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ABSTRACT

Increased population of Kisumu City over the past years has resulted into high demand

and competition for water and related facilities. This is evident in the persistent water

scarcity within the City, use of poor quality water by the residents and inequitable water

distribution. The current net water supply capacity of Kisumu City Water Supply System

is 5,400m3/day against a demand of 27,000 m3/day. Effective planning and management

of the City's water resources is therefore critical in providing reliable forecasts. Models

developed for such forecasts ought to take into account the non stationary and seasonality

behaviours exhibited by residential water demand data. Research on residential water

demand in the Kenyan context have used Ordinary Least Squares, a methodology that

does not model the seasonality aspect. In the SARIMA(p,d,q)(P,D,Qh2 which is

expressed as ¢p(B)ifJp(Bs)"\ld\ll§xt = eq(B)8Q(BS)et, BS allows for the modelling of

the seasonal behaviour in the data. However, the application of SARIMA to model

and forecast residential water consumption in the Kenyan Context is scanty. The study

therefore sought to propose a SARIMA model for forecasting residential water demand

using secondary monthly water consumption data obtained from KIWASCO for the years

2004 to 2013. Preliminary investigation of the data showed that the data followed a 3-

parameter log-normal distribution. Therefore, using logarithm values of the data, the

study established by both OLS and Kendall's tau test that the residential water demand

for Kisumu City had a significant increasing trend. The KPSS and ADF tests revealed

that the data had unit roots which were however removed by first difference. The Data

was then fitted to a SARIMA model and the parameters of the model were estimated

using Maximum Likelihood Method. SARIMA(l, 1, 1)(0, 1, 1)12 had the least BIC and

AIC values of 2205.273 and 2197.282 respectively and was identified as the better fitting

model. Compared to the OLS model, SARIMA(l, 1, 1)(0, 1, 1h2 had the least MAPE

and RMSE values of 3.59 and 7476.59 respectively implying that it had higher forecasting

performance. One year forecasts for 2014 were established together with their CI. The

observed values for January and February 2014 were within the Confidence Limits. The

study recommends the integration of the model by KIWASCO and other water companies

in their design of water demand management policies.
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Chapter 1

Introduction

1.1 Background of the Study

The scarcity of water resources is a crucial problem in almost every contemporary society.

Even in areas where there is adequate water resources, the problem of scarcity is usually

confronted by deterioration of water quality leading to increased costs for the users. The

problem manifests itself in increased costs of water use, intensified competition over access

to water resources and breakout of diseases due to lack of water. Urbanization, population

growth, industrial development of cities and rising living standards have led to a growing

trend in the percapita consumption of water. Because of the economic investment needed

to develop new water resources, accurate prediction of water demand is very important

than ever [8]. At the 2000 Millennium Summit held in New York, member countries of

the United Nations unanimously agreed on a set of 8 goals to reduce poverty by 2015:

among which is reducing by half the proportion of households that do not have access to

safe water [8]. According to Worthington [36], residential water demand covers uses of

water by households, both inside and outside the confines of the residence and typically

includes washing, cooking, bathing, laundry and gardening and its use is usually shown

to be highly sensitive to seasonal fluctuations.

According to UNDP report of 2006 [31], 2040 is a more likely date for this goal to be

reached in Africa unless there is accelerated investment in the sector. By estimating the

proportion of general population accessibility to piped water at home, the estimate also

provides an estimate of the number of people potentially exposed to water-related health

1
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CHAPTER 1. INTRODUCTION 2

risks.

World Bank Report of 2005[35] observes that poor access to water supply is often a

result of poor policies and management practices. However, there is significant disagree-

ment over the approach to addressing the problem. Likewise in the World Bank Report

of 2003 [34] it is argued that a first and crucial step towards improving water situation

and its management is to treat water as an economic good. The Economist of July 19-25,

2003, argues that the problem above all, is that it has been colossally under-priced and

that to meet the target of halving the proportion of people without access to clean water

money will playa part. Water is therefore viewed as an economic as well as social good.

But greater reliance on pricing and markets are even more crucial

Council of Kisumu under the Companies Act Chapter 486 of the Laws of Kenya, estab-

lished a water company by the name Kisumu water and Sewerage Company (KIWASCO)

in 2001 but became operational in 2003. KIWASCOs mandate is to effectively and effi-

ciently provide adequate water to customers and collect, treat and dispose sewerage in a

safe and environment friendly manner [15].

In Kisumu City, the mean household water consumption is 149.501 per day, resulting

in a mean per capita of 32.92 L per day. According to a study by [35], the daily per

capita water use in Kenya is 45.2 L. Using the recommended basic water requirement of

50 l/c/d by [34], in the study area, there is a mean daily water per capita shortfall of

17.18 L. Wagah et al.[32]further assert that only 25 percent of the households access the

minimum recommended basic water requirement of 50 1/c/ d.

Kisumu City residents obtain water from individual connections, yard tap connections,

public tap connections, boreholes, springs and water vendors. As of September 2008,

KIWASCO had 7,704 domestic water connections and 287 water kiosks [32]. About 52

percent of Kisumu residents used piped water delivered to dwellings or compounds, and

13 percent depended on protected shallow wells/springs or roof catchment [32]. Hence

65 percent of Kisumu residents had access to an improved water source, while 35 percent

relied on unimproved water sources, including water vendors, open wells/springs, streams

and ponds [32]. However, Most residents in informal settlements only have access to

water of poor quality, mainly because their water often comes from shallow wells and
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water vendors.

There has been a steady increase in population over the years with no expansion in

supply capacity. This high population growth rate for Kisumu City has resulted into

increased demand and competition for water and the related facilities causing water

scarcity [32]. As a result, the water deficit has continued to grow. The current projected

water production is 18,000 m3, while the present demand is estimated to be 48,000 m3

[15].This indicates a big short fall which must be met by other sources. Further, Maoulidi

[19]projects that in the years 2012 to 2015, water supply needs would be 50,000 m3 per

day.

There is an expected large expansion in the fisheries, and the recently revived Molasses

Plant which relies on raw molasses from the sugar factories within the region of Nyanza

and Western provinces. This poses a huge and increased demand for water and the related

infrastructure. Also, revival of East African Cooperation in which Kisumu is expected

to playa leading role as the most central commercial and international trade centre with.
Uganda, Tanzania, Burundi and Rwanda is expected to lead to increased demand for

planned development of housing, commerce and industries which will at the same time

lead to an increased demand for water resources. This calls for proper forecasting of such

demand to guide in water production and management decisions.

Larger efforts to model the demand for water has applied Ordinary Least Squares

methodology to estimate the influence of variables such as water prices, housing density,

level of income, household size, rainfall and temperature on residential water use. in a

functional notation Water-Demand = j(pTices, housingdensity, levelojincome, household

size, rain j all, temperature, NumbeTojWomeninh01./'seholds). As observed by Gupta

[9], the OLS methodology seeks to minimize the sum of the squares of the deviations.

i.e.2:(Y - Yc)2. Using the OLS procedure, Bithas and Stoforos [1], Yaw [38] showed that

that Household size, gender of the household head, increasing income, real GDP, Real

water price and trend had a significant influence on residential water demand, findings

that were in contrast to findings by Xinming, Dale and Briscoe [37] who established that

only the number of women in the households as a proportion of total household size had

a significant effect on water demand at 0.05 level of significance.
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As observed by Jorge [12] the use of OLS approach to model water demand based of

economic and social variables ignores the impact of trend and seasonal variations. This

can account for the inconsistencies in the OLS findings. Jorge [12] further contends that

water demand is highly dominated by daily,weekly, monthly and yearly seasonal cycles

which can best be modelled using univariate time series models. Such methodologies

are based on the historical data series and are quite useful for short-term demand fore-

casting since they accommodate the various periodic and seasonal cycles in the model

specifications and forecasts.

Following the Box-Jenkins approach, the study applied SARIMA to model the res-

idential water demand time series data in order to propose the best fitting model and

forecast future monthly water demand for Kisumu City. The choice of this type of model

was based on the established behaviour'of the water demand data. [27] observes that the

SARJMA is a significant methodology of modelling data exhibiting seasonal behaviour.

Also According to Caldwell [5], this Box-Jenkins methodology is particularly suited for

development of models for processes exhibiting strong seasonal behaviour.

Box and Jenkins [3] have developed a practical procedure for choosing an appropriate

ARIMA model out of the family of ARIMA models. The ARI lA models are especially

suited for short term forecasting because they place more emphasis on the recent past

rather than distant past. This emphasis on the recent past means that long-term forecasts

from ARIMA models are less reliable than short-term forecasts [25].

1.2 Statement of the Problem

The rate of population growth, migration for work, long periods of warm years and the

dust factor have over the years caused an increase in water demand in Kisumu City leading

the current net demand of 27000 m3/day. The Kisumu Water Supply System, managed

by KIWASCO, has a current net capacity of 5400 m3/day which is far much below the

demand. For the City's water supply system to efficiently bridge the gap between water

supply and water demand there is need to accurately forecast the City's water demand.

Empirical models that have been developed to forecast water demand take into account
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the effect of earlier events on the demand for water and have employed ordinary least

squares (OLS)and generalised least squares (GLS)techniques. These techniques do not

take into account the strong seasonal behaviour exhibited by water demand time series

data and therefore they may be unable to provide accurate forecasts. For effective water

demand management, accurate future forecasts are essential hence the need for statistical

models that could provide fairly accurate forecasts. This study therefore sought to build

a Seasonal Autoregressive Integrated Moving Average (SARIMA) model using monthly

residential water consumption data (2004- 2013). These type of models are known to be

very robust and do provide respectable forecast performances beside the fact that they

do take into account the seasonality aspect jn data.

1.3 Objectives of the study

1.3.1 General Objective

The study sought to develop a univariate SARIMA model for residential water demand

for Kisumu city that was to be applied to forecast future water demand in the city.

1.3.2 Specific Objectives

The specific objectives of the study were;

(i) To analyse the trend of residential water demand in Kisumu City for the years 2004

to 2013

(ii) To propose a SARIMA model that can be used to forecast residential water demand

in Kisumu City

(iii) To forecast residential water demand for Kisumu city in the twelve months of 2014

IMASENO UNIVERSITYI
S.G. s. LlB~~Y _
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1.4 Significance of the study

• This will be an essential component in designing effective water demand manage-

ment policies that can help and guide decision makers establish strategies, priorities

and proper use of water resources in Kenya .

• The results will aid KIWASCO in planning because many important water decisions

depend on the anticipated future values of demand rates. Also, the results will allow

KIWASCO and other water providers in Kenya to explore realistic decision making

scenarios for designing effective water demand management policies .

• It will also be crucial in determining water prices and evaluating water investment

projects.

1.5 Basic concepts

The study employed the concept of time series which is a stochastic mechanism that gives

rise to observed series useful in predicting future events. The basic concepts and theories

related to this are discussed below

1.5.1 Time Series

According to Cryer and Kung-Sik [6], a time series is a chronological sequence of obser-

vations on a particular variable. The purpose of time series analysis is to understand the

stochastic mechanism that gives rise to an observed series and to predict future events

or values of that series. Observations may be made of a continuous time series at regular

intervals or be aggregations of discrete events. When describing time series {Xd typically

represents the observations made at time t, and it is assumed that observations are made

at intervals equally spaced in time.

Forecasts are based upon results on an analysis of past events. The first step in the

analysis of historical data is the identification of a pattern that can be used to describe

the data. This pattern is extrapolated into the future in order to prepare a forecast. This
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basic strategy is applied in most forecasting techniques and rests on the assumptions that

the pattern identified will continue into the future.

stationary time series

If Xtl, Xt2 Xtn are observation at time tlh tn; then the series will be said to

be stationary if:

E[Xt] = fL

VaT(Xt) = 17
2 (1.1)

and both are Constants

Definition 1:

A time series {Xd is said to be strictly stationary if the joint distribution of Xtl,

Xt2 Xtn is the same as the joint distribution of Xtl+h, Xt2+h Xtn+h for all

t1,t2 t« and h being real numbers. In other words, strict stationarity requires that

the joint distribution of (Xtl, Xt2 Xtn) be invariant under time shift [27]

Definition 2:

A time series {Xd is said to be weakly stationary or second order stationary if its mean

is constant and its Auto Covariance function is independent of time and only depends on

the time lag between the variables [27]. i.e.

(1.2)

E(Xt - fL)((Xt+h - fL)

Cov(Xt, Xt+h)

a2(h) (1.3)

Definition 3:

Let {Xt} be a stationary time series. The auto covariance function (ACVF) of {Xd at

lag h denoted by 'Yx(h) is given by:
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(1.4)

which is called the lag h autocoviance of {Xt}. It has two important properties:

(ii) 'Y-h = 'Yh

Definition 4 :
The autocorrelation function (ACF) of X; at lag h is given by:

(1.5)

From the definition, we have Po = 1, Ph = P-h, and -1 ::; Ph ::; 1. In addition, a

weakly stationary series X, is not serially correlated if and only if Ph = 0 for all h > O.

Time series models which are a class of stochastic process have evolved from a simple

process to more sophisticated processes depending on the underlining structure. These

are as discussed below:

1.5.2 White Noise or Purely Random Process

A discrete stochastic process is called a white noise if it consists of random variables et

which are Identically and Independently Distributed with E( et) = 0 and V aT( et) = CJ2

[27]. Further for a white noise process the autocovariance function is given by:

{

CJ2
'Y(h) = 0

if h = 1

otherwise

and the autocorrelation function for the white noise is given by:

if h = 0

otherwise
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1.5.3 Random Walk Process

Suppose et is a discrete purely random variable with mean of 0 and variance, ()2; a process

{Xd is said to a random walk iff

Xt-1 + et
t

Lei, withXo = 0
i=l

(1.6)

The mean and variance of the random walk process are given as follows:

t

E(Xt) E(L e.)
i=l

t

LE(ei)
i=l
{,/L

0 (1. 7)

and

t

VaT(Xt) VaT(L ei)
i=l

t

L()2
i=l
t()2 (1.8)

Since VaT(Xt) = t()2 is dependent on t, the random walk process is non-stationary

1.5.4 Autoregressive Process - AR(p)

The autoregressive structure is a stochastic process that assumes that current data can be

modelled as a weighted summation of previous values plus a random term. The process

is regressed on past values of itself and this explains the prefix auto in the regression

process. Assume the random term; et is purely random with mean zero and Variance
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((J2); then {Xd as an autoregressive process of order p written as AR (p) is given by:

(1.9)

Using the Backward Shift operator B, the equation above becomes;

X, = O'.lBXt + 0'.2B2 X, + 0'.3B3 Xt·· 000pBPX, + et

X, - O'.lBXt - 0'.2B2 X, - 0'.3B3 Xt····· - O'.pBPX,

(1 - O'.lB - 0'.2B2 - CY3B3 - O'.pBP)Xt

X _ et
t-

1- O'.lB - 0'.2B2 - - O'.pBP
(1.10)

In particular, the first order Autoregressive process AR(I) provided that 10'. 1< 1 will be

written as:

(1 - O'.B)

et(1 + 0'.1 B + 0'.2 B2 + 0'.3 B3 + )

(1.11)

The Mean of {Xd for the AR(I) process is thus given as follows:

i=O
00

i=O
o (1.12)

The Variance of X, for the AR(I) process is given by:

00

Var(L O'.iet_i)
i=O

00

~2
~ 0'. 'Var(et-i)
i=O
00L 0'.2i(J2

i=O

\
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00

(J2L a2i

i=O

(J2(1 + a2 + a4 )

(J2
1- a2

(1.13)

The Autocovariance (ACVF) is also given by:

00 00

,(h) = E(L aiet-i)(L ajet+h-j)
i=O .i=O

00 00

L L aiaj E(et-i, et+h-j)
i=O j=O

if we let j=i+h we have;

00

2 h[1 2 4 ](Ja +a+a+ .
1(J2ah[__ ]

1- a2

(J2ah

1- a2

(J2a\ if I a 1< 1 (1.14)

Definition 5:A utocorrelation fu.ntion (A CF)

Considering the first order Autoregressive process, the autocorrelation function is given

as:

(1.15)
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1.5.5 Moving Average-MA( q)

Suppose that et is a white noise with mean a and variance 0'2, then {Xd is said to be a

moving average process with order q, Written as MA( q) if:

Xt #Oet + fhet-l + fJ2et-2 fJqet-q
q

L fJiet-i
i=O

(1.16)

The process is said to be weakly stationary because the mean is constant and the covari-

ance does not depend on time t but on the time lag between the variables. The mean

and variance of the MA process is then given by:

fJoE(et) + fJIE(et-d + fJqE(et_q)

a (1.17)

and

q

Var(L fJiet-i)
i=O

q

L fJ;Var(et-i)
i=O

(1.18)

The autocovariance(')'( h)) function of the Moving Average process is given by:

if h > a
if 0< h < q

if h < a
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The Autocorrelation (p(h)) function of the Moving Average process is given by:

if h = 0

if h = ±1,±2, ,±q

Otherwise

To ensure that there is a unique MA process, the property of invertibility must be

ensured.

Consider a MA( q) and letting Bi X, = Xt-i for all i be a backward shift operator then

the MA(q)can be expressed as:

Xt (Joet + (Jlet-l + (J2et-2 (Jqet-q

(JoBOet + (JIBlet + (J2B2et (JqBqet

((JoBo + (JIBI + (J2B2 (JqBq)et

¢(B)et (1.19)

where ¢(B) is a polynomial of order q

Xt is invertible if the roots of the equation ¢(B) = 0 all lie outside a unit circle.

1.5.6 Autoregressive Moving Average -ARMA(p,q) Process

Basically, an ARM A model combines the ideas of AR and MA models into a compact

form so that the number of parameters used is kept small. An ARMA(p,q) is written as:

Xt CtIXt-1 + Ct2Xt-2 + + CtpXt-p + et + (Jlet-l + (J2et-2 + + (Jqet-q
p q

L CtiXt-i + L (Jiet-j (1.20)
i=l j=O

Using the backward shift operator (B), the above equation can be written as:

Xt = CtIXt-1 + Ct2Xt-2 + + CtpXt_p + et + (Jlet-l + (J2et-2 + + (Jqet-q

Xt - CtIBXt - Ct2B2 Xt - - CtpBPXt = et + (JIBet + (J2B2et + + (JqBqet
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(1 - cxIB - cx2B2 - - cxpBP)Xt = (1 + f3IB + f32B2 + + f3qBq)et

¢(B)Xt = e(B)et (1.21)

Where ¢(B) and e(B) are polynomials of orders p and q respectively such that:

¢(B) = 1- cxIB - cx2B2 - - cxpBP

and

1.5.7 Autoregressive Integrated Moving Average -ARIMA(p,d,q)

Process

The ARIMA model is a combination of two univariate time series models which are

Autoregressive (AR) model and Moving Average (MA) model.

We say that {Xd is an ARIMA process of order (p.d.q) written as X, rv ARI M A(p, d, q)

if the dth difference of {Xt} is a stationary and invertible ARMA process of order (p,q).

By using the backward shift operator the ARIMA process is given as:

(1.22)

Where et rv W N(O, (j2) and ¢(B) and e(B) are polynomials of degrees p and q re-

spectively with all the roots of the ¢(B) = 0 and e(B) = 0 lying outside the unit circle

Kleiber and Zeileis [16] assert that the ARIMA model is applied in the case where the

series is non-stationary and an initial differencing step (corresponding to the" integrated"

part of the model) can make ARM A model applicable to an integrated stationary process.

consequently, the ARIMA model with its order is presented as ARIMA (p,d,q) model

where p, d, and q are integers greater than or equal to zero and refer to the order of the

autoregressive, integrated, and moving average parts of the model respectively. The first

parameter p refers to the number of autoregressive lags (not counting the unit roots), the
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second parameter d refers to the order of integration that makes the data stationary, and

the third parameter q gives the number of moving average lags.

1.5.8 Seasonal Autoregressive Integrated Moving Average

A time series {Xt} is said to be seasonal if there exists a tendency for the series to exhibit

a periodic behaviour after certain time interval. The usual ARIMA models cannot really

cope with seasonal behaviour, it only models time series with trends. Seasonal ARIMA

models are formed by including an additional seasonal terms in the ARIMA models

and are defined by seven parameters p,d and q which are the order of non seasonal

AR, difi'erencing and MA respectively; P,D and Q which are the order of seasonal AR,

Differencing and MA respectively and S which represents seasonal order.

Therefore a SARIMA(p,d,q)(P,D,Q)s model can be written as:

(1.23)

where;

¢(B) = 1 - (hB - ¢2B2 - ¢pBp

iI>(BS) = 1- i:f>IBs - i:f>2B2S - - i:f>pBPS

e(B) = 1 - BIB - B2B2 - ..... - BqBq

8(BS) = 1 - 8IBs - 82B2s - .... - 8qBQS

et is a purely random process

1.5.9 Time series forecasting

It is a planning tool which helps decision makers to foresee the future uncertainty based

on the behaviour of past and current observations. Forecasting as described by Box and

Jenkins [3], is the process of predicting some unknown quantities.

Let XI,X2, Xn be observed time series. Forecasting involves determining

the future value say Xn+k made at time n for k steps ahead, k = 1, 2, and is called

the lead time.
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The forecast of Xn+k made at time n for k steps ahead denoted by X(n, k) is the value

for which the mean squared error (MSE)of the predictor X(n, k) is minimum i.e.

(1.24)

should be minimum
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Review of Related Literature

2.1 Introduction

This section reviews literature related to the application of seasonal ARIMA in modelling

time series data.

2.2 Review of Related Literature

As observed by Janine et al.(2004) Univariate time series modelling technique are be-

coming an increasingly popular method of analyzing time series data. These techniques

include models such as Autoregressive (AR), Moving Average (MA), and Autoregres-

sive Integrated Moving Average (ARIMA). Further, they assert that ARIMA models are

theoretically justified and can be very robust with respect to alternative (multivariate)

modeling approaches with respectable forecast performance relative to the theoretically

based specifications. Box and Jenkins [3] provided an approach of ARIMA model build-

ing which includes model identification, estimation, diagnostic checking, and forecasting a

univariate time series. According to Caldwell [5], the Box-Jenkins methodology is partic-

ularly suited for development of models of processes exhibiting strong seasonal behaviour.

17

Maamar [17] in his study 'AN versus SARIMA models in forecasting residential

water consumption in Tunisia' used quarterly time series household water consumption

data and did a comparative analysis between the traditional BoxJenkins method and an
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artificial neural networks approach. In particular, they attempted to test the effective-

ness of data pre-processing, such as detrending and deseasonalization, on the accuracy

of neural networks forecasting. Results indicate that the traditional BoxJenkins method

outpeforms neural networks estimated on raw, detrended, or deseasonalized data in terms

of forecasting accuracy. They established that forecasts provided by the neural network

model estimated on combined detrended and deseasonalized data are significantly more

accurate and much closer to the actual data. The model was therefore selected to forecast

future household water consumption in Tunisia with Projection results suggesting that

by 2025, water demand for residential end-use will represent around 18 percent of the

total water demand of the country.

Habib et al. [10] carried out a study on 'Estimation of Water Demand in Iran Based

on SARIMA Models' in which they employed the seasonal autoregressive integrated mov-

ing average (SARIMA) model. They fitted this model to monthly residential water con-

sumption in Iran from May 2001 to March 2010. They established that a three-parameter

log-logistic distribution fits the model residuals adequately. They forecast values for 1

year ahead using the fitted SARIMA model. They established the best fitting models to

be SARI M A(1, 1,0)(1,1,0)6, SARI M A(O, 1, 1)(1, 1, Oh and SARI M A(O, 1, 1)(0, 1, 1)6

with residuals described by a 3-parameter log-logistic distribution.

Bithas and Stoforos [1] applied single equation econometric analysis through a re-

gression analysis to estimate domestic water use. The policy-relevant variables, mainly

income and water prices, were systematically considered and their effects on water de-

mand appraised. The study established that a drastic increase in water demand induced

by increasing income will occur, while the economic instruments have little potential to

influence water use. The factors real GDP, Real water price and trend had a significant

influence on residential water demand with R2 = 0.91. Trend which was used as a proxy

for weather variation was found to be more important than price. They applied the root

mean square percent error(RMSPE) and Mean Percent Error (MPE) to asses the model

forecast accuracy. The values 0.01 and -0.01 obtained for RMSPE and MPE respectively

indicated that the model developed tracked historical development in water demand fairly
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well.

Smaoui et al.[29] used two approaches, namely Box-Jenkins approach and artificial

neural networks approach (ANN) to model time series data of water consumption in

Kuwait. The Box-Jenkins approach was used to predict unrecorded water consumption

data from May 1990 to December 1991 due to the Iraqi invasion of Kuwait in August

1990. A supervised feed forward back propagation neural network was then designed,

trained and tested to model and predict water consumption from January 1980 to De-

cember 1999. It is interesting to note that the lagged or delayed variables obtained from

the Box-Jenkins approach and used in neural networks provide a better ANN model than

the one obtained either blindly in black box mode as has been suggested or from tradi-

tional known methods. It was found that when the variables of the input layer in ANN

is chosen based on the Box-Jenkins approach rather than on traditional methods, the

average relative error for the training and testing data sets are reduced by 24 percent

hence the assertion that the combination of Box-Jenkins approach and ANN is superior

in predicting the water consumption than the A N alone.

Martinez- Espineira [20] carried out a study in which residential water demand were

estimated using co-integration and error-Correction methods based on monthly time

series observations from Seville (Spain). Unit root tests revealed that water use series

and series of other variables affecting use were non-stationary. However, a long-run co-

integrating relationship was found in the water demand model. This made it possible to

obtain a partial correction term and to estimate an error correction model. The price-

elasticity of demand was estimated at around -0.1 in the short run and -0.5 in the long

run.

Schleich and Hillebrand [28] econometrically analyzed the impact of several economic,

environmental and social determinants for the per capita demand for water in about 600

water supply areas in Germany. Besides prices, income and household size, they consid-

ered the effects of population age, the share of wells, housing patterns, precipitation and

temperature. They also explored why current per capita residential water consumption in
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the new federal states was about 3 percent lower than in the old federal states. Since av-

erage cost pricing may cause an endogeneity problem, they applied instrumental-variable

procedures in addition to single equation ordinary least squares, but found no evidence

that prices were endogenous. Their estimation results suggested that the price elasticity

of water demand in Germany was around 0.24. The income elasticity was positive, de-

creased with higher income levels and was at least three times higher in the new federal

states than in the old federal states. Differences in prices and income levels explained

about one third of the gap in residential water use between the two regions. Household

size and the share of wells had a negative impact on per capita water demand, and water

use increased with age. Finally, the findings provided some evidence that rainfall pat-

terns rather than total rainfall affected water consumption, while temperature appears

to have no impact at all. All outcomes were robust to a loglog and two types of semi -log

specifications for the water demand function.

Xinming, Dale and Briscoe [37] applied Ordinary Least Squares to model water de-

mand in Ukunda, Kenya. Water consumed per capita per day (led) was hypothesized

to be a function of the independent variables: time, income, education, number of adult

women in the households, number of water vendors and number of water kiosks. The OLS

estimations showed that only the number of women in the households as a proportion

of total household size had a significant effect on demand at 0.05 level of significance.

All the other variables were found not to be significant even at 0.1 level of significance.

The finding that the level of income had no effect on water demand negates a finding by

[32]who applied Pearson Correlation Analysis to test for the strength of the relationship

between monthly household income and water and obtained an r value of 0.992 indicat-

ing a strong positive correlation between household income and daily per capita water use.

Yaw [38] in his PHD thesis on household water security and water demand in the

Volta basin of Ghana established through OLS procedure that Household size, price of

improved water and the gender of the household head were significant determinants of

water demand at 1 percent. Further the study showed that the larger the household size,

the higher the consumption of improved water where a 10 percent increase in household



CHAPTER 2. REVIEW OF RELATED LITERATURE 21

size led to approximately 4 percent rise in improved water demand. The demand for

improved water was found to be price inelastic where the effect of a 10 percent increase

in price decreased quantity demanded by 3.6 percent. Household income was established

to have a positive relationship with improved water demand but with a weak effect.

This result suggested that household income as a decision variable that influences the

probability of using improved water was important but was unimportant in determining

quantities consumed thereof.

Buckman and Mintah[4] applied Autoregressive Integrated Moving Average (ARIMA)

to Model Ghanas monthly inflation from January 1985 to December 2011 and used the

model to forecast twelve (12) months inflation for Ghana. Using the Box Jenkins (1976)

framework, the autoregressive integrated moving average (ARIMA) was employed to fit

the best ARIMA model. The seasonal ARIMA model, SARIMA (1, 1, 2) (1,0, 1) was

chosen as the best fitting from the ARIMA family of models with least Akaike Informa-

tion Criteria (AIC) of 1156.08 and Bayesian Information Criteria (BIC) of 1178.52. The

plots of actual values and the forecasted values of inflation were very close implying that

the selected model best fit the data and hence, appropriate for forecasting. The forecast

error 3.4 also gave further evidence that the model selected had very strong predictive

power.

Osabuohien [24]in his empirical study which aimed at modelling and forecasting time

series quarterly data of Rainfall in Port- Harcourt, south Nigeria using the Box-Jenkins

SARIMA Methodology established that the seasonal modelARI M A(O, 0, 0)x(2, 1,0)4 fit-

ted to the series appropriately. A forecast from 2009 to 2013 was made and the forecast

obtained on the basis of the fitted model was adequate.

Mahsin et a1.[18] applied Box-Jenkins methodology in modelling rainfall in Dhaka

Division in Bangladesh. They build a seasonal ARIMA model for monthly rainfall data

taken for the period from 1981-2010 (June) with a total of 354 readings. The model

ARIMA(O, 0, 1)(0, 1, Ih2 was found adequate and was used to forecast the monthly rain-

fall for the upcoming two years to help decision makers to establish priorities in terms
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of water demand management. The RMSE values on test data were comparatively less

hence the prediction model was considered reliable. By comparing the fitted and actual

values of rainfall data using the determined model the rainfall forecasts made for the

years 2011 and 2012 were sufficiently accurate at 95 percent confidence interval.

2.3 Forecasting Time Series

Most forecasting problems involve the use of time series data. Montgomery et al [21]

stated that forecasting problems are often classified as short-term, medium term, and

long-term. Short-term forecasting problems involve predicting events only a few time

periods (days, weeks, months) into the future. Medium-term forecasts extend from one to

two years into the future, and long-term forecasting problems can extend beyond that by

many years. Short-term and medium-term forecasts are used for operations management

and development of projects while long-term forecasts can be used for strategic planning.

Normally, short-term and medium-term forecasts are based on identifying, modelling,

and extrapolating the patterns found in historical data. These historical data usually

exhibit inertia and do not change very drastically. Therefore, statistical methods are

very useful for short-term and medium-term forecasting[21].

In summary, most of the studies carried out on the application of SARIMA have been

focused on the modelling of rainfall, inflation and other variables. The fewer studies that

have modelled residential water demand have used a combination of the Box-Jenkins

approach and AN . Others have used co-integration and error-Correction methods while

others have applied SARIMA. The few studies carried out in the Kenyan context have

applied Ordinary Least Squares to identify the determinants of water demand. Little or

no studies have modelled residential water demand by applying SARIMA and therefore

this study comes in handy to fill this void.



Chapter 3

Research Methodology

3.1 Introduction

This chapter presents research design, location of the study, data collection procedure,

trend analysis, water demand modelling technique and water demand model building

procedures. The Box-Jenkins approach will be applied to develop the residential water

demand SARIMA model which will be applied to forecast water demand for the 12 months

of 2014.

3.2 Research Design

The research employed a case study design. This research design was considered appro-

priate because the focus was on a functioning specific individual unit (KIWASCO) with

set boundaries [30].

3.3 Study Area

The proposed research examined water demand analysis in Kisumu City which is located

on the eastern shores of Lake Victoria at the tip of Winam Gulf and it is the third largest

city in Kenya. The city covers a total area of 417 sq. km, of which 297 sq. km is land,

and 120 sq. km is water mass. The city, which has been designated as a regional growth

23



CHAPTER 3. RESEARCH METHODOLOGY 24

node, is connected to nation and the region by four major roads. The major routes are

Nairobi Road to the southwest of the town, which connects Kisumu to Nakuru, Nairobi

andMombasa. To the north is a connection to Kakamega while to the west is a connection

to Busia. The Busia route provides an alternative road to Uganda via Kisumu. The forth

road into Kisumu is a small connection to Kibos and Muhoroni to the east of the town.

Kisumuis also connected to Nairobi and Mombasa by a major rail link. It has a strategic

position in the East African Cooperation which is currently under consideration due to

its accessibility to the regional countries; Uganda, Tanzania, Rwanda and Burundi.

The city is located in a place with intensified scarcity; frequent and lasting drought

periods and rapid expanding urbanization. It experiences warm to hot and generally

humid climate with monthly maximum and minimum temperatures varying from 28°C

to 31°C and 16°C to 18°C, respectively. Higher and lower temperatures are experienced

during October to March and April to August, respectively. The economic and demo-

graphic growth in the last decades has transformed the city into an important industrial

and commercial center. The city has an international airport, several universities and an

extensivepublic health network. The accessibility to water services is below the national

averagedespite close proximity of World's second largest fresh water lake.

The current water production and distribution system is predominantly run by Kisumu

Water and Sewerage Company (KIWASCO), which is the main water provider with the

mandate to provide water within the region and is therefore focused as managers of the

present and future water facilities. Kajulu water treatment works and Dunga water treat-

ment works with River Kibos and Lake Victoria as the water sources respectively. The

maindistribution reservoirs are located at Tom Mboya estate within Kibuye Sub-location.

3.4 Data Collection Procedure

The monthly residential water demand data were obtained from the Kisumu Water and

SewerageCompany (KIWASCO) records. KIWASCO, is the main water provider with

the mandate to provide water within the region and is therefore considered as manager of

the present and future water facilities. The data observed from January 2004 to December
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2013with 120 data entries was used to develop the SARIMA model. The monthly amount

ofwater consumption during the year 2013, was used to validate the SARIMA model.

3.5 Residential water demand trend analysis for the

period 2004- 2013

3.5.1 Descriptive Statistics

As a prelude to the application of linear regression analysis on the residential water

demand, descriptive analysis both numerical and graphical was first be carried out in

order to explore the residential water demand situation in Kisumu City. The arithmetic

mean was used for numerical summary measure, whereas scatter plots and trend lines of

residential water against time were generated for graphical presentation of the data.

3.5.2 Testing of Trend

Forcomparative purposes of the results in this study, both parametric and non-parametric

methods were done. Parametric tests are more powerful when the data are normally dis-

tributed than is the case when it is not [23]. When the data include outliers or are severely

non-normally distributed, the use of parametric methods can give incorrect results hence

invalid inference. Moreover, according to Racine [26], non-parametric methods relax

the parametric assumption imposed on the data generating process and allow the data

to determine a suitable functional form. Ordinary Least Squares (parametric test) and

Kendall's Tau Test(non-parametric test) will be used to test trend.

Ordinary Least Squares test of trend

Before the linear regression procedure the normality test was carried out. This tested

the likelihood that the water demand data set Xl ,Xn came from a Gaussian distribu-

tion. The Shapiro- Wilk test was used to achieve this. In statistics, the Shapiro- Wilk

IMASENO UNIVERSITY/'
.. SIG. S. LIBRARY
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test tests the null hypothesis that a sample X1""",Xn came from a normally distributed

population. Therefore the hypotheses of this test were:

Ho: The monthly demand for water in Kisumu City is normally distributed

H( The monthly demand for water in Kisumu City is not normally distributed.

The test statistic is:

(3.1)

where,

i) X(i) with parentheses enclosing the subscript index is the ith order statistic, i.e.,the

ith smallest number in the sample

...) Th . b ( ) mTV-l
III .e constants ai are glven y a1, a2, ... an = VmTV IV-1m

where m = (Tn1 .... mnf are the expected values of order statistics of independent and

identically distributed random variables sampled from the standard normal distribution

and V is the covariance matrix of those order statistics.

The Ordinary Least Squares equation relating the amount of water demanded with

time was:

Y = 1'0 + 1'1t + e (3.2)

Where, y is the dependent or response variable representing the amount of water

demanded monthly, t is the covariate or explanatory variable and e is the unobserved

error or disturbance. The goal will be to estimate the regression parameters the intercept

i.e. 10 and the slope 1'1. A familiar assumption in linear regression is that the error has a

mean of zero and that each explanatory variable is uncorrelated with the error term [33].

In the structure of the model in Equation 3.5.2 this assumption is equivalent to E(c) = 0,
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E(t,E) =0.

In the perspective of the present analysis, 11 was interpreted as representing the aver-

agerate of change of water demand throughout everyone month time period. Significant

''fl (p <0.05) is an indicator of trend in the amount of water demanded. Otherwise, in-

significant 11 signify absence of trend in the amount of water demanded over time. Also,a

negative sign of 11 indicates a decreasing trend while a positive value imply an increasing

trend with time.

The least squares estimate of io and '7i are obtained using the following equations:

,\,n y.t. _ L:~-lYi L:~-lti
ui=l t t n

and
A

o (3.3)

Where, fj = L:7~1Yi which is the mean of the observed residential water demand

l = L7~1ti which is the mean of the predictor variable.

The hypothesis to be tested in this case were:

Ho: 11 = 0 i.e. the slope is equal to zero

Ha: 11 i= 0 i.e. the slope is not equal to zero.

The test statistic used was the F-Test based on the Analysis of Variance (ANOVA)

which is summarized in the table below:
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Source of Variation df Sum of Squares Mean Squares F-Value

Regression 1 (S,y)2 (S,y)2 1\1/S Regression

=sz s;;- lVISError

S _ (Sty)2
S _ (S'y)·

Error n-2 YV e«
yy s.. n-2

Total n-1 Syy

Table 3 l: AN OVA Table for the test of trend

where;

S S = S = ,\,71 y2 _ L:~-1(Yi)2
tot yy L....-i=l t n

SS = (S,y)2
Regr S"

SS - S (S,y)2
Error - yy - s;;-

Ho will be rejected if Feu; > F(1,71-1)(o:=O.05)

As asserted by Gupta [9], the line obtained by OLS is the line of best fit because it is

the line from where the sum of positive and negative deviations is zero i.e. L:(y - Yc) = 0

and the sum of the squares of the deviations i.e. L:(y - Yc)2 is least

Kendall's Tau test of trend

According to Onoz and Bayazit [23], the Kendall's T statistic is one of the non-parametric

trend tests that have been frequently used and is considered an excellent reference for

numerous other trend test techniques. Kendal's T test first ranks all observations by date

order, then the difference between each consecutive value is calculated and the sum of
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the signs of these differences is calculated as the Kendall sum, S statistic given as in the

Equation below:

n-1 n

S = L L Sgn(Xi - Xk)

i=k i=k+1

(3.4)

Where;

if Xi - Xk > 0

if 0 < h < q

if Xi - X; < 0

The expected value and variance S are:

E(S) = 0

and

Var(S) = [n(n - 1)(2n + 5) - 'L,t(t(t - 1)(2t + 5)]
18

(3.5)

t indicates the extent of any given time and 'L,t denotes the sum across all ties in the

water demand data.

For n > 0, the standard normal variate is given by:

S-l if S > 0
y'Var(S)

Z= 0 if S = 0
S+l if S < 0

y'Var(S)

Under the Kendall's T test, a positive value of S in Equation (3.4) indicates an in-

creasing trend whereas a negative value indicates a decreasing trend [13]. The null and

alternative hypotheses under S are:

Ho: There is no trend in the monthly demand for water.

Ha: There is a trend in the monthly demand for water.
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The decision is to reject the null hypothesis if the p=value of the test is less than

the level of significance. Kendall's T test of significance will be two-sided and considered

significant at the 0.05 level. All the test statistics and figures were generated using EViews

8 and Minitab Version 17 softwares.

3.5.3 Testing for Stationarity and Autocorrelation

Beforethe search for the best model for the data, the first condition was to check whether

the series is stationary or not. The SARIMA model is appropriate for stationary time

seriesdata (i.e. the mean, variance, and autocorrelation are constant through time). If a

time series is stationary then the mean of any major subset of the series does not differ

significantly from the mean of any other major subset of the series. Also if a data series is

stationary then the variance of any major subset of the series will differ from the variance

of any other major subset only by chance [25]. The stationarity condition ensures that

the autoregressive parameters in the estimated model are stable within a certain range

as well as the moving average parameters in the model are invertible.

To check for stationarity, we usually test for the existence or non existence of unit root.

Unit root test is performed to determine whether a stochastic or a deterministic trend is

present in the series. If the roots of the characteristic equation lie outside the unit circle,

then the series is considered stationary [7]. Kwiatkowski ~ Phillips~Schmidt~Shin(KPSS)

and the Augmented Dickey Fuller (ADF)tests were used to test for stationarity in the

data. The null hypothesis for the ADF test is that the water demand series have unit

roots or the series is non-stationary. The null hypothesis is rejected if the test statistic is

larger in the absolute term than the critical value. The Augmented Dickey-Fuller (ADF)

test was performed to determine whether data differencing was needed [7].

Also using KPSS test, the study tested the null hypothesis that the original series is

stationary at the non seasonal level

The KPSS hypothesis may be stated as:

Ho : 0'2 = O,(Stationary)
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Ha : (J2 of- O,(non-Stationary)

The KPSS test statistic is given by:

(3.6)

The autocorrelations were determined by computing the ACF. Given that {Xt} is a

stationary time series, with constant expectation and time independent covariance. The

ACF for the series is defined as:

Cov(Xt, Xt+h) "((h)
Ph = =--

JVar(Xt)Var(Xt+h) "((0)

for h > O. The value h denotes the lag.

(3.7)

Plots of ACF as a function of h were done, and this helped to determined if the

autocorrelation decreases as the lag gets larger or of if there is any particular lag for

which the autocorrelation is large

3.6 Water Demand Modelling Technique

Let Xl, X2 X; represent a sequence of seasonal observations representing monthly

residential water demand. To eliminate non-stationarity within each season, one can

employ the seasonal differencing operator (1 - BS) resulting to:

(3.8)

where t=S+l, S+2 .

S is the number of seasons per year

and BS is the backward shift operator

If we apply the seasonal differencing operator in equation (3.8) D times we produce a
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series given by:

(3.9)

To model correlation between same months observations in the differenced series, one

may wish to introduce appropriate model parameters. To accomplish this, one can use a

model of the form:

(3.10)

where <P(BS) and 8(BS) are the seasonal autoregressive(AR)and seasonal moving av-

erage(MA) operators, respectively and et is a residual series which may contain non

-seasonal correlation. Both the seasonal AR and MA operators are defined in order to

describe the relationship within the same season.

In particular the seasonal AR operator is defined as:

(3.11)

<Pi is the ith AR parameter and P is the order of the AR operator.

Since the power of each differencing operator is always an integer multiplied by S,

only observations within each season are related to one another when using this operator.

Same months observations are connected together by <P p(BS).

To describe the relationship of the residuals et within a given season, the seasonal MA

operator is defined using:

(3.12)

where, 8i is the ith MA parameter and Q is the order of the MA operator.

Since the power of each differencing operator is always an integer multiplied by S, the

residuals in the same season are linked to one another when using the operator 8Q(BS).

The residuals et may contain non -seasonal non-stationarity which can be removed

using the non +seasonal differencing operator defined by:

(3.13.)
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Where d is the order on the non -seasonal differencing operator which is selected just

large enough to remove all of the non -seasonal stationarity.

The sequence produced by using (3.13) is theoretically a stationary non -seasonal

series. the non -seasonal correlation can then be captured by writing the ARMA model

as:

(3.14)

Where ¢(B) is the non -seasonal AR operator of order p defined as :

(3.15)

and e(B) is the non-seasonal MA operator of order q written as:

(3.16)

The e~s are innovations that are IID with a mean of Zero and variance (j2

Todefine the overall seasonal autoregressive integrated moving average model we combine

(3.14) and (3.10). This is accomplished by solving for e~s in (3.14) and substituting this

result into (3.10) to obtain the SARIMA model.

¢p(B)<R.p(BS)'ld'lfxt = eq(B)8Q(Bs)et

OR

¢p(B)'J] p(Bs)(l - B)d(l - BS)D X, = eq(B)8Q(Bs)et (3.17)

According to Halim and Bisono [11], an economical notation for summarising the struc-

ture of the SARIMA model is:

SARI MA(p, d, q)(P, D, Q)s (3.18)

Where p and P are the orders of autoregressive operator of non-seasonal and seasonal

components respectively; d and D are the differences of non-seasonal and seasonal compo-

nents respectively and q and Q are the orders of moving average operator of non-seasonal

and seasonal components respectively. S is the seasonal length.
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3.7 Water Demand Model Building

34

Water demand modelling was based on the Box-Jenkins approach. Based on Caldwell[5],

the Box-Jenkins approach was preferred because of its capability to capture the appro-

priate trend by examining historical pattern; it is helpful in extracting a great deal of

information from the time series using a minimum number of parameters and has the

seasonal elements.

capability of handling stationary and non -stationary time series in non-seasonal and

There are four main stages in building an ARIMA model based on Box-Jenkins proce-

dure[3], i.e., (1) model identification, (2) model estimation, (3) model checking and (4)

model forecasting. These stages of building an ARIMA model are described in the figure

3.1 below.

Model identification

Model estimation

Model forecasting

No

Figure 3.1: Box-Jenkins Modelling Procedure
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3.7.1 Model Identification

When the series is stationary, the order of the model which is the AR, MA, SAR and

SMA terms can be determined. Where AR=p and MA=q represent the non-seasonal

autoregressive and moving average parts respectively and SAR=P and SMA=Q represent

the seasonal autoregressive and moving average parts respectively as described earlier.

To determine these orders, the study made use of the sample autocorrelation function

(ACF) and partial autocorrelation function (PACF) of the stationary series. The ACF

gives information about the internal correlation between observations in a time series

at different distances apart, usually expressed as a function of the time lag between

observations. These two plots suggest the model we should build. Checking the ACF

and PACF plots, we should both look at the seasonal and non-seasonal lags. Usually the

ACF and the PACF has spikes at lag k and cuts off after lag k at the non-seasonal level.

Also the ACF and the PACF has spikes at lag ks and cuts off after lag ks at the seasonal

level. The number of significant spikes suggests the order of the model.

3.7.2 Parameter Estimation

Maximum Likelihood Method under the normal distribution was applied to estimate the

model's parameters. This will involve choosing values for the parameters that maximizes

the likelihood of the data occurring. Given a sample Xl, X2 .... Xn of n, IID observations,

which comes from a distribution f(x) with unknown parameter B , then; the joint density

function is

By considering the observed values Xl, X2 .... Xn to be fixed parameters of this function,

whereas B will be the function's variable and allowed to vary freely. And this function is

called likelihood

L(8, Xl, X2·· .. Xn) = f(xl, X2 .... Xn' 8)

=[J;';=l f(xi,B)
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In practice, it is often more convenient to work with the logarithm of the likelihood

function and called the log-likelihood:

Parameter Estimation for SARIMA (p,d,q)(P,D,Q)S model

Different SARIMA models will be applied to find the best fitting model. The most

appropriate model will be selected by using the Bayesian information criterion (BIC) and

Akaike information criterion (AIC) values. The best model will be determined from the

minimum BIC and AIC. Thus, the minimization of AIC or BIC is more satisfactory for

choosing the best model from candidate models having different numbers of parameters.

S
Ale = nln( -) + 2p

n
(3.19)

and
S

BIC = nln( -) +p +pln(n)
n

(3.20)

where n is the number of effective observations used in fitting the model; p is the number

of parameters fitted in the model and S is the sum of squared residuals up to time T. In

the two equations the first term nln( ~ )is a measure of" lack of fit" and the remainder is

a penalty for increasing the number of model parameters.

3.7.3 Model Adequacy Checking

After estimating the parameters of ARIMA model, the next step in the Box-Jenkins

approach is to check the adequacy of that model which is usually called model diagnos-

tics and involves performing Goodness-of-fit tests based on the standardized residuals.

Ideally, a model should extract all systematic information from the data. The residuals

should be small. The diagnostic check is used to determine the adequacy of the chosen

model. One assumption of the ARIMA model is that, the residuals of the model should

be white noise. A series {Xt} is said to be white noise if {Xd is a sequence of independent

and identically distributed random variable with finite mean and variance. In addition
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if {Xd is normally distributed with mean zero and variance, a2 then the series is called

Gaussian White Noise. For a white noise series the, all the ACF are zero.

The normal plots, ACF and the PACF plots of residuals were done to check for

model adequacy. The normal probability plot should be a straight line while the time

plot should exhibit random variation. For ACF all the correlation should be within the

test bounds which indicates stationarity in the data.In practice if the residuals of the

model is white noise, then the ACF of the residuals are approximately zero. The sample

autocorrelation function (ACF) and partial autocorrelation function (PACF) are useful

qualitative tools to assess the presence of autocorrelation at individual lags. The Shapiro

normality test will also be used to check for homoscedasticity and normality among the

residuals. Montgomery [22] determined that, if the model is adequate, the residuals

should be structure-less, that is, they should contain no obvious patterns. However, a

very common defect that often shows up on the normal probability plots is one residual

being much larger than the others, and this can seriously distort the analysis of variance.

Following[2], Ljung-Box test was employed to check for adequacy of the fitted model.

The Ljung-Box test is a type of statistical test which tests whether any group of autocor-

relations of a time series is different from zero. It performs a lack-of-fit hypothesis test

for model specification, which is based on the Q-statistic.

m 2
Q=N(N+2)L~

N-h
h=l

(3.21)

where N is the length of the observed time series, h= number of auto-correlation lags

included in the statistic, m is the number of lags being tested and P~ is the square of the

sample autocorrelation coefficient at lag h.

Under the null hypothesis of no serial correlation, the Q-statistic is asymptotically

Chi-Square distributed and the null hypothesis that all Ph are zero is rejected if the value

of the computed Q is larger than the critical Q-statistic from the chi-square distribution

at the given level of significance. Alternatively, if the p+value is smaller than the con-

ventional significance level, the null hypothesis that there are 110 autocorrelation will be

rejected.
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3.7.4 Validation of SARIMA Model

The forecasted residential water demand by using SARIMA model were compared with

the observed Residential water demand for the 12 month data of 2013. In evaluating

the sample forecasting capability of the SARIMA model, the root mean square error

(RMSE), and the mean absolute percentage error (MAPE) were used. The model MAPE

and RMSE values were compared with the MAPE and RMSE values of the OLS equation.

Root mean square error (RMSE)

The Root Mean Square Error (RMSE)- is a frequently used measure of the difference

between values predicted by a model and the values actually observed from the environ-

ment that is being modelled. These individual differences are also called residuals, and

the RMSE serves to aggregate them into a single measure of predictive power.

The RMSE of a model prediction with respect to the estimated variable Xmodel is

defined as the square root of the mean squared error:

~7=1(Xobs,i - Xmodel,i)2

n
(3.22)RMSE=

Where; Xobs,i are the observed values at time i

Xmodel,i are the observed values at time i

RMSE has the advantage of giving more weight to large deviations, thereby punishing

uneven predictors.

Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error (MAPE), also known as mean absolute percentage

deviation (lVIAPD), measures the accuracy of a method for constructing fitted time series

values in statistics.
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(3.23)

Where;

At is the actual observed time series

Ft is the estimated or forecast time series

N is the number of non-missing data points

Model with a minimum of these statistics i.e. RMSE and MAPE was to be considered

to be the best for forecasting.

3.8 Forecasting Residential Water Demand for 2014

After a model has passed the entire diagnostic test, it becomes adequate for forecasting.

Forecasting is the process of making statements about events whose actual outcomes

have not yet been observed. It is an important application of time series. The statistical

software Minitab Version 17 was used to forecast the residential water demand for the 12

months of 2014.

3.9 Data Presentation

The results of the analysis were presented in tables and graphs such as the trend plots,

ACF and PACF plots, probability plots and Histogram with normal curve plots



Chapter 4

Results and Discussion

4.1 Introduction

This chapter presents the results of the analysis of data.

4.2 Statistical Parameters of the Water Use Data

The result of the descriptive statistics as shown in table 4.1 below show that the minimum

water demand was 64270M3 experienced in February 2008 whereas the maximum value

was 147469M3 and was experienced in July 2013. The mean residential water demand

for the 120 months studied was 93260m3 with the other values deviating from the mean

by 23160m3. Standard Error Mean was 2114. The skewness index was 0.85 and this

indicated that the data exhibited positive skewness with more observations lying below

the mean than above the mean.

40
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Table 4.1: Statistical parameters of water demand data

YEAR Min. Max. Mean SE Mean StDev Skewness

2004 74923 118155 95851 4401 15246 0.50

2005 66341 82940 73051 1534 5315 0.60

2006 66385 86908 76564 1921 6653 -0.36

2007 70605 86204 77839 1272 4406 0.20

2008 64270 80824 74022 1210 4190 -1.01

2009 71222 95761 80175 1964 6805 0.85

2010 74913 91334 84481 1488 5155 -0.56

2011 93055 121340 105941 2363 8187 0.25

2012 120852 137554 129939 1496 5183 -0.05

2013 118962 147469 134747 2617 9067 -0.27

Overall 64270 147469 93260 2114 23160 0.85

4.3 Analysis of Trend in the residential Water De-

mand Data for Kisumu City

The first objective of the study sought to analyse the trend of residential water demand

in Kisumu City using monthly water demand data for the years 2003 to 2013. To achieve

this objective, OLS was applied to develop a linear trend equation whose fit was compared

to quadratic trend fit. The F-test based on A OVA was used to test for the significance of

11. Also presence of seasonal trend was tested using Ratio-to- Trend method and Kendall's

tau test for seasonal trend.

4.3.1 Test for Normality of the Residential Water Demand Data

Before the OLS procedure was applied, normality test based on the Shapiro- Wilk test

was done. The Hypotheses tested were:

Ho: The residential monthly demand for water in Kisumu City is normally distributed
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Ha: The residential monthly demand for water in Kisumu City is not normally dis-

tributed.

The results of the test are shown in table 4.2 below:

Table 4.2: Shapiro-Wilk test for Normality
W 0.929

p-value p < 0.010

The results of the analysis show that for the Shapiro- Wilk test value of 0.929 the

p-value is less than 0.05 hence we reject the null hypothesis. Therefore, it is concluded

that the monthly residential water demand for Kisumu City do not come from a normal

population. This is further demonstrated in figure 4.1 below which shows that the data

does not fit well to a normal distribution but it is rather positively skewed as also indicated

by the positive skewness index of 0.85 in table 4.1 above.

Probability Plot of Water Demand Data
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Figure 4.1: Normal Probability Distribution plot

Since the distribution of the residential water demand is not normal, the Series cannot

be used for further statistical inferences hence the need to identify the best fitting distri-
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bution. The plots for the various probability distributions of residential water demand

are illustrated in the figure4.2 below

Goodness of FJlTest

Probability Plot for Residential Water Demand
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AD = 1.570
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Figure 4.2: Probability Distribution for Residential Water Demand

The probability plots above show that the residential water demand for Kisumu City

fits a 3-parameter log-normal distribution. This finding contradicts Habib et al. [10]

who established a three-parameter log-logistic distribution for water demand in Iran.

Therefore logarithmically transformed values of the original data were used in further

statistical analysis.

4.3.2 Ordinary Least Squares Estimation of Trend for Residen-

tial Water Demand Data

The OLS equation is: In(Yi) = /0 + /lt + £

The least squares estimates of 10 and 11 are:

"n In(y.)t. _ Ei-l1n(Yi E;"l ti
L ..tt=l t t n
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36278.46 _ 594.90~~~*7260

583220 _ (7260)2
120

= 0.001991 (4.1)

and

10 Y -1d
594.90635 _ 0.001991 * 7260

120 120
4.8371

(4.2)

Therefore, the OLS equation is given by:

In(Yi) = 4.8371 + 0.00199lti (4.3)

Graphically, the Linear trend plot of the residential water demand in Kisumu City is

illustrated in figure(4.3) below:

Trend Analysis Plot for LN(Residential Water Demand}
Linear Trend Model

In(Y) = 4.8371 + 0.001991 t

5.2
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lIS
E 5.1ell
C•..
ell
1il;: 5.0
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'l'.;; 4.9ella:.•.•.
Z...•

4.8
1 12 24 36 48 60 72 84 96 108 UO

Month

Accuracy Measures
MAPE 1.18556
MAD 0.058'2
MSD 0.00534

Variable
-+- Actual
-II- Fits

Figure 4.3: Linear Trend Analysis Plot
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To test the significance of 11, the F-test based on ANOVA was used. The hypotheses

tested were:

Ho: 1'1 = 0 i.e. the slope is equal to zero

HI: 1'1 ~ 0 i.e. the slope is not equal to zero.

Level of Signicance: CY. = 0.05

Computations:

MSError

2950.491 _ 594.906352

120
1.210963

~ l t (L~=lYi) (L~l ti)Z:: nYi i ':

i=l n
36278.46 _ 594.90635 * 7260

120
286.6231

~ t2 _ (L~=lti)2
~> n
>=1

72602

583220 ---
120

143990
(Sty)2

Stt
286.62312

143990
0.570545
S _ (Sty)2

YY Stt
1.210963 - 0.570545

0.640418
SSRegr

df
0.570545

1

0.570545

SSErTor

df
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0.640418
118

0.005427

F - statistic iV! SRegr

MSError
0.570545
0.005427
105.13

(4.4)

The computations are illustrated in an A OVA table as shown in table 4.3 below

Table 43' ANOVA Table for the test of trend
Source df SS MS F

Regression 1 0.570545 0.570545 105.13

Error 118 0.640418 0.005427

Total 119 1.210963

FCTitical = F(1,119)(a=O.05/2) = 5.15

Since the FCalc(105.13) > F(1,119)(a=O.05/2)(5.15), the null hypothesis is rejected and the

alternative hypothesis that the slope is not equal to zero is accepted at 0.05 level of signif-

icance. Based on the OLS procedure, it is therefore concluded that there is a significant

positive(increasing) trend in residential water demand in Kisumu City as indicated by

the positive 'Yl = 0.001991

The standard error of the estimate (Se) of Y is given by:

Se VMSE
v'0.005427

0.07367 (4.5)

Since the antilog of 0.07367 which is 1.185 means that the data is normally distributed

with an interval of one standard deviation above the mean and one standard deviation

below the mean encompassing 68.8 percent of all the observations.
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4.3.3 Kendall's Tau Test

Under the Kendall's tau test for trend the hypotheses to be tested were;

He: There is no trend in the monthly demand for water.

HI: There is a trend in the monthly demand for water.

The test results were as shown in the table 4.4 below:

Table 4.4: Marin-Kendall trend test / Two-tailed test (water demand)
KerndaU's. tau 0.482
S 3440.000

Vall{S) 194356.-657
p-va~llJe (Two-tailed) <0.00'01

a~!pha 0.05

As the computed p-value is lower than the significance level alpha=0.05, we should

reject the null hypothesis Hi, that there is no trend in the monthly demand for water in

Kisumu City, and accept the alternative hypothesis HI that there is trend in the monthly

demand for water in Kisumu City. These results corroborate the OL8 results obtained

earlier.

Using the standard normal variate;

Z
8-1

JVar(8)
3440 - 1
y'3440
3439

58.652
58.634

(4.6)

From the Normal tables ZQ. = 1.96
2

Since Zcalc(58.634) > ZQ.(1.96), we reject the null hypothesis and conclude that there is
2

trend in the monthly water demand for Kisumu City.

To examine the impact of misspecification of the model, the model in Equation 1

was fitted including a quadratic term. That is, In(Yi) = 'Yo + 'Ylti + 'Y2t; + E in which

- -- ---------------
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Results show that the quadratic plot yielded a MAPE value of 0.627141 which is much

less that the MAPE value of the linear trend plot (1.18556). This may imply that the

quadratic trend analysis fits well with the data than the linear trend analysis. Like the

model without the quadratic term, the overall fit of the model with the quadratic term

was good (p < 0.05)

Kendall's tau test for Seasonal trend

In this test, we consider the fact that the time series are seasonal with a seasonality of

12 months. The seasonal Mann-Kendall test takes into account the 12 month seasonality

and tests whether there is a trend due to seasonality. The hypotheses tested were:

Ho: There is no seasonal trend in the water demand series

HI: There is a seasonal trend in the water demand series

The results of the test are as illustrated in table 4.6 below:

Table 4.6: Seasonal Mann-Kendall Test / Period = 12/ Serial independence / Two-tailed

test (water demand)

Kel1"ldall'~ tau

5'
p-value (Two-tailed)
81ph8

0..530

2.86.1}()0

c 0.0001
0.05

As the computed p-value is lower than the significance level alpha=O.Oo, we should

reject the null hypothesis Ho that there is no seasonal trend in the monthly demand for

water in Kisumu City, and accept the alternative hypothesis Ha that there is seasonal

trend in the monthly demand for water in Kisumu City. The Kendall's tau is larger when

we take into account the seasonality as compared to when seasonality is not taken into

account. We therefore conclude that there is a trend in the water demand time series

when we take into account the seasonality.
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Using the standard normal variate;

Z
S' -1

JVaT(S')
286 - 1
V286
285

16.912
16.852

(4.7)

From the Normal tables ZQ. = 1.96
2

Since Zcalc(16.852) > Z% (1.96), we reject the null hypothesis and conclude that there is

seasonal trend in the monthly water demand for Kisumu City.

I

Water Demand in Kisumu City

4.4 SARI M A(p, d, q)(P, D, Q)s Model For Residential

The second objective of the study sought to propose a SARI M A(p, d, q)(P, D, Q)s model

that could be used to forecast residential water demand in Kisumu City. First the Kisumu

City water demand data as provided by KIWASCO was tested for stationarity and au-

tocorrelations using KPSS and ADF unit root tests, then the Box-Jenkins methodology

was applied to develop the appropriate model.

I•I
•
)
•,
•
~

4.4.1 Test for Stationary and Autocorrelation

Before testing for stationarity, time series plots were done using line plot. This is illus-

trated in figure 4.5.
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Figure 4.5: Time Series data Line plot for Water consumption in Kisumu City

The residential water demand time plot above show that the mean and variance are

not constant, showing non-stationarity of the data. On average it also shows a drop in

residential water demand in the first 2 years from a high of 118155 M3 in 2004 to a low

of 64341M3 in November 2005 after which there was an increasing trend to a high of

147469M3 in July 2013.

First differencing was done and a plot of the resulting series is obtained and is shown in

the figure 4.6 below:

51
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Figure 4.6: Time Series data plot for Water consumption in Kisumu City after first

difference

From the above figure, it is inferred that after the first-difference, the Water demand

series data does fluctuate around a constant mean hence the resulting data is stationary.

Further tests were carried out using ADF and KPSS tests

4.4.2 KPSS Unit root test for Stationarity

The hypothesis to test for stationarity under KPSS is stated as follows:

Ho : (12 = O,(Stationary)

Ha : (12 =1= O,(non-Stationary)

The results of the test are as shown in the table 4.7 below:
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Table 4.7: KPSS Unit Root test before differencing
Null Hypothesis: WATER_VOL is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 9 Cr\lewey-West automatic) using Bartlett kernel

LM-Stat.

Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.30022 ...
Asymptotic critical values' 1% level

5% level
10% level

0.21600 .
014600 .
0.11900 .

LM-Stat.

(

The results of the analysis show that the KPSS test statistic of 0.30022 is greater

than the critical values of 0.21600,0.14600 and 0.11900 at 0.01, 0.05 and 0.1 levels of sig-

nificance respectively. We therefore reject the null hypothesis that the data is stationary

and conclude that before differencing the water demand series data are non-stationary.

After first differencing, a KPSS test statistic of 0.11715 is obtained. The value is less than

the critical values 0.21600,0.14600 and 0.11900 at 0.01,0.05 and 0.1 levels of significance

respectively and hence the null hypothesis is not rejected and we conclude that the wa-

ter demand series data is stationary at first difference. This is shown in the table 4.8below:

Table 4.8: KPSS Unit Root test after first difference
Null Hypothesis: OrN,ATER30L> is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 23 (Newey-West automatic) using Bartlett kernel •

)
•
)

Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.11705 ...
Asymptotic critical values' 1% level

5% level
10% level

0.21600 .
0.14600 .
0.11900 .

4.4.3 ADF Unit root test for Stationarity

The null hypothesis for the ADF test was that the water demand series had unit roots or

the series is non-stationary. Based on the results as shown in table 4.9, we reject the null

hypothesis implying that the data (before differencing) is non-stationary at 0.05 critical

value.
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Table 4.9: ADF Unit Root test before differencing
Null Hypothesis: W'ATER_VOL has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Autornatic - based on SIC, maxlag=12)

t-Statistic Prob."

Aucmenteo Dickey-Fuller test statistic -3177329 0.0941
Test critical values 1% level

5% level
10% level

-4.037668
-3448348
-3.149326

After first differencing, however, the test statistics are less than the critical values

at 0.05 and hence the null hypothesis is not rejected and we conclude that the data is

stationary at first difference. This is further verified by formally using the ADF tests as

shown in Table 4.10.

Table 4.10: ADF Unit Root test after differencing
Null Hypothesis: D(W'ATER_VOLI has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=12}

t-Statistic Prob.*

Augmented Dickev-Fuller test statistic -14.90369 0.0000
Test critical values 1% level

5% level
10% level

-4.037558
-3.448348
-3.149326

Both ADF and KPSS tests confirms the non-existence of unit root under the situation

where either a constant or both constant and linear trend were included in the test.

Therefore, the difference order should be at least one at non-seasonal level.

4.5 Water Demand Model Building

4.5.1 Model Identification

The results of both the KPSS and ADF unit root tests showed that the residential water

demand was non-stationary before differencing but was stationary after the first differ-
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ence at both seasonal and non-seasonal levels meaning that d=l and De- l .

Date: 03/23/14- Time: 11:13
Sample: 2004M01 2013M12
Included observations 120

Autocorrelation Partial Correlation AC P~A,C O-Stat Prob

I; *- Il I -I 1 0.932 0.932 106.81 0.000
1 ,~40 ,A • I 2 0.892 0.181 205.53 0.000
1- j I I 3 0.849 -0.004 295.67 0.000
I I I I 4 0.812 0.02:2 378.78 0.000
I, ~ I I 5 0.782 0.060 456.68 0000

I IJ;;::::::J I j I I 6 0.751 -0.003 529.13 0.000
I ~ I .' I 7 0.734 0.094 598.91 0.000
I ~ I. I I :3 0.702 -0.078 66.3.27 0.000
I ~ I I I 9 0.676 0.004 723.57 0.000
I ~ I I I 10 0.650 0.005 779.81 0.000
I ~ I ~ I 11 0.623 -0.019 831.86 0.000
I ~ I I I 12 0.599 0.007 380.53 0.000
I ~ I ~ I 13 0.568 -0.050 924.74 0.000
I 1""11 • I 14 0.519 -0.202 961.95 0.000
I IBm I ~I 15 0.489 0076 995.30 0.000
I = :J I 16 0457 0.003 1024.7 0.000

17 0.420 -0083 1049.8 0.000
I I-'tl I I I 18 0.389 0.003 1071.5 0.000
I b4l I I I 19 0.361 0.010 1090.4 0.000
I t:=J Iq I 20 0.325 -0.105 1105.9 0.000
I ~ I j I 21 0.287 -0.010 1118.0 0000
I • I j I 22 0.254 -0015 1'127.7 0.000
I
.,

I q I 23 0.222 -0.025 1135.2 0000
I • I I I 24- 0.192 0.004 1140.8 0.000
I • I n I 25 0.172 0.063 '1145.3 0.000
I .' I ~ I 26 0.145 -0.039 1148.6 0.000
I 131 I Q I 27 0.113 -0.047 1150.6 0.000
I Pi I Pi 28 0.104- 0.120 1152.3 0.000
I Pi Iq I 29 0.071 -0.121 1153.1 0000
I b I I .' 30 0.057 0.082 1153.7 0.000
I ~ I I ~ I 31 0.032 -0059 1153.8 0.000
I I I I

,
I 32 0.019 0.048 1153.9 0000

I j I I. I 3,.3 -0014 -0.129 11539 0.000
I q I I b I 34 -0.033 0.064 1154.1 0.000
I ~ I I Q I 35 -0.051 -0.046 '1154.6 0.000
IQ I I Pi 36 -O.OM 0.094 1155.3 0000

Figure 4.7: CoUelogram of Water Demand data

Figure 4.7 above, the ACFs are suffered from linear decline and there is one significant

spike of PACFs in period 1. To identify the integration order of the non-stationary time

series, We take the first-difference of the series and see whether the first-difference series

becomes stationary. This is illustrated in figure 4.8
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Date 03/23/14 Time:11:15
Sample 2004M01 2013M12
Included observations: 119

Autocorrelation Partial Correlation AC PAC Q-8tat Prob

• 1 • I 1 -0.292 -0.292. 10.42.3 0.001
I ~ 1 IQ I 2 0.020 -0.072 10.471 0.005
Iq I I~ I .3 -0.086 ~O.111 11.388 0.010
I I I I j I 4 0.017 -0045 11.425 0.022
I j I I j I 5 -0.018 -0.036 11.464 0.043
I j I I ~ I 6 -0.018 -0.047 11.506 0.074
I • I • 7 0204 0.202 16.877 0.018
I ~ I I ~I 8 -0027 0.106 16.973 0.030
I ~ I I I I 9 -0.029 0.012 17.087 0.047
I j I I I I 10 -0.011 0.024 17.103 0.072
I j 1 I j I 11 -0.038 -0035 17.297 0.099
1 .1 I .1 12 0.·125 0.122 19.413 0.079
I • 1 I • 13 0.094 0200 20.618 0.081
Iq I I~ I 14 -0.139 -0.108 23.249 0.056
I I I I Q I 15 0.014 -0.058 23.275 0.078
I b: I b: 16 -0.015 -0.010 23.307 0.106
I I 17 0.102 o 100 2.4.764 0.100
I~ I I I I 18 -0.081 -0.004 25.706 0.107
I .1 I , I 19 0.115 0.029 27.604 0.091
I j I I~ I .20 -0.041 -0067 27.845 0.113
I I I I ~ I 21 -0.004 0.029 27.847 0.145
Iq I I ~ I 22 -0.079 -0039 28.780 0.151
I j 1 I~ I 23 -0.012 ~0.073 28.802 0.187
I ~ 1 I j I 24 0.053 -0.039 29.230 0.212
I a 1 I ~I 25 0.065 0.0.39 29871 0.229
I P I I .1 26 0.041 0.091 30.138 0.262
q I II!i I 27 -0.167 -0.104 34.514 0.152
I Pi I j I 28 0.080 -0.013 35.519 0.155
Iq 1 I- I 29 -0.107 -0.111 37.363 0.137
I ~I I

, I 30 0077 0.033 38.317 0.·142
I j 1 I I I 31 -0038 0.004 38.554 0.165
I P I ~I 32 0.179 0.131 43.851 0.079
I Q I I , I 33 -0.062 0.028 44.492 0.087
I j I I ~ I 34 -0033 0.030 44.674 0.104
Iq I IQ I 35 -0.109 -O.OB1 46.707 0.OB9
I ~I I .1 36 0.135 0.118 49.B78 0.062

Figure 4.8: Collelogram of Water Demand data after first difference

From the above collelogram, there is one significant spike of PACFs implying presence

of AR(l) process. Also, there is one significant spike of ACFs implying presence of MA(l)

process. Based on the pattern, the respective values of p, d, q were determined for ARIMA

part of the model given as ARIMA (1, 1, 1).

From ACF correlogram, seasonal pattern of the data is identified. As ACF is indi-

cating seasonal pattern. Applying 12 period seasonal difference the collelogram of the
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resulting series is given in the figure 4.9 below:

Date: 04/01[14 Time: 15:20
Sample: 2004M01 2013M12
Included observations: 108

Autocorrelation Partial Correlation AC PAC o-sisi ProD

, ~ , ~ 1 0.763 0.763 64.623 0.000, ~ , • 2 0.710 0.306 121.13 0.000
~ , ~ , 3 0.598 -0.030 161.58 0.000-- , j , 4 0.520 -0.022 192.42 0.000
~ , p, 5 0.479 0.085 218.85 0.000
P , p, 6 0.481 0.163 245.74 0.000
P , p, 7 0.484 0.104 273.25 0.000•• d , 8 0.402 -0.189 292.45 0.000
P- ,q , 9 0.352 -0.091 307.33 0.000

~
,

J
r 10 0.284 -0.007 317.14 0.000, 11 0.217 -0.032 322.92 0000

Ja' '0 , 12 0.128 -0.169 324.96 0000
~ , p n 0.180 0.202 329.01 0.000p, , ~ , 14 0.124 -0.049 330.94 0.000p, , I , 15 0.130 0.010 333.11 0.000p, '14 , 16 0.070 -0.132 333.75 0.000
~ , , ~ , 17 0.051 0.036 334.09 0.000
I , , I , 18 -0.004 0.009 334.09 0.000
I , , ~, 19 -0.003 0.091 334.10 0.000
j , 'Ei , 20 -0.014 -0.103 334.12 0.000
I , , p, 21 0.016 0.125 334.16 0000
~ , , ~ , 22 0.032 0.050 334.30 0.000
~ , , n , 23 0.049 0.052 334.53 0.000
n , ,q , 24 0.043 -0.102 334.89 0.000

Figure 4.9: Collelogram of Water Demand after seasonal difference

The ACF and PACF plots indicate that the series is non-stationary with ACF showing

gradual decline in values. The remaining non-stationary can be removed by further first

difference. The resulting ACF and PACF plots are shown in the figure below:
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Date: 04/01/14 Time: 15:23
Sample: 2004M01 2013M12
Included observations 107

Autocorrelation Partial Correlation .AC PAC Q-8tat Prob.- I .- I 1 -0.418 -0.418 19.251 0.000
I Pi Iq I 2: 0.114 -0.074 20.702 0.000
Iq I Iq I 3 -0.094 -0.089 21.687 0.000
I Pi I I I 4 0072 0.006 22277 0.000• I • I 5 -0218 -0225 27.715 0.000
I ~ I d I 6 0.040 -0.185 27.903 0.000
I P I P 7 0.205 0.199 32.799 0.000
I ~ I I .' 8 -0.047 0.-141 33.054 0.000
I ~ I I P I 9 0.02.5 0.063 33.129 0.000
I 6: I b 10 0.013 0.024 33.148 0.000
I 11 0.111 0.176 34.649 0.000

~ I • I 12 -0.359 -0201 50.434 0.000
I • I I I 13 0.2:27 0.011 56.842 0.000
l[!j I Iq I 14 -0.168 -0.141 60.377 0000
I Pi I I I 15 0.166 0.024 63.851 0.000
Iq I I b I 16 -0.073 0.053 54.535 0000
I 1m I ~ I 17 0.176 0.055 68.529 0.000
l[]j I Iq I 18 -0.168 -0.123 72.240 0.000
I P I I b I 19 0.055 0.047 72.645 0.000
I. I I Q I 20 -0.103 -0.060 74.061 0000
I P I I I I 21 0.034 0.010 74.220 0.000
I ~ I I j I 22 -0037 -0.023 74.409 0000
I ~I I Pi 23 0.095 0.087 75.656 0.000
I. I • I 24 -0.099 -0.223 77.034 0.000

Figure 4.10: Collelogram of first difference of seasonally differenced Water Demand

After applying first difference on the seasonally differenced data, it can seen from the

Figure 4.10 above that the ACF has a significant spike at lag 12, indicating seasonality

of period 12 and a seasonal moving average component of order one. The PACF dies

down and has no significant spike at lag 12 suggesting a lack seasonal autoregressive

component. Therefore the inferred order of the seasonal part of the SARIMA model

(P, D, Q)s is (0,1, 1h2.

Therefore the tentative SARI M A(p, d, q)(P, D, Q)s model will be given as:

SARIMA(1, 1, 1)(0, 1, 1h2.

In order to make sure that the right model has been identified the following tentative

models are also suggested:

(a) SARI M A(1, 1, 1)(1, 1, 1h2

(b) SARIMA(1, 1, 1h2
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(c) SARIMA(O, 1, 1)(0, 1, 1h2

4.5.2 Model Evaluation and Parameter Estimation

After the identification of the tentative SARIMA models, the parameters of the model

are estimated using maximum likelihood estimates. The evaluation and choice of the

appropriate model is based on the AIC AICc and BIC values. The model with the least

values will be the best model. Table 4. 11below presents the various tentative models and

their corresponding AIC AICc and BIC values:

Table 4.11: AIC, AICc and BIC Values of tentative models

ARIMA MODEL AIC AICc BIC

(1,1,1)(0,1,1)12 2197.282 2197.518 2205.273

(1,1,1)(0,0,Oh2 2426.311 2426.521 2434.623

(0,1,1)(0,,1,1)12 2199.267 2199.663 2209.921

(1,1,1)(1,1,lh2 2201.266 2201.868 2214.580

The results show that SARIMA(l, 1, 1)(0, 1, 1)12 with the least AIC and BIC values

of 2197.282 and 2205.273 respectively and SARI M A(O, 1, 1)(0, 1, 1h2 with AIC and BIC

values of 2199.267 and 2209.921 respectively were selected as the best models for further

consideration. Using the method of Maximum Likelihood, the estimated parameters of

the models with their corresponding standard error are given in table 4.12 below:

Table 4 12· Estimates of the Parameters of the tentative models
MODEL PARAMETER COEF. SE t P

(1,1,1)(0,1,1)12 AR(l) -0.0203 0.244 -2.08 0.039

MA(l) 0.3746 0.229 4.35 0.024

SMA(12) 0.8096 0.075 10.90 0.000

(0,1,1)(0,1,lh2 MA(l) 0.3372 0.394 1.64 0.031

SMA(12) 0.8114 0.111 10.86 0.000

Each of the SARIMA tentative model parameters are tested using t-test values and
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p-values. If the p-value associated with the parameter's t-statistic is less than alpha level,

we can conclude that the coefficient is significantly different from zero.

The results in table 4.12 show that all the t values for the SARI M A(l, 1, 1)(0, 1, 1h2

model are significant since the p-values are less than the 0.05 level of significance hence

it is concluded that the coefficients are significantly different from zero. This is further

verified by using the t-test. Under this test we reject the null hypothesis (The coefficients

are zero) if It I > tQ., df = n - np
2

From the t-tables, tfr, 120 = 1.980 Since It I > ttable(= 1.980), the null hypothesis is
2

rejected, and it is concluded that the coefficients are significantly different from zero.

The coefficients of the SARIMA(O, 1, 1)(0, 1, 1)12 model are also significant since the

p-values are less than the 0.05 level of significance hence it is concluded that the coeffi-

cients are significantly different from zero. However, based on the Standard error (SE)

values, it is noticed that SARI M A(O, 1, 1)(0, 1, 1h2 has larger values as compared to.

SARI M A(l, 1, 1)(0, 1, 1h2 SE values hence its estimates would be less precise.

Considering the significance of the estimated parameters for the two models, the SE

values and the least AlC and BIC fit statistics, it can be established that the best fit

model for residential water demand for Kisumu City is the SARIMA(l, 1, 1)(0, 1, 1h2

The model can be written as shown below:

(4.8)

Substituting p=l, d=eL, q=l, P=O, D=l and Q=l in equation (4.8) above we have;

<h(B)cpo(B12)(1- B)l(l- B12)lXt = e1(B)81(B12)et

(1 - <h(B))(l - B)(l - B12)Xt = (1 - e1B)(1 - 81B12)et
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(1 - Ih(B))(l - B)(Xt - Xt-12) = (1 - 81B)(et - 81et-d

(1 - (Jh(B))(Xt - Xt-12 - BXt + BXt-12) = et - 81et-12 - 81B)(et + 8181Bet-12

(1 - 1/h(B))(Xt - Xt-12 - Xt-l + Xt-13) = et - 81et-12 - 81(et-l + 8181et-13

(1- 1/h(B))(Xt - Xt-12 - Xt-l + Xt-13) = et - 81et-12 - 81(et-l + 8181et-13

Xt - Xt-12 - Xt-l + Xt-13 - rPl(B)Xt + rPl(B)Xt-12 + rPl(B)Xt-l - rPl(B)Xt-13 =

et - 81et-12 - 81(et-l + 8181et-13

X, - Xt-12 - Xt-l + Xt-13 - 1hXt-l + rPIXt-13 + rPIXt-2 - rPIXt-14 =

et - 81 et-12 - 81(et-l + 8181 et-13

X; - Xt-l - rPIXt-l + rPIXt-2 - Xt-12 + Xt-13 + rPIXt-13' - rPIXt-14 =

et - 81et-12 - 81(et-l + 8181et-13

X, - (1 + rPl)Xt-l + rPIXt-2 - Xt-12 + (1 + rPdXt-13 - rPIXt-14 =

et - 81et-12 - 81et-l + 8181et-13

(4.9)

Making X, the subject we have;

X, = (1 + rPdXt-l - rPIXt-2 + Xt-12 - (1 + rPdXt-13 + rPIXt-14 +
et - 81et-12 - 81et-l + 8181et-13

(4.10)

Since logarithm values were used in the modelling, the SARIMA(l, 1, 1)(0, 1, 1h2 model

becomes

But,

rPl = -0.0203

81 = 0.3746

In(Xt) = (1 + rPl)ln(Xt-l) - rPlln(Xt-2) + In(Xt-12) - (1 + rPl)ln(Xt-13) +

rPlln(Xt-14) + et - 81et-12 - 81et-l + 8181et-13

(4.11)
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81 = 0.8096

Substituting these values in equation above we have;

In(Xt) = 0.9797ln(Xt-d + 0.0203ln(Xt-2) + In(Xt-12) - 0.9797ln(Xt-13) -

0.0203ln(Xt_14) + et - 0.8096et-12 - O.3746et-1 + 0.3033et-13

= 0.9797ln(Xt-d + 0.0203ln(Xt_2) + In(Xt-d - 0.9797ln(Xt_13) -

0.0203ln(Xt_14) + et - 0.8096et-12 + 0.0.3746et_1 + 0.3033et-13

= In(Xt-12) + (0.9797ln(Xt-1) + 0.0203ln(Xt_2) - 0.9797ln(Xt_d -

0.0203ln(Xt_14)) + et - 0.3746et_1 - 0.8096et-12 + 0.3033et-13
XO.9797 * XO.0203

= In(Xt-12) + lnl; ~~9~97 ~~02203)+ (et - 0.3746et_1 - 0.8096et-12 +
Xt-13 * Xt-14

0.3033et-13)

(4.12)

This means that holding all factors constant, this month residential water demand is the

sum of

(i) the value of the time series in the same month of the previous year,

(ii) a trend component determined by the difference between the sum of previous

month's value and the previous two month's value and the sum of last year's prc-

vious month's value and last year's previous two month's value;

(iii) the effects of the residual terms of period t, t-1, t-12 and t-13 on the forecast.

4.5.3 Model Adequacy Checking

This aims at examining the accuracy of the chosen tentative model in ensuring that the

modelling assumptions are satisfied.

First the Ljung-Box (Q) test was used for testing white noise residual. The Hypotheses

to be tested were:

Ho:Residuals are white noise

Ha:Residuals are not white noise
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Hi, is rejected if the p-value of the Q-statistic is less than the 0.05 level of significance.

The ACF and PACF at some lags together with Q statistics for the Box Ljung test of

the residuals are shown in the figure 4.11below:

Date: 04102114 Time: 14:19
Sample 2004M01 2013JI'112
Included ooservations:11 9

Autocorrelation Partial Correlation AC P}.,C Q~Stat Prob

I I I I I I 1 0.004- 0.004 DD017 0.967
I j I I j I 2 0.014 0.014 0.0255 0.987
I ~ I I ~ I 3 ~0.073 -(1.073 0.6812 G.BlE:
I ~ I I ~ I 4 0.076 0.077 1.4086 0.843
I j I I j I 5 0.015 0.017 14411 0.920
I ~I I j I 5 0.025 0.018 15240 0.9.58
I • I • 7 0.238 0..251 87882 0268
I ~ I I ~ I 8 0.054 0.051 91733 0.328
I j I I j I 9 "00·18 -0.025 9..2168 0.418
I ~ I I j I 10 -0044 -0.010 94737 0.488
I • I I j I 11 0.046 0.015 97610 0552
I • I .' 12 01:i7 0.148 13.088 0.353
I .' I .' 13 0.144 0.147 158.93 0.2.55
I. I • I 14 -0.099 ~0.168 17239 0..244
I ~I I ~I 15 0.037 0.028. 17432 0.294
I

~
I I

~
I 15 0.032 0.054 17579 0.349

I I I I 17 0.06.5 0.040 18.183 0.377
I. I I. I 18 -0.096 -0.100 19.497 0.362
I .' I j I 19 0.095 0.010 20.814- 0.347
I I I I. I 2{J 0.001 -0.(1:34 208·14 00408
I I I I • I 21 -0.003 0.042 20.815 0.470
I ~ I I ~ I 22 -0.070 -0.045 2155.2 0487
I I I I ~ I 23 0.007 -0.054 21.5.59 0.547
I • I I I I 24 0.062 0.008 22136 0.571

Figure 4.11: Collelogram of Residuals of SARI M A(l, 1, 1)(0, 1, 1h2

The results show that none of the Q statistics is statistically significant,i.e. their

p-values all exceed 0.05 for all lag orders. This indicates that there is no significant

departure from white noise for the residuals. Therefore we fail to reject Ho and conclude

that the standardized residuals follow a white noise process with a mean of zero and

constant variance. This also indicates the absence of autocorrelation. This is based on

the recommendation by Weir?] that If the Q statistic is significant then the model is

not adequate, and if the Q statistic is not significant then the fitted ARIMA model is

appropriate. Any significant autocorrelation may be an indication of misspecification.

Also, the ACF and PACF plots of the residuals show that the ACF of the residuals

immediately die out from lag one (1), which means the residual are white noise. The zero
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mean and constant variance assumption is further illustrated in the following time series

plot of the standardized residuals in figure 4.12 below:

Time Series Plot of Residuals
4.------------------------------------------------------,
3

2

1

o}4----~~YH~~~~~~~4n~~~~~~~~~6Mo
-1

-2

-3~----~--~----~----~--~----~----~--~----~----~
1 12 24 36 48 60 72

Month
84 96 108 120

Figure 4.12: Time Series plot ofthe standardized Residuals of SARIMA(l, 1, 1)(0, 1, 1h2

To test normality of the residuals, the normal Probability plot of standardized residu-

als was used. The results as shown in figure 4.13 below shows that the normal probability

plot of the residuals is approximately linear supporting the condition that the error terms

are normally distributed. This is because the data fall close to the line representing a

normal distribution. This implies that for short term forecasting, SARIMA model can

reproduce the details of the original series
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Figure 4.13: Normal Probability plot of the Residuals of SARI MA(1, 1, 1)(0, 1, 1h2

Also the histogram plot of standardized residuals in figure ?? below show that the

standardized residuals are normally distributed with M ean ~ 0 and Variance ~ 1
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Histogram of Standardized Residuals
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0.8.-------------------------------------------.
0.7

0.6

0.5
~.v;
; 0.4
Q

0.3

0.2

0.1

-2 ~ 0 1 2
Standardized Residuals

3

66

Mean 0.2192
StDev 0.9180
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Figure 4.14: Histogram plot of the Standardized Residuals of SARIMA(l, 1, 1)(0, 1, 1h2

Finally, the actual data was graphically compared with model data so as to assess the

agreement between their plots. Figure 4.15 below shows a very close agreement between

the fitted model and the actual data.
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Figure 4.5: Time Series data Line plot for Water consumption in Kisumu City

The residential water demand time plot above show that the mean and variance are

not constant, showing non-stationarity of the data. On average it also shows a drop in

residential water demand in the first 2 years from a high of 118155 M3 in 2004 to a low

of 64341M3 in November 2005 after which there was an increasing trend to a high of

147469M3 in July 2013.

First differencing was done and a plot of the resulting series is obtained and is shown in

the figure 4.6 below:

51
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Table 4.13: MAPE for SARIMA(l, 1, 1)(0, 1, 1h2

Month At Ft IAt-Ftl IAt-Ftl 100
-At- -At- * 12

Jan 133653 140662.1 0.05245 0.43704

Feb 130646 135240.3 0.03517 0.29308

Mar 125556 126142.7 0.00510 0.04249

ApI' 118962 129963.2 0.09292 0.77429

/lay 123569 122168.8 0.01134 0.09449

Jun 131405 129092.7 0.01694 0.14114

Jul 147469 126259.5 0.14364 1.19703

Aug 145580 148203.5 0.01817 0.15138

8ep 143647 142051.0 0.01218 0.10149

Oct 140854 142789.4 0.01348 0.11232

Nov 138819 141345.2 0.01793 0.14944

Dee 136800 138362.5 0.01148 0.09567

- - - - MAPE = 3.590

Also the MAPE of the OL8 equation was as computed in the table below:
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Table 4.14: MAPE for the OL8 equation

Month At Ft IA,-Fti * 100
At 12

Jan 133653 113271 1.271

Feb 130646 113792 1.075

Mar 125556 114314 0.746

Apr 118962 114840 0.289

May 123569 115367 0.553

Jun 131405 115897 0.983

Jul 147469 116430 1.754

Aug 145580 116965 1.638

8ep 143647 117502 1.517

Oct 140854 118042 1.350

Nov 138819 118585 1.215

Dec 136800 119130 1.076

- - - MAPE = 12.196

Comparatively, the MAPE value for SARIMA(l, 1, 1)(0, 1, 1)12 which was 3.590 was

less than the MAPE value of the OL8 equation Ln(Y;J = 4.8371 + 0.00199lti which was

12.196. Based on the MAPE value it is concluded that the SARIMA(l, 1, 1)(0, 1, 1h2

has a better forecasting performance.

Root Mean Square Error(RMSE)

I::~1(Xobs,i - Xmodel,i)2

ti
(4.14)RMSE=

Where;

Xobs,i are the observed values at time i

Xmodel,i are the model values at time i

The result of inspection is computed as shown in the table below:
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Table 4.15: RMSE for SARIMA(l, 1, 1)(0, 1, 1)12

Month Xobs,i Xmodel,i (Xobs,i - Xmodel,i)2

Jan 133653 140662.1 49132253

Feb 130646 135240.3 21112411

Mar 125556 126142.7 409837.7

Apr 118962 129963.2 122177479

May 123569 122168.8 1963223.4

Jun 131405 129092.7 4953401.2

Jul 147469 126259.5 448720898

Aug 145580 148203.5 6993950.4

Sep 143647 142051.0 3060645.6

Oct 140854 142789.4 3604419.8

Nov 138819 141345.2 6196958.2

Dec 136800 138362.5 2466527.4

- - - L:~-1 (Xobs,i-Xmodel,Y = 55899334
12

- - - RM SE = 7476.59

The RMSE of the OLS equation is as given below:

70
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Month Xobs,i x.;«, (Xobs,i - Xmodel,i)2

Jan 133653 113271 415423102.8

Feb 130646 113792 284072601

Mar 125556 114314 126373222.7

Apr 118962 114840 16993464.77

May 123569 115367 67266700.86

Jun 131405 115897 240483119

Jul 147469 116430 963417814.5

Aug 145580 116965 818817071.4

Sep 143647 117502 683536391.4

Oct 140854 118042 520369477.2

Nov 138819 118585 409423131

Dec 136800 119130 312239968.5

- - - 2:~-1(Xobs,i-X",odel,i)2 = 485841606512
- - - RMSE = 20121.33

Table 4.16: RMSE for the OLS equation

Comparatively, the RMSE value for SARI M A(l, 1, 1)(0, 1, 1h2 which was 7476.59 was

less than the RMSE value of the OLS equation Ln(Y;J = 4.8371 + 0.00199lti which was

20121.33 hence the conclusion that the SARI M A(l, 1, 1) (0,1,1)12 has a better forecasting

performance.

Table 4.17below shows the summary results of model comparison for MAPE and

RMSE for each model.

Table 4.17: Summary Accuracy Measures of the Models

Perfomance Evaluation procedure OLS model SARIMA model

MAPE 12.196 3.590

R fSE 20121.33 7476.59

The analysis show that SARI M A(l, 1, 1)(0, 1, 1h2 has less MAPE and RMSE values

of 3.590 and 7476.59 respectively. Based on these results it is concluded that it is a better
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forecasting model hence it is proposed for the forecasting of residential water demand for

Kisumu City.

The principal objective of time series modelling and analysis is forecasting. Therefore,

the third objective of the study sought to forecast residential water demand for Kisumu

city in the twelve months of 2014

The SARIMA(l, 1, 1)(0, 1, 1h2 was used to generate the forecast of residential water

demand for the period January 2014 to December 2014. To forecast one period ahead

4.6 Residential Water Use Forecasting for 2014

that is Xt+l the forecast equation is given by:

XO.9797 * XO.0203
In(Xt+l) = In(Xt-ll) + In( X~.9797 * X~~01203)+ (eHI - 0.3746et - 0.8096et-ll +0.3033et-12)

t-12 t-13
(4.15)

The term et+l is not known because the expected value of future random errors is taken

to be zero. for instance, to forecast the residential water demand for the period 121 which

is January 2014 the equation becomes:

el21 = 0, el20 = Xl 20 - X120, el09 = XI09 - XI09, elOS = XIOS- Xl OS

The forecast values as well as a 95 percent confidence intervals obtained using Minitab

are presented in Table 4.18 below.
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Table 4.18: Residential Water Demand for SARI M A(l, 1, 1)(0, 1, 1h2

Month SARIMA Forecast Observed value 95 LowerCI 95 Upper CI

JAN04 150169 158117 130860 164224

FEB04 147370 154497 126972 164926

MAR04 140145 119122 161167

APR04 145885 118117 163888

MAY04 145704 117269 164484

JU 04 153571 122317 174752

JUL04 150567 122833 178300

AUG04 155995 126643 184987

SEP04 152005 121464 182546

OCT04 150964 119111 182816

NOV04 155172 117060 183283

DEC04 149090 113359 184820

Comparing the forecast water demand for January -February 2014 with the observed

water demand, it is established that the forecast values are close to the true values and do

lie within the confidence intervals hence it is concluded that SARI M A(l, 1, 1)(0, 1, 1h2

is adequate to be used to forecast monthly residential water demand in Kisumu City. It is

noticeable that the confidence interval becomes wider as the number of forecasts increase.

The wider confidence limit gives an indication of high stochasticity in the data.
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Summary, Conclusions and

Recommendations

5.1 Summary of Findings and Conclusions

The first objective of the study sought to analyse the of residential water demand for

Kisumu City for the years 2004 to 2014. The study employed Ordinary Least Squares

(OLS) and Kendall's tau tests methods to test for trend in the data. The OLS approach

established a positive significant trend represented by the equation Ln(}i) = 4.8371 +
0.00199lti . The F-test based on ANOYA showed that the coefficient 11 = 0.001991,

was statistically and significantly not equal to zero at 0.05 level of significance. Also the

Kendall's tau test established that ZCalc(58.634) > Z~ (1.96), and concluded that there
2

was significant positive trend in the monthly water demand for Kisumu City. Both test

statistics gave the same conclusion of the existence of a meaningful statistical trend in the

amount of residential water demanded in Kisumu City over the last 10 years. The study

therefore concludes that the residential water demand in Kisumu City will significantly

continue to increase in the future.

The second objective of the study sought to propose a SARIMA model that could be

used to forecast residential water demand in Kisumu City. Following the Box-Jenkins ap-

proach and based on minimum AIC, AICc and BIC values, the best-fitted SARIMA mod-

els were SARIMA(l, 1, 1)(0, 1, 1h2 and SARIMA(O, 1, 1)(0, 1, 1)12 models. After the es-
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timation of the parameters of selected model, a series of diagnostic and forecast accuracy

test were performed. Having satisfied all the model assumptions, SARI M A(l, 1, 1)(0, 1, 1)12

model was judged to be the best model for forecasting. Model validation based on MAPE

and RMSE established that, compared to the OLS equation, the SARI M A(l, 1, 1)(0, 1, 1h2

had better forecasting performance and hence proposed for the forecasting of residential

water demand in Kisumu City.

The third objective of the study sought to forecast residential water demand for the

12 months of 2014. The Forecasting results in general revealed an increasing pattern

of residential water demand over the forecast period. The study established that the

forecast values were close to the true values and were within the confidence intervals

hence concluded that SARI M A(l, 1, 1) (0,1, Ih2 was adequate and could be used to

forecast monthly residential water demand in Kisumu City. However, it was observed

that there were wider confidence limits which could be an indicator of high stochasticity

in the water demand data.

5.2 Recommendations

5.2.1 Recommendations for policy and practice

The study demonstrates that the Box - Jenkins approach used in this study could be

useful for the modelling and forecasting of residential water demand. The results of

this study would be useful to water companies more so KIWASCO in exploring realistic

decision making scenarios for designing effective water demand management policies.

Such policies would ensure that short term future water demand is met. Second, Water

Resources Management Authority (WRMA) which is a state corporation charged with

the responsibility of being the lead agency in water resources management could apply the

study findings to develop forecasts and projections of water use in Kenya hence provide

better advice on water resources development.
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5.2.2 Suggestions for future research

The accuracy of forecast future values is the core point for every forecaster. This is

because the forecast values will affect the quality of the policies implemented based on

this forecast. With this motive, it is therefore recommended that future research will be

helpful to assess the performance of the model in terms of forecast precision as compared

to other time series models.

(a) The study recommends a similar study using other water companies' data so as to

corroborate the study findings.

(b) Since the current study was based on aggregated data, it is recommended that

future research that is based on household level data be carried out.

(c) The study also recommends that future research aimed at modelling residential

water demand apply other methodologies such as Artificial Neural Networks and

Markov models. These will be helpful in assessing the forecasting accuracy of the

developed model

(d) The study finally recommends future research that will estimate the parameters of

the three-parameter lognormal distribution for residential water demand.
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