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ABSTRACT

Predator-prey models describe the dynamics of ecological systems in which two species, the

predator and the prey, interact. The classical Lotka-Volterra model is the simplest predator-

prey model. Migration of species, due to predation and other factors, in predator-prey

systems has been studied. In reality the prey do not migrate instantly upon being preyed

on neither do the predators migrate immediately they lack food. Delay in the migration of

species in such systems for constant rates has been investigated. However, if the migration

of the prey is largely due to predation, then it is expected that the prey migration rate

will depend on the density of the predators. The objective of this study is to formulate

and analyze a predator-prey mathematical model, based on a system of delay differential

equations that takes into consideration time delay in migration, with a prey migration rate

that depends on the predator density and other factors like availability of its food. Analysis

of the formulated model shows that for both the Symmetric and Asymmetric manifolds, the

system is unstable when the prey migration rate is less than the prey growth rate. This means

that the predator and prey species will become extinct in either patches. On the other hand,

when the prey migration rate is greater than the prey growth rate, then the resulting system

is stable. This implies that the two species in both patches will coexist. Furthermore, when

the prey migration rate is equal to the prey growth rate, a periodic solution occurs. This

means that the two populations will fluctuate by rising or falling almost in equal measure.

Numerical analysis show that delay has a stabilizing effect on the system and in the presence

of delay, the species populations decrease at a faster rate compared to the case without

delay. It is shown that the population density mainly depends on the migration rate which

may be affected by factors such as infrastructure through natural habitat, destruction of the

natural habitat through logging, natural disasters like fire-outbreaks among others. In view

of this, relevant agencies like the Kenya Wildlife Service and the government should employ

measures which will deal with factors which cause barriers during migration for example

reducing natural habitat land allocation to human settlement, agriculture or infrastructure.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The classical Lotka-Volterra predator-prey model is mostly used in describing the dynamics

of ecological systems in which, the prey and predator (feeding on the prey as its main food)

interact, Brauer and Chaves [3], Hastings [6], Murray [10]. In nature three factors are likely

to promote the coexistence and stability in the environment. They include first the prey,

which in the absence of any predators grows exponentially. Secondly the predators, which in

the absence of prey, their main food, decay exponentially. The third factor is the presence

of both the predator and prey species, in which case the growth of the prey is limited by the

predators, and the predators grow proportionately to the amount of prey available.

The classical Lotka-Volterra model assumes a homogeneous (single patch) ecological en-

vironment, which is not the case since the environment is made up of many patches. This

assumption of a single patch implies that species essentially do not migrate. Migration occurs

when the predator or the prey move from their initial patch to another patch in search of

food, security mainly for the prey due to predation and due to other unfavorable conditions,

Pillai et. al.[13].

Let the prey and predator population be denoted by Ni(t), Pi(t), respectively at time t

in patch i, i = 1, 2. The migration equation for the predator- prey system from one patch

to another is given by;

Ṅi(t) = DN(Nj(t)−Ni(t)),

Ṗi(t) = DP (Pj(t)− Pi(t)), i, j = 1, 2, i 6= j, (1.1)

where DN represents prey migration rates, and DP represents the predator migration

rate, see for instance Abdllaoui et. al. [1], Mchich et. al. [9] and Wasike et. al. [15].

Most predator-prey models, for instance Abdllaoui et. al. [1], and Mchich et. al. [9]

assume the migration is at a constant rate. However, this may not be ecologically realistic

because of the nature of the factors that cause migration. These factors include lack of
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security, mainly for the prey species due to predation, unfavorable climatic conditions and

intraspecific competition in a patch, see for instance Brauer and Chaves [3], Murray [10].

Migration can either be constant or variable [10]. If the number of species moving per unit

time is a constant fraction of the population of the species from a patch then the migration

rate is constant, otherwise it is variable [1, 2, 13].

In a predator-prey system, delay in migration is the duration of time taken by one

species before they relocate from one patch to another in a heterogeneous environment after

facing an unfavorable condition in the initial patch. The unfavorable conditions which cause

delay may include, barriers which may be caused by natural habitat land allocation to

human settlement, agriculture or infrastructure. Other factors may include adverse weather

conditions like long dry spells or heavy rains which may lead to swollen rivers. Some models

for migration at constant rates with delay are for instance Apima [2], Neubert et. al [11],

Wasike et. al.[15].

1.2 Statement of the problem.

In a predator-prey system, the prey do not migrate instantly upon being preyed on neither

do the predators migrate immediately they lack food. There is delay in migration which

has often been assumed to be at constant rate. However, if the migration of the prey is

largely due to predation, then it is expected that the migration rate will not be constant,

instead it may be dependent on the density of the predators. The study therefore formulates

and analyzes a mathematical model for the delayed migration of both species with predator-

density-dependent dispersal for the prey.

1.3 Objectives of the Study

1.3.1 Main objective

The main objective of this study is to develop and analyze a predator-prey model with delay

in migration, where the prey migration rate is dependent on the predator-density among

other factors.

1.3.2 Specific objectives

The specific objectives of this study are as follow;
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1. Develop a system of delay differential equation for the migration of species in a two

patch environment.

2. Analyze long term solution of the proposed model in (1) above

3. To perform numerical simulations so as to verify and give more insight to the analytical

solutions obtained in objectives (2) above.

1.4 Justification of the study

This study is motivated by findings such as that of Kramer and Drake [6] which show that

predation can drive prey species with low density to extinction. It’s worth investigating the

dynamics of the system, since predator-density-dependent prey migration with time delays

has a profound effect on such system.

1.5 Significance of the study

An understanding of the long term dynamics of the system may provide useful insights to

ecologists on conservation measures where the prey is an endangered species. The novelty

of the mathematical formulations and analysis is expected to contribute to the body of

mathematical knowledge in the area of study.

3



CHAPTER 2

LITERATURE REVIEW

2.1 The Lotka-Volterra Model

Lotka in the year 1925 and Volterra in the year 1926 proposed a simple classical predator-prey

model. They used a system of ordinary differential equations regularly used in describing

the dynamics of the interaction between the predator and prey in homogeneous ecological

environment. The system is given by;

dN

dt
= N(a− bP )

dP

dt
= P (cN − d) (2.1)

Where N represents the prey population, P represents the predator population, a, denotes

the prey growth rate, d denotes the predator mortality rate b, and c are non- negative

parameters which describe the interaction between the predator and prey species. Lotka used

herbivores and plants species to come up with a simple classical predator-prey model. On the

other hand Volterra used the predation of one species of fish by another to explain fluctuation

in size of population of commercially desirable fish N(t) and that of larger fish P (t) which

fed on the latter N(t) in the Adriatic Sea. Since model (2.1) was derived exclusively by

Lotka and Volterra it was then called Lotka-Volterra predator-prey model. The assumptions

in Model (2.1) are:

(i) The prey population grows exponentially in the absence of the predator (Malthus law).

It is represented by the term aN in the model (2.1)

(ii) The total number of prey predation per unit time and the amount of predator pro-

duced per unit time is assumed to be proportional to the number of predator and prey

encounters (the rate at which they are preyed on). It is represented by the term −bP

(iii) The prey’s contribution to the predators growth rate is cNP ; that is, it is proportional

to the available prey as well as to the size of the predator population.
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(iv) In the absence of any prey for sustenance the predators death rate results in exponential

decay. It is represented by the term −dP .

The predator population, in the Lotka-Volterra model, grows exponentially when the popu-

lation of prey is high, ultimately, reduces their main food supply. Also prey population will

increase as the predator size reduces. The assumption in model (2.1) that the environment

is homogenous is not realistic, since the environment is made up of more than one patch and

both species can migrate from one patch to another patch. For more on the Lotka Volterra

model see Brauer and Chaves [3], Hastings [6] and Murray [10]

2.2 Models involving migration of predator and prey species

An extension of the Lotka-Volterra model to a simple two patch model was given by Comins

and Blatt [4],

Ṅi(t) = Ni(ai − biPi) +DN(Nj −Ni),

Ṗi(t) = Pi(ciNi − di) +Dp(Pj − Pi), where i, j = 1, 2 i 6= j (2.2)

where Ni = Ni(t) represents the prey population and Pi = Pi(t) represents the predator

population, ai and di is the prey intrinsic growth and natural mortality rate of the predator

respectively, bi and ci represent the predation parameters, DN is the prey migration rate and

DP the predator migration rate. The analysis of model (2.2) was done with the assumption

that DN = 0, because the predator are often more mobile than the prey. This assump-

tion may not be the case because of factors like; insecurity due to predation, intraspecific

competition for resources among others. It also assumed that the predator will migrate im-

mediately after lacking their main food source. The assumption that the predator will move

immediately is not entirely realistic.

Mchich et. al. [10] examined the predator-prey equation in a two patch system, using

the system below

ṅi(τ) = (qj(pj)nj(τ)− qi(pi)ni(τ)) + ε(rini(t)− ainipi(t)),

ṗi(τ) = (kjpj(τ)− kipi(τ)) + ε(−mipi(t) + binipi(t)), where i, j = 1, 2 i 6= j (2.3)

The prey population is represented by ni and the predator population is presented by pi

at time t on the two patches. ri represents the prey intrinsic growth rate in patch i. The
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natural mortality rate of the predator in patch i is represented by the term mi. The terms

qi(pi) and ki represent the prey and the predator migration rates respectively from one patch

to another patch. ε is a small dimensionless parameter, t is the slow time scale for interaction

between the prey and predator while τ is the rapid time for migration of the species from one

patch to another patch i.e. τ = t/ε, ai and bi are predation rates. The model (2.3) assumes

that migration occurs immediately, which is not the case in real life due to factors such as

physical barriers (e.g. infrastructure and human settlement in natural habitat), unfavorable

climatic conditions and security due to predation which may cause delay in migration.

Abdllaoui et. al. [1] considered a general two patch model of the predator-prey system

and assumed that the migration between the two patches is rapid than the predator-prey

interaction. The model below was used in the study:

ṅi(τ) = (fj(pj)nj(τ)− fi(pi)ni(τ)) + ε(φini(t)− φ̄inipi(t))

ṗi(τ) = (kjpj(τ)− kipi(τ)) + (ϕipi(t) + ϕ̄inipi(t)), where i, j = 1, 2 i 6= j (2.4)

where τ is the rapid time scale and t = τε is the slow time scale. The two patches are

represented by i = 1, 2. The prey density is denoted by ni(t) and the predator density is

denoted by pi(t) in patch i. fi(pi) is the migration rates for prey from one patch to another

which assumes that the more the predators are found in a patch the more the prey will

migrate. gi(ni) is the migration rates for predator from one patch to another which assumes

that the predator will stay in the patch where prey population is high. φini and ϕi(ni) are

the prey growth rate and predator death respectively, φ̄i(ni) represents functional responses

and ϕ̄i(ni) represent the predator growth rate. Model (2.4) assumes that both species will

migrate immediately which is not realistic, because of security due to predation, intraspecific

competition and also unfavorable climatic conditions which may cause time delays.

2.3 Predator-prey models involving delay in migration

Wasike et. al. [15] developed a two patch Lotka-Volterra model with a time delay in the

migration between two patches. The following model was studied,

żi(t) = β(zj(t− τ)− zi(t)) + fi(zi(t)), where i, j = 1, 2, i 6= j, (2.5)
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where τ represents a delay in the migration of the two species. The predator-prey density in

the two patches are represented by zi(t) := (ni(t), pi(t))
T , i = 1, 2, β represents the migration

rate. The term fi(zi(t)) represents the prey and predator interaction, i.e.

fi(zi(t)) =

(
rin(i)(t)− aini(t)pi(t)
−sipi(t) + bini(t)pi(t)

)
(2.6)

Equation (2.5) assumes that migration for the prey and predator is constant which is not the

case since the prey and the predator migration depend on a number of factors and therefore

a constant rate is not realistic.

Neubert et. al. [11] considered the model below.

dN(t)

dt
= (R− AP (t))N(t) +DN

[∫ ∞
0

GN(S)eMNSN(t− S)dS −N(t)

]
dP (t)

dt
= (BN(t)−M)P (t) +DP

[∫ ∞
0

GP (S)eMPSP (t− S)dS − P (t)

]
(2.7)

where N represent prey population and P represent predator population in the two patches,

Gd(S) ≥ 0, where d = N,P is the probability density function. The exp(MdS) is the

predator probability of surviving a trip. The parameters A, B, M and R are assumed to be

non- negative values and DN , DP , MN and MP are positive constants. The results obtained

by Neubert. et. al. [11] from this study show that for both the distributed and discrete

delay, the delay has a stabilizing effect. The dispersal tends to synchronize the dynamics in

a heterogeneous environment, while delay decouples immigration rates from local densities

in the patches. The restrictions in this predator-prey model is that only the prey or the

predator has the ability to disperse while the other is confined to its patch. Due to the

interaction of the two species, the migration of one necessarily results in the migration of

the other.

We propose to formulate a delay predator-prey migration model in which the rate of migra-

tion of the prey is dependent on the density of the predators.
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CHAPTER 3

MODEL FORMULATION AND ANALYSIS

3.1 Research Methodology

To achieve the objectives of the study, a mathematical model based on a system of delay

differential equations for the dynamics of a predator-prey system with delay in migration

and predator-density-dependent prey migration was formulated. The stability of the long

term solutions of the model were studied. The parameters and conditions for stability were

investigated analytically. Numerical simulations were performed to verify the analytical

results obtained.

3.2 Model Formulation

Consider the Lotka-Volterra equation in a two patch environment, where these two patches

are coupled via migration, given by,

ṅi(t) = rini − ainipi,

ṗi(t) = binipi − sipi, where i = 1, 2 (3.1)

where i indicates the patch number, ni = ni(t) and pi = pi(t) are the prey and predator

populations at time t, respectively. The intrinsic growth rate of the prey population is

denoted by ri, whereas ai and bi are predation parameters. The constant si is the natural

mortality rate of the predator population.

The net migrated prey and predator density is denoted by mni and mpi, respectively, where

i = 1, 2, are defined as:

mn1 = DN(n2(t− τ)− n1(t))

mn2 = DN(n1(t− τ)− n2(t))

mp1 = DP (p2(t− τ)− p1(t))

mp2 = DP (p1(t− τ)− p2(t)) (3.2)

where DP is the predator migration rate, it is taken to be constant, i.e. DP = β. DN

is the prey migration rate, it is dependent on the predator density and other factors, i.e.
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DN = (αipi+α0). A time delay in the migration of both the prey and predator is represented

by τ .

Introducing the migration equation (3.2) into the interaction equation (3.1), we obtain.

ṅ1(t) = (α2p2 + α0)n2(t− τ)− (α1p1 + α0)n1(t) + r1n1 − a1n1p1,

ṅ2(t) = (α1p1 + α0)n1(t− τ)− (α2p2 + α0)n2(t) + r2n2 − a2n2p2,

ṗ1(t) = β(p2(t− τ)− p1(t)) + b1n1p1 − s1p1,

ṗ2(t) = β(p1(t− τ)− p2(t)) + b2n2p2 − s2p2 (3.3)

Let X(t) = (n1(t), n2(t), p1(t), p2(t)) and f(X(t), X(t− τ)) represent the vector field on

the right hand side of equation (3.3), thus equation (3.3) becomes,

Ẋ(t) = f(X(t), X(t− τ)) (3.4)

Let C = C([−τ, 0],R4) be a Banach space. Let the initial condition be given by

ϕ(t) := X(t) |[−τ,0] (3.5)

where ϕ ∈ C. Since f(X(t), X(t − τ)) ∈ C(R4 × C,R4), equation (3.4) subject to equation

(3.5) has a unique solution, Hale & Lunel [7]

3.2.1 Exponential Boundedness

The linear part of equation (3.3) can be written as,

Ẋ(t) =


−α0 + r 0 0 0

0 −β − s 0 0
0 0 −α0 + r 0
0 0 0 −β − s

X(t) +


0 β 0 0
α0 0 0 0
0 0 0 β
0 0 α0 0

X(t− τ).(3.6)

Equation (3.6) can be represented by two manifolds. In order to study the dynamics of

these manifolds, an application of the Laplace transform methods in complex variables to

equation (3.6) is required. For a Laplace transform, an exponential estimate of the solution

of equation (3.6) should be bounded. The following definition will be used in proving that

the exponential estimate of the solution of equation (3.6) is bounded

Definition 3.2.1 (Gronwall’s Inequality). If ϕ , ψ are real-valued and continuous functions
on [0,c] and ϕ ≥ 0 is integrable on [0,c], and

w(t) ≤ ϕ(t) +

∫ t

0

ψ(s)w(s)ds,
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we have,

w(t) ≤ ϕ(t) +

∫ t

0

ϕ(s)ψ(s)[exp

∫ t

s

(ψ(ξ)dξ)]ds

moreover, if ϕ(t)′ ≥ 0 then

w(t) ≤ ϕ(t)exp(

∫ t

0

ψ(s)ds).

Lemma 3.2.1. The solution of equation (3.3) subject to the initial condition in equation
(3.4)for t ≥ 0, satisfies

|X(t)| ≤ α(τ)ebτ |ϕ| (3.7)

where α(τ) = 1 + γ1τ , b = 2γ1, γ1 =
(
α0 β

)T
and |.| denotes a sup norm in R as well as

a matrix norm.

Proof. The solutions of equation (3.6) subject to initial condition stated in equation (3.5)
satisfy,

X(t) = ϕ(0) +

∫ 0

−τ


0 β 0 0
α0 0 0 0
0 0 0 β
0 0 α0 0

ϕ(s)ds+

∫ t

0

{
0 β 0 0
α0 0 0 0
0 0 0 β
0 0 α0 0

X(s− τ)

−


α0 − r 0 0 0

0 β + s 0 0
0 0 α0 − r 0
0 0 0 β + s

X(s)

}
ds.

(3.8)

Therefore,

| X(t) |≤| ϕ | +γ1 | ϕ | τ + 2γ1

∫ t

0

| X(s) | ds

≤ (1 + γ1τ) | ϕ | +2

∫ t

0

γ1 | X(s) | ds.

Since (1 + γ1τ)ϕ is nondecreasing, by Grownwall’s inequality,

| X(t) |≤ (1 + γ1τ)exp(

∫ t

0

2γ1ds) | ϕ |= (1 + γ1τ)exp(2γ1t) | ϕ | .

Therefore equation (3.3) is exponentially bounded. The characteristic equation will be

obtained so that it can be shown that Laplace Transform of equation (3.3) exists.
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3.2.2 Characteristic equation of the Migration Terms

To obtain solutions of equation (3.3), let

X(t) = eλtc, (3.9)

where c ∈ R4 with c a nonzero 4 by 1 column vector. Substituting equations (3.9) into the

linear part of equation (3.3), the following equation is obtained

λI4e
λtc =


−α0e

λt α0e
λ(t−τ) 0 0

α0e
λ(t−τ) −α0e

λt 0 0
0 0 −βeλt βeλ(t−τ)

0 0 βeλ(t−τ) −βeλt

 c (3.10)

where I4 denotes the identity matrix of order 4. The following characteristic equation from

equation (3.10) is obtained

(α0 + λ)2(β + λ)2 − α2
0β

2e−4λτ = 0 (3.11)

3.3 Invariant Manifold

Taking Laplace transform of the linear part of equation (3.3), we get(
−λI2 − I2γ1 e−λτI2γ1
e−λτI2γ1 −λI2 − I2γ1

)(
X1(λ)
X2(λ)

)
=

(
X1(0)
X2(0)

)
. (3.12)

Equation (3.12) is symmetric in nature. On simplifying it, adding (respectively subtracting)

the set of equations involving X2(0) to (respectively from) X1(0) in equation (3.12), we

obtain

(−I2λ− I2γ1 + I2γ1e
−λτ )(X1(λ) +X2(λ)) = X1(0) +X2(0),

(−I2λ− I2γ1 − I2γ1e−λτ )(X1(λ)−X2(λ)) = X1(0)−X2(0), (3.13)

The matrix (−I2λ− I2γ1 + I2γ1e
−λτ ) is non-singular when λ is such that (−I2λ − γ1 +

γ1e
−λτ ) 6= 0 and (−λ− γ1 − γ1e−λτ )I2 is non-singular when λ is such that (−λ − γ1 −

γ1e
−λτ ) 6= 0, thus the inverse Laplace transform is

(X1(λ) +X2(λ)) = L−1{(−λ− γ1 + γ1e
−λτ )I2)

−1}(X1(0) +X2(0)),

(X1(λ)−X2(λ)) = L−1{(−λ− γ1 − γ1e−λτ )I2)−1}(X1(0)−X2(0)), (3.14)

We have two manifolds; the symmetric manifold where X1(t) = X2(t) and the asymmetric

manifold where X1(t) = −X2(t).
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To simplify the study of equation (3.3), we introduce the change of coordinates,

u1 := 1/2(n1 + n2), u2 := 1/2(n1 − n2),

v1 := 1/2(p1 + p2), v2 := 1/2(p1 − p2), (3.15)

Introducing these coordinates in equation (3.3) and with the assumption that the predator

and prey species are of the same type regardless of the patch, we take r1 = r2 = r, a1 =

a2 = a, b1 = b2 = b, s1 = s2 = s, and α1 = α2 = α then

u̇1(t) = (u1(t− τ)− u1)(α0 + αv1) + α(u2(t− τ)− u2)v2 + ru1 − a(u1v1 + u2v2),

u̇2(t) = −(u2(t− τ) + u2)(α0 + αv1)− α(u1(t− τ) + u1)v2 + ru2 − a(u1v2 + u2v1),

v̇1(t) = β(v1(t− τ)− v1(t))− sv1 + b(u1v1 + u2v2),

v̇2(t) = −β(v2(t− τ) + v2(t))− sv2 + b(u1v2 + u2v1), (3.16)

Reducing equation (3.16) to a two dimensional system, we get

u̇1(t) = −(α0 + αv1)(u1 − u1(t− τ)) + ru1 − au1v1

v̇1(t) = β(v1(t− τ)− v1(t))− sv1 + bu1v1, (3.17)

and

u̇2(t) = −α0(u2(t− τ) + u2) + ru2,

v̇2(t) = −β(v2(t− τ) + v2(t))− sv2, (3.18)

3.4 Asymmetric Manifold

On solving the system in equation (3.17), we let U1 = (u1, v1)
T and U̇1 = (u̇1, v̇1)

T , then the

system in equation (3.17) becomes

U̇1 =

(
αv1 + α0 0
0 β

)
U1(t−τ)+

(
−α0 + r − (α + a)u1

0 − β − s+ bu1

)
U1 (3.19)

Let U1(t) = eλtC1, then we obtain the following characteristic equation from equation (3.19),

(α0e
−λτ − α0 + r − λ)(βe−λτ − β − s− λ) = 0 (3.20)

Using the first factor of equation (3.20), we have

(α0e
−λτ − α0 + r − λ) = 0 (3.21)
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Let

z = (λ+ α0 − r)τ (3.22)

Therefore we have z
τ

= λ+ α0 − r which can be written as λ = z
τ
− α0 + r. Equation (3.22)

can be written as

(α0e
−( z

τ
−α0+r)τ − z

τ
) = 0, (3.23)

α0τe
−ze(α0−r)τ = z, (3.24)

The following lemma, which is found in [5], will be used to simplify equation (3.22)

Lemma 3.4.1. The equation z = be−z has simple pure imaginary roots,
z = i(π/2 + 2mπ), for b = −(π/2 + 2mπ)
z = 0, for b = 0
z = i(π/2 + (2m+ 1)π), for b = (π/2 + (2m+ 1)π)
where m = 0, 1, 2, ... and there are no other purely imaginary roots.

Using Lemma (3.4.1), and b = α0τe
(−r+α0)τ > 0 and therefore z = i(π/2 + (2m+ 1)π for

α0τe
(−r+α0)τ = (π/2 + (2m+ 1)π). Equation (3.22) becomes

λ =
i(π/2 + (2m+ 1)π)

τ
− α0 + r (3.25)

Equation (3.25) has

(i) roots with negative real parts for α0 > r

(ii) roots with positive real parts for α0 < r

(iii) purely imaginary roots for α0 = r.

For the second factor of equation (3.20),

(βe−λτ − β − s− λ) = 0. (3.26)

Let

z = (λ+ β + s)τ (3.27)

Therefore we have z
τ

= λ + β + s which can be written as λ = z
τ
− β − s. Equation (3.38)

can be written as

(βe−(
z
τ
+β+s)τ − z

τ
) = 0, (3.28)
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βτe−ze−(β+s)τ = z, (3.29)

From Lemma (3.4.1), equation (3.27) becomes

λ =
i(π/2 + 2mπ)

τ
− (β + s) (3.30)

All roots of equation (3.30) have negative real parts regardless of β and s. Therefore from

equation (3.20) there is:

(i) a saddle at the origin for α0 < r, that means that, when the prey migration rate is

less than the prey growth rate, then the prey density becomes extinct leading to the

predator population becoming extinct because of lack of food.

(ii) a sink at the origin for α0 > r, that implies that, when the migration rate is greater

than the prey growth rate, then the prey and predator species will not become extinct,

regardless of the mortality of the predator and the predator migration rate.

(iii) a periodic solution for α0 = r, that means that, when the prey migration rate is the

same as the prey growth rate, then a periodic solution occurs. The prey density will

be dependent on the predator density and vice versa; the prey density is governed by

the availability of sustainable resources and the predator density in a given patch while

the predator density is dependent on the availability of their food source.

3.5 Symmetric Manifold

Similarly, on solving the system in equation (3.18), let U2 = (u2, v2)
T and U̇2 = (u̇2, v̇2)

T ,

then the system in equation (3.18) becomes

U̇2 =

(
−α0 0
0 − β

)
U2(t− τ) +

(
−α0 + r 0
0 − β − s

)
U2 (3.31)

Let U2(t) = eλtC2, then the following characteristic equation is obtained from equation

(3.31),

(α0e
−λτ + α0 − r + λ)(βe−λτ + β + s+ λ) = 0 (3.32)

Using the first factor of equation (3.32), we have

(α0e
−λτ + α0 − r + λ) = 0 (3.33)
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Let z = (α0−r+λ)τ . Therefore we have z
τ

= λ+α0−r which can be written as λ = z
τ
−α0+r.

in equation (3.33). Equation (3.33) can be written as

(α0e
−( z

τ
−α0+r)τ +

z

τ
) = 0, (3.34)

−α0τe
−ze(α0−r)τ = z, (3.35)

From Lemma 3.4.1, since b = −α0τe
(−r+α0)τ < 0, then

z = i(π/2 + 2mπ) for α0τe
(−r+α0)τ =

π

2
+ 2mπ. (3.36)

Substituting equation (3.35) in equation (3.33) we obtain,

λ =
i(π/2 + 2mπ)

τ
− (α0 − r). (3.37)

Therefore equation (3.33);

(i) has roots with negative real parts when α0 > r,

(ii) has roots with positive real parts when α0 < r ,

(iii) has a periodic solution when α0 = r.

For the second factor of equation (3.32); that is,

(βe−λτ + s+ β + λ) = 0, (3.38)

Therefore we have z
τ

= λ − β − s which can be written as λ = z
τ

+ β + s. Equation (3.38)

can be written as

(βe−(
z
τ
+β+s)τ − z

τ
) = 0, (3.39)

βτe−ze−(β+s)τ = z, (3.40)

From Lemma 3.4.1, equation (3.38) becomes,

λ =
i(π/2 + 2mπ)

τ
− (β + s) (3.41)

From equation (3.41) all the roots of equation (3.38) have negative real parts, and thus the

system of equation (3.38) is asymptotically stable.

From the results of equation (3.33) and equation (3.38), equation (3.31) has;
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(i) a sink at the origin for α0 > r because equation (3.33) is stable for α0 > r while

equation (3.38) is stable for all β and s,

(ii) a saddle at the origin for α0 < r because equation (3.33) is unstable for α0 < r while

equation (3.38) is stable for all β and s

(iii) a periodic solution for α0 = r because equation (3.33) is a center for α0 = r while

equation (3.38) is stable for all β and s

The results for equation (3.31) show that, when the system has a saddle at the origin,

then the prey population becomes extinct making the predator population to become extinct.

When the system has a sink at the origin, the predator and prey populations coexist. When

the prey migration rate is the same as the prey growth rate then a periodic solution occurs

and therefore the population fluctuates.

3.6 Numerical Simulations

In this section, Matlab software is used to illustrate the numerical simulations describing

the theoretical results for the System of equation 3.3. Variables and parameters values are

described and they are hypothetical. In Section 3.6.1, the simulations for the Asymmetric

Manifold are shown, while in Section 3.6.2 the simulations for the Symmetric Manifold are

shown. In Section 3.6.3, the simulations for the System of equations with delay and Predator-

density-dependent prey migration, the System of equations with delay and constant prey

migration and the System of equations without delay are compared so that the effects of

delay and Predator-density-dependent prey migration affect a predator prey model can be

shown.
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3.6.1 Numerical Simulation for asymmetric manifold

The following parameter values, adapted from Apima [2] and Mchich et. al. [9], are used in

simulating the graphs of equation (3.17).

Table 3.1: Parameter values for the Asymmetric Manifold

Figure r α0 α s β a b ui vi τ
3.1 0.2 0.1 0.2 0.291 0.251 0.2 0.3 12 8 0.1
3.2 0.1 0.62 0.2 0.291 0.251 0.2 0.3 12 8 0.1
3.3 0.1 0.1 0.2 0.291 0.251 0.2 0.3 12 8 0.1

Simulations for the asymmetric manifold gives,
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Figure 3.1: Graph of asymmetric manifold for (α0 < r)

0 5 10 15 20 25 30 35 40 45 50

Time 

0

2

4

6

8

10

12

14

16

18

20

Po
pu

la
tio

ns

u
1
(t)

v
1
(t)

17



Figure 3.2: Graph of asymmetric manifold for (α0 > r)
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Figure 3.3: Graph of asymmetric manifold for (α0 = r)

Figure 3.1 shows when α0 < r, the prey migration rate is less than the prey growth rate, the

predator density will be led into extinction after some time. This is due to the unavailability

of the predator’s source of food. Figure 3.2 shows when α0 > r, the prey migration rate

is greater than the prey growth rate, then the predator and prey species coexist and are

governed by the available sustaining resources. Figure 3.3 shows when α0 = r, the prey

migration rate is equal to the prey growth rate, the predator and prey species will oscillate

though the oscillation occurs after a longer period of time.

3.6.2 Numerical Simulation for symmetric manifold

The following parameter values, adapted from Apima [2] and Mchich et. al. [9], are used in

simulating the results of equation (3.18).

Table 3.2: Parameter values for the Symmetric Manifold

Figure r α0 s β ui vi τ
3.4 0.1 0.15 0.1 0.15 12 8 0.1
3.5 0.5 0.21 0.1 0.1 12 8 0.1
3.6 0.1 0.1 0.46 0.5 12 8 0.1

Simulations for the symmetric manifold gives,
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Figure 3.4: Graph of symmetric manifold for (α0 > r)
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Figure 3.5: Graph of symmetric manifold for (for α0 < r)
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Figure 3.6: Graph of symmetric manifold for (α0 = r)

Figure 3.4 shows that the species population stabilize at 0 for α0 > r, that means that if

the prey migration rate is greater than the prey growth rate, then, either the predator and

prey species will be wiped out or the population in both patches will be equal (because of

the change of coordinates in equation (3.15)). Figure 3.5 shows that for α0 < r, the prey

migration rate is less than the prey growth rate, then the predator population will become

extinct as the prey population increases in patch one. Figure 3.6 shows that the species

population tends zero for α0 = r as time increases, that means that if the prey migration

rate is equal to the prey growth rate, then, either both species will almost be wiped out or

the population in both patches will almost be equal (because of the change of coordinates

in equation (3.15)).

3.6.3 Numerical Simulation for the formulated model

The following parameter values, adapted from Apima [2] and Mchich et. al. [9], are used in

simulating the results of equation (3.3).

Table 3.3: Parameter values for the formulated model

Figure α1 α2 τ α0 r1 r2 a1 a2 β s1 s2 b1 n1 n2 p1 p2
3.7 0.25 0.2 0.1 0.22 0.5 0.7 0.3 0.2 0.42 0.61 0.41 0.51 12 8 14 10
3.8 0 0 0.1 0.22 0.5 0.7 0.3 0.2 0.42 0.61 0.41 0.51 12 8 14 10
3.9 0.25 0.2 0 0.22 0.5 0.7 0.3 0.2 0.42 0.61 0.41 0.51 12 8 14 10

Simulations for the formulated model give,
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Figure 3.7: Graph of model (3.3) with delay
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Figure 3.8: Graph of model (3.3) with constant prey migration, α1 = α2 = 0
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Figure 3.9: Graph of model (3.3) without delay, τ = 0

Figure 3.7, Figure 3.8 and Figure 3.9 show that the prey and predator populations co-exist

in both patches. Figure 3.7 and Figure 3.8 show that the delay has a stabilizing effect on

equation (3.3). In the presence of delay, the species populations in both patches decreases at
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a faster rate compared to the population without a delay. These oscillations tend to stabilize

at some value for the model with delay, meaning that the population will not be fluctuating

at a high rate unlike the model without delay.
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CHAPTER 4

CONCLUSION AND RECOMMENDATION

4.1 Conclusion

A two-patch Lotka-Volterra model which incorporates a delay in the migration for both

species with predator-density-dependent migration for the prey was formulated. The analysis

of both the asymmetric and symmetric manifold showed that there is a sink at the origin

when the prey migration rate is greater than prey growth rate, α0 > r. This means that the

prey and predator species will not become extinct, regardless of the mortality of the predator

and the predator migration rate. There is a saddle at the origin for α0 < r. This means that

the prey and predator species will become extinct with time. There is a periodic solution

for α0 = r which shows that the population fluctuates. The prey density will be dependent

on the predator density and vice versa; the prey density is governed by the availability of

sustainable resources and the predator density in a given patch while the predator density

is dependent on the availability of their food source.

Numerical analysis of the asymmetric manifold shows that when the prey migration

rate is less than the prey growth rate, as shown in Figure 3.1, the predator population

becomes extinct after some time while the prey population begins growing after the predator

population has been wiped out. Figure 3.2 shows when the prey migration rate is greater

than the prey growth rate, then the predator and prey species coexist. Figure 3.3 shows

when the prey migration rate is equal to the prey growth rate, the predator and prey species

will oscillate though the oscillation occurs after a longer period of time.

Numerical analysis of the symmetric manifold (Figure 3.4, Figure 3.5 and Figure 3.6)

shows that if the prey migration rate is greater than the prey growth rate, then, either both

species will be wiped out or the population in both patches will be equal (because of the

change of coordinates in equation (3.15)). If the prey migration rate is less than the prey

growth rate, then the predator population will become extinct or becomes the same in both

patches as the prey population increases, and if the prey migration rate is equal to the prey

growth rate, then, either the predator and prey species will be wiped out or the population
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in both patches will almost be equal.

4.2 Recommendations

The results obtained show that delay in migration greatly affects the density of any species

and thus the the government and relevant agencies like the Kenya Wildlife Service should em-

ploy measures which will deal with factors which cause barriers during migration for example

reducing natural habitat land allocation to human settlement, agriculture or infrastructure.

The model developed herein considers a constant migration rate for the predator, however

the predator migration rate may be dependent on the prey density, and migration rates may

not be the same since every species in patch i, i = 1, 2, 3 . . . has different dynamics. One

can also examine a logistic growth predator-prey model which incorporates a delay in the

migration of the system with predator-density-dependent migration for the prey. One can

further add another delay to account for the fact that a predator must attain a certain age

to able to hunt.
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