommend extension of the study to the

weighted Dirichlet spaces.
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