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ABSTRACT
The method of Generalized Estimating Equations (GEE) is often used in analyzing

correlated longitudinal data and does provide consistent estimates which are robust to
misspecification of the working correlation structure. However, the estimates suffer loss
of efficiency if the correlation structure is not close to the true one hence the models
selected may not be generalizable, good-fit and parsimonious. The Quasi-likelihood
information criterion (QIC) which results from utilizing Kullback’s I-divergence as the
targeted discrepancy is widely used in the GEE framework to select the best correlation
structure and the best subset of predictors. However, it has been established to have
success rates of less than 50% hence higher chances of selecting a misspecified structure.
Use of a mis-specified structure results in efficiency loss in the GEE estimator of up to
40% compared to when the correct correlation structure is used. Also, the independence
structure favored by QIC, results in efficiency loss of up to 60% in the GEE estimates.
Through numerical simulations, the study sought to investigate the properties of QIC
in selecting the true working correlation structure and set of covariates for the mean
structure in GEEs, develop a hybrid methodology based on empirical likelihood Akaike
Information Criteria (EAIC) and QIC for model selection in the GEE framework and
apply the proposed hybrid methodology to the Shareholder Value Creation data. With
regard to consistency in selecting the true correlation structure, we established having a
selection set of only parsimonious structures and penalizing for the number of correlation
and regression parameters estimate to be sufficient conditions for QIC to select the true
structure with a probability approaching one as n→∞. In relation to the selection of
covariates, we established that QIC had high sensitivity but low sparsity. The type I
error rate converged to 0.3 as n→∞ while the type II error rates quickly diminished to
zero as n→∞. The low under-fitting probabilities meant high statistical power hence
rejecting any given false null hypothesis is essentially guaranteed for sufficiently large
n even if the effect size is small. We further established that the hybrid methodology
(EQAIC) resulted in models with lower MSE compared to models selected by QIC only.
When applied to shareholder value creation data, we established an AR-1 correlation
structure for the data with ρ = 0.775 and the key drivers to shareholder value creation
ranked based on their relative importance were the growth rate of earnings, economic
spread, firm size, leverage, dividend policy and level of financial distress. This justified
the tendency of QIC to over-fit models since a more complex model compared to the
Gordon Constant Growth model was preferred. However, the use of an AR-1 correlation
structure selected by EAIC resulted to a model with lower MSE than the model selected
by using QIC only. Based on the study findings we conclude that correctly specifying a
working correlation structure improves efficiency of GEE estimates.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

1.1.1 Introduction to Longitudinal Data Modeling

Longitudinal data comprise measurements taken repeatedly over time from the same

cases. This as observed by Avital et al. [4] imply that each subject is measured re-

peatedly either under different conditions or at different times or both with the main

interest of characterizing the way the outcome changes over time, and the predictors of

that change. For instance, if we consider a longitudinal study with independent subjects

for which m measurements are taken for each subject, then the tth measurement collects

the response yit and a set of covariates Xit = [X1it......Xpit]. If we let ∑n
i=1mi = N be

the total number of observations, then a typical longitudinal dataset will be illustrated

as in Table 1.1:

Table 1.1: Structure of a Typical Longitudinal Dataset
Subject Observation Response Explanatory Variables

1 1 y11 X111 . . Xp11

1 2 y12 X112 . . Xp12

. . . . . . .

1 m y1m X11m . . Xp1m

. . . . . . .

. . . . . . .

n 1 yn1 X1n1 . . Xpn1

n 2 yn2 X1n2 . . Xpn2

. . . . . . .

n m ynm X1nm . . Xpnm

Presence of repeated measures imply intrinsic correlation for observations from the
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same subject and ignoring the correlation while analyzing such data can lead to mis-

leading, inefficient or invalid inference (Diggle et.al. [18]). The dependence might be

short term in which case correlation becomes weak after a certain time-lag or long term

if it lasts being strong for most of the time-lags.

Compared to time series and cross-sectional data, Ilk [40] asserts that Longitudinal

data allows for the measurement of change hence makes inferences drawn from such data

consistent with future studies. This implies that methodologies have to be developed to

characterize the way the outcome change over time and the predictors of that change.

For example in clinical trials that aim to investigate the efficacy of a new drug in treating

a disease, it is often of interest to examine the pharmacokinetic behaviour of the drug

when it is applied to experimental subjects. Most drugs do not have constant efficacy

over time and such time-varying treatment effectiveness can only be examined through

a longitudinal study. Avital et al. [4] affirmed that longitudinal data contain short series

hence does not need the stationarity assumption and does not need to be collected at

equispaced time points.

Diggle et al. [18] observed that analyzing of longitudinal data based individual time

series trajectories helps in separating the cohort and age effects hence can characterize

change over time within individuals (age effect) from differences among the subjects in

reference to their baseline status (cohort effect). Further, collecting repeated measures

from a single subject may help reduce the burden of recruiting a sizable number of

subjects for a cross-sectional study. For example in studies of rare diseases, the number

of patients available is insufficient for simple randomized trials.

Cho [13] observed that the most important feature of longitudinal data is that they

are highly correlated hence makes it difficult to specify the full likelihood function

when responses are non-normal. This makes the estimation of covariance structure that

defines the within subject correlation the core issue in the analysis of longitudinal data

since it will improve estimation efficiency hence better predictive ability of a model.

For longitudinal data with a non-normal response, Liang and Zeger [49] proposed a

class of Generalized Estimating Equations (GEE) to model both univariate longitudinal
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continuous and discrete outcomes by extending the quasi-likelihood method of Wedder-

burn [80] to correlated data. The quasi-likelihood is a methodology for regression that

requires the specification of relationships between mean response and covariates and be-

tween mean response and variance. Thus it does not assume a probability distribution

as in the case of a full likelihood.

According to Fitzmaurice et al. [25], GEE is a population-level approach that models

the mean response across the population of subjects at each time point as a function

of covariates hence provides the population-averaged estimates of the parameters. It

only requires the specification of the first two moments of the response variable and a

tentative ”working” structure for the covariance among repeated responses. However,

it creates difficulty in model selection since many traditional model selection criteria,

such as AIC and BIC, need to be redefined because of the within-subject correlation of

the observations and lack of an explicit likelihood function.

The within-subject correlation is accounted for by defining a working correlation

structure (R(ρ)) , where ρ is a vector of parameters that characterize the structure.

Useful working correlation matrices include independence i.e Corr(yij, yik) = 0,∀j 6= k;

exchangeable i.e. Corr(yij, yik) = ρ, ∀j 6= k; Toeplitz i.e. Corr(yij, yi,j+t) = ρt, forj =

1, 2...ni − t; unstructured correlation matrix i.e. Corr(yij, yik) = ρjk,∀j > k and the

first-order AR-1 working correlation structure in which Corr(yij, yik) = ρ|j−k|, ∀ j > k.

Liang and Zeger [49] assert that GEE yields asymptotically consistent β̂ even when R(ρ)

is misspecified. However, if it is correctly specified, the efficiency of the estimates will

be greater(Fitzmaurice et al. [25], Wang and Carey [79], Sutradhar and Das [74]).

1.1.2 Model selection Framework and Principles

Suppose that the true and candidate models are respectively of the form

Y = X0β0 + ε0, ε0 ∼ N(0, σ2
0) (1.1)

Y = X β + ε, ε ∼ N(0, σ2) (1.2)

where Yi=[Yi1, .....Yimi ]T , i=1,2....n. Yi are assumed to be independent, but observations

within the subject are not assumed to be independent. Further, we will assume that
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Yit is a binary outcome for subject i at time t. X0it=[X0it1 , .....X0itp ]T is n × p0 vector

of covariates of rank p0 which can be collected into a mi × p0 matrix of covariates

[XT
0i1, .....X

T

0im]T while Xit=[Xit1 , .....Xitp ]T is n× p vector of covariates of rank p which

can be collected into a mi × p matrix of covariates [XT
i1, .....X

T

im]T . β0=[β01 .....β0p ]T

and β=[β0, β1.....βp]T are p0 × 1 and p × 1 parameter vectors of respective regression

coefficients; ε0 and ε are noise vectors.

Let θ0=(βT0 ,σ2
0) and θk=(βT ,σ2) define the parameter space for θ0 and θk respectively

such that their MLE are denoted by θ̂0=(β̂T0 ,σ̂2
0) and θ̂k=(β̂T ,σ̂2) respectively. The

subsequent empirical likelihoods for the true, candidate and fitted models are f0(y|θ0),

f(y|θk) and f(y|θ̂k) respectively. Further if we let z(k) = {f(y|θ̂k)|θk ∈ Θk} be the

family of k-dimensional densities corresponding to candidate models (1.2), then model

selection seeks to search among a collection of classes z = [z(K1)...z(KL)] for the fitted

model f(y|θ̂k), k ∈ {1...KL} which serves as the best approximation of f0(y|θ0) i.e. the

fitted candidate model nearest to the true model. With p predictors in the equation

(1.2), the total number of candidate models is 2p and as p increases, identifying the

optimal fitted model within the large model space can be computationally burdensome.

Akaike [2], observed that the model selected should be generalizable, a good-fit and

parsimonious. A generalizable model is one that predicts future observations with a

high degree of confidence and as observed by Konishi and Kitagawa [46], such a model

should not differ from one supposed to depict the structure of the true model. Burham

and Anderson [7] also suggested that striving for generalizability should be the key

model selection objective.

The goodness-of-fit principle requires that the fitted candidate model conforms to

the data used to construct it thus giving a measure of divergence between observed

outcomes employed to construct the model and expected values under the fitted model.

According to Koniski and Kitagwa [46], a model can fit the data very well because it is

excessively complicated hence the need to consider a parsimonious model. Therefore,

model selection requires that a balance between goodness-of-fit and parsimony be de-

termined so that a model that captures the most informative features of the generating
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model be preferred.

Under-fitting and over-fitting are also pertinent concepts in determining the quality

of the fitted model. Burham and Anderson [7] assert that under-fit models will fail

to include all the important variables leading to biased estimates and poor predictive

performance. Further, such models will provide an incomplete representation of the

generating model. On the other hand, over-fit models will incorporate all the important

variables plus some spurious ones leading to models with high variability hence less

precision of the parameter estimates. Such models are unnecessarily complex, difficult

to interpret and subject to excessive sampling error. However, Burnham and Anderson

[7], observes that modest over-fitting is less damaging than under-fitting since it is less

detrimental to include a non-informative variable in a correctly specified model(over-

fitting) compared to the failure to include an informative variable (under-fitting).

1.1.3 Model Selection in the GEE Framework

In the GEE framework, model selection focuses more on selecting the working correla-

tion structure R(ρ) and suitable covariates for the mean structure. Even though GEE

approach yields consistent estimators of the model parameters even if the correlation

structure R(ρ) is misspecified with large n, its misspecification yields inconsistent esti-

mates of the correlation parameters (ρ̂) which in turn compromises the consistency of β̂,

leads to inflated variance estimate and eventual loss in efficiency. Therefore, as asserted

by Kaurmann and Carroll [45], the asymptotic relative efficiency depends on the correct

specification of R(ρ). This is emphasized by Fitzmaurice et al. [25] who asserted that

the robustness property of the sandwich variance estimator to misspecification of R(ρ)

cannot be assumed to hold in all situations. For instance, they established that when

the number of subjects (n) is small and the number of repeated measures (m) for each

subject is large, sandwich variance estimator is not appropriate.

Wang and Carey [79] affirmed that the asymptotic relative efficiency of the GEE pa-

rameter estimates is likely to be low when the working correlation structure is misspec-

ified. These assertions were corroborated by Sutradhar and Das [74] who also pointed
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out that, the mis-specification of a correlation structure lowers the relative efficiency

of the estimate even when the sample size is finite since the Cramer-Rao lower bound

variance estimate will not be achieved with an inconsistent estimate of ρ. Fitzmaurice

et al. [25] recommended for efforts to be made for correct modeling of the within-subject

correlation to be assured of both the consistency and efficiency of the GEE estimates.

1.1.4 Examples

We use datasets to show why using correct correlation structure in GEE analysis is

important in variable selection.

Example 1.1.1. To verify the robustness of the GEE to mis-specification of the work-

ing correlation structure, an example dataset (Ohio dataset ) from the geepack library

was analyzed using different correlation structures. The data analyzed the health effect

of air pollution on children who were followed for four years. The wheeze status, age

and smoking status of mothers were recorded for 537 individuals resulting to 2148 ob-

servations. The Regression coefficients and standard errors estimated by GEE analysis

with different correlation structures are presented in Table 1.2.

Table 1.2: Regression coefficients, standard errors and p-values
CORRELATION STRUCTURE

Exchangeable Unstructured Independence AR-1

Intercept -1.88(0.11)(0.00) -1.89(0.11)(0.00) -1.88(0.14)(0.00) -1.90(0.12)(0.00)

Age -0.11(0.04)(0.01) -0.12(0.04)(0.01) -0.11(0.04)(0.01) -0.11(0.05)(0.01)

Smoke 0.27(0.17)(0.15) 0.25(0.17)(0.16) 0.27(0.17)(0.13) 0.23(0.18)(0.20)

From Table 1.2, it can be seen that, although the conclusions based on p-values

are the same, there are some differences in the magnitude of the regression coefficients.

This is important, because it is far more interesting to estimate the magnitude of the

association by means of the regression coefficients and the 95% confidence intervals

than just estimating p-values. Further, it is observed that the estimated standard

errors of the different parameters are not very similar for various correlation structures.

The assumption of AR-1 correlation within the responses inflated the standard errors
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than the other correlation structures hence could be inferred to be far from the correct

structure.

Example 1.1.2. In the finance field, a dataset for a study by Odongo et al. [57] that

examined the relationship between Shareholder value creation and the predictors: firm

size, leverage, liquidity and board size is analyzed using different correlation structures.

The shareholder value creation which is ratio between the market value (MV) of shares

and their book value (BV) was measured as a dichotomous variable in which Shareholder

value creation was 1 if MV
BV

> 1 and 0 if MV
BV
≤ 1. The data were recorded for 6

agricultural firms listed in the NSE for a period of 6 years (2011-2016). The Regression

coefficients and standard errors estimated by GEE analysis with different correlation

structures are presented in Table 1.3.

Table 1.3: GEE Regression Coefficients, SE and p-values for Shareholder Value Creation

Data
CORRELATION STRUCTURE

Exchangeable Unstructured Independence AR-1

Intercept -35.4(8.40)(.000) -1.5e+16(7.8e+15)(.082) -40.7(11.45)(.000) -38.2(11.4)(.000)

Firmsize 1.99(0.43)(.000) 9.4e+14(4.4e+14)(.047) 2.37(0.66(.000)) 2.26(0.68)(.000)

Liquidity 2.01(0.58)(.022) 3.8e+14(3.7e+13)(.000) 1.24(0.52)(.043) 1.05(0.47)(.030)

Leverage 69.2(42.01)(.079) 9e+16)(2e+15)(.000) 55.4(32.7)(.062) 63.1(34.5)(.051)

Boardsize -1.73(0.31)(.000) -9.3e+14(2.8e+14)(.000) -1.86(0.58)(.007) -1.86(0.61)(.003)

From Table 1.3 it can be seen that, the conclusions based on p-values are not the

same under the different correlation structures. For example at α = 0.01, liquidity

is not significant under the exchangeable, independence and AR-1 structures but is

significant when the unstructured correlation structure is assumed. Also, leverage is

significant only under the unstructured correlation. Further, there are differences in

the magnitude of the regression coefficients and the standard errors. Assuming the

unstructured correlation matrix greatly inflates the standard errors of the predictor

variables hence the GEE estimators are the least efficient. For instance, the efficiency

of β̂UN relative to β̂I , β̂EX and β̂AR−1 is lower. Moreover, these GEE estimates (β̂UN)
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deviate greatly from the estimates under the other correlation structures.

The results from Tables 1.2 and 1.3 above show that it is important to choose a

suitable correlation structure before a GEE analysis is performed which as observed by

Sakate and Kashi [67], will result to substantial improvement in efficiency of the GEE

estimator (β̂G). Different criteria have been developed under different assumptions and

for different statistical frameworks and data types.

Akaike information criterion (AIC) by Akaike [3] whose derivation utilized the Kull-

back’s I-Divergence (I(θ0, θk)) that measure the separation between the true model and

a fitted model is widely used in most modeling frameworks for model selection. It’s jus-

tification relies upon the conventional large-sample properties of maximum likelihood

estimators. It is a measurement tool of the goodness of fit of an estimated statistical

model based on information theory. The chosen model is the one that minimizes the

Kullback-I divergence between the model and the truth, and the criterion is used to

describe the trade-off between bias and variance in model construction. However, since

GEE is not likelihood based, the use of AIC for model selection in the GEE framework

is not possible.

Pan [60] by replacing the log-likelihood in AIC by the log-quasi-likelihood and re

defining the penalty term, proposed the Quasi-likelihood Information Criterion (QIC)

for model selection in GEE and recommended for its routine use to select the correct

set of covariates for the mean structure and a working correlation structure. However,

he observed that QIC was not very powerful in choosing a working correlation structure

due to the fact that Q(β, I) does not contain any information about the within-subject

correlation. Similar views were held by Hin and Wang [34] who asserted that QIC was

heaviliy impacted by its first term hence was not a good criteria to use in selecting a

working correlation structure. Moreover, QIC’s selection rates have been established to

be less than 50% in most simulation studies. For example Barnett et al. [5] noted that

its overall success rate was 29.4% and was biased towards selecting the unstructured

correlation structure which estimates the highest number of nuisance parameters while

Hyun-Joo et al. [39] established success rates of less than 25% for AR-1 and less than
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45% for unstructured matrix.

The low performance of QIC has led to the conclusion that it is not powerful in

choosing the correct correlation structure and as asserted by Fitzmaurice [26], the re-

sulting estimator from a mis-specified correlation structure may be 40% less efficient

compared to the estimator obtained by using the correct correlation structure.

Shinpei [71] attributed the low performance of QIC in selecting the working correla-

tion structure to the non-consideration of the correlation parameter by Pan [60] in his

derivation of QIC in which he only considered the bias that arise when estimating β.

Further, Hin et al. [35] showed that the resultant criteria based on the bias correction

term of QIC only such as the correlation information criterion (CIC) performed better

than QIC in choosing the true correlation matrix. Since an inappropriate correlation

structure may significantly impair the efficiency of β̂, it is important to select the work-

ing correlation structure most appropriate for the data at hand with the ultimate aim

of improving efficiency of estimates.

Jang [42] affirmed that no single model selection criteria exists that can with high

success rates select the true correlation matrix, correct set of covariates and variance

function in GEE modeling hence recommended that future studies should focus on

combining proposed model selection criteria so as to develop model selection strategies

that could improve optimality of the GEE models. Based on his recommendation,

Erfanul et al. [22] applied a combination of CIC and QIC in selecting selecting the

correlation structure and relevant covariates respectively in their study that sought to

establish the impact of height on the occurrence of type II diabetes. However, they

did not establish whether employing the combined methodology improved efficiency of

estimates and this formed the basis for the hybrid methodology proposed in the study.

1.1.5 Properties of QIC in GEE model Selection

Fan and Li [23] observed that a good model selection criteria should be asymptotically

consistent i.e. provided the correct model is included in the set of candidate models,

it should identify that correct model asymptotically with probability one. Dziak [19]
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observed that, for consistent model selection, two properties are required: sensitivity

and sparsity. Sensitivity implies that the model selection criteria should retain all of the

coefficients which should be retained with a probability approaching one while sparsity

implies that the model selection criteria should delete all of the coefficients which should

be deleted, with probability approaching one. Hirokazu et, al. [36] in their study which

sought to establish whether as the sample size approaches infinity, AIC selects the true

model with a probability approaching one established that AIC whose extension to the

GEE framework resulted to QIC is not consistent in model selection.

In the GEE framework, consistency can be established for the selection of the true

working correlation structure and selection of variables. Pan [60] developed QIC but

did not establish its consistency properties in selecting the working correlation structure

and variables. He however, noted that QIC was not good in selecting the correlation

structure but was good in selecting the variables. Shinpei [71] examined the properties

of QIC in GEE and established that the bias of QIC increased with an increase in the

number of parameters. Other scholars like Carey and Wang [9], Hardin and Hilbe [32],

Hin et al. [35], and Jang [42] focused primarily on establishing the success rates of QIC

in selecting the correct working correlation structure compared to other selection criteria

such as RJ, CIC e.t.c. Establishing theoretically or verifying numerically the consistency

property or conditions for consistency of QIC has received little attention despite the

importance of GEE in modeling longitudinal data. Moreover, little or no studies have

established the sensitivity and sparsity of QIC in selecting the true generating model

and this study sought to fill the void.

In formulating the consistency framework for QIC, indicators such as the within-

subject correlation, number of measurements per subject and sample size need to be

taken into account. Breslow [6] noted that increasing the within subject correlation and

number of measurements will eliminate the bias in the variance component hence will

have an effect on the performance of a model selection tool. However, the simulation

study by Pan [60] never examined how variations in the number of measurements per

subject affected the performance of QIC. In any case, he considered the independence
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structure which assumes no within-subject correlation. The within subject correlations

can vary from slightly correlated to heavily correlated and as observed by Shinpei [71],

incorporating the correlation parameter into the derivation of QIC will improve its

performance. In our simulations, we sought to establish the effect of increasing the

number of measurements per subject and level of correlations on the consistency of

QIC.

1.2 Statement of Problem

Model selection whose main objective is to choose the most generalizable model that

balances the increase in fit against the increment in model complexity plays an impor-

tant role in statistical literature. To facilitate the selection process, a variety of model

selection criteria have been developed and are employed for the selection of the most

appropriate models. Despite AIC being the most popular model selection criteria, it

cannot be applied directly for model selection in the GEE framework since GEEs are not

likelihood based. By adopting the quasi-likelihood approach, QIC was proposed for the

selection of both the working correlation matrix and covariates. However, simulation

studies have shown that it is much impressive in variable selection than in the selection

of the true correlation matrix as its success rates in the latter have been established to

be far less than 50% hence a high likelihood of selecting a mis-specified structure which

results up to 40% loss of efficiency in GEE estimators compared to when the correct

structure is used. Also, the independence structure favored by QIC results in efficiency

loss of up to 60% in the GEE estimates

Most previous studies have primarily focused on establishing the success rates of

QIC in selecting the correct working correlation structure compared to other selection

criteria. Establishing theoretically or verifying numerically the consistency of QIC has

received little attention despite the importance of GEE in modeling longitudinal data.

Moreover, little or no studies have established the sensitivity and sparsity of QIC in

selecting the true generating model hence the understanding of the bias-variance trade-

off for QIC remains scanty. Further, efforts to improve performance of QIC in selecting
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the true structure has resulted to numerous modifications of QIC such as CIC, mQIC

and fQIC with little focus on how to use them to improve efficiency.

This study therefore sought to investigate the properties of QIC in selecting the true

working correlation structure and covariates for the mean structure in GEE with focus

on its consistency in selecting the true working correlation structure and correct generat-

ing model and its over-fitting and under-fitting probabilities. Further the study sought

to develop a hybrid model selection procedure that deploys empirical likelihood and

quasi-likelihood information criteria with the aim of improving prediction performance

of models selected by QIC. We sought to demonstrate that extending of empirical likeli-

hood method to GEE enhances the chances of selecting the correct correlation structure

and eventual increase in efficiency of the GEE estimates.

1.3 Objectives of the Study

1.3.1 General Objective

The main objective of the study was to investigate model selection criteria in the GEE

framework based on Kullback’s I-divergence.

1.3.2 Specific Objectives

The specific objectives of the study were to:

(i) Investigate the properties of QIC in selecting the true working correlation structure

in generalized estimating equations.

(ii) Investigate the Properties of QIC in selecting Covariates for the mean structure

in generalized estimating equations.

(iii) Develop a hybrid methodology based on empirical likelihood Akaike Information

Criteria (EAIC) and QIC for selecting models in the GEE framework

(iv) Apply the proposed hybrid methodology to select the firm specific covariates that

influence the shareholder Value creation for public listed firms in the Nairobi

Securities Exchange

12



1.4 Significance of the Study

Selecting an appropriate set of important variables helps reduce the variances of pa-

rameter estimates and by eliminating some noise variables, precision of the estimates

are greatly improved. In the GEE framework, selection of the the correct correlation

structure for the response variable increases the relative efficiency of the estimate even

when the sample size is finite.

To statisticians, this thesis sought to provide an understanding of the bias-variance

trade-off for QIC. This will enable modelers to determine the right contexts for using

QIC and determining appropriate strategies for enhancing its performance. In academia,

the study contributes to the ever growing knowledge in the area of variable selection in

the GEE framework.

In finance literature, much of the modeling has often applied ordinary least square

regression to establish relationships. Using GEE which accounts for the within-firm

correlation to model the drivers of shareholder value creation will be helpful to the

existing shareholders and the prospective ones in making valuable investment decisions

based of the soundness of the firms

1.5 Justification of the Study

The study is justified as it provides detailed insights on the consistency, sensitivity

and sparsity of QIC in model selection in the GEE framework which goes beyond the

comparison of its performance with other criteria provided in most literature. Also,

the study proposes a modification to Pan [60]’s QIC to incorporate the number (p) of

regression parameters and the number (q) of correlation parameters as cost components

into the penalty term so as to enhance its chances of selecting a parsimonious correlation

structure. Further, the study proposes an hybrid methodology involving EAIC and QIC

to improve efficiency of models selected using QIC. These would stimulate further studies

in this area of statistics.
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1.6 Mathematical Concepts

1.6.1 Basic Generalized Linear Model (GLM) Concepts

GLMs were developed as an extension to linear models, to allow for more complex

relationships between the response and explanatory variables, e.g. binary or count

data. They have three main components:

(i) A random component, specifying the conditional distribution of the response vari-

able, yi given the explanatory variables i.e. a family, or distribution e.g. the

exponential family.

(ii) A linear function of the regressors, called the mean structure defined as;

ηi = β0 + βiXi1 + ...+ βkXik

= XT
i β (1.3)

on which the expected value µi of yi depends.

(iii) An invertible link function g(·) that is strictly monotonic and differentiable such

that:

g(µi) = ηi, E(Yi) = µi, V ar(Yi) = φv(µi) and µi = g−1(ηi) (1.4)

Examples of link functions include identity link for Normal distribution, logit or

probit link for Binomial, log link for Poisson distribution e.t.c.

Exponential Family

Let Yi(i = 1, ..., n) be outcomes for n subjects. If Yi comes from the exponential family

of distributions, then according to Wedderburn and Nelder [52], its probability density

function, or probability mass function takes the form:

fY (y|θ, φ) = exp{yθ − b(θ)
a(φ) + c(y, φ)}, −∞ < y <∞ (1.5)

The function (1.5) is called the exponential dispersion family where θ is the natural

or canonical parameter of the distribution, φ is the scale or dispersion parameter and
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a, b and c are known functions. This depends on the unknown parameters µi and φ.

From equation (1.5) we have the following expression

fY (y|θ, φ) = exp[ yθ
a(φ) ]× exp[−b(θ)

a(φ) ]× exp[c(y, φ)] (1.6)

If we let d(θ) = θ
a(φ) , a(θ) = exp[−b(θ)

a(φ) ] and b(y) = exp[c(y, φ)], equation (1.6) simplifies

to a form called the natural exponential family which is sufficient for basic discrete data

models given as:

fY (y|θ) = a(θ)b(y)exp[yd(θ)], −∞ < y <∞ (1.7)

For equation (1.5), the log-likelihood is:

`(θ) = {yθ − b(θ)
a(φ) + c(y, φ)} (1.8)

such that
d`(θ)
dθ

= {y − b
′(θ)

a(φ) } (1.9)

Evaluating the expected value of equation (1.9) we have.

E(d`(θ)
dθ

) = {E(y)− b′(θ)
a(φ) } (1.10)

Since E(d`(θ)
dθ

) = 0, equation (1.10) can be simplified to:

E(Y ) = µ = b
′(θ) (1.11)

Therefore, the mean of any exponential family random variable, is the first derivative

of the cumulant function [b(θ)] whose form depends on a particular distribution and θ

is a function of the mean µ ( Wedderburn and Nelder [52]).

Taking the second derivative of equation (1.8) we have;

d2`(θ)
dθ2 = {−b

′′(θ)
a(φ) } (1.12)

and since E{d
2`(θ)
dθ2 } = −E{d`(θ)

dθ
}2, it follows that;

b
′′(θ)
a(φ) = E{[Y − b′(θ)]2}

a(φ)2 (1.13)
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When re-organized equation (1.13) yields the relation

a(φ)b′′(θ) = E{[Y − b′(θ)]2} (1.14)

This leads to the second useful general result:

V ar(Y ) = b
′′(θ)a(φ) (1.15)

a(·) could be any function of φ.

When φ is unknown, there is need to write a(φ) = φ
κ
, such that equation (1.16)

becomes;

V ar(Y ) = b
′′(θ)a(φ)

κ
(1.16)

Where κ is a known constant that is 1 in most cases.

Since µ and θ are linked via equation (1.11), we can define a variance function of Y

in terms of µ as

V ar(Y ) = φV (µ) (1.17)

Distributions such as the Bernoulli, Binomial, Multinomial, Poisson, Negative Bino-

mial, Normal, Geometric, Gamma and Inverse Gaussian are members of the exponential.

φ is fixed at 1 for the Poisson and binomial distributions.

If the term c(y, φ) in the log-likelihood is available explicitly, the full likelihood can

be used to estimate β and φ jointly. But often c(y, φ) is not available hence estimation

of φ needs a special consideration. One can simply estimate φ using the Chi-Square

statistic divided by the appropriate degrees of freedom. The Chi-Square statistic is

asymptotically unbiased if the model is correctly specified.

Example 1.6.1. Bernoulli Model

For dichotomous outcomes we assume that yi ∼ Bernoulli(πi) for i=1,2....n with

E(yi) = πi. yi is a realization of a random variable Yi that can take the values one

and zero with probabilities πi and 1− πi respectively. The probability mass function of

Yi is written in compact form as:

fY (y, πi) = πy(1− π)1−y | y ∈ (0, 1) (1.18)
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which can also be written as:

fY (y, πi) = exp{ylog( π

1− π ) + log(1− π)} (1.19)

Set θ = log( π
1−π ) i.e.π = eθ

1+eθ ; 1− π = 1
1+eθ and φ=1;

Therefore; b(θ) = log(1 + eθ) hence;

b′(θ) = eθ

1 + eθ
= π = µ (1.20)

and

b′′(θ) = eθ

(1 + eθ)2 = π(1− π) (1.21)

This implies that V (µ) = µ(1 − µ). The mean and variance depend on the underlying

probability πi. Any factor that affects the probability will alter not just the mean but

also the variance of the observations. This suggest that a linear model that allows the

predictors to affect the mean but assumes that the variance is constant will not be

adequate for the analysis of binary data.

Using the logit link function g(π) = log( π
1−π ), the generalized linear model becomes

logit(π) = log( π

1− π ) = XT
i β (1.22)

which is a logistic regression model that specifies a linear structure for the log odds or

logit.

Example 1.6.2. Binomial Model

Let Y ∼ Bin(m,π) be a binomial random variable with m>0, fixed integer with density;

fY (y, π) =

 m

y

 πy(1− π)m−y | y ∈ {0, 1, ..,m}, 0 ≤ π ≤ 1 (1.23)

Which can equally be written as:

fY (y, π) = exp{ylog( π

1− π ) +mlog(1− π) + log

 m

y

} (1.24)

In this form E(Y ) = mπ and V ar(Y ) = mπ(1−π) indicating that E(Y) depends on m.
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Consider a data transformation from y 7→ y
m

so that my ∼ Binomial(m,π), y=0,
1
m

...,1 such that

fY (y, π) =

 m

my

 πmy(1− π)m−my

= exp{mylog( π

1− π ) +mlog(1− π) + log

 m

my

}

= {
ylog( π

1−π )− log(1− π)−1

1
m

+ log

 m

my

}y∈{0, 1
m
,...,m

m
} (1.25)

If we set θ = log( π
1−π ) ; b(θ) = log(1−π)−1) = log(1 + eθ) and φ = 1

m
, then we have:

E(Y ) = b′(θ) = eθ

1 + eθ
= π = µ (1.26)

and

V ar(Y ) = b′′(θ)a(φ)

= eθ

m(1 + eθ)2

= π(1− π)
m

= µ(1− µ)
m

= φV (µ) (1.27)

Note that when a(φ) = φ
m

, then V ar(y) = φµ(1−µ)
m

. When φ > 1 we have the case of

over dispersion.

If the objective is to explain a sample Y with effects represented by a linear combi-

nation of explanatory variables, then the GLM of choice will be the logistic regression

whose canonical link is the logit link given as:

logit(πi) = log( πi
1− πi

) =
p∑
j=1

Xijβj (1.28)

Where βj are the parameters to be estimated.

Remark 1.6.3. If V ar(Y i) = φV (µi), then, V ar(Y i) exceeds the variance under the

fitted model hence over-dispersion arises. This however does not arise for exponen-

tial dispersion family members such as the normal and inverse Gaussian distributions

where this parameter is simply the variance( σ2). Ignoring over-dispersion results to

the underestimation of standard errors of β̂ leading to incorrect inferences.
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According to Molenberghs and Verbeke [53], inclusion of beta random−effects can

be used to account for over-dispersion in clustered binary and binomial data. This

results to the beta−binomial model in which the Bernoulli model is mixed with a beta

distribution. In this case, the prior of the conjugate of the beta distribution of a model

coefficient considered a random variable is mixed with the binomial likelihood to form

a beta-binomial posterior distribution. This is necessitated by the fact the two have

a conjugate relationship i.e. their coefficients are similar in structure and that their

kernels are equal i.e. πyii (1− πi)ni−yi ∼ πa−1
i (1− πi)b−1

Definition 1.6.4. If we let Y | πi ∼ Bin(m,πi), where πi ∼ Beta(a, b), then

f(πi|a, b) = Γ(a+ b)
Γ(a)Γ(b)π

a−1
i (1− πi)b−1, 0 ≤ πi ≤ 1, a > 0, b > 0 (1.29)

where;

E(Y ) = a

a+ b
and V ar(Y ) = ab

(a+ b)2(a+ b+ 1) (1.30)

Multiplying equation (1.29) with equation (1.23) we get the density function of the

Beta-Binomial distribution i.e.

f(Y |πi, a, b) = f(Y |πi,m)× f(πi|a, b)

= Γ(a+ b)Γ(m+ 1)
Γ(a)Γ(b)Γ(yi + 1)Γ(m− yi + 1)π

yi+a−1
i (1− πi)m−yi+b−1

0 ≤ πi ≤ 1, yi = 0, 1..,m (1.31)

The Beta-Binomial mean and variance are;

E(Y ) = ma

a+ b
(1.32a)

and

V ar(Y ) = mab(a+ b+m)
(a+ b)2(a+ b+ 1) (1.32b)
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1.6.2 Estimation

Statistical inference in GLMs is based on maximum likelihood principle

Definition 1.6.5. Let y1, ..., yn be independent responses for n subjects. The likelihood

is given by:

L(θ, y) =
n∏
i=1

fYi(yi; θ) ≡ Ln(θ) (1.33)

The log-likelihood is:

`(θ) = logLn(θ) =
n∑
i=1

logfYi(yi; θ) (1.34)

The maximum likelihood estimator of θ̂n,is defined by

θ̂n = Sup(`(θ)) (1.35)

In this case θ̂ is computed for d`n(θ)
dθ

= 0

Definition 1.6.6. Suppose Y1, ..., Yn are independent with Yi ∼ B(mi, πi) and Xi is a

single covariate such that;

logit(πi) = log{ πi
1− πi

} = β0 + β1xi (1.36)

then,

πi = eβ0+β1Xi

1 + eβ0+β1xi
(1.37)

where (β0, β1)are the parameters of the model to be estimated. The Likelihood function

will then be given as:

fY (y, π) =
n∏
i=1

 mi

yi

 { eβ0+β1xi

1 + eβ0+β1xi
}yi{ 1

1 + eβ0+β1xi
}(mi−yi)

=
n∏
i=1

 mi

yi

 e(β0+β1xi)yi{ 1
1 + eβ0+β1xi

}mi (1.38)

The log-likelihood function is

`n(β0, β1) = log

 mi

yi

 +
n∑
i=1

(yi(β0 + β1xi)−milog(1 + eβ0+β1xi)) (1.39)
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By partial differentiation we have:

∂`n(β0, β1)
∂β0

=
n∑
i=1

(yi −mi.
eβ0+β1xi

1 + eβ0+β1xi
)

=
n∑
i=1

(yi −miπi)

=
n∑
i=1

(yi − µi) (1.40a)

and

∂`n(β0, β1)
∂β1

=
n∑
i=1

(yixi −mixi.
eβ0+β1xi

1 + eβ0+β1xi
)

=
n∑
i=1

xi(yi −miπi)

=
n∑
i=1

xi(yi − µi) (1.40b)

1.6.3 Quasi-Likelihood Estimation of Parameters in GLMs

Definition 1.6.7. Suppose Yi(i=1......n) are independent observations such thatE(Yi) =

b
′(θ) = µi, where µi is some known function of the set of parameters β1.....βp and

V ar(Yi) = b
′′(θ) = φν(µi) where ν(·) is some known variance function. Furthermore,

suppose that g(µij) = ηi = Xijβ such that ∂ηi
∂βj

= xj and Var(yi)= φν(µi), then general-

izing equation (1.8) for the i clusters we have

`(θ) =
n∑
i=1
{yiθi − b(θi)

a(φ) + c(yi, φ)} (1.41)

By the chain rule,

∂(` : θi, φ))
∂βj

= ∂`

∂θi
· ∂θi
∂µi
· ∂µi
∂ηi
· ∂ηi
∂βj

=
n∑
i=1

yi − b
′
θi

a(φ) · (∂µi
∂θi

)−1 · ∂µi
∂ηi
· xij

=
n∑
i=1

yi − µi
a(φ) ·

1
ν(µi)

· (∂µi
∂βj

)T

=
n∑
i=1

yi − µi
a(φ)ν(µi)

· (∂µi
∂βj

)T (1.42)

Relaxing the need for a ‘distribution-based’ construction of the estimating equation and
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letting V ar(Y i) = σ2ν(µi) for an arbitrary ν(.) returning a positive quantity such that:

υi = yi − µi
σ2ν(µi)

, E(υi) = 0, V ar(υi) = (σ2ν(µi))−1 and − E(∂υi
∂µi

) = 1
σ2ν(µi)

(1.43)

then υi has the same properties as a score random variable (Nelder and Wedderburn

[55]). Since the quasi-log-likelihood is analogous to the log-likelihood such that the in-

tegrated quasi-likelihood function perform much like the likelihood function under mild

conditions (McCullagh and Nelder [52]), we can replace the log-likelihood in equation

(1.42) by the log-quasi-likelihood such that;

∂(Q(yi;µi))
∂βj

=
n∑
i=1

yi − µi
σ2ν(µi)

· (∂µi
∂βj

)T (1.44)

Where Q(yi, µi) is the quasi-likelihood function as defined by Wedderburn [80] obtained

from equation (1.44) and takes the form

Q(yi;µi) =
∫ µi

yi

yi − µi
σ2ν(µi))

∂µi + f(yi) (1.45)

The quasi-likelihood estimating equations for β obtained by differentiating Q(µi; yi) may

be written in the form
n∑
i=1

υi(β) = 0 (1.46)

where

υ(β) =
n∑
i=1

(∂µi
∂βj

)T · yi − µi
σ2ν(µi)

=
n∑
i=1

DT
i ν(µi)−1(yi − µi)/σ2 (1.47)

which is the quasi-score function, Di = ∂µi
∂βj

j=i,...p and ν(µi) is referred to as the

’working’ variance of yi such that ν(µi) = diag[ν(µi1)....ν(µimi)]. The solution to

equation (1.44) seeks to find the minimum with respect to β of the objective func-

tion ∑n
i=1 Ψ(yi, µi) = 0 where Ψ(yi, µi) = ∂(Q(yi;µi))

∂βj
hence can be viewed as an M-

estimator(Sakate and Kashi [66]) with a score function:

ψ̂(yi, µi) = yi − µi
ν(µi)

∂µi
∂βTj

(1.48)
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This quasi-likelihood method is used to fit GLMs and generalized estimating equations

for estimating regression coefficients. Some important results of υ(β) as established by

Liang and Zeger [49] are;

(i)
√
nυ(β) is asymptotically distributed as multivariate normal with mean=0 and

variance Λ where Λ = 1
n

∑n
i=1D

T
i ν
−1
i (µi)V ar(yi)ν−1

i (µi)Di

(ii)
√
n(β̂ − β)is asymptotically distributed as multivariate normal with mean 0 and

variance-covariance matrix Σ−1ΛΣ−1 where Σ−1 = ∑n
i=1D

Tν−1
i (µi)Di

1.6.4 Quasi-Likelihood Based estimation for Correlated Binary Responses

Notation

Consider independent observations from n subjects and for each subject i (i=1,2,...,n),

m observations are made. Let Yit denote the tth observation from the ith subject (t =

1, ...,m) and Xit={Xit1, Xit2......Xitp}T denote a p × 1 vector of covariates associated

with Yit. Let Yi =[yi1, ....yim]T denote the response vector for the ith subject and Xi =

[XT
i1, ....X

T
im]T be the mi × p corresponding covariates matrix.

Assumptions

Carey and Wang [9] identified four key assumptions that govern the use of GEE to

model correlated data:

(i) µit = E(Yit | Xit) = E(Yit | Xi) i.e. the conditional mean (µit) of Yit given the

predictor variables Xi measured at all possible time points t is equal to a set of

the same point specific explanatory variables Xit

(ii) Yit have a mean and variance characterized by a GLM (1.5)

(iii) A true conditional mi ×mi covariance matrix exists

(iv) Any missing data is Missing Completely at Random (MCAR) i.e. it does not

depend on the values of either the observed or missing data.
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GEE Modeling

According to Carey and Wang [9], GEE modeling requires the following specifications:

(i) E(Yit | Xit) = µit relate to Xit through a known link function i.e. g(µit) = ηit =

XT
itβ, where β =[β1...βp]T is a p× 1 vector of regression parameters and Xit is the

ith row of Xi.

(ii) The conditional variance of Yit given Xit, is assumed to depend on the mean

response given the effect of covariates i.e. var(Yit | Xit) = φV (µit), where V(.) is

a known variance function of µit and φ is a scale parameter which may need to be

estimated by:

φ̂ = 1
N − p

n∑
i=1

mi∑
t=1

ẽ2
it (1.49)

where N = ∑n
i=1mi, p is the covariate dimensionality and

ẽit = yit − µit√
V ar(µit)

: E(ẽit) = 0, E(ẽ2
it) = φ,E(ẽit, ẽik) = φcorr(yit, yik). (1.50)

Mostly V (·) and φ depend on the distribution of outcomes. For instance if Yit is

continuous, V (µit) is specified as 1 and φ represents the error variance. If Yit is

count, V (µit) = µit and φ is equal to 1.

(iii) An m×m working correlation matrix R(ρ) is assumed for each Yit and is assumed

to be a fully specified h×1 vector of unknown parameters, ρ=[ρ1...ρh]T which is a

vector of nuisance parameters. The corresponding working covariance matrix for

Yit is given as:

Vi = φA
1
2
i Ri(ρ)A

1
2
i (1.51)

where Ai is an m × m diagonal matrix with V (µit) as the tth diagonal element

i.e. Ai = Diag{V (µi1).....V (µim)} and Ri(ρ) is the working correlation matrix

structure which describes the within-subject correlation which is of size mi ×mi

and depends on a vector of association parameter denoted by ρ (Carey and Wang

[9]).

The working correlation structures considered in this study were:
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1. Independence Correlation structure (R(ρ)I) which assumes that there is no corre-

lation within the clusters (Jang [42]). It is used when the multiple measurements

on the same sampling unit (e.g., person) are assumed to be uncorrelated to each

other and modeling assuming such structure is equivalent to a standard normal

regression.In this structure

Corr(yij, yik) =

 1 if j = k

0 if j 6= k

Which implies

R(ρ)I =



1 0 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · 1


2. Exchangeable working correlation Structure (REX) that assumes equal correlation

(ρ) between any pair of measurements on the same individual (Jang [42]). It is

often assumed in experiments using a split-plot design, where a within-plot factor

is randomly allocated to sub-plots within main plots. Also, (REX) is a choice in

small samples, since it is very parsimonious.

Corr(yij, yik) =

 1 if j = k

ρ if j 6= k

Which implies

R(ρ)EX =



1 ρ · · · ρ

ρ 1 · · · ρ
... ... . . . ...

ρ ρ · · · 1


3. Toeplitz correlation structure in which the equal correlations are assumed pairs of

responses equally spaced in time. It has (m-1) parameters one for each off-diagonal

and is suitable when observations are approximately equispaced.

Corr(yij, yi,j+t) =

 1 if j = k

ρt for j = 1, 2...m− t
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For example if t=4, the toeplitz matrix will be;

R(ρ)toep =



1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1


4. Unstructured working correlation structure which assumes different correlations

between any two responses for every subject. No constraints are placed on the

correlations. Every element of the correlation matrix is estimated separately.

Corr(yij, yik) =

 1 if j = k

ρjk if j 6= k

Which implies

R(ρ)UN =



1 ρ12 ρ13 · · · ρ1k

ρ21 1 ρ23 · · · ρ2k
... ... . . . ...

ρk1 ρk2 ρk3 · · · 1


For R(ρ)UN , the number of parameters [0.5m(m-1)] grows rapidly with the number

of measurements per subject (Jang [42]). However, it is the most flexible structure.

5. Order one Auto-Regressive working correlation structure in which the size of the

correlations quickly decrease as the time lag between pairs of repeated measure-

ments increase i.e.

Corr(yij, yik) = ρk

Which implies

R(ρ)AR−1 =



1 ρ ρ2 · · · ρk

ρ 1 ρ · · · ρk−1

... ... . . . ...

ρk ρk−1 ρk−2 · · · 1


R(ρ)AR−1 is a parsimonious structure with one parameter.

Remark 1.6.8. Correlation parameters of the toeplitz, exchangeable and AR-1

structures can be estimated using elements of R(ρ)UN (Jang [42]).
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(i) For the Toeplitz structure, ρ̃t = r̃(Toep)i,j+t(t = 1.....,m − 1) is obtained by

averaging the tth diagonal components of the estimated unstructured matrix

i.e.

ρ̃(Toep)t = 1
n(m− t)φ̃

n∑
i=1

m−t∑
j=1

ẽij ẽi(j+t) where 1 ≤ t ≤ (m− 1) (1.57)

(ii) For the exchangeable structure, ρ̃ = r̃EX is obtained by averaging r̃UN over

all j and k i.e.

ρ̃EX = 1
0.5nm(m− 1)φ̃

n∑
i=1

∑
j<k

ẽij ẽjk,∀j 6= k. (1.58)

This implies that ρ̃ of the exchangeable can be regarded as the average of

the upper or lower off diagonal components of the estimated unstructured

matrix.

(iii) For the AR-1, ρ̃ = r̃AR−1 is obtained by averaging the first off-diagonal

elements of the r̃UN over all j and k i.e.

ρ̃AR−1 = 1
n(m− 1)φ̃

n∑
i=1

m−1∑
j=1

ẽij ẽi,(j+1) (1.59)

Example 1.6.9. Consider a situation where m=5 and;

R(ρ)UN =



1 0.56 0.62 0.47 0.19

0.56 1 0.64 0.45 0.33

0.62 0.64 1 0.87 0.41

0.47 0.45 0.87 1 0.76

0.19 0.33 0.41 0.76 1


Then,

(i)

R(ρ)toep =



1 0.71 0.49 0.40 0.19

0.71 1 0.71 0.49 0.40

0.49 0.71 1 0.71 0.49

0.40 0.49 0.71 1 0.71

0.19 0.40 0.49 0.71 1


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(ii)

R(ρ)EX =



1 0.53 0.53 0.53 0.53

0.53 1 0.53 0.53 0.53

0.53 0.53 1 0.53 0.53

0.53 0.53 0.53 1 0.53

0.53 0.53 0.53 0.53 1


(iii)

R(ρ)AR−1 =



1 0.71 0.50 0.36 0.25

0.71 1 0.71 0.50 0.36

0.50 0.71 1 0.71 0.50

0.36 0.50 0.71 1 0.71

0.25 0.36 0.50 0.71 1


Remark 1.6.10. The working correlation structures independence, exchangeable

and AR-1 can likewise be embedded into the toeplitz Structure (Chen and Nicole

[12]). For example if m=4, the toeplitz structure will be defined by 3 parameters

say (ρ1, ρ2, ρ3) such that the correlation matrix will be given as:

R(ρ)Toep =



1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1


(1.64)

If ρ1 = ρ2 = ρ3 = 0, RToep reduces to the independence working correlation

structure whose matrix is given as:

R(ρ)IN =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.65)

If ρ1 = ρ2 = ρ3 = ρ 6= 0, RToep reduces to the exchangeable working correlation

structure whose matrix is given as:

R(ρ)EX =



1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1


(1.66)
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If ρ1 = ρ 6= 0, ρ2 = ρ2
1 and ρ3 = ρ3

1, RToep reduces to the AR-1 working correlation

structure whose matrix is given as:

R(ρ)AR−1 =



1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


(1.67)

Liang and Zeger [49] call equation (1.47) in conjunction with equation (1.51)

generalized estimating equations. The quasi-likelihood GEE parameter estimates

of β could be obtained by solving the following system utilizing iteratively re-

weighted least squares method:

U(β̂;Ri(ρ), ℘i) =
n∑
i=1

DT
i V
−1
i (yi − µi) = 0 (1.68)

where n is the number of subjects and Di = ∂µi
∂βT

which is the first derivative of the

response mean with respect to the regression parameters. It is a Jacobian m× p

matrix given by;

∂µi
∂β

=



∂µi1
∂β1

∂µi1
∂β2

· · · ∂µi1
∂βp

∂µi2
∂β1

∂µi2
∂β2

· · · ∂µi2
∂βp

... ... . . . ...
∂µim
∂β1

∂µim
∂β2

· · · ∂µim
∂βp


℘i ≡ (Yi, Xi), i=1,2....n indicates the data at hand. Since the GEE depend on

both β and correlation parameters ρ and have no closed-form solution, iterative

two-stage estimation procedure of β and the nuisance parameters (ρ and φ ) is

required. (yi − µi) is a residual vector which measures deviations of observed

responses of the ith subject from its mean. Solving equation (1.68) yields the

quasi-likelihood-based estimator of β̂.

The GEE estimation of β̂ in equation (1.68), is accomplished either through the

generalized weighted least squares method or the two-stage iterative process for β

and the nuisance parameters. The iterative procedure for β involves solving the

score equation (1.68) until the estimates obtained converge. This involve the use
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of the Fisher Scoring Algorithm (Nelder and Wedderburn [55]) which involves the

following steps:

(i) Compute initial estimates of for β, say β̂(0), using univariate GLM i.e. as-

suming independence or rather using conventional logistics regression.

(ii) Given β̂(0), compute method of moments estimates for ρ (if unknown). With

the obtained estimates for ρ, compute Ri(ρ) and consequently the estimate

of covariance Vi using equation (1.51).

(iii) After t iterations we have say β̂(t). Update the estimator for β̂ by solving

the estimating equation using the Fisher information to obtain improved

estimates:

β̂(t+1) = β̂(t) + (
n∑
i=1

DT
i V
−1
i Di)−1 ×

n∑
i=1

DTV −1
i (yi − µi) (1.70)

(iv) Evaluate for convergence using changes in ‖β̂(t+1) − β̂(t)‖. We iterate the

above procedure until convergence criterion is satisfied. Convergence occurs

when there is no much improvement in the quasi likelihood estimate, or if

the set threshold for the change in quasi likelihood estimate is reached.

Asymptotic Properties of β̂

The following theorem provides the large sample properties for the GEE estimate

(β̂G).

Theorem 1.6.11 (Liang and Zeger [49]). Under mild regularity conditions in

Appendix A.1 and given that:

(i) ρ̂ is
√
n-consistent given β and φ

(ii) φ̂ is
√
n-consistent given β

(iii) | dα̂(β,φ)
dφ
|≤ T (Y, β) which is Op(1)

(iv) the mean structure is correctly specified
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Then;
√
n(β̂G − β)→ N(0, VLZ) (1.71)

i.e. β̂G is
√
n-consistent for β : β̂G → β as n → ∞. VLZ is a covariance matrix

based on the sandwich estimator given by:

VLZ = B−1M̂LZB
−1 (1.72)

Where;

B = 1
n

n∑
i=1

DT
i V
−1
i Di (1.73a)

M̂LZ = 1
n

n∑
i=1

DT
i V
−1
i Cov(Yi)V −1

i Di (1.73b)

Proof. See Appendix A.2

Remark 1.6.12. As the sample size increases 1
n

∑n
i=1(Yi−µ̂i)(Yi−µ̂i)T → Cov(Yi).

If Vi is correctly specified, Vi = Cov(Yi), hence from equations (1.72), (1.73a) and

(1.73b) it follows that;

(M̂LZ −B) P−→ 0, (B̂ −B) P−→ 0 and M̂LZB
−1 → Ip

where Ip is a p× p identity matrix such that;

B−1MLZB
−1 = B−1 = VLZ (1.74a)

i.e. VLZ reduces to ( 1
n

∑n
i=1D

T
i V
−1
i Di)−1 which is referred to as model-based vari-

ance estimator (Kaurmann and Carroll [45]). This implies that the Cramer-Rao

lower bound is attained if R(ρ) in Vi (equation(1.51)) is correct. If this is true,

then β̂G will be efficient

Remark 1.6.13. Based on Liang and Zeger [49], if the mean structure, variance

function V (µit) and link function are correctly specified, M̂LZ in equation (1.72)

overrides a poor choice of the working correlation structure and still yields consis-

tent estimates of the regression parameter with large n. However, a misspecified
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structure yields inconsistent ρ̂ estimates. This violates Theorem 1.6.11 hence the

consistency property of β̂ along with their impact on the variance estimates will

no longer be assured.

1.6.5 Model Selection Concepts

In this section we establish the technical notions that facilitate the development

of estimators for Kullback’s I-divergence and also introduce the model selection

criteria developed based on the Kullback I-divergence.

Definition 1.6.14 (Discrepancy / Divergence). If MT and MC denote the

true model and candidate model respectively, a discrepancy measures the lack-

of-fit when data is fitted by MC hence a model selection criteria is a statistics

that estimates the discrepancy between MT and MC which requires a well defined

distance function d(a, b) where a and b may be vectors or scalars. Essential

properties that must be satisfied by d(a,b) as espoused by Linhart and Zucchini

[50] are:

(a) positiveness d(a, b) > 0, ∀ a 6= b and d(a, b) = 0, ∀ a=b

(b) Symmetry d(a, b) = d(b, a)

(c) triangle inequality d(a, c) ≤ d(a, b) + d(b, c) ∀ a, b and c

Remark 1.6.15. If we let θ0 and θk denote the vectors of parameters from MT

and MC respectively and let d(θ0, θk) be the discrepancy between MT and MC ;

then

d(θ0, θk) = Ef0{δ(y, θk)} = Ef0{−2`(y, θk)} (1.75)

where δ(y, θk) represents a function that measures the accuracy when y is pre-

dicted by MC , Ef0 is the expectation under the true model, and `(y, θk) is the log

likelihood of the candidate model.
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Definition 1.6.16. Kullback’s I-Divergence

If we let f0 and f denote the densities of MT and MC respectively and that

d(θ0, θk) = 0 ∀θ0 = θk, then the Kullback’s I-divergence between f0(y|θ0) and

f(y|θk) defined with respect to f0(y|θ0) and denoted by If0f is given as:

If0f =
∫
f0log

f0(y|θ0)
f(y|θk)

df0

=
∫
f0logf0(y|θ0)df0 −

∫
f0logf(y|θk)df0

= Ef0{logf0(y|θ0)} − Ef0{logf(y|θk)}

= Ef0{log
f0(y|θ0)
f(y|θk)

} (1.76)

where Ef0 is the expectation under f0(y|θ0). If0f represents the information lost

when model ’f’ is used to approximate f0. Clearly, the best model loses the least

information relative to other models in the set (Linhart and Zucchini [50]). Key

features of If0f are:

(i) If0f is not symmetric i.e. If0f (θ0, θk) 6= Iff0(θk, θ0) ∀θ0 6= θk,

(ii) If0f (θ0, θk) > 0 ∀θ0 6= θk and If0f (θ0, θk) = 0 iff θ0 = θk (Kullback [47]). To

see why we recall that since log is a concave function, -log is convex, thus;

If0f = Ef0 [log{f0(y|θ0)
f(y|θk)

}] = Ef0 [−log{ f(y|θk)
f0(y|θ0)}]

≥ −log{Ef0 [ f(y|θk)
f0(y|θ0) ]}

= −log{
∫
f0(y|θ0) f(y|θk)

f0(y|θ0)dy

= −log{
∫
f(y|θk)dy

= −log(1) = 0 (by Jensen inequality) (1.77)

This is strict only for a non-degenerate random variable and a strictly convex

function and since -log is strictly convex, the inequality can only be made

strict if f(y|θk)
f0(y|θ0) is made degenerate. This occurs when θ0 = θk

(iii) Minimizing If0f is equivalent to maximizing Ef0 [logf(y|θk)]. This is because

the first term in If0f is a constant. It in no way depends on f(y|θk). If0f can

only be used in model selection if Ef0 [logf(y|θk)] can be estimated.
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Example 1.6.17. To illustrate the use of If0f , we consider a random variable X

whose sample space is S = {X : X ∈ Z, 500 ≤ X ≤ 510} and its probability

distribution is as shown in Figure 1.1.

Figure 1.1: Probability Histogram Plot of the Random Variable X

We might want to reduce this data to a simple model with just one or two pa-

rameters. We would wish to determine which distribution between the uniform

distribution and binomial distribution best represents the distribution of X i.e. the

distribution that preserves the most information from our original data source. By

calculating If0f which is the expectation of the log difference between the proba-

bility of data in the original distribution and the approximating distributions we

get the following results:

If0f (Observed ‖ Uniform) = 0.015

If0f (Observed ‖ Binomial) = 0.258

The results indicate that the information lost by using the binomial approxima-

tion is greater than that lost using the uniform approximation. This is alo shown

in Figure 1.2
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Figure 1.2: Probability Distribution of X (Observed, Uniform and Binomial)

If we have to choose one to represent the distribution of X, then it will be better

off to use the uniform approximation

Definition 1.6.18. If we let df0f (θ0, θk) denote d(f0(y|θ0), f(y|θk)), then, accord-

ing to Cavanaugh [11];

df0f (θ0, θk) = Ef0{−2logf(y|θk)} (1.78a)

and

dff0(θk, θ0) = Ef{−2logf0(y|θ0)} (1.78b)

Evaluating the second argument of equation (1.78a) at f0(y|θ0) yields

df0f0(θ0, θ0) = Ef0{−2logf0(y|θ0)} (1.79)

which is the minimum of df0f (θ0, θk)

Also, evaluating the second argument of equation (1.78b) at f(y|θk) yields

dff (θk, θk) = Ef{−2logf0(y|θk)} (1.80)

which is the minimum of dff0(θk, θ0)
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Combining the equation (1.76) with equations (1.78a) and (1.79) we have:

If0f (θ0, θk) = Ef0logf0(y|θ0)− Ef0logf(y|θk)

2If0f (θ0, θk) = Ef02logf0(y|θ0)− Ef02logf(y|θk)

= −df0f0(θ0, θ0)− (−df0f (θ0, θk))

= df0f (θ0, θk)− df0f0(θ0, θ0) (1.81)

Equation (1.81) can be written as:

2If0f (θ0, θk) = df0f (θ0, θk)− Ef0{−2logf0(y|θ0)} (1.82)

Since df0f0(θ0, θ0) is independent of θk, using If0f (θ0, θk) to rank candidate models

would be similar to using df0f0(θ0, θ0). To discriminate among various candidate

models, df0f (θ0, θk) is a valid substitute for If0f (θ0, θk) (Cavanaugh [10]). There-

fore,

d(θ0, θk) = Ef0{−2logf(y|θk)} | θk = θ̂k (1.83)

would provide a suitable measure of separation between the generating model

f(y|θ0) and a fitted model f(y|θ̂k). The model f(y|θ̂k) that is close to f(y|θ0) in

the sense of having a small If0f value is the best model (Cavanaugh [11]). However,

d(θ0, θk) is an oracle that can be estimated but cannot be used directly for model

selection since they depend on unknown generating model f0(y|θ0).

Likelihood-Based Model Selection Criteria: Akaike Information Crite-

ria (AIC)

Evaluating d(θ0, θ̂k) is not possible since it requires the knowledge of θ0. Akaike

[3] suggested that −2logf(y|θ̂k) serves as a biased estimator of d(θ0, θ̂k). In order

to use the bias, we investigate the bias by writing d(θ0, θ̂k) as follows:

d(θ0, θ̂k) = Ef0{Ef0(−2logf(y|θk))}|θk=θ̂k

= Ef0{−2logf(y|θ̂k)}+ [Ef0{Ef0{−2logf(y|θk)}|θk=θ̂k

−Ef0{−2logf(y|θ̂k)}] (1.84)
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The bracketed [.] quantity is referred to as the expected optimism and is useful

in correcting for the negative bias incurred when −2logf(y|θ̂k) is used as an esti-

mator of equation (1.83) (Efron [21]). The sum of −2logf(y|θ̂k) and the expected

optimism say Õ provides an approximately unbiased estimator of the expected

I-divergency [d(θ0, θ̂k)] i.e.

d(θ0, θ̂k) = −2logf(y|θ̂k) + Õ (1.85)

−2logf(y|θ̂k) is the goodness of fit term while Õ is the penalty term.

According to Cavanaugh [11], if k represents the number of functionally indepen-

dent parameters in f(y|θk), then Õ ≈ 2k. Thus, under appropriate conditions,

the expected value of

AIC = −2logf(y|θ̂k) + 2k (1.86)

should asymptotically approach the expected value of d(θ0, θ̂k) and serves as an

asymptotically unbiased estimator of Ef0 [d(θ0, θ̂k)]. AIC provides an approxi-

mately unbiased estimator of the expected discrepancy in settings where n is large

and k is relatively small and does provide a balance between bias and variability

of a candidate model hence aims at selecting a model that has few parameters but

fits the data well.

Quasi-Likelihood-Based Model Selection Criterion: QIC

From equation (1.68), the solution of the score equation U(β) is maximum if

the second derivative of the log-quasi-likelihood yields a matrix that is negative

definitive hence from Theorem 1.6.11 we can define the observed fisher information

I(β | y) as:

I(β | y) = −∂
2Q(β | y)
∂β∂βT

(1.87)

In this regard Ef0{−
∂2Q(β|y)
∂β∂βT

} is the expected fisher information which we denote

by I(β). From equation 1.6.11, let

Σ(β) = I(β)−1J(β)I(β)−1 (1.88)
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Where J(β) = E0{J(β̂|y)} and J(β|y) = M̂LZ in equation (1.73b)

We re-derive the Quasi-Likelihood Information Criteria(QIC) proposed by Pan

[60] for the selection of a working correlation matrix and set of covariates in GEE.

QIC was a modification of AIC by replacing the log-likelihood in equation (1.83)

with a log-quasi-likelihood such that the overall discrepancy can be expressed as

df0f = Ef0{−2Q(y|β)} | β = β̂I (1.89)

where β̂I denotes the estimator of β under the working independence model. The

expected discrepancies then become

Ef0{df0f (β0, β̂
I
k)} (1.90a)

and

−2Q(β̂Ik |y) (1.90b)

Where −2Q(β̂I |y) is the quasi-likelihood under independence assumption and Ef0

is taken under the true model.

Let the Kullback I-divergence I(β0, βk) under the independence correlation struc-

ture be indexed by the parameter vector βk and that β0 be the corresponding

parameter of the quasi-likelihood model introduced by the true generating model.

Considering a second-order Taylor expansion of −2Q(β0|y) about β̂k we have:

−2Q(β0|y) = −2Q(β̂k|y) + (β̂k − β0)T I(β̂k|y)(β̂k − β0) +R1(β0, β̂k) (1.91)

As n→∞, R1(β0, β̂k) is op(1) such that E[R1(β0, β̂k)]is o(1). Hence we have;

Ef0{−2Q(β0|y)} − Ef0{−2Q(β̂|y)}} = Ef0 [(β̂k − β0)T I(β̂k|y)(β̂k − β0)] + o(1)

(1.92)

But Ef0{−2Q(β0|y)} = df0f0(β0, β0) hence equation (1.92) can be expressed as;

df0f0(β0, β0)− {−2Q(β̂|y)}} = Ef0 [(β̂k − β0)T I(β̂k|y)(β̂k − β0)] + o(1) (1.93)

Also, taking the second-order Taylor expansion of df0f (β0, β̂
I
k) about β0 we have;

df0f (β0, β̂
I
k) = df0f0(β0, β0) + (β̂k − β0)T I(β0)(β̂k − β0) +R2(β0, β̂k) (1.94)
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Taking the expectation Ef0(·) on both sides we have;

Ef0{df0f (β0, βk)− df0f0(β0, β0)} = Ef0 [(β̂k − β0)T I(β0)(β̂k − β0)] + o(1) (1.95)

Let Υ (β0, β̂k) define the discrepancy between f0(β0|y) and f(β̂k|y) such that

Υf0f (β0, β̂k) = Ef0(−2Q(β̂k|y)) (1.96)

+ df0f0(β0, β0)− Ef0(−2Q(β̂k|y)) (1.97)

+ Ef0(df0f (β0, β̂k))− df0f0(β0, β0) (1.98)

Substituting equations (1.97) and (1.98) in equation (1.96) by equations (1.93)and

(1.95) respectively we have;

Υf0f (β0, β̂k) = Ef0(−2Q(β̂k|y)) (1.99)

+ Ef0 [(β̂k − β0)T I(β̂k|y)( ˆβk − β0)] (1.100)

+ Ef0 [(β̂k − β0)T I(β0)(β̂k − β0)] (1.101)

+ o(1) (1.102)

As n→∞, β̂k → β0 hence

Υf0f (β0, β̂k) = Ef0(−2Q(β̂k|y)) + 2Ef0 [(β̂k − β0)T I(β0)(β̂k − β0)] + o(1) (1.103)

Since Ef0 [(β̂k − β0)T I(β0)(β̂k − β0) is a scalar we can write equation (1.103) as;

Υf0f (β0, β̂k) = Ef0(−2Q(β̂k|y)) + 2{tr[I(β0)(β̂k − β0)T (β̂k − β0)]}+ o(1)

= Ef0(−2Q(β̂k|y)) + 2[tr{I(β0)Σ(β0)}] + o(1) (1.104)

Replacing Σ(β) by equation (1.88) we have;

Υf0f (β0, β̂k) = Ef0(−2Q(β̂k|y))+2[tr{(I(β0)I(β0)−1J(β0)I(β0)−1}]+o(1) (1.105)

By ignoring the o(1) term and letting I(β̂I |y) = Ω̂I and I(β0)−1J(β0)I(β0)−1 =

Σ(β̂Ik) = V̂r we define the statistic as contained in Pan [60]

QICI = −2Q(β̂I |y) + 2tr[{I(β0)I(β0)−1J(β̂I |y)I(β0)−1}]

= −2Q(β̂I |y) + 2tr{Ω̂I V̂r)} (1.106)
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which is an asymptotically unbiased estimator of Υf0f (β0, β̂k) if the mean structure

is specified correctly.

If we assume that the GEE estimator β̂R is obtained using a working correlation

structure R(ρ), equation (1.106) is modified to get of QICR (Pan,[60]):

QICR = −2Q(β̂R|y; I, ℘) + 2tr[{I(β0)I(β0)−1J(β̂R|y)I(β0)−1}]

= −2Q(β̂R|y; I, ℘) + 2tr{Ω̂I V̂r} (1.107)

Ω̂I is a p×pmodel-based covariance matrix for the estimated regression parameters

under the independence working correlation structure and is given as:

Ω̂I =
∑̂−1

M(I)

= Ef0{−
d2Q(β; I, ℘
dβdβT

} |β=β0

= 1
n

n∑
i=1

DT
i V
−1
i Di (1.108)

Where Di = ∂µi
∂β̂T

and µi is as defined in equation (1.4).

V̂r = ∑̂
S(R) is a p × p robust or sandwich variance estimator under the working

correlation structure R and is given by:

V̂r = Ω̂−1
I J(β|y)Ω̂−1

I (1.109a)

and

J(β|y) = 1
n

n∑
i=1

DT
i V
−1
i (Yi − µi)(Yi − µi)TV −1

i Di (1.109b)

tr(Ω̂I V̂r) is the sum of diagonal elements of the product matrix which measures

total variability.

Remark 1.6.19. QICR can be decomposed into two parts:

(i) −2Q(β̂R|y; I, ℘) is the sum of the log-quasi-likelihood function under indepen-

dence correlation structure, I, evaluated at estimated regression coefficients
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obtained under a ‘working ’ correlation structure R for the ∑n
i=1mi observa-

tions in the data (℘). It relates to the log-quasi-likelihood for independent

observations hence contain no information on the anticipated within-subject

correlation structure i.e. it is free from both R and R0 , R0 being the true

within-subject correlation structure. −2Q(β̂R|y; I, ℘) measures the goodness-

of-fit of the model.

(ii) 2tr(Ω̂I V̂r) contains information of the hypothesized correlation structure via

V̂r and acts as a penalty for over-complexity. Half of this term was used by

Hin and Wang [34] to develop the Correlation Information Critieria (CIC)

given by

CIC = tr(Ω̂I V̂r) (1.110)

Remark 1.6.20. If we let 4(k) be the expected kullback I-discrepancy that

reflects the separation between the generating model f0(θ0|y) denoted in this case

as simply f(θ0) and a fitted model f(θ̂k|y) denoted simply as f(θ̂k) such that

f(θ0) ∈ z(k) where θ0 ∈ Θ(k), then

4(k) = Ef0(d(θ0, θ̂k))

= Ef0{−2Q(θ̂k|y}

+ Ef0{−2Q(θ0|y)} − E{−2Q(θ̂k|y)} (1.111)

+ Ef0(d(θ0, θ̂k))− Ef0{−2Q(θ0|y)} (1.112)

In the spirit of Cavanaugh [10], the following lemma justify the asymptotic unbi-

asedness of QIC by asserting that equations (1.111) and (1.112) are both within

o(1) of k.

Lemma 1.6.21.

Ef0{−2Q(θ0|y)} − Ef0{−2Q(θ̂k|y)} = k + o(1) (1.113a)

Ef0{d(θ0, θ̂k)} − Ef0{−2Q(θ0|y)} = k + o(1) (1.113b)

Proof. See Appendix A.3
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Remark 1.6.22. QIC is tauted as being desirable for working correlation struc-

ture and variable selection. If QIC as a model selection criterion chooses the model

with minimum mean squared error in large samples under the assumption that

the generating or true model is of infinite dimension, or that the set of candi-

date models does not contain the true model, then it is said to be asymptotically

efficient (Shibata [69]).

Remark 1.6.23. Under the assumption that the true model is included in the

set of candidate models, if QIC identifies the correct model asymptotically with

probability one, then it will be said to be consistent.

Empirical Likelihood and Model Selection in Generalized Estimating

Equations

Despite GEE enjoying the advantages of semi-parametric methods, it is limited

by its lack of a likelihood since likelihood methods are quite effective in the deter-

mination of efficient estimators, construction of tests with good power properties

and short confidence intervals and selection of best models from a pool of candi-

dates (Chen and Nicole [12]). Empirical likelihood combines the reliability of non-

parametric methods with the flexibility and effectiveness of likelihood approaches

hence has the potential of adding value to GEE models.

For a sample X1, ..., Xn from an unknown d-variate distribution F0 having mean

µ0 ∈ <d (d ≥ 1), the empirical likelihood function for a distribution F which is

the probability mass placed on Xi by F is given by

L(F ) =
n∏
i=1

pi (1.114)

where pi = Pr(X = Xi) and for distributions that assign positive probability on

each of the observed data points the likelihood is non zero. Without any additional

constraint on pi, L(F) is maximized by the empirical distribution function Fn

which puts equal weight 1
n

on each observation. Thus, according to Owen[59] the
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empirical likelihood ratio for F is:

R(F ) = L(F )
L(Fn) =

∏n
i=1 pi∏n
i=1

1
n

=
n∏
i=1

npi (1.115)

Suppose now one is interested in estimating a parameter µ0, the profile empirical

likelihood ratio (ELR) for a candidate µ is:

<(µ) = Sup{
n∏
i=1

npi | pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piXi = µ} (1.116)

For the regression parameter β in GEE, the empirical likelihood ratio function is

defined by

<(β) = Sup{
n∏
i=1

npi | pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pig(XT
i β) = 0} (1.117)

with

g(XT
i β) = ( dµi

dβT
)TV −1

i (µ)(Yi − µi) (1.118)

where V −1
i (µ) = A−0.5

i R−1(ρ))A−0.5
i and the maximization is taken with respect

to the probabilities p1, ..., pn.

The maximum empirical likelihood estimator for β is:

β̂E = argmin
β∈Rp

{<(β)} (1.119)

Whether or not the working correlation structure R(ρ) is correctly specified, the

MELE of β̂E from equation(1.119) is consistent and asymptotically normal. How-

ever, its efficiency is compromised if R(ρ) is misspecified (Owen [59]).

Definition 1.6.24. Let S be working correlation matrices such that Rs, s = 1, ..S,

then S different empirical likelihoods Rs(β), s = 1, .., S can be defined by equation

(1.117). For each Rs, the MELE(β̂sE) equals the corresponding GEE estimator β̂sG

defined by equation (1.117). By replacing the parametric likelihood in AIC with

the empirical likelihood, Chen and Nicole[12] proposed the empirical likelihood

versions of AIC given as:

EAICs = −2log<F (θ̂sG) + 2dim(θs) (1.120)
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where s is the index for a candidate model parameterized by θs(s = 1, ..., S),

and θ̂sG is the GEE estimate associated with the working correlation structure Rs.

More specifically θ̂sG =

 β̂sG

ρ̂sG

, where ρ̂sG is the method of moment estimator of

ρ given β̂sG and Rs.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter we review literature on model selection tools for choosing the

correct set of covariates and a working correlation structures in GEE. Focus is on

previously developed model selection criteria using Kullback’s I-divergence as an

oracle.

2.2 Generalized Estimating Equations and the Analysis of Correlated

Data

To account for the within-subject dependence in longitudinal data, Liang and

Zeger [83] developed the generalized estimating equation (GEE) for such data.

The method only requires the specification of the first two moments and a working

correlation matrix involving a small number of nuisance parameters. The GEE

method is a Population Average (PA) or marginal method because it produces

the average value of the individual regression lines for the regression coefficients.

Neuhaus et. al. [56] compared Subject-Specific (SS) and PA approaches for ana-

lyzing correlated binary data by comparing the parameters estimated by PA and

SS models algebraically and geometrically and showed that the covariate effects

measured by the PA approach are closer to null values than those of the SS ap-

proach when the SS model holds and that the difference in the magnitude of the

covariate effects increases with intra-subject correlation. Hanley et al.[31] observed

that GEE produces reasonably accurate standard errors hence confidence intervals

have the correct coverage rates compared to other methods such as the random

effects models which explicitly model and estimate the between-subject variations
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and incorporate them together with residual variance into standard errors. Fur-

ther, they asserted that the computational complexity of GEE is a function of

the number of observations per subject or cluster size rather than the number of

subjects or clusters.

One of the importance of GEE is that it yields consistent estimators even if the

working correlation structure is misspecified. This means that the estimator can

be inefficient under a misspecified correlation structure. Wang and Hin [78], ob-

served that correctly specifying the correct correlation structure can definitely

enhance the efficiency of the parameter estimates hence selection of intra-subject

correlation matrix plays a vital role in GEE as it leads to improved finite sample

performance. Wang and Carey [79] assert that the asymptotic relative efficiency

of the parameter estimates of the GEE method is likely to be low when the work-

ing correlation structure is misspecified. Their assertions were corroborated by

Sutradhar and Das [74] who also pointed out that the mis-specification of the

correlation structure lowered the relative efficiency of the estimate even when the

sample size is finite. This emphasized the need for correct specification of the

working correlation structure.

A working correlation structure R(ρ) is a m×m correlation matrix for repeated

or clustered measurements from each individual yi = (yi1, yi2...yim) fully specified

by the parameter ρ. In GEE modeling, one has to specify the working correlation

matrix to account for the within-subject correlation of the response variables.

2.3 Selection of Working Correlation Structure in GEE

Early approaches developed for the selection of a working correlation structure

included the Rotnitzky and Jewell Criteria (RJ) by Rotnitzky and Jewell [65]

to appraise the adequacy of the assumed correlation matrix using the fact that

the asymptotic distribution of a modified working Wald statistic is the linear

combination of independent Chi-Square random variables. However, Hin et al.[35]
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showed that more often the RJ criterion preferred the exchangeable structure with

one correlation parameter ρ.

Shults and Chaganty [72], while considering the minimization of the generalized

error sum of squares came up with the Shults and Chaganty (SC) criterion which

was later extended by Carey and Wang [9] who by adopting the Gaussian Pseudo-

likelihood (GP) developed the GP(R) criteria and showed through simulation

studies that it had better performance than the RJ criteria.

Akaike Information Criteria (Akaike [3]) which serves as an estimator of Kullback’s

I-divergence is the most popular criteria for likelihood-based GLM modeling and

its development was anchored in the use of the number of parameters as a standard

for comparing the candidate models hence the resultant penalty was meant to

check for model complexity encouraged by the bias correction term. However,

AIC could not directly be applied in the GEE framework since no distribution

is assumed in GEE and also because the GEE estimator has different asymptotic

properties from those of the maximum likelihood estimation. Hence a modification

to the penalty term in AIC was necessary. Pan [60] proposed a modification

of AIC, called ’quasi-log-likelihood under the independence model information

criterion (QIC) by replacing the log-likelihood in AIC with the log-quasi-likelihood

under working independence assumption.

Pan [60] examined the performance of QIC in selecting the true exchangeable cor-

relation structure compared to AIC. He considered a candidate set that comprised

the independence, exchangeable, and AR-1 structures. In his simulation design

with 1000 replications, the number of measurements per subject were fixed at 3

and the number of subjects were 50 and 100. He established that for n=50, QIC’s

selection rate of the correct correlations structure was 67.8% while that of AIC

was 83.6%. When n was 100, QIC’s rate was 72.1% while that of AIC was 94.6%.

The result showed that AIC was more powerful in selecting the true exchangeable

structure than QIC. He attributed the low performance of QIC compared to AIC

to the low efficiency of GEE estimator compared to the MLE of β which is more
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efficient and the fact that information on correct correlation structure is not em-

bedded directly in the quasi-likelihood in QIC. Further, he found that the QIC

worked well in selection of predictors and not the working correlation structure.

The independence structure assumed in deriving QIC is seemingly the simplest

working assumption that can be adopted in all cases. However, for time-varying

covariates, the resulting efficiency of the GEE estimator may be as low as 60 per-

cent compared to the GEE estimator obtained by using the correct correlation

structure (Fitzmaurice [26]). Besides, comparing the performance of QIC with

AIC, Pan [60] did not examine any other properties of QIC. The current study

sought to fill this void.

Barnett et al. [5] in their study on using information criteria to select the cor-

rect variance-covariance structure for longitudinal data in ecology compared the

performance of AIC, QIC and the Deviance Information Criteria (DIC) for multi-

variate Gaussian responses. They considered a relatively small sample size (n=30)

and a relatively large cluster size (m=8). Exchangeable correlation was param-

eterized by ρ = {0.2, 0.5} while the AR-1 was parameterized by ρ = {0.3, 0.7}.

They considered the independence, exchangeable, AR-1 and Unstructured work-

ing correlation structures. The set included the unstructured matrix that was

not considered by Pan [60]. They established that for EX(0.2) and AR-1(0.3)

and independence true correlation structure, QIC’s success rates were between 0

to 14%. Under these settings QIC preferred the unstructured correlation matrix

despite the added complexity of the 0.5m(m-1) parameters to be estimated. They

further established that the performance of QIC improved when the correlation

was increased to moderate level. However, in their study they only considered

a fixed number of subjects (30) and measurements per subject (8) hence could

not numerically demonstrate the consistency property of QIC which the study

will seek to establish. In the current study within-subject correlation, number of

subjects and measurements per subject were allowed to vary and inferences made

on the consistency, sensitivity and sparsity of QIC.
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Hin et al. [35] considered the performance of QIC in selecting the AR-1 and

exchangeable structures compared to RJ criteria using simulated gaussian data.

They established that for the exchangeable true structure, QIC selection rates

were between 65% and 77% compared to those of the RJ criteria which were

between 84% and 100%. For the AR-1 true correlation structure, the selection

rates of QIC were between 64% and 81%. On the other hand RJ instead preferred

the exchangeable structure with rates of between 50% and 71%. The results show

that QIC outperformed RJ for AR-1 structures while RJ was superior than QIC

for exchangeable correlation structures signaling that neither of the two criteria

can be considered dominant in the selection of the true correlation structure in

GEE. Hin et al. [35] considered only Gaussian data and did not consider discrete

data with a binary outcome which is the focus of the current study.

Shinpei [71], asserted that the derivation of QIC by Pan [60] ignored the com-

putation of the correlation parameter and recommended a formal derivation of

the QIC (called formal QIC or fQIC) as an asymptotic unbiased estimate of the

prediction risk based on the quasi-likelihood. In the re-derivation of formal QIC,

he considered the effect of estimating the correlation matrix used in the GEE

procedure and the adequacy of the risk function used. He observed that the orig-

inal QIC was exactly and asymptotically equivalent to the formal QIC when the

working correlation matrix was independence. He further compared the perfor-

mance QIC and fQIC and established that the bias of the original QIC got larger

when the number of parameters increased while fQIC kept a stable value in each

model. This indicated that the performance of QIC was a function of the number

of parameters to estimated which Pan [60] failed to consider in his derivation of

QIC.

Unlike Shinpei [71], Deroche [16] proposed two modifications of QIC. In the first

modification she multiplied the penalty term of the original QIC with 2p to pe-

nalize for the number of regression parameters. However, the resultant modified

QIC selected the independence structure with a probability of one regardless of
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the sample size. In the second modification she subtracted a third penalty term

(m ∗ trace(Ω̂I V̂I)) with the intention of penalizing for the number of correlation

parameters estimated. Unlike the first modified QIC, the second modified QIC

which sought to provide a balance between the independent structure and the

unstructured structure that estimates the most correlation parameters ended up

favoring the unstructured structure always just like the original QIC.

Hin and Wang [34] observed that the lack of a correlation structure in the first

term [−2Q(β̂; I; (R);D)] of QIC makes it an insensitive measure to use for work-

ing correlation structure selection. However, they observed that the second term

2trace(Ω̂IVr) contained information about the anticipated correlation structure

through the robust variance estimator (Vr) and used half of this term to develop

the correlation information criteria (CIC). They established that when the true

correlation was exchangeable, the correct identification rates for QIC ranged from

62% to 72% while those o CIC were between 81% and 96%. For an AR-1 true

correlation structure, the selection rates for QIC were between 57% and 73% while

those of CIC ranged from 82% to 97%. They further established that the mag-

nitude of the first term in QIC is at its minimum when β is estimated under

working independence, resulting in bias towards selecting the independence corre-

lation structure while in contrast, CIC achieves its minimum for the true working

correlation structure in which V −1
i = cov(yi) by the Gauss-Markov theorem. How-

ever, they concluded that CIC cannot penalize for over-parameterization.

Gosho et al. [29] in their efforts to enhance selection of a proper correlation struc-

ture for GEE modeling proposed modifications to both QIC and CIC by replacing

the robust sandwich variance estimator (Vr) in the original QIC and CIC with bias

corrected variance estimators VKC by Kaurmann and Caroll [45], VMD by Mancl

and DeRouen [51] and VPA by Pan [61]. Using a simulation study, they estab-

lished that their proposed new criteria QICMD, QICKC , QICPA,CICMD,CICKC

and CICPA selected the true correlation structure with higher proportions regard-

less of ρ compared to the original QIC and CIC. They did not however assess the
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applicability of their criteria to the selection of covariates and relied on the evalu-

ation by Pan [60] in applying their criteria to the Air Polution Data set contained

in Stokes, Davis and Koch [73].

Jang [42] in her PhD dissertation on working correlation structure selection in

generalized estimating equations showed that if the the correct correlation struc-

ture was AR-1, the success rates of QIC were 22.1%, 23.9% and 24.9% for n=30,

50 and 100 respectively. If the true correlation structure was exchangeable, its

success rates were 10.5%, 10.9% and 10.8% for n=30, 50 and 100 respectively and

if the true correlation structure was unstructured , its success rates were 34.0%,

36.8% and 40.4% for n=30, 50 and 100 respectively. Further, she established that

QIC selected the independence structure the highest number of times when the

true structure was AR-1 and Exchangeable. However, when the true structure

was unstructured, QIC favoured AR-1 structure. She concluded that QIC’s suc-

cess rate in selecting the correct correlation structure was low hence it was not

powerful in choosing the correct correlation structure. One possible reason is that

it is not based on a likelihood that contains information about the correlation

among repeated measurements.

Chen and Nicole [12] in their study on the selection of working correlation struc-

ture in GEE via empirical likelihood considered the use of Empirical Likelihood

approach to select a working correlations for GEE models. They substituted the

empirical likelihood for the parametric likelihood in AIC and proposed an empiri-

cal likelihood version of AIC given as EAIC(s) = −2logRF (θ̂sG)+2dim(θs), where

s is the index of a candidate model parameterized by θs, (s=1,......S), and θ̂sG is

the GEE estimate associated with the working correlation structure Rs. Through

simulations they showed that EAIC was much powerful in the selection of the

correct correlation structure compared to other model selection criteria includ-

ing QIC, bootstrap-based criteria of minimum predictive mean squared error and

CIC. They observed that, the effective way of improving the estimation efficiency

within the GEE framework was to select among competing GEE models the one
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that assumes the correct working correlation structure for repeated measurements.

However, they did not establish whether their assertions could actually result to

gain in efficiency of the GEE estimator.

2.4 Selection of covariates for the Mean Structure in GEE

One of the earliest model selection approach established for GEE was sequential

testing with Wald-Z-tests on individual coefficients. It is used to test the hypoth-

esis H0 : βk = 0 and is calculated using the estimate of β̂k and dividing it by the

model based standard error estimate of β̂k. However, the Wald statistic has poor

properties as | β̂k | gets large hence var(β̂k) is replaced with the GEE robust vari-

ance estimate Ṽ ar(β̂k). This gives a measure of partial association which under

the null is approximately a Chi-Square with one degree of freedom. For a GEE

model E(Yij | Xij) = g(XT
ijβk), the Wald test to test H0 : β1 = β2 = ... = βk = 0

can be used to form an R2 statistic. However, testing alone was too simplistic

for choosing predictive models as it provides only a single supposedly best model.

This can be overcome by the use of penalized model fit statistics like AIC which

can be used to compare non-nested models, and can also be used to find lists of

plausible models (Cantoni et al. [8]).

Zheng [84], suggested the use of marginal R2 (R2
m) as measure of model fit for GEE

models which was an extension of classical R2. However, this measure ignored

correlation and did not attempt to weight the residuals, even though β̂ comes

from a model with working covariance weights. Further, R2
m cannot generally

be used for variable selection purposes, since like classical R2 it would lead to

choosing the largest model available.

Cantoni et al. [8], suggested a generalization of Mallows’ Cp for GEE models, for

estimating predictive risk under a general weighted loss function. The weights can

be adjusted in order to account for correlation within subjects as well as down

weighting unusual observations, potentially providing robustness against outliers
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and model misspecification. They derived a GCp statistic to estimate the resulting

risk function. The resulting statistic however required Monte Carlo approximation

to evaluate.

Pan [60] considered the problem and extended the classical derivation of AIC which

involved estimating the relative Kullback-I divergence of each likelihood model

from an unknown true model, to a GEE setting. In GEE, the likelihood is not

specified, but a quasi-likelihood may be implicitly specified. He adapted the orig-

inal derivation of the AIC, which involved estimating the expected model-based

log-likelihood under the true model, to instead estimate an expected working-

independence quasi-likelihood. This resulted in the quasi-likelihood information

criteria (QIC) given in equation (1.106). Even though he established that QIC

performed very well in variable selection, its dependence on working independence

impedes its performance in cases of very strong correlation. In his simulation, Pan

[60] only concentrated in determining the frequency of selection for the true model

by QIC. He assumed the independence, compound symmetry and AR-1 correla-

tion structures and did not determine the type I and II error rates, sensitivity and

sparsity of QIC. The study sought to fill this void by studying the properties of

QIC in selecting covariates for the mean structure in GEE.

Hardin and Hilbe [32] considered a modified version of QIC and established

through simulations that QICHH just like QIC tends to be more sensitive to

changes in the mean structure than changes in the covariance structure hence

suitable in the selection of covariates.

While trying to address the limitation of GEE reliance on a working covariance

matrix R(ρ), Qu et al. [63] suggested the quadratic inference functions (QIF)

to avoid explicit estimation of nuisance parameters. He proposed that efficiency

might be improved by directly minimizing the quadratic inference function (QIF)

Qn(β) = nmT
n Ĉ
−
nmn, where Ĉn(β) = Cov(mn(β)). However, Chen [12] compared

the efficiency of the estimates resulting from GEE with the correct correlation

structure and the estimates resulting from the use QIF and established that using
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GEE with the true correlation structure resulted to greater efficiency. Likewise,

Jamshid et al. [41] using a continuous response variable established that with a

mis-specified AR-1 correlation structure, relative of efficiency of the parameter es-

timates of QIF over GEE was 1.23 and for a mis-specified exchangeable structure,

it was 1.001. However, they established similar results when the correlation struc-

ture was correctly specified hence underscoring the importance of using the correct

correlation in GEE model estimation. Similar results to Qu [63] were obtained

by Adefowope et. al [1] who established a relative efficiency value of 1.1117 for

AR-1 structure and 1.3082 for true exchangeable structure an indicator that QIF

provided more efficient parameter estimates than GEE. This view was in contrast

with the results by Chen and Nicole [12].

In trying to improve efficiency of GEE estimates, Erfanal et al. [22] examined

the impact of height on the occurrence of Type II diabetes, and applied QIC

to select the relevant covariates and CIC to select the appropriate correlation

structure. Based on QIC values, the model with covariates height, education

level and gender was selected as the best model and based on the CIC values,

the unstructured correlation structure was preferred for the data. Their study

showed that there existed a statistically significant inverse relationship between

height of an individual and the development of Type II diabetes. However, in

their study they did not assess the efficiency of estimates resulting from the model

selected through the combined CIC-QIC approach compared to when QIC is used

to select both the correlation structure and covariates and this forms the basis for

the hybrid methodology proposed in the study.

The approach employed by Erfanul et al. [22] followed recommendations by Jang

[42] who iterated that no single model selection criteria exists that can select

covariates, correlation structure and variance function in GEE modeling with high

rates of success and recommended that future studies should focus on combining

proposed model selection criteria so as to develop model selection strategies that

could improve optimality of the selected GEE models. Optimality of the models
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means that the model selected by QIC should result to minimum variance unbiased

estimators (MVUE). Further, Jianwen et al. [43] underscored the importance of

hybrid methodologies by establishing that model selection criteria could only be

effective in selecting covariates when the correlation structure is correctly specified.

They further observed that GEEs with appropriate ρ̂ have good efficiency.

Fan and Li [23] observed that a good model selection criteria should identify the

correct model asymptotically with probability one provided that the correct model

is included in the set of candidate models. Likewise, Dziak [19] observed that, for

consistent model selection, two properties are required: sensitivity and sparsity.

Sensitivity implies that the model selection criteria retains all of the coefficients

which should be retained with a probability approaching one hence reduced false

negative rates while sparsity implies that the model selection criteria should delete

all of the coefficients which ought to be deleted with probability approaching one

hence reduce the false positive rates. Little studies have focused of establishing

the consistency of QIC in selecting the covariates for the mean structure despite

the increased routine use of QIC in model selection as recommended by Pan [60].

For instance, Wang et al. [76] indicated that in 2014, there were 111 citations of

Pan’s [60] article with over 80% of them being in non-statical journals and in the

first eight months of 2015, there were still over 100 citations of the article majorly

in medical journals. They asserted that the increased use of QIC is without peril

hence the need for studies to bring out a better understanding of QIC so that

mitigation measures can be developed to overcome its shortcomings and improve

on statistical performance of selected models.

2.5 Summary

From the literature on selection of the working correlation structure, it was es-

tablished that the RJ criterion has high sensitivity in identifying exchangeable

correlation structure but it has low specificity, which limits its usefulness, even in

comparisons of structures with only one parameter (e.g.exchangeable and AR-1).
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The SC criterion performs even worse than the RJ criterion in correctly identifying

the underlying true covariance structure. The QIC criterion generally performs

better than the SC and RJ criterion in identifying the working correlation struc-

ture. However, similar to the SC criterion, the quasi-likelihood under indepen-

dence assumption which is the first term in QIC, dilutes the impact of different

working correlation structures on this measure, while retaining sensitivity to dif-

ferences in the mean structures of competing models. It was shown by Hin and

Wang [34] that excluding the first term in QIC improved the correct identification

rates of the covariance structure. Barnett et al. [5] showed that QIC criterion

performed very poor when the unstructured correlation structure was included in

a set of candidate models. Little attention has however been drawn to the con-

sistency properties of QIC since most studies to date have majorly compared the

performance of QIC with other model selection criteria in which QIC has been

established to exhibit poor performance in the selection of the working correlation

structure. The selection of misspecified working correlation structure is bound to

cause loss of efficiency in the GEE estimates (β̂G). The study sought to address

the issue by examining the properties of QIC and determine whether the selection

of the true correlation structure improves efficiency of β̂G and efficiency of the

overall model selected by QIC.
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CHAPTER 3

PROPERTIES OF QIC IN SELECTING THE TRUE

CORRELATION STRUCTURE FOR GENERALIZED

ESTIMATING EQUATIONS

3.1 Introduction

In this chapter, using simulations, we investigated the properties of QIC in select-

ing the correct correlation structure in GEE relative to changes in the number of

subjects (n), measurements per subject (m) and degree of within-subject correla-

tion (ρ). We particularly investigated its consistency in selecting the true corre-

lation structure and established conditions under which the consistency property

held. In this regard, consistency implied that with probability approaching one,

QIC selected the true correlation structure as the sample size tended to infinity.

To formally state the consistency property, let ω be the set working correlation

structures (R(ρ)) that involves at least one correct correlation structure. Let R0

be the true correlation structure and R∗ be the correlation structure selected by

QIC. For theoretical purposes, we divide ω into over-parameterized set ω+ and

the under-specified set ω− i.e.

ω+ = {R ∈ ω|∃ ρ ∈ Θ s.t. R(ρ) = R0} (3.1)

Where Θ is the parameter space, which is a compact set and ω− = ω \ ω+. ∀

R ∈ ω+, we assume that there exists ρ ∈ Θ0 such that R(ρ) = R0, where Θ0 is in

the interior of Θ.

Assuming the same sufficient conditions for consistency as contained in Shinpei

[70]

(C1) the GEE mean structure is correctly specified
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(C2) ∀ R ∈ ω,
√
n(β̂ − β) = Op and

√
n(φ̂− φ) = Op

(C3) h(ηit) is differentiable

(C4) ∀ R ∈ ω+,
√
n(ρ̂− ρ) = Op and R(.) is a differentiable function at ρ where ρ

satisfies R(ρ)=R0

then;

Pr(R∗(n) = R0) = 1− Pr(R∗(n) 6= R0)

= 1−
∑

R∈ω\{R0}
Pr(R∗(n) = R)

= 1−
∑

R∈ω+\{R0}
Pr(R∗(n) = R)−

∑
R∈ω−

Pr(R∗(n) = R) (3.2)

If:

lim
n→∞

Pr(R∗(n) = R) = 0,∀R ∈ ω+ \ {R0} (3.3)

and

lim
n→∞

Pr(R∗(n) = R) = 0, ∀R ∈ ω− (3.4)

then;

lim
n→∞

Pr(R∗(n) = R0) = 1 (3.5)

This implies that the probability of selecting the true correlation structure (R0)

converges to one as n tends to infinity. In this regard QIC will be regarded

consistent in selecting the true structure.

If:

lim
n→∞

∑
R ∈ ω \ {R0}

Pr(R∗(n) = R) = 1 (3.6)

then;

lim
n→∞

Pr(R∗(n) = R0) = 0 (3.7)

This implies that the probability of selecting the true correlation structure (R0)

converges to zero hence the selection criteria will be regarded not to be consistent.
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3.2 Simulation Settings

The simulation settings were as follows:

(a) The response vector Yi = (yi1, ...., yit) was assumed to be a Bernoulli response.

i=1,2....n, where n is the total number of subjects. In the simulation studies

n = {20, 30, 50, 100, 200}; t=1,2,...m; m is the number of observations per

subject. In the simulation studies m = {3, 6, 9}. The values of n, m and ρ in

the simulation settings were improvements to those adopted by Pan [60] and

Gosho et al. [29]. This was done determine whether increasing the values of

n, m and ρ improves the performance of QIC in selecting the true structure.

(b) For each subject i, its covariates were Xit=[X1it, X2it]T . X1it ∼ N(0, 1) and

X2it ∼ Bernoulli(0.5) and a within subject correlation structure dictated by

R0 true correlation structures.

(c) The true correlation structures (R0) considered in the simulation were ex-

changeable (ρ), AR-1 (ρ): ρ = {0.2, 0.5, 0.8} and the unstructured correlation

matrix. The unstructured matrix was as follows:

R(ρ)UN =



1.00 0.80 0.60 0.14 0.10 0.23

0.80 1.00 0.70 0.18 0.17 0.18

0.60 0.70 1.00 0.25 0.24 0.22

0.14 0.18 0.25 1.00 0.45 0.22

0.10 0.17 0.24 0.45 1.00 0.16

0.23 0.18 0.22 0.22 0.16 1.00


The matrix was the same as that used by Jang [42]. For the unstructured

working correlation structure, the number of measurements per subject (m)

were taken to be 3, 5 and 6.

(d) The binary response yit has the conditional expectation µit:

µit = E(yit|X1it, X2it)

µit can be connected with the covariates through:

logit(µit) = β0 + β1X1it + β2X2it; where i = 1...n and t = 1...m.
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(e) The coefficients were set to be β0 = 0.25 = −β1 = −β2 which were similar to

the ones assumed in Pan [60]. These were adopted to facilitate comparison

of his study results with the study results.

(f) We considered two sets of correlation structures: ω1 = {IN,EX,UN,AR−1}

and ω2 = {IN,EX,AR − 1}. All the correlation matrices were assumed to

be positive definitive.

(g) All simulations were performed using R version 3.6.0 based on the gee, geep-

ack, MASS, MESS and MuMIn R software packages. Correlated binary data

were generated using the bindata (Friedrich et al.[27]) and SimCorMultRes

(Touloumis[75]) library packages.

(h) The joint distribution of the Yi was simulated using the procedure suggested

by Touloumis[75] in the SimCorMultRes package.

(i) A sample of N = n ∗mi independent simulated observations with response

vector of size m, true correlation structure (R0) and distribution D were

generated under the marginal mean and (R0). The model was fit under

the correct marginal mean model and variance function assumptions. The

number of simulation replications were 1000. This was obtained using the

procedure suggested by Morris et al.[54]. Our desired coverage probability

was 95% such that the standard normal variate (Zc=1.96) and level of pre-

cision (d) was 0.01. The sample standard deviation of the response variable

(SEȳ) obtained from a sample of 200 preliminary runs was 0.16134 hence

nsim = (Zc×SEȳ
d

)2 = (1.96×0.16134
0.01 )2 = 999.999 ≈ 1000, where nsim was the

simulation sample.

3.3 Simulation Results of the Working Correlation Structure Selection

by QIC from 1000 Replications: ω1={IN, EX, AR-1, UN}

In this section, the correct identification rates of QIC under the different true

correlation structures are presented. (See Appendix B.1)

60



3.3.1 Selection Rates of the True AR-1 Correlation Structure by QIC

Table 3.1 present the correct identification rates of QIC for the AR-1 true correla-

tion structure for n = {20, 30, 50, 100, 200}, m = {3, 6, 9} and ρ = {0.2, 0.5, 0.8}.

Table 3.1: The number of times each of the working correlation structures is selected

out of 1000 simulation runs by QIC: R0 = AR− 1
m=3 m=6 m=9

R0 n IN EX AR-1 UN IN EX AR-1 UN IN EX AR-1 UN

AR-1 20 318 129 207 346 303 96 266 335 297 99 273 331

ρ = 0.2 30 299 108 244 349 301 80 272 347 285 84 277 354

50 215 109 294 382 249 77 318 356 205 71 323 381

100 186 107 306 401 193 68 324 415 173 66 343 418

200 152 111 333 404 181 53 347 419 175 53 356 416

AR-1 20 274 169 219 338 267 129 263 341 239 123 269 363

ρ = 0.5 30 199 172 253 376 258 131 273 338 236 125 281 358

50 178 146 309 367 192 134 320 354 195 103 327 375

100 178 113 321 388 163 97 355 375 174 97 344 385

200 182 75 339 404 133 89 377 401 158 97 366 378

AR-1 20 326 115 221 338 266 130 259 345 211 127 288 374

ρ = 0.8 30 307 101 259 333 248 114 279 359 200 108 316 376

50 225 93 321 361 171 103 348 378 176 93 351 380

100 173 76 356 395 125 87 387 404 114 93 388 405

200 145 71 387 397 110 67 407 416 107 49 419 425

The results of the analysis show that when the the correct correlation structure

was AR-1 (ρ=0.2) and m=3 , the success rates of QIC were 20.7%, 24.4%, 29.4%

30.6% and 33.3% for n=20, 30, 50, 100 and 200 respectively. When the number

of measurements per subject were increased to 6, the success rates of QIC for

the respective samples were 26.6%, 27.2%, 31.8% 32.4% and 34.7%. When the

number of measurements per subject were further increased to 9, the success rates

of QIC for the respective samples were 27.3%, 27.7%, 32.3% 34.7% and 35.6% .

The results indicate that the frequency of correct identification of the true AR-
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1 correlation structure increased with the number of measurements per subject

although in a higher rate when n ≥ 30. The increase was on average 10% when

number of measurements per subject increased from 3 to 6 and 3% when they are

increased from 6 to 9.

When the correct correlation structure was R0 = AR − 1(ρ = 0.5) and m=3,

the success rates of QIC were 21.9%, 25.3%, 30.9% 32.1% and 33.9% for n=20,

30, 50, 100 and 200 respectively. When the number of measurements per subject

were increased to 6, the success rates of QIC were 26.3%, 27.3%, 32.0% 35.5%

and 37.7% for n=20, 30, 50, 100 and 200 respectively. When the number of

measurements per subject were increased to 9, the success rates of QIC are 26.9%,

28.1%, 32.7% 34.4% and 36.6% for n=20, 30, 50, 100 and 200 respectively. The

study results indicate that increasing the level of correlation to 0.5 resulted to

an overall increase in the success rates of QIC in selecting the true correlation

structure by approximately 5%.

When the the correct correlation structure was AR-1 (ρ=0.8) and m=3, the success

rates of QIC were 22.1%, 25.9%, 32.1% 35.6% and 38.7% for n=20, 30, 50, 100 and

200 respectively. When the number of measurements per subject were increased to

6, the success rates of QIC were 25.9%, 27.9%, 34.8% 38.7% and 40.7% for n=20,

30, 50, 100 and 200 respectively. When the number of measurements per subject

were increased to 9, the success rates of QIC were 28.8%, 31.6%, 35.1% 38.8% and

41.9% for n=20, 30, 50, 100 and 200 respectively which also indicated an increase

in the frequency of correct identification of the true correlation structure as the

level of correlation and number of measurements per subject increased.

The finding that QIC identification rates of the correct correlation structure in-

creased with increase in the level of correlation corroborates assertions by Wang

and Carey [79] that when the level of correlation is high, the true correlation

structure is to a greater extent differentiable from the other working correlation

structures hence increased probabilities of identification. It is also notable that

regardless ρ, the success rates of QIC were greater than 30% when n ≥ 30 and the
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rate of selecting the AR-1 true correlation structure generally increased with n, m

and ρ. The study findings were also similar to findings by Barnett et. al[5] who

established that QIC performed poorly with a weak correlation structure and did

much better when the within-subject correlation increased to moderate level.

Further, the results indicate that when R0=AR-1, QIC favoured the unstructured

correlation structure which increased as the degree of correlation. This signaled

QIC’s preference for over-parameterized working correlation structures. This is in

line with assertions by Shinpei [71] that QIC does not penalize for the number

of correlation parameters estimated. The results also show that QIC rarely chose

under-parameterized structures. For instance, when R0 was AR-1, QIC selected

the independence or exchangeable correlation structures � 30% of the time. The

results are further presented in Figure 3.1.

Figure 3.1: Correct Identification Rates of the True AR-1 Correlation Structure out of

1000 Replications
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The results indicate that the performance of QIC in selecting the AR-1 true cor-

relation structure improves with the degree of correlation. It is highest in all cases

for a strong correlation ρ=0.8 followed by moderate correlation ρ=0.5. Its perfor-

mance is lowest when their is a weak within-subject correlation. It is notable that

simultaneously increasing the degree of correlation and the number of measure-

ments per subject makes it more easier for QIC to select the correct correlation

structure.

Simulation results from Gosho et al. [29] are reorganized into Table 3.2 so that

we can make further comparison on the performance of QIC in selecting the AR-1

true working correlation structure. They assumed three levels of correlation 0.1,

0.3 and 0.5 and 4 and 8 measurements per subject. Also, they considered sample

sizes of 10, 30 and 100 and the independence, AR-1 and exchangeable correlation

structures as probable choices and never included over-parameterized structures

such as the unstructured correlation structure.

Table 3.2: Selection Rates for AR-1 true correlation structure by Gosho et al. [29]
m=4 m=8

R0 n IN EX AR-1 IN EX AR-1

AR-1 10 351 328 321 333 326 342

(0.1) 30 251 352 398 247 358 426

100 228 307 465 199 289 480

AR-1 10 320 325 355 247 281 472

(0.3) 30 211 252 537 193 251 556

100 128 232 640 115 211 674

AR-1 10 316 342 342 218 291 492

(0.5) 30 152 242 607 133 227 640

100 107 218 675 93 187 720

From Table 3.2, it is noted that regardless of the degree of correlation, the propor-

tion of selecting the true correlation structure is quite low when the sample size

and measurements per subject are small and it increased with an increase in n, m

and ρ up to a high of 72% when n=100, m=8 and ρ = 0.5. This finding is similar
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to the study finding which showed an increase in QIC’s success rate with increase

in n, m and ρ. In Gosho et al.[29], the success rates of QIC ranged from 32.1%

to 72% indicating that the probability of QIC selecting the true AR-1 correlation

approached one as n → ∞ compared to the study success rates which ranged

from 20.7% to 41.9% indicating that the the probability of QIC selecting the true

AR-1 correlation approached one as n→∞ but at a slower rate hence may need

unrealistically large number of subjects. This implies that the sample size of 200

is still not large enough for the asymptotic consistency to be achieved.

Stability analysis results are illustrated in Figures 3.2 and 3.3

Figure 3.2: Stability Analysis: Probability of Selecting AR-1(0.2) Structure

Figure 3.3: Stability Analysis: Probability of Selecting AR-1(0.8) Structure

From Figure 3.3, it is noticeable that for ρ = 0.8, m=9 and n=705, Pr(R∗(n) =

R0) ' 0.7 and for ρ = 0.2, m=3 and n=832, Pr(R∗(n) = R0) ' 0.65(Figure 3.2).

The results indicate that at ρ = 0.8 and m=9 allowing for a 95% upper bound,

it will require at least n=705 for Pr(R∗(n) = R0) → 1 as n → ∞ and that at
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ρ = 0.2 and m=3 allowing for a 95% upper bound, it will require at least n=832

for Pr(R∗(n) = R0)→ 1 as n→∞. The results show a slow rate of convergence

in probability to one for QIC’s selection of the true AR-1 structure.

3.3.2 Selection Rates of the True Exchangeable Structure by QIC

Results of this simulation study were used to assess the performance of QIC in

selecting the true exchangeable correlation structure for different levels of ρ, n and

m. The selection frequency counts of the independence, AR-1, exchangeable and

unstructured correlation structures out of the 1000 independent replications are

tabulated in Table 3.3

Table 3.3: Simulation Results for Selection of true exchangeable correlation structure
m=3 m=6 m=9

R0 n IN EX AR-1 UN IN EX AR-1 UN IN EX AR-1 UN

EX 20 224 105 205 466 189 107 192 509 207 106 109 568

ρ = 0.2 30 203 94 254 449 181 68 189 563 193 71 192 544

50 241 80 282 397 170 68 261 501 181 69 247 503

100 264 72 336 328 241 65 284 410 211 61 291 437

200 270 63 384 283 300 66 320 314 233 63 335 371

EX 20 239 194 194 373 286 211 164 339 256 204 119 391

ρ = 0.5 30 267 170 218 345 299 222 136 343 256 197 178 356

50 287 136 269 308 295 157 207 341 311 138 200 341

100 250 95 325 330 313 97 273 317 313 101 237 349

200 193 54 394 359 247 58 359 336 323 74 251 346

EX 20 250 103 210 426 308 123 156 413 311 121 205 363

ρ = 0.8 30 241 99 235 425 321 107 173 399 292 113 244 351

50 269 91 251 389 316 92 199 393 287 86 294 333

100 215 83 301 401 312 88 203 397 281 73 330 316

200 137 76 356 433 278 79 239 404 263 61 377 299

The results in Table 3.3 show that when the correct correlation structure was

exchangeable (ρ=0.2) and m=3 , the success rate of QIC were 10.5%, 9.4%, 8.0%
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7.2% and 6.3% for n=20, 30, 50, 100 and 200 respectively. When m is increased

to 6, the success rates of QIC were 10.7%, 6.8%, 6.8% 6.5% and 6.6% for n=20,

30, 50, 100 and 200 respectively. When m is further increased to 9, the success

rates of QIC were 10.6%, 7.1%, 6.9% 6.1% and 6.3% for n=20, 30, 50, 100 and 200

respectively. The results indicate that the frequency of correct identification of the

exchangeable true correlation structure was higher for small samples and tended

to decrease with increase in sample size. Increasing the number of measurements

per subject did not seem to significantly improve the performance of QIC.

When the level of correlation(ρ) was increased to 0.5, the frequency of correct

identification when m=3 were 19.4%, 17.0%, 13.6% 9.5% and 5.4% for n=20, 30,

50, 100 and 200 respectively. When m was increased to 6, the success rates were

21.1%, 22.2%, 15.7% 9.7% and 5.8% for the respective sample sizes and when m

was increased to 9, the success rates were 20.4%, 19.7%, 13.8% 10.1% and 7.4%

for the respective sample sizes.

When the level of correlation was further increased to 0.8 which is considered

strong, the frequency of correct identification when m=3 were 10.3%, 9.9%, 9.1%

8.3% and 7.6% for n=20, 30, 50, 100 and 200 respectively. When the number

of measurements per subject is increased to 6, the success rates become 12.3%,

10.7%, 9.2% 8.8% and 7.9% for n=20, 30, 50, 100 and 200 respectively. When the

number of measurements per subject increases to 9 the success rates are 12.1%,

11.3%, 8.6% 7.3% and 6.1% for n=20, 30, 50, 100 and 200 respectively. The re-

sults indicated a marginal increase in the frequency of correct identification of the

exchangeable true correlation structure with increase in the level of correlation.

However, the increase for small samples was much higher than for larger samples.

Likewise, the success rates improved slightly with increase in the number of mea-

surements per subject. Overall, poor performance of QIC in selecting the true

exchangeable correlation structure was established with QIC preferring the un-

structured correlation structure most of the time. QIC selection rates established

in the study were similar to those of Jang [42] who established QIC’s performance
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to be in the range of 0% to 20% and decreased as n increased. The results were

also similar those of Barnett et al. [5] who established correct identification rates

of 25-30% for moderately correlated exchangeable structure. Jang [42] asserted

that such performance was due to the estimation of the over-parameterized struc-

ture which becomes more precise as n increases hence increasing the likelihood

of the unstructured matrix being chosen as n increases. Deroche [16] established

similar success rates for the correct exchangeable correlation structure which were

less than 50% of the time under all combinations of m and ρ. She established that

when the number of measurements on a single person gets large, Pan’s QIC had

more difficulty selecting the correct correlation structure. This was also true when

the degree of correlation increased. The results are further illustrated in Figure

3.4.

Figure 3.4: Identification rates by QIC for the true exchangeable correlation Structure

Figure 3.4 shows that the frequency of QIC selecting the exchangeable correlation
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structure declined with increase in sample size such that as n→∞, the probabil-

ity of QIC selecting the exchangeable correlation structure approached zero. The

results indicated that QIC preferred the exchangeable structure for small samples

and the decline was in spite of the increase in degree of correlation and number

of measurements per subject.

The study results were compared to simulation results by Gosho et al. [29] and

Pan [60] which are organized in Table 3.4 below:

Table 3.4: Results by Gosho et al. [29] and Pan[60] for Exchangeable Structure
m=3 m=4 m=8

AUTHOR R0 n IN EX AR-1 IN EX AR-1 IN EX AR-1

GOSHO EX(0.1) 10 358 319 323 232 450 318

30 253 408 339 189 503 309

100 208 510 282 84 618 299

EX(0.3) 10 290 319 392 263 330 407

30 211 536 253 113 593 294

100 134 676 190 75 650 275

EX(0.5) 10 324 356 320 317 351 333

30 177 607 216 126 602 272

100 136 711 153 112 653 235

PAN EX(0.5) 50 138 678 184

100 140 721 139

The results by Gosho et al. [29] indicated that the selection rates of the exchange-

able true correlation structure increased as the sample size, number of measure-

ments and level of correlation increased. The success rates of QIC ranged from

31.9% when n=10, m=4 and ρ = 0.1 to 63.5% when n=100, m=8 and ρ = 0.5.

Their results were dissimilar to the study findings which showed a declining trend.

This can be attributed to the exclusion of the unstructured correlation structure.

The results by Pan [60] who like Gosho et al. [29] only considered independence,

exchangeable and AR-1 correlation structure and R0 = EX with ρ = 0.5 and

m=3 showed the success rates of QIC to be 67.8% and 72.1% for sample sizes of
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50 and 100 respectively. For the same settings, the study results were 13.6% and

9.5% respectively. These were very dissimilar results. Considering that the set of

correlation structures considered in our study included the unstructured correla-

tion structures which was not considered in the studies by Pan [60] and Gosho

et al. [29], the performance of QIC in selecting the parsimonious exchangeable

structure is dependent on the inclusion or exclusion of the over-parameterized un-

structured correlation structure. Its inclusion seriously reduced its success rates

while its exclusion greatly improved the success rates.

3.3.3 Selection Rates of the True Unstructured Structure by QIC

Frequencies of selecting the unstructured correlation structure by QIC from the

1000 independent replications are shown in Table 3.5;

Table 3.5: Selection rates of QIC for Unstructured true correlation structure
m=3 m=5 m=6

IN EX AR-1 UN IN EX AR-1 UN IN EX AR-1 UN

20 341 257 177 225 272 180 271 277 292 170 201 337

30 320 256 177 282 267 188 258 287 259 192 196 353

50 322 248 122 258 273 159 247 321 233 164 186 417

100 303 255 128 316 258 148 227 367 237 171 135 457

200 307 234 113 345 225 137 244 394 198 155 144 503

The simulation results indicated that when the correct correlation structure was

unstructured and m=3 , the success rates of QIC were 22.5%, 25.2%, 25.8% 31.6%

and 34.5% for n=20, 30, 50, 100 and 200 respectively. When m was increased to

5, the selection rates were 27.7%, 28.7%, 32.1% 36.7% and 39.4% for n=20, 30,

50, 100 and 200 respectively. The study results were slightly higher than those

obtained by Jang[42] who established success rates of between 17.1% and 28.0%.

The difference in performance can be attributed to inclusion of the Toeplitz struc-

ture. When m was further increased to 6, QIC’s selection rates were 33.7%, 35.3%,

41.7% 45.7% and 50.3% for n=20, 30, 50, 100 and 200 respectively. For the same
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m=6, Jang[42] obtained success rates of 21.9%, 21.2%, 26.6% 29.0% and 35.4%

which are slightly lower than our study results. The study findings indicate that

the frequency of correct identification of the unstructured true correlation struc-

ture tended to increase as the sample size increased and number of measurements

per subject. The results are also presented in Figure 3.5

Figure 3.5: Simulation Results for WCS Selection: R0=Unstructured

The graphical presentation show that the success rates of QIC in selecting the

unstructured correlation structure were highest when the number of measurements

per subject was 6 (highest) for all the sample sizes and were lowest when m

was 3. This implies that QIC performance in selecting RUN when it was the

true correlation structure increased with increase in the sample sizes and that

RUN was preferred when the sample size was sufficient to estimate the 0.5m(m-1)

parameters. The 34-50% success rates for m=6 were close to the 40-56% success

rates established by Barnett et al. [5] for m=8. The result also indicated that

QIC favours over-parameterized correlation structures with a probable reason of

its inability to penalize for the number of correlation parameters.
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3.4 Simulation Results of the Performance of QIC in Selecting the

True Correlation Structure: ω2={IN, EX, AR-1}

The correct identification rate for QIC of the true correlation structure out of

1000 independent simulations are determined with the candidate set being ω2 =

{IN,EX,AR − 1} and R0 ∈ ω2. In this case over-parameterized correlation

structures are not considered. In the simulation, ρ = {0.2, 0.5} and m = {3, 6}.

Limiting to the two values of m and degrees of correlation was to facilitate com-

parison of our results with those by Gosho et al.[29] and Pan[60] who adopted

similar settings.

3.4.1 Simulation Results on the Performance of QIC in Selecting the

True AR-1 Correlation Structure

The number of times each correlation structure is selected from 1000 simulation

runs when the true correlation structure was AR-1 are shown in Table 3.6

Table 3.6: Simulation Results when R0 = AR− 1|R0 ∈ ω2

R0 n m=3 m=6

IN EX AR-1 IN EX AR-1

AR-1 (ρ = 0.2) 20 283 300 417 223 243 534

30 233 303 464 173 290 537

50 190 343 467 189 198 613

100 143 280 577 143 150 707

200 144 206 650 90 160 750

AR-1(ρ = 0.5) 20 150 327 523 150 196 654

30 130 23 607 120 140 740

50 130 210 660 110 90 800

100 117 276 707 80 107 813

200 100 177 723 54 126 820

The simulation results indicate that for ρ = 0.2 and m=3, the selection rates of

QIC were 41.7%, 46.4%, 46.7%, 57.7% and 65.0% for sample size of 20, 30, 50,
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100 and 200 respectively. When ρ = 0.5 for the same number of measurements

per subject, QIC’s selection rates for the true structure were 52.3%, 60.7%, 66.0%,

70.7% and 72.3% for the respective sample sizes of 20, 30, 50, 100 and 200. The

results indicated that the selection rates increased with the increase in sample

size and level of correlation. For m=6, the selection rates of the true correlation

structure at ρ = 0.2 were 53.4%, 53.7%, 61.3%, 70.7% and 76.1% and at ρ = 0.5,

they were 65.4%, 74.0%, 80.3%, 80.7% and 87.0% for the respective sample sizes

of 20, 30, 50, 100 and 200. The results indicate that highest performance of QIC in

selecting the true AR-1 correlation structure is achieved when ρ = 0.5 and m=6.

In this quadrant the probability of QIC selecting the AR-1 correlation structure

is more nearer to one hence consistency of QIC is inferred. This indicates that

simultaneously increasing the number of subjects, measurements per subject and

the degree of correlation increases the probability of QIC selecting the true AR-1

correlation structure. The results were similar to those of Gosho et al. [29] who

established an increasing trend for the selection of AR-1 to a high of 72% for

ρ = 0.5 and m=8 (Table 3.2). The results are further illustrated in Figure 3.6.

Figure 3.6: QIC’s Selection Frequency of the True AR-1 Correlation Structure when

only Parsimonious Structures are Considered
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3.4.2 Simulation Results on the Performance of QIC in Selecting the

True Exchangeable Correlation Structure

The selection frequencies of each correlation structure from 1000 simulation runs

are shown in Table 3.7

Table 3.7: Simulation Results when R0 = EX|R0 ∈ ω2

R0 n m=3 m=6

IN EX AR-1 IN EX AR-1

EX(ρ = 0.2) 20 268 342 390 328 454 217

30 260 410 330 297 509 194

50 300 460 240 266 586 148

100 150 620 230 203 677 120

200 145 665 190 187 753 60

EX(ρ = 0.5) 20 286 495 219 237 690 73

30 250 527 223 213 733 53

50 208 605 187 157 803 40

100 177 710 113 173 807 20

200 127 770 103 110 870 20

When ρ = 0.2 and m=3, the selection rates of QIC were 34.2%, 41.0%, 46.0%,

62.0% and 66.5% for respective sample sizes of 20, 30, 50, 100 and 200. Increasing

the level of correlation to 0.5 and maintaining m at 3, QIC’s selection rates for

the true structure increases to 49.5%, 52.7%, 60.5%, 71.0% and 77.0% for the

respective sample sizes of 20, 30, 50, 100 and 200. The results showed an increase in

selection rates with increase in sample size and level correlation. For m=6 and ρ =

0.2, the selection rates of the true correlation structure were 45.4%, 50.9%, 58.6%,

67.7% and 75.3% for the respective samples of 20,30, 50, 100 and 200 while for m=6

and ρ = 0.5, the selection rates were 69.0%, 73.3%, 80.3%, 80.7% and 87.0% for the

respective sample sizes. This indicates that simultaneously increasing the number

of subjects, measurements per subject and the degree of correlation increases the

probability of QIC selecting the true exchangeable correlation structure. The
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probability approaches one as n→∞ and are similar to those of Gosho et al. [29]

and Pan [60] in Table 3.4. The results are further illustrated in the Figure 3.7.

Figure 3.7: QIC’s Selection Frequency of the True Exchangeable Correlation Structure

when only Parsimonious Structures are Considered

The results from Figures 3.6 and 3.7 demonstrated that when the set of only

parsimonious correlation structures, ω2 = {IN,EX,AR − 1} was considered and

R0 ∈ ω2, QIC asymptotically selected the correct working correlation structure

with a probability of one for large n compared to when the selection set included

over-parameterized correlation structures.

Conjecture 3.4.1. Let ω1 = {IN,EX,AR−1, UN} and ω2 = {IN,EX,AR−1, }

be sets of working correlation structures considered for selection by QIC. Let R0 be

the true correlation structures and R∗ be the correlation structure selected. Then;

(a) If ω1 is the set of possible correlation structures considered such that R0 ∈ ω1,

then; Pr(R∗(n) = R0)→ 1 as n→∞ if and only if R0 = {AR− 1, UN} but

it is � 1. In this case we say that QIC is weakly-Consistent.

(b) If ω2 is the set of possible correlation structures considered such that R0 ∈ ω2,

then Pr(R∗(n) = R0)→ 1 as n→∞ hence QIC is said to be consistent.

(c) Inclusion of over-parameterized structures such as the unstructured in the

set of correlation structures considered for selection significantly reduces the
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probability of selecting R0. On the other hand, considering only the parsimo-

nious structures significantly improves the probability of selecting R0. i.e. if

q is the number of correlation parameters and R0 ∈ (IN,EX,AR− 1), then

as q −→ [0.5m(m− 1)], Pr(R∗(n) = R0) < ∑
R∈ω+\{R0} Pr(R∗(n) = R)

3.5 Proposed Modification of the Quasi-Likelihood Information Cri-

teria

From Conjecture 4.2.1, having ω1 = {IN,EX,AR− 1, UN} as the set of possible

correlation matrices impedes the performance of QIC in selecting the parsimo-

nious true correlation structures R0; R0 ∈ {IN,EX,AR − 1}. This as observed

by Barnet et al. [5] may be as a result of QIC not being able to penalize for the

number of parameters estimated. This could also be attributed to the establish-

ment by Yu and Shinpei [82] that QIC(R) as an estimator of the risk function

Ey[Ey∗{−2 ∑n
i=1

∑m
t=1Q(y∗; β̂)}] where y∗i = (y∗i1, .., y∗im) is m-dimensional random

vector independent of yi, utilizes the independence assumption hence is not re-

flective of the correlation between responses. Further, the log quasi-likelihood

function and the model based variance estimator (I(β̂I |y)) are estimated using

the independent assumption which according to Wentao [81], makes QIC(R) value

to be underestimated when correlation structures with higher number of corre-

lation parameters are used in the GEE estimation. This implies that the bias

correction term of QIC is not powerful enough to address the relatively larger log-

quasi-likelihood values brought about by over-parameterized correlation matrices

hence the need to improve the penalization weight of the bias correction term.

The goal was to develop a criteria that will select a parsimonious structure that

closely approximates the true correlation matrix, without adding unnecessary pa-

rameters. In this regard, it should effectively penalize the working correlation

structure with many parameters when the sample size is small or the responses

are measured on many occasions and should also be able to penalize the working

correlation structure which is parsimonious, but has a worse-fit.
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3.5.1 Proposed Modified QIC

We proposed a modification to QIC so as to penalize for over-parameterization.

The proposed modification uses the number (q) of correlation parameters which

is a function of the number of repeated measurements (m) and the number (p) of

regression parameters as cost components.

Definition 3.5.1. Let data from a subject i include S different working correlation

structures (R1...RS). Each Rs has the corresponding qmax = max{qi|i = 1...s, i ∈

Z}. Also, let Mp̄ be a model that is a subset of the full model with p predictor

variables. Each of the subset models Mp̄ has a particular number of covariates j

(0 ≤ j ≤ p, j ∈ Z). Further, let pmax = max{p̄j|j = 1...p}. We consider a loss

function based on the weighted euclidean distance of (p,q) from the origin that

takes the form;

d(p; q) = [wp2 + (1− w)q2] 1
2 0 ≤ w ≤ 1 (3.9)

Since the scales of p and q are different, we consider the transformations p∗ = p̄j
pmax

,

where p̄j ⊂ pmax and q∗ = qs
qmax

, qmax = 0.5m(m− 1) so that

d(p∗; q∗) = [w(p∗)2 + (1− w)(q∗)2] 1
2 0 ≤ w ≤ 1 (3.10)

Since the dimension of covariance matrices is a function of p, we propose a pe-

nalization of the second term of QIC for the number of regression parameters by

multiplying it by 2p as adopted by Deroche [16] in her proposed modification of

QIC. This yielded a modified penalty term:

2trace(Ω̂I V̂r)× 2p = 4p× trace(Ω̂I V̂r) (3.11)

Second, since we considered the penalty proposed by Deroche [16] in equation

(3.11), we set w=0 and established a penalization factor of the form:

d(p∗; q∗) = [{ q

0.5m(m− 1)}
2] 1

2

= 2q
m(m− 1) (3.12)
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Multiplying the resultant factor to trace(Ω̂I V̂r) we got the second penalty term:

q

qmax
∗ trace(Ω̂I V̂r) = 2q

m(m− 2)trace(Ω̂I V̂r) (3.13)

Assuming a working correlation structure R(ρ) and incorporating adjustments

by Shinpei [71] such that the fisher information matrix is defined using the true

correlation structure i.e. Ω̂R in the penalty term in equation (3.13), we obtain a

modified second penalty term:

q

qmax
× trace(Ω̂I V̂r) = 2q

m(m− 2)trace(Ω̂RV̂R) (3.14)

The proposed modified QIC which we denote by QICm(R) is therefore the sum of

the goodness-of-fit term and the two proposed penalty terms in equations (3.11)

and (3.14):

QICm(R) = −2Q(β̂R|y; I, ℘)+4p×trace(Ω̂I V̂r)+
2q

m(m− 1)×trace(Ω̂RV̂R) (3.15)

Where

ΩI = ∑n
i=1D

T
i A
−1
i Di, s.t Vr = Ω̂−1

I { 1
n

∑n
i=1D

T
i V
−1
i (Yi − µi)(Yi − µi)TV −1

i Di}Ω̂−1
I

ΩR = ∑n
i=1D

T
i V
−1
i Di s.t V̂R = Ω̂−1

R { 1
n

∑n
i=1D

T
i V
−1
i (Yi − µi)(Yi − µi)TV −1

i Di}Ω̂−1
R

Remark 3.5.2. If the working correlation matrix is independence, QICm(R)’s

third term becomes zero. QICm(R) in equation (3.15), reduces to:

QICm(I) = −2Q(β̂I |y; I, ℘) + 4p× trace(Ω̂I V̂r) (3.16)

Remark 3.5.3. If we considered Ω̂I in equation (3.14) instead of Ω̂R then, QICm(R)

will take the form

QICm2(R) = −2Q(β̂R|y; I, ℘) + 4p× trace(Ω̂I V̂r) + 2q
m(m− 1) ∗ trace(Ω̂I V̂r)

= −2Q(β̂R|y; I, ℘) + {4p+ 2q
m(m− 1)}trace(Ω̂I V̂r)

= −2Q(β̂R|y; I, ℘) + 2{2p+ q

m(m− 1)}trace(Ω̂I V̂r) (3.17)
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3.5.2 Simulation Study to Compare Performance of QICm(R) and QIC

in Selecting the True Correlation Structure

We compared the performance of QICm(R) to the original QIC using simulation.

Specifically, we adopted the same model considered in Pan [60]:

Logit(µit) = β1 + β2X2it + β3(t− 1) t = 1, 2, 3 i = 1...n (3.18)

where X2it ∼ Bernoulli(0.5) and β0 = 0.25 = −β2 = −β3.

In the simulation, we considered the independence, exchangeable, AR-1 and Toeplitz

correlation structures. Exchangeable and AR-1 matrices were parameterized with

ρ = 0.5 while the toeplitz structure was parameterized with the parameters (0.5,

0.35). In our simulation n = {20, 30, 50, 100, 200}, m=3 and the number of simu-

lation runs were 1000 just as in Pan [60].

3.5.3 Simulation Results Comparing Performance of QICm(R) and QIC

Simulation results for the comparison of QIC and QICm(R) in selecting the true

correlation structure for R0 = {IN,EX,AR − 1, T oep} are shown in Table 3.8.

(See Appendix B.2)
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Table 3.8: Performance of QICm(R) compared to QIC in Selecting the true correlation

Structure
QICm(R) QIC

R0 n IN EX AR-1 Toep IN EX AR-1 Toep

20 820 77 73 30 108 197 180 423

30 910 34 33 23 160 196 230 414

IN 50 977 7 6 0 202 204 170 423

100 1000 0 0 0 213 178 170 430

200 1000 0 0 0 180 167 187 466

20 207 443 263 77 211 278 104 337

30 133 584 212 70 144 350 160 346

EX(0.5) 50 87 740 157 17 150 363 120 367

100 50 843 100 7 128 312 130 430

200 36 900 64 0 143 406 72 379

20 245 199 512 44 156 231 320 293

30 143 190 646 20 140 204 309 347

AR-1(0.5) 50 123 181 692 4 90 222 311 377

100 70 130 800 0 112 183 315 390

200 60 113 827 0 90 183 310 417

20 46 403 551 0 166 290 260 284

30 150 363 473 13 125 300 216 359

Toep 50 60 370 570 0 130 270 247 353

100 63 363 573 0 170 270 170 390

200 40 363 597 0 177 160 233 430

The simulation results show that when R0 is independence, QICm(R) selects the

true structure with success rates of at least 82% and reaches 100% when n=100

while the original QIC selects the independence structure with success rates of

at most 22% even with increase in sample size. When R0 is EX(0.5), QICm(R)

selects the true structure with success rates of 44.3%, 58.4%, 74%, 84.3% and

90% for respective samples of 20, 30, 50, 100 and 200 respectively. On the other

hand, the original QIC selects the true structure with corresponding success rates

of 27.8%, 35%, 36.3%, 31.2% and 40.6%. When R0 is AR-1(0.5), QICm(R) selects
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the true structure with success rates of 51.2%, 64.6%, 69.2%, 80% and 82.7% for

respective samples of 20, 30, 50, 100 and 200 respectively while the original QIC

selects the structure with corresponding success rates of 32.0%, 30.9%, 31.1%,

31.5% and 31.0%. When R0 is Toeplitz (0.5, 0.35), QICm(R) does not select the

true structure at all but instead prefers the parsimonious AR-1 structure. The

results show that QICm(R) does not select an over-parameterized structure at all

hence meets our objective of developing a criteria that selects the best parsimo-

nious structure. Further, if R0 = {IN,EX,AR − 1}, its probability of selecting

the true structure converge to one in the limit as the number of subjects (n) be-

comes larger. The results are further illustrated in Figure 3.8.

Figure 3.8: Comparison of QIC and QICm(R) in the Selection of R0

The results indicate that QICm(R) select a parsimonious working correlation

structure that closely approximates the true one by effectively penalizing the

working correlation structure with many parameters and also penalizing the work-

ing correlation structure which is parsimonious, but with a worse-fit. This ex-

plains the low selection rates of the independence correlation structure when

R0 = {EX,AR− 1, }.
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Conjecture 3.5.4. Let ω3 = {IN,EX,AR − 1, T oep} be the set of working cor-

relation structures considered for selection by QICm(R). Let R0 be the true corre-

lation structures and R∗ be the correlation structure finally selected by QICm(R).

Then

(a)

lim
n→∞

Pr(R∗(n) = R0) =

 1 if R0 = {IN,EX,AR− 1}

0 if R0 = Toep

i.e. the probability of QICm(R) selecting a parsimonious true correlation

structure converges to one as n→∞ hence it is consistent while its probabil-

ity of selecting an over-parameterized correlation structure converges to zero

as n→∞.

(b) If R0 6= IN , and IN ∈ ω3, then Pr(R∗(n) = IN)→ 0 as n→∞
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CHAPTER 4

PROPERTIES OF QIC IN SELECTING COVARIATES FOR THE

MEAN STRUCTURE IN GENERALIZED ESTIMATING

EQUATIONS

4.1 Introduction

In this chapter, we established theoretically and verified numerically through sim-

ulations the properties of QIC in selecting covariates for the mean structure in

generalized estimating equations. We examined whether QIC selected the true

model asymptotically with a probability of one as n −→ ∞ (consistency), type I

error rates (over-fitting properties), type II error rates (under-fitting properties),

sensitivity and sparsity properties of QIC.

4.2 Theoretical Results

Let Qn(β̂p) be the log-quasi-likelihood of the full model with p parameters based

on a sample size n, Qn(β̂p0) be the log-quasi-likelihood of model with p0 correct

parameters and Qn(β̂p̄) be the log-quasi-likelihood of sub model with p̄ of the p

parameters in the full model. If p̄ > p0, the model with p0 parameters is nested

in the model with p̄ parameters so that Qn(β̂p0) is obtained by setting p̄ − p0

parameters in the larger model to constants which can be assumed to be zero

without loss of generality. If p̂ represents the fitted model, then models in which

p̂ < p0 are mis-specified and the models with p̂ ≥ p0 are correctly specified or

over-specified.

In order to evaluate the probability of selecting the true model (p0) by QIC, we

made the following assumptions:

Assumption A1: All modeling specifications in GEE are correct, such that
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Ω̂I ≈ V̂r hence tr(Ω̂I V̂r) ≈ p

Assumption A2: The true model is included in the set of candidate models i.e.

p0 ∈Mc

Assumption A3: n×QIC where n is the sample size does not change the ranking

of candidate models.

Based on assumption A1 and A3, QIC can be written in the form :

QICn(p) = −2Qn(β̂p)
n

+ p
ψ(n)
n

(4.1)

where ψ(n) = 2. Using the general form, the model is selected that corresponds

to

p̂ = argmin
p∈Mc

{QICn(p)} (4.2)

Proposition 4.2.1. Let Mc = {m1,m2....mp} be the set of 2p candidate models

in which the model with p parameters is the largest model. We can partition Mc

into two sets: M+ set of over-specified models i.e. candidate models that include

the true model, i.e.M+ = {mi ∈ Mc | p0 ⊆ p̂} and M− = Mc \ (M+), the set

of under-specified models i.e. p̂ < p0. Under assumptions A1 - A3, if p̂ < p0,

∀p̂ ∈M−, then;

lim
n→∞

Pr(p̂(n) < p0) = 0 (4.3)

Proof of Proposition (4.2.1). If p̂ < p0, then the model with p̂ parameters is

misspecified, so that

plim
n→∞

Qn(β̂p̂)
n

< plim
n→∞

Qn(β̂p0)
n

(4.4)
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From equation(4.1), equation (4.4) and limn→∞
ψ(n)
n

= 0, it follows that;

lim
n→∞

Pr[QICn(p̂) ≤ QICn(p0)] = lim
n→∞

Pr{
−2Qn(β̂p̂)

n
+ p̂

ψ(n)
n

≤ −2Qn(β̂p0)
n

+ p0
ψ(n)
n
}

= lim
n→∞

Pr{
Qn(β̂p0)−Qn(β̂p̂)

n

≤ 0.5(p0 − p̂)
ψ(n)
n
}

= lim
n→∞

Pr{
Qn(β̂p0)−Qn(β̂p̂)

n
} ≤ 0

= 0 (4.5)

Therefore,

lim
n→∞

Pr(p̂(n) < p0) =
∑
p̂<p0

lim
n→∞

Pr(QICn(p̂) < QICn(p0)), for some p̂ < p0

= 0 (4.6)

Proposition 4.2.2. Under assumptions A1 - A3, if p̂ > p0 and QIC selects model

with p̂ parameters, then

lim
n→∞

Pr(p̂(n) > p0) > 0 (4.7)

Proof of Proposition (4.2.2). Since p̂ > p0, the model with p̂ parameters will

be selected if and only if QICn(p̂) < QICn(p0) such that;

−2Qn(β̂p̂) + 2p̂ < −2Qn(β̂p0) + 2p0 (4.8)

From equation (4.8), it follows from the likelihood ratio test that;

2[(Qn(β̂p̂))− (Qn(β̂p0))] d−→ Tp̂−p0 ∼ χ2
p̂−p0 (4.9)

Therefore, from equations (4.1) and (4.9) we have:

n[QICn(p0)−QICn(p̂)] = −2[(Qn(β̂p0))−(Qn(β̂p̂))]−2(p̂−p0) d−→ Tp̂−p0−2(p̂−p0)

(4.10)
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hence;

lim
n→∞

Pr(QICn(p̂) < QICn(p0)) = lim
n→∞

Pr(Tp̂−p0 > 2(p̂− p0)) > 0 (4.11)

From equation (4.11) it follows that:

lim
n→∞

Pr(p̂(n) > p0) > 0 (4.12)

This implies that the over-fitting probability of QIC converges in the limit to a

value greater than zero.

Corollary 4.2.3. Under assumptions A1 -A3 and ∀p̂ ∈M+

lim
n→∞

Pr(p̂(n) ≥ p0) = 1 (4.13)

Probability of QIC selecting an over-specified model converge to one in the limit

as n −→∞.

Proof of Corollary (4.2.3). The probability of selecting an over-specified model

is as follows

Pr(p̂(n) ≥ p0) = 1− Pr(p̂(n) < p0) (4.14)

But, from the results in Proposition 4.2.1 it follows that

lim
n→∞

Pr(p̂(n) ≥ p0) = 1 (4.15)

Corollary 4.2.4. From the results in Propositions 4.2.2, if we let

lim
n→∞

Pr(p̂(n) > p0) = γ, γ > 0

then,

lim
n→∞

Pr(p̂(n) = p0) = 1− γ (4.16)

QIC will not select the true model asymptotically with a probability one since γ > 0

hence not consistent. This result combined with the results in Proposition 4.2.1

imply that QIC is conservative as a model selection criteria.
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Corollary 4.2.5. From propositions 4.2.1 and 4.2.2, sufficient conditions for the

consistency of QIC which must be satisfied simultaneously are:

C1: ∀ p̂ ∈M+; lim
n→∞

Pr(p̂(n) > p0) = 0

C2: ∀ p̂ ∈M−; lim
n→∞

Pr(p̂(n) < p0) = 0

Proposition 4.2.6. Further to the results in Proposition 4.2.1 and partitioning βp

the true value of β into truly non-zero and truly zero coefficients as follows:A =

{j : βj 6= 0, j = 1...q} and Z = {j : βj = 0, j = q + 1...p} where A denotes

the non-zero coefficients and Z denotes the truly zero coefficients. Further, let βA

denote the vector of non-zero coefficients and βZ denote the vector of truly zero

coefficients, then;

Pr{∃j ∈ A : β̂j = 0} = o(1) (4.17)

i.e. active coefficients (β̂A) are included in the model selected by QIC with proba-

bility approaching one. Conversely, the probability that any of the truly non-zero

βj will be deleted approaches zero as n→ ∞ (sensitivity)

Proof of Proposition 4.2.6. We assume the regularity conditions in Theorem

1.6.11, result in Proposition 4.2.1 and that true model coefficients β0j are fixed.

In the spirit of Dziak [20], we have;

Pr(n){∃j ∈ A : β̂j = 0} ≤ Pr(n){∃j ∈ A : |β̂j − βj| > ε}, ε > 0

≤ Pr{‖β̂ − β0‖2 > ε2}

= 0(1)

Corollary 4.2.7. From Propositions 4.2.2 and 4.2.6, Pr(n)(βZ = β0Z) 9 1 as

n→ ∞ where β0Z is the vector of true zero coefficients. QIC does not discard all

of the true zero coefficients with a probability approaching one hence the model

selected by QIC will not be sparse.
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4.3 Numerical Study

In this section, we verify the validity of our claims through simulations. The

probabilities of selecting the true model are established and then applied to estab-

lish numerically the consistency, over-fitting, under-fitting, sensitivity and sparsity

properties of QIC.

4.3.1 Simulation Settings for the Study of the Properties of QIC in

Selecting the True Model

The simulation settings were similar to those considered in section 3.2. However,

we considered an expanded model with four covariates X1, X2, X3 and X4. The

binary response yit has the conditional expectation µit:

µit = E{yit|X1,it, X2,it, X3,it, X4,it}

= g−1(β0 + β1X1,it + β2X2,it + β3X3,it + β4X4,it), i=1..n, t=1..m(4.18)

such that:

logit(µit) = β0 + β1X1,it + β2X2,it + β3X3,it + β4X4,it (4.19)

{β0, β1, β2}={0.25,−0.25,−0.25} and βp = 0[p 6= 1, 2] hence the model with X1,it

and X2,it was the true model. This implied that the signals for important covari-

ates were stronger for β1 and β2 thus the true model size was 2 and the true number

of zero coefficients was 2. {X3, X4} ∼ U [0, 1]. The true correlation structure R0

was assumed to be AR-1(ρ), ρ = {0.2, 0.5}.

The simulation studies were based on 2k factorial design. The narrow model

included the intercept term and X1 to be consistent with Pan [61]. The final

model was selected from the remaining 23 = 8 candidate models which were;
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 1

X2

⊗
 1

X3

⊗
 1

X4

 =



1

X2

X3

X2X3

X4

X2X4

X3X4

X2X3X4



. (4.20)

Combining the narrow model together with the eight models resulted to the models used

in the simulation study as listed in Table 4.1. The number of models considered were

more than those considered by Pan [60] who only considered five out of the possible

eight models.

Table 4.1: List of Candidate Models for the Simulation Study of the Properties of QIC

in Selecting the True Model
Model Covariates

M1 Int, X1, X2, X3,X4

M2 Int, X1, X2, X3

M3 Int, X1, X2, X4

M4 int,X1, X3,X4

M5 Int,X1,X2

M6 Int,X1, X3

M7 Int,X1, X4

M8 Int, X1

Total number of simulation runs used were 1000. As observed by Li [48], at least

500 simulation runs are adequate to reduce the influence of randomness of occurrence

on the estimates. Assessment of the performance of the model selection criterion was

based on how many times QIC chose the true data generating model (X1, X2), type I

and II error rates, correct deletion rates and wrong deletion rates. These were then used

to establish the consistency, sensitivity and sparsity of QIC in variable selection.
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4.3.2 Selection Rates of QIC for the true model: R0=AR-1 (0.2)

QIC’s selection rates of the eight possible models for different sample sizes and mea-

surements per subject are summarized in Table 4.2. (See Appendix C)

Table 4.2: Frequencies of Candidate Models Selection by QIC: AR-1 (0.2)
m n M1 M2 M3 M4 M5 M6 M7 M8

20 95 103 147 25 308 62 60 200

30 60 122 143 23 423 32 38 158

3 50 53 133 150 12 552 18 25 57

100 42 123 158 0 663 0 0 13

200 25 147 163 0 665 0 0 0

20 103 170 155 18 376 53 32 93

30 50 170 142 12 517 28 21 60

6 50 47 157 142 0 628 0 7 20

100 40 170 148 0 642 0 0 0

200 47 136 137 0 680 0 0 0

20 107 160 198 8 412 15 28 72

30 62 163 193 3 534 4 12 27

9 50 40 161 143 0 647 0 2 7

100 48 137 135 0 680 0 0 0

200 32 165 126 0 677 0 0 0

The results in Table 4.2 show that when m=3, the rates of identification by QIC

of the true model were 30.8%, 42.3%, 55.2%, 66.3% and 66.5% for sample sizes of 20,

30, 50, 100 and 200 respectively. For m=6, the true model selection rates were 37.6%,

51.7%, 62.8%, 64.2% and 68.0% for sample sizes of 20, 30, 50, 100 and 200 respectively.

Further, when m increased to 9, the true model selection rates were 41.2%, 53.4%,

64.7%, 68.0% and 67.7% for the respective sample sizes. The study results showed

an increasing trend for the true model selection rates which were proportionate to the

increase in both the sample size and measurements per subject. The results further

showed that, probabilities of selecting the models M1, M2 and M3 which were all over-

fit were non-diminishing while the probabilities of selecting the models M4, M6, M7 and
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M8 which are all under-fit diminished to zero as n became larger hence the conclusion

that QIC had higher chances of selecting over-fit models than under-fit models.

4.3.3 Selection Rates of QIC for the true model: R0=AR-1 (0.5)

The selection rates of QIC for the different models are summarized in Table 4.3. (See

Appendix C)

Table 4.3: Frequencies of Candidate Models Selection by QIC with AR-1 (0.5) True

Correlation Structure
m n M1 M2 M3 M4 M5 M6 M7 M8

20 86 176 107 31 360 47 50 143

30 57 158 128 6 463 33 37 118

3 50 43 162 172 2 555 13 26 27

100 38 155 137 0 663 5 0 2

200 37 128 130 0 705 0 0 0

20 122 168 168 18 417 27 22 58

30 72 160 192 8 535 5 11 17

6 50 55 175 180 0 583 0 2 5

100 52 138 125 0 685 0 0 0

200 23 140 118 0 719 0 0 0

20 120 190 176 5 462 17 10 22

30 95 147 172 0 573 2 8 3

9 50 52 148 158 0 640 0 0 2

100 33 117 147 0 703 0 0 0

200 29 117 132 0 721 0 0 0

The results as shown in Table 4.3 indicate that under the true AR-1(0.5) correlation

structure and m=3, the selection rates of the true model were 36%, 46.3%, 55.5%, 66.3%

and 70.5% for respective samples of 20, 30, 50, 100 and 200. When measurements per

subject were increased to 6, the selection rates of the true model increased to 41.7%,

53.5%, 58.3%, 68.5% and 71.9% for the respective samples and further increased to

46.2%, 57.3%, 64%, 70.3% and 72.1% respectively when measurements per subject were

increased to 9. Further, the study results indicate that the probability of QIC selecting
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under-fit models definitely converge to zero as n tends to ∞. For example, from Table

4.3, the probabilities of models M6, M7 and M8 being selected which are 0.047, 0.050

and 0.143 respectively when m=3 and n=20, diminish to zero when n is 200. These

probabilities remain zero even when m is increased to 6 and 9. This implies that for

moderate to large sample sizes, QIC has zero chances of selecting under-fit models.

However, the probabilities of QIC selecting over-fit models M1, M2 and M3 are greater

than zero in all the simulation settings.

The results show that QIC perform better in choosing more often the correct data

generating model and the performance improved as the sample size, number of mea-

surements per subject and as level of correlation increased. These results are presented

in Figure 4.1.

Figure 4.1: True Model Selection Frequencies by QIC (R0 = AR− 1)

Figure 4.1 demonstrates the results discussed above which are in line with findings by

Pan [60] who established an increase in the selection rates from 450 when n=50 to 636

when n=100 with AR-1(0.5) true correlation structure.

Moreover, the simulation results of the proportion of selection of over-specified mod-

els i.e. models that include the true model (p̂ ≥ p0) are shown in Table 4.4.
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Table 4.4: Proportion of Selection of Models which Include the True Model
ρ m 20 30 50 100 200

3 65.3 74.8 88.8 98.7 100.0

0.2 6 80.4 87.9 97.3 100.0 100.0

9 87.7 95.4 99.1 100.0 100.0

3 72.9 80.6 93.2 99.3 100.0

0.5 6 87.5 95.9 99.3 100.0 100.0

9 94.6 98.7 99.8 100.0 100.0

The results in Table 4.4 indicate that regardless of the degree of correlation and

measurements per subject, the selection rates of over-specified models i.e. those that

contain all the informative covariates plus some spurious ones quickly tended to 100% as

n increased. However, the 100% rate was achieved more faster for larger number of mea-

surements per subject and higher degree of correlation within those measurements. The

results signify that the probability of QIC selecting an over-specified or correctly speci-

fied model converge to one in the limit for sufficiently large samples. These simulation

results confirm the theoretical results in Corollary 4.2.3 that lim
n→∞

Pr(p̂ ≥ p0) = 1.

4.3.4 Type I and Type II error rates of QIC

Based on the result in Tables 4.2 and 4.3, type I and II error rates were computed.

We partitioned our covariates into two sets: the set of influential covariates X(1) =

{X1,it, X2,it} and the set of non-influential covariates X(2) = {X3,it, X4,it} such that

logit(µit) = X(1)β(1) + X(2)β(2), where β(1) = {β1, β2} and β(2) = {β3, β4}. The type I

error was stated as:

Pr(Reject H0 : β(2) = 0 | H0 is true) (4.21a)

while the type II error was

Pr(Accept H0 : β(1) = 0 | H0 is false) (4.21b)

The type I and II error rates were used to determine the specificity and sensitivity of

QIC respectively.
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The results of the type I error rates of QIC for various combinations of n and ρ are

shown in Table 4.5

Table 4.5: Model selection summary by QIC. Type I Error Rate.
n

ρ m 20 30 50 100 200

3 0.345 0.325 0.336 0.328 0.335

0.2 6 0.428 0.362 0.346 0.358 0.320

9 0.465 0.418 0.344 0.320 0.328

3 0.369 0.343 0.377 0.330 0.295

0.5 6 0.458 0.424 0.410 0.315 0.281

9 0.486 0.414 0.358 0.297 0.278

The results indicate that for both ρ = 0.2 and ρ = 0.5, m=3, 6 and 9 and for n in

the range, 20 ≤ n ≤ 200, the range of type I error rate is ≈ 30% to / 50%. However, it

is noticeable that the type I error rate is higher for smaller sample sizes and decreases

with increase in sample size. However, they seem not to approach zero. The Type I

error rate of at least 30% indicates fairly high chances of QIC selecting over-fit models

by wrongly including covariates whose coefficients are zero. The Type I error rates are

also illustrated in Figure 4.2

Figure 4.2: Model selection summary by QIC: Type I Error Rate

Figure 4.2 clearly shows the patterns mentioned above in which there is a decline in the
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type I error rate as the sample size increases. The Type I error rates are high for small

samples and decrease as the sample size increases. This implies that the number of zero

coefficients included in the selected model will be significantly reduced if the sample

size is made large. However, there seems to be no significant difference in QIC’s type I

error rate with increase in the level of within subject correlation. The results suggest

that for large n, QIC has a non-vanishing chance of choosing complex models since the

type I error rate decline slowly as n increases and does not seem to approach zero. The

results are in line with findings by Dziak et al. [20] who established non-declining type

I error rate for AIC. The high type I error rates implies reduced risk of type II error

(Probability of under-fitting) hence increased statistical power of QIC i.e. increased

ability to make the correct inclusion of the important variables in the selected model.

To ascertain the type I error rate convergence point, we increased the sample size to

500 and 1000 and the resulting type I error rate curve for AR-1(0.5) is shown in Figure

4.3

Figure 4.3: Convergence of Type I Error Rate

Figure 4.3 shows that for m=3, the type I error rate stabilizes at 30% while for m=6

and 9, the rate fluctuates around 30% and as the sample size tends to 1000, it tends

towards 30% hence we conclude that QIC has a type I error rate of 30%. This confirms

the results in Proposition 4.2.2 and Corollary 4.2.4. The value of γ in Corollary 4.2.4
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is 0.3 hence limn→∞ Pr(p̂(n) > p0) = 0.3. This implies that QIC as a model selection

criteria is approximately 70% specific.

We also established the type II error rates of QIC and its statistical power (1-type

I Error). The results are illustrated in Table 4.6.

Table 4.6: Model selection summary by QIC. Type II Error and Statistical Power.
0.2 0.5

m n type II error (β) Power of Test type II error Power of Test

20 0.34 0.66 0.27 0.73

30 0.25 0.75 0.19 0.81

3 50 0.11 0.89 0.07 0.93

100 0.01 0.99 0.01 0.99

200 0.00 1.00 0.00 1.00

20 0.20 0.80 0.13 0.87

30 0.12 0.88 0.04 0.96

6 50 0.03 0.97 0.01 0.99

100 0.00 1.00 0.00 1.00

200 0.00 1.00 0.00 1.00

20 0.12 0.88 0.05 0.95

30 0.05 0.95 0.01 0.99

9 50 0.01 0.99 0.00 1.00

100 0.00 1.00 0.00 1.00

200 0.00 1.00 0.00 1.00

The results show that the type II error rates were about 30% for small samples, but

quickly declined to zero as the sample size increased. This implies that for small samples

QIC has some chances of under-fitting at the rate of about 30%. For n ≥ 50, QIC has

little or no chances of under-fitting. This confirms the theoretical results in Proposition

4.2.1 which indicated that for large n, probability of QIC selecting an under-fit model

converges to zero in the limit. The power test results show that the power of the test

increases with increasing n, so that rejecting any given false null hypothesis is essentially

guaranteed for sufficiently large n even if the effect size is small. This makes QIC good

in predictive modeling. The result imply that for sufficiently large n, QIC is 100%
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sensitive hence confirming the theoretical results in Proposition 4.2.6. The results are

also illustrated in Figure 4.4

Figure 4.4: Model selection summary by QIC: Type II Error and Statistical Power.

Figure 4.4 shows declining type II error rates for QIC with increase in sample sizes

and an increase in its statistical power. The statistical power of QIC ranges from 0.66

at n=20, m=3 and ρ = 0.2 to 1 i.e 0.66 ≤ Power ≤ 1. The study results also show that

high within subject correlation has an effect on the statistical power of QIC. Strong

within-subject correlation will result to high statistical power and vice-versa hence,

statistical power of QIC=f(n, m, ρ). Overall, the results indicate low chances of QIC

making type II error hence high sensitivity. According to Dziak et al.[20], the low type

II error rate implies that QIC guards against potential loss of important information.

Therefore, in concurrence with observations by Dziak et al. [20], we concluded that

for a strictly predictive model, the high false positive rate of QIC may simply add

noise so long as the coefficient estimates are small while a false deletion will create a

confounding variable and render the model invalid. Thus, from a statistical estimation

framework an over-fit model will be less damaging than an under-fit model. However,

in a decision context, the relative seriousness of false exclusion or inclusion depends on

the expected practical outcome, e.g., if we are modeling mortality in terms of various
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possible carcinogenic pollutants, Type II error will be more hazardous to public health

than Type I error.

4.3.5 Sensitivity and Sparsity of QIC in GEE Model selection

We further evaluated the performance of QIC in variable selection using the average

number of correct deletion (CD)and the average number of wrong deletion(WD). Cor-

rect deletions are the average number (per simulation) of truly zero coefficients correctly

estimated as zero, and wrong deletions are the average number of truly non-zero coeffi-

cients erroneously set to zero. Because β = {0.25,−0.25, 0, 0}, up to 2 correct deletions

and 2 wrong deletions are possible. The results of the analysis are presented in Table

4.7 below:

Table 4.7: Model selection summary by QIC. Average number of correct deletions (CD)

and wrong deletions (WD)
ρ=0.2 ρ=0.5

m n CD WD CD WD

20 0.62 0.35 0.72 0.27

30 0.85 0.25 0.93 0.19

3 50 1.10 0.11 1.11 0.07

100 1.33 0.01 1.33 0.01

200 1.33 0.00 1.41 0.00

20 0.75 0.20 0.83 0.13

30 1.03 0.12 1.07 0.04

6 50 1.26 0.03 1.17 0.01

100 1.28 0.00 1.37 0.00

200 1.36 0.00 1.44 0.00

20 0.82 0.12 0.92 0.05

30 1.07 0.05 1.15 0.01

9 50 1.29 0.01 1.28 0.00

100 1.36 0.00 1.41 0.00

200 1.35 0.00 1.44 0.00
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The results of the analysis from Table 4.7 show that when ρ = 0.2 and m=3, the

correct deletion rates were 0.62, 0.85, 1.10, 1.33 and 1.33 respectively for sample sizes of

20, 30, 50, 100 and 200. When ρ is increased to 0.5, the correct deletion rates are 0.72,

0.93, 1.11, 1.33 and 1.41 respectively for sample sizes of 20, 30, 50, 100 and 200. The

results show that increasing the level of within-subject correlation to moderate lead to

marginal increase in the average number of coefficients which are set to zero correctly.

Likewise, for m=3 and ρ = 0.2, the average number of coefficients which are set to zero

by mistake remains almost similar for the two levels of correlation and diminish to zero

as n increases. When the number of measurements per subject increase to 6, the correct

deletion rates were 0.75, 1.03, 1.26, 1.28 and 1.36 for ρ = 0.2 and 0.83, 1.07, 1.17, 1.37

and 1.44 for ρ = 0.5 respectively for sample sizes of 20, 30, 50, 100 and 200. When m=9,

the correct deletion rates are 0.82, 1.07, 1.29, 1.36 and 1.35 for ρ = 0.2 while for ρ = 0.5

and m=9, the correct deletion rates are 0.92, 1.15, 1.28, 1.41 and 1.44 respectively. The

results show that as the number of subjects increase, the average number of coefficients

which are set to 0 correctly increases while the average number of coefficients which are

set to 0 by mistake diminishes to zero. The study results are similar to results by Shao

and Rao [68] who established that the probability of under-fitting of AIC on which the

derivation of QIC is based converges to zero as the sample size increases to ∞.

The results are further illustrated in Figure 4.5 which shows an increase in the

average number of coefficients correctly set to zero with increase in the number of

subjects and a decrease of coefficients set to zero by mistake with increase in sample

size.
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Figure 4.5: Model selection summary by QIC. Average number of coefficients which are

set to 0 correctly and average number of coefficients which are set to 0 by mistake
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CHAPTER 5

HYBRID METHODOLOGY (EQAIC) FOR MODEL SELECTION IN

GENERALIZED ESTIMATING EQUATIONS AND EFFICIENCY GAIN

5.1 Introduction

In this chapter we considered the problem of efficiency loss in GEE estimates as a result

of using a mis-specified structure. Following the results by Pan [60] that QIC is not

very powerful in choosing the correct correlation structure among repeated measure-

ments and recommendations by Jang [42] which were reinforced by Oyebayo and Mohd

[58] for hybridization of model selection procedures, we sought to determine whether

hybridizing QIC with empirical likelihood based AIC improves the efficiency of GEE

estimator. We proposed a two-step hybrid methodology (EQAIC) that involves the use

of EAIC (equation (1.120)) for selecting the correct correlation structure and then QIC

(equation(1.107)) for selecting covariates with the intention of improving efficiency. We

applied K-fold cross-validation to establish the mean squared errors of the model se-

lected by EQAIC and that selected by QIC. The relative efficiency values were used to

determine the efficiency gain of the proposed hybrid methodology compared to when

QIC only is used to select both the working correlation structure and covariates.

5.2 Performance of EAIC in Selecting the True Working Correlation Struc-

ture

In this section we performed simulation studies to establish the performance EAIC in

choosing the true working correlation structure for GEE models compared to QIC and

CIC (equation(1.110)). The simulation settings were as follows:

1. The response vector yi = (yi1, ...., yit) was assumed to be a Bernoulli response.

i=1,2....n. In the simulation studies n = {20, 30, 50, 100, 200}; t=1,2,...m. In the

simulation study m=3
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2. The covariates were x1it and x2it . x1it ∼ N(0, 1) and x2it ∼ Bernoulli(0.5) and a

within subject correlation structure dictated by R0 true correlation structures.

3. The True correlation structures R0 considered in the simulation were Exchange-

able (ρ), ρ = {(0.5, 0.8} , AR-1 (ρ), ρ = {(0.5, 0.8}, Independence and Toeplitz

correlation matrices.

4. The conditional expectation (µij = E(yit|x1it, x2it)) of the binary response yit was

connected with the covariates through:

logit(µit) = β0 + β1x1it + β2x2it; where i =1,...,n and t=1,...,m. The coefficients

were set to be (β0 = 0.25 = −β1 = −β2) which are similar to the values assumed

in Pan [60].

5. We considered the Toeplitz, Independence, Exchangeable and AR-1 correlation

structure. This was based on the fact that Independence, Exchangeable and

AR-1 working correlation structures can be embedded into the Toeplitz struc-

ture. The working correlation structures were partitioned into two sets: ω1 =

{IN,EX, Toep, AR− 1} and ω2 = {IN,EX,AR− 1}.

6. We parameterized the full model correlation structure by ρ = (ρ1, ρ2) and let

<F (β, ρ1, ρ2) define the empirical likelihood of the full model hence we had four

sets of GEE estimates one for each of the four working correlation structures which

were evaluated by:
<Toep = RF (β̂Toep, ρ̂Toep1 , ρ̂Toep2 )

<IN = RF (β̂IN , 0, 0)

<Exch = RF (β̂EX , ρ̂EX , ρ̂EX)

<AR = RF (β̂AR, ρ̂AR−1
1 , (ρ̂AR−1

1 )2)
7. The Simulation design was factorial with 1000 simulation replications.

8. All simulations were performed using R version 3.6.0 based on the gee, MASS,

Emplik, geepack and bindata R packages. Correlated binary data for the response

were generated using the bindata (Touloumis, [75]) library.
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5.2.1 Simulation Results for the Performance of EAIC Compared to QIC

and CIC in Selecting the True Working Correlation Structure (R0=AR-

1, m=3)

The selection rates of EAIC compared to QIC and CIC in Selecting the true AR-1

correlation structure when m=3 are shown in Table 5.1. (See Appendix D.1)

Table 5.1: Performance of EAIC in Selecting the True working correlation structure

Compared to CIC and QIC from 1000 independent replications(R0:AR-1, m=3)
EAIC QIC CIC

R0 n IN EX AR-1 Toep IN EX AR-1 Toep IN EX AR-1 Toep

20 25 245 440 290 160 250 253 337 25 260 301 414

30 5 215 560 275 145 255 270 330 0 145 455 400

AR-1 50 0 125 780 95 120 210 320 350 0 90 560 350

(0.5) 100 0 35 820 145 75 170 320 435 0 10 645 345

200 0 0 871 129 100 148 342 410 0 0 687 313

20 0 166 495 339 155 165 315 365 0 85 466 449

30 0 160 633 207 140 235 320 300 0 95 500 405

AR-1 50 0 57 739 204 114 210 297 379 0 65 590 345

(0.8) 100 0 13 787 200 125 230 315 330 0 15 625 360

200 0 0 877 123 103 125 380 392 0 10 700 290

The results show that when R0 = AR − 1 with ρ = 0.5, the success rates of EAIC

selecting the true AR-1 structure were 44%, 56%, 78%, 82%, 87.1% for respective sample

sizes of 20, 30, 50, 100 and 200. Comparatively, QIC’s selection rates in selecting the

true correlation structure were 25.5%, 27%, 32%, 32%, 34.2% for respective sample sizes

of 20, 30, 50, 100 and 200. The selection rates of CIC in selecting the true correlation

structure were 30.1%, 45.5%, 56.7%, 64.5%, 68.7% for respective sample sizes of 20, 30,

50, 100 and 200. The results indicate that the probabilities of EAIC selecting the true

AR-1 correlation structure were more than twice those of QIC selecting the structure.

When the degree of correlation is increased to 0.8, the probabilities of EAIC selecting

the true correlation structure (AR−1(0.8)) were 49.5%, 63.3%, 73.9%, 78.7% and 87.7%

for sample sizes of 20, 30, 50, 100 and 200 respectively. For the same settings the
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probabilities of QIC selecting the true correlation structure were 31.5%, 32.0%, 29.7%,

31.5% and 38.0% for sample sizes of 20,30, 50, 100 and 200 respectively. CIC’s success

rates were 46.6%, 50.0%, 59.0%, 62.5% and 70.0% for sample sizes of 20,30, 50, 100 and

200 respectively. The results show that the success rates of EAIC were higher compared

to those of QIC and CIC and increased with the degree of correlation. Hence, the

higher the within subject correlation, the higher the chances of EAIC selecting the true

correlation structure. These are also illustrated in Figure 5.1

Figure 5.1: True AR-1 working correlation selection frequency by EAIC compared to

QIC and CIC

Figure 5.1, show that for all ρ and n used, the performance of EAIC was superior to

that of QIC and CIC in choosing the correct AR-1 structure.

5.2.2 Simulation Results for the Performance of EAIC Compared to QIC

and CIC in Selecting the True Working Correlation Structure (R0=EX,

m=3)

The simulation results for the performance of EAIC compared to QIC and CIC in

selecting the true exchangeable working correlation structure when m=3 are shown in

Table 5.2. (See Appendix D.1)
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Table 5.2: Performance of EAIC in Selecting the True working correlation structure

Compared to CIC and QIC(R0 = EX, m=3)
EAIC QIC CIC

R n IN EX AR-1 Toep IN EX AR-1 Toep IN EX AR-1 Toep

20 15 410 10 385 210 300 175 315 20 315 200 465

30 0 670 160 170 195 330 125 350 0 545 130 325

EX 50 0 770 111 119 120 370 91 419 0 585 80 335

(0.5) 100 0 834 30 136 116 361 131 392 0 632 52 316

200 0 893 0 107 155 388 85 372 0 720 10 270

20 0 583 117 300 191 316 95 398 62 340 137 461

30 0 697 111 192 177 349 74 400 18 488 102 392

EX 50 0 789 81 130 173 371 55 401 0 598 77 325

(0.8) 100 0 802 67 131 122 365 83 430 0 647 66 287

200 0 875 40 85 110 398 41 451 0 743 45 212

When the degree of correlation (ρ) was 0.5, the success rates of EAIC selecting the

true exchangeable structure were 41%, 67%, 77%, 83.4% and 89.3% for sample sizes of

20, 30, 50, 100 and 200 respectively . Comparatively, QIC’s selection rates were 30.0%,

33.0%, 37.0%, 36.1% and 38.8% for the respective samples. Similarly, for the respective

samples, the selection rates of CIC of the true correlation structure were 31.5%, 54.5%,

58.5%, 63.2% and 72.0%. The results indicate that EAIC performed better than QIC

and CIC in selecting the true exchangeable structure.

When the degree of correlation (ρ) is increased to 0.8, the selection rates of EAIC

were 58.3%, 69.7%, 78.9%, 80.2% and 87.5% for the respective samples of 20,30,50,

100 and 200. The selection rates of QIC for the respective samples were 31.6%, 34.9%,

37.1%, 36.5% and 39.8% while those of CIC were 34.0%, 48.8%, 59.8%, 64.7% and

74.3%. The results show that EAIC was powerful in choosing the correct structure in

all settings considered and appeared to be higher if R0=EX than when it was AR-1.

On the other hand, QIC favored the correct correlation structure less than 50% of the

time hence was less powerful compared to EAIC and CIC. The result further showed

that increasing the degree of correlation made the within-subject correlation more easily
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recognizable by a model selection criteria hence higher selection rates. These results are

also illustrated in Figure 5.2

Figure 5.2: True Exchangeable working correlation selection frequency by EAIC com-

pared to QIC and CIC

Figure 5.2 shows that for all ρ and n, EAIC selection rates of the true exchangeable

structure were higher than those of QIC and CIC. Similar results were established by

Chen and Nicole [12] who established an increasing trend in the selection rates of the

true exchangeable structure by EAIC with increase in sample size. They also established

superior performance with a stronger degree of correlation.

5.2.3 Simulation Results for the Performance of EAIC Compared to QIC

and CIC in Selecting the True Working Correlation Structure (R0={IN,

Toep}, m=3)

The simulation results for the performance of EAIC, QIC and CIC in selecting the

independence and Toeplitz working correlation structures are shown in Table 5.3. (See

Appendix D.1)
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Table 5.3: Performance of EAIC in Selecting the True working correlation structure

Compared to CIC and QIC: R0 = {IN, TOEP}, m=3
EAIC QIC CIC

R0 n IN EX AR-1 Toep IN EX AR-1 Toep IN EX AR-1 Toep

20 622 122 136 120 192 218 196 394 118 174 166 542

30 638 124 140 98 192 184 210 414 116 136 154 594

IN 50 732 114 106 49 206 208 206 380 118 160 196 516

100 718 102 114 66 178 198 216 408 114 168 156 562

200 739 113 123 25 186 171 201 442 0 277 190 533

20 15 365 390 230 177 258 245 320 22 233 257 488

30 7 420 462 112 165 288 238 309 3 257 252 488

Toep 50 0 455 510 35 123 308 237 312 0 188 260 552

100 0 388 486 126 116 283 180 421 0 152 230 617

200 0 132 357 512 118 248 172 462 0 83 152 765

The results in Table 5.3 show that when the true correlation structure is indepen-

dence, EAIC’s selection rates were 62.2%, 63.8%, 73.2%, 71.8% and 73.9% for sample

sizes of 20, 30, 50, 100 and 200 respectively while those of QIC for the respective sam-

ples were 19.2%, 19.2%, 20.6%, 17.8% and 18.6%. The results show that QIC is not

powerful at all in choosing the correct independence structure as its selection rates are

all less than 20% for the sample sizes considered. In contrast, the probability of EAIC

selecting the true independence correlation structure tends to one as n tends to ∞.

When the true working correlation structure was Toeplitz, the frequencies of EAIC

choosing the correct structure were 23%, 11.2%, 3.5%, 12.6% and 51.2% for sample

sizes of 20,30,50,100 and 200 respectively while those of QIC for the respective samples

were 32%, 30.9%, 31.2%, 42.1% and 46.2%. The results show that the selection rates of

EAIC for the correct structure drop significantly and EAIC criteria mistakenly prefers

parsimonious correlation structures most of the time. Consistency of EAIC starts to set

in for R0 = Toep when the sample size ≥200.
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5.2.4 Performance of EAIC in Selecting the True correlation structure for

ω2={IN, EX, AR-1}

In this section we considered the selection set ω2 = {IN,EX,AR − 1} which excludes

over-parameterized structures and assessed the performance of EAIC in selecting the

correct working correlation structure. However, the empirical likelihood ratio was de-

fined with the Toeplitz correlation structure even if it was not considered as a candidate

for the working correlation matrix. The true exchangeable and AR-1 structures were

parameterized by ρ = 0.5 and m=3. We considered R0 = {IN,EX,AR}. Simulation

results are presented in Table 5.4. (See Appendix D.1)

Table 5.4: Performance of EAIC in selecting the true correlation structure when IN,

EX and AR-1 structures are considered
EAIC QIC CIC

R0 n IN EX AR-1 IN EX AR-1 IN EX AR-1

20 675 180 145 205 355 440 135 375 490

30 695 160 145 265 345 390 145 420 435

IN 50 740 120 140 190 450 360 105 480 415

100 760 120 105 235 320 445 145 410 445

200 775 103 122 265 350 385 165 410 425

20 50 710 240 195 535 270 45 635 320

30 0 850 150 155 685 160 0 790 210

EX 50 0 900 100 123 680 160 0 845 155

(0.5) 100 0 955 45 180 745 45 0 915 85

200 0 997 3 125 790 85 0 955 45

20 30 265 705 200 325 475 10 305 685

30 15 240 745 140 285 575 10 220 770

AR-1 50 0 125 875 90 285 625 0 215 785

(0.5) 100 0 55 945 120 225 655 0 190 810

200 0 0 1000 109 211 680 0 132 868

The results show that when R0 is independence, the selection rates for EAIC were

67.5%, 69.5%, 74.0%, 76.0% and 77.5% respectively for sample sizes of 20, 30,50, 100

and 200 while those of QIC for the respective samples were 20.5%, 26.5%, 19.0%, 23.5%
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and 26.5%. This showed that the probability of EAIC selecting the true independence

structure converged to 1 as n→∞

When R0 was exchangeable QIC was effective to some extent and performed better

with success rates of 53.5%, 68.5%, 68%, 74.5% and 79% respectively for samples of

20, 30, 50,100 and 200. However, EAIC was much better than QIC as indicated by its

success rates of 71%, 85%, 90%, 95.5% and 99.7% for sample sizes of 20, 30, 50, 100

and 200 respectively.

When R0 = AR−1, the selection rates of QIC were 47.5%, 57.5%, 62.5%, 65.5% and

68.0% respectively for samples of 20, 30, 50,100 and 200. Comparatively, the selection

rates of EAIC were 70.5%, 74.5%, 74.5%, 94.5% and 100% respectively for the respective

samples of 20, 30, 50, 100 and 200. It is notable that, if the over-parameterized structures

are excluded from the selection set such that ω2 = {IN,EX,AR − 1} and R0 ∈ ω2,

EAIC invariably chooses the correct structure and its consistency is achieved at n=200.

5.3 Hybrid Methodology (EQAIC) and Efficiency Improvement in General-

ized Estimating Equations

In the GEE context, an inappropriate working correlation structure significantly impairs

the efficiency of GEE estimator for β. A more plausible way to improve this is by using

the working correlation structure most appropriate for the data at hand. In this section

we sought to establish whether correct identification of the true working correlation

structure improved efficiency of GEE estimator. We use an hybrid methodology that

involved the use of EAIC to select the true correlation structure and QIC to select the

set of informative covariates. This was implemented through an example dataset.

Example 5.3.1. We illustrated gain in efficiency by EQAIC over QIC by analyzing

the Ohio Dataset contained in the geepack library. The Ohio Dataset is based on a

study that analyzed the health effect of indoor and outdoor air pollution on children’s

wheeze status as determined by the age and smoking status of mothers. The data set

was analysed by many authors (Qu et al.[63], Fitzmaurice et al.[25]) and is based on

537 children who were followed for four years and data on their age, smoking status of
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mothers and wheeze status were recorded resulting to 2148 observations. The maternal

smoking habit was treated as fixed at the first visit. The response is a binary outcome

with 1 indicating the presence of the respiratory illness 0 and its absence . The maternal

smoking habit, in the preceding year, was recorded as a binary covariate.

Assuming that the measurements for same child are serially correlated, we used the

logit link function hence our logit model was given as:

log( µit
1− µit

) = β0 + β1Xit1 + β2Xit2 + β3Xit1Xit2 (5.1)

for 1=1....537, t=1....4. Where Xit1, Xit2 and Xit1Xit2 are the age of child, smoking

habit indicator and their interaction respectively. and the marginal variance took the

form;

var(Yit) = φv(µit)

= µit(1− µit) (5.2)

Hence the matrix Ai is a diagonal matrix with elements v(µit) = µit(1− µit)

Empirical likelihood ratio was defined with the general correlation structure Toeplitz.

EAIC and QIC were obtained with each of the four sets of GEE estimates based on the

four correlation structures considered. We used the results to determine the correlation

structure preferred by EAIC and that preferred by QIC for the Ohio dataset. The

results are shown in Table 5.5.(See Appendix D.2)

Table 5.5: Working Correlation Structure Selection for the Wheeze Status GEE Model

Using the Ohio Dataset
Working Correlation Structures

IN EX AR-1 Toep

EAIC 656.9704 361.3486 454.8900 363.1113

QIC 3154.627 3216.383 3201.844 3215.749

The results show that EAIC preferred the exchangeable structure which has a min-

imum value of 361.3486, meaning that neither Toeplitz nor AR-1 were sufficient to
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describe the correlation structure. In contrast, QIC chose the independence structure

with a minimum QIC value of 3154.627.

Based on the set of selected working correlation structure, we applied QIC to select

the best model out of the 8 possible models. The eight possible models were:

 1

Xit1

⊗
 1

Xit2

⊗
 1

Xit1Xit2

 =



1

Xit1

Xit2

Xit1Xit2

Xit1, Xit2

Xit1, Xit1Xit2

Xit2, Xit1Xit2

Xit1, Xit2, Xit1Xit2



.

Based on the exchangeable correlation structure selected by EAIC, the models were

ranked by QIC as shown in Table 5.6.

Table 5.6: QIC Model Ranking for the Ohio Data based on the Exchangeable Correlation

Structure
MODEL RANK Intercept Xit1 Xit2 Xit1Xit2 qlik QIC

M5 -1.880 -0.1134 0.2651 -909-95 1829.5

M2 -1.783 -0.1131 -912.34 1830.1

M8 -1.900 -0.1412 0.3138 0.07083 -909.74 1830.4

M6 -1.783 -0.1214 0.02292 -912.47 1831.5

M4 -1.739 -0.09235 -913.45 1832.3

M3 -1.821 0.2761 -912.15 1832.6

M7 -1.821 0.2346 0.0704 -911.82 1833.1

M1 -1.721 -914.54 1833.2

The results as presented in Table 5.6 shows that the model with covariates Xit1(age)

and Xit2(smoking status ) was the choice by QIC as the best model. The model including

onlyXit1 (age) was ranked second and the one includingXit1 (age), Xit2 (smoking status)

and Xit3 (interaction between age and smoking status) was ranked third. The intercept
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only model was ranked last by QIC.

When QIC is used to select both the working correlation structure and the covariates

to include in the model, the ranking of the possible models and the estimates of the

corresponding coefficients are given in Table 5.7

Table 5.7: QIC Model Ranking for the Ohio Data based on the Independence Correlation

Structure
MODEL RANK Intercept Xit1 Xit2 Xit1Xit2 qlik QIC

M5 -1.884 -0.1134 0.2721 -909.95 1829.5

M2 -1.783 -0.1132 -912.34 1830.1

M8 -1.901 -0.1413 0.3140 0.07084 -909.74 1830.4

M6 -1.783 -0.0969 -0.04619 -912.27 1831.8

M4 -1.746 -0.1290 -913.35 1832.5

M3 -1.821 0.2716 -912.15 1832.6

M7 -1.821 0.2343 -0.0704 -911.82 1833.1

M1 -1.721 -914.54 1833.2

The results from Table 5.7 show a similar ranking to the rankings in Table 5.6. In

both cases, Model 5 was ranked top. However, examination of the coefficients shows

that there were differences in their magnitudes for the two models. This implies that

using different correlation structures will result to different effect sizes for the variables.

For instance a unit increase in smoking status of mothers caused an estimated increase

in te odds of developing respiratory illness by a factor of 1.303(e0.2651) under EQAIC

and by a factor of 1.313(e0.2721) under QIC.

To evaluate whether the use of the true correlation structure led to efficiency gain, we

carried out a K-fold cross-validation in which the predictive ability of each model based

on the Ohio data set is estimated using cross-validation. According to Cavanaugh [10],

EQAIC procedure will be regarded asymptotically efficient if it asymptotically identifies

a fitted candidate model with minimum mean squared error. The following algorithm

was used to compute the MSE for the models was as given below:

(i) We randomly divided the data set into K parts say k1, ..., kK each with approxi-
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mately n
K

clusters and mn
K

data points.

(ii) With the kth part held as the validation set, we fit the method on the remaining

K-1 folds

(iii) We then computed the mean squared error, MSEi using observations in the held-

out fold

MSEK =
∑
i∈k(yi − ŷi)2

K
(5.3)

Where ŷi is the fit for observation i obtained from the data with part K removed.

(iv) The process was repeated K times, each time, a different group observations being

treated as a validation set. The process result in K estimates of the test error,

MSE1, ......,MSEK

(v) The K-fold CV error was computed by averaging MSEi, i=1...K

CV(k) = 1
K

k∑
i=1

MSEi (5.4)

(vi) The procedure was repeated N times to reduce the influence of randomness asso-

ciated with the K-fold cross validation (Li [48]) such that final CV error is:

CV(k) = 1
N

N∑
i=1
{ 1
K

k∑
i=1

MSEi} (5.5)

(vii) We finally computed the relative efficiency measure:

RE = MSE(β̂QICG )
MSE(β̂EQAICG )

(5.6)

If RE > 1, GEE estimates under EQAIC will be more efficient than GEE estimates

under QIC. If RE < 1 then GEE estimates under QIC will be more efficient than

GEE estimates under EQAIC and; if RE=1, then EQAIC and QIC gives the same

results.

In our analysis, N=200 and K = {3, 5, 10}. The results are tabulated in Table 5.8.

Table 5.8: Efficiency Gain of EQAIC over QIC
K MSE(β̂EQAICG ) MSE(β̂QICG ) RE

3 1.74628 2.32801 1.2113

5 1.73519 2.16066 1.2452

10 1.74860 2.18400 1.2490
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Comparison of the MSE(β̂EQAICG ) and MSE(β̂QICG ) indicates that MSE (β̂EQAICG ) <

MSE(β̂QICG ) with MSE(β̂QICG ) being at least 21% more than the MSE of β̂EQAICG . The

results also established relative efficiency values greater than 1 for all K hence based on

Qu et al. [63], β̂EQAICG is more efficient than β̂QICG hence using the correct correlation

structure helps achieve the goal of efficiency improvement. The gain in efficiency estab-

lished in this study is 2% more than the efficiency established by Jamshid et al. [41]

using QIF. The study results corroborate assertions by Chen and Nicole [12] that se-

lecting the true correlation structure improves efficiency of GEE estimates. The results

also indicate that hybridization of model selection procedures in GEE as proposed by

Jang [42] and Oyebayo and Mohd [58] improves efficiency.
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CHAPTER 6

APPLICATION OF THE HYBRID METHODOLOGY (EQAIC) TO

MODEL THE DETERMINANTS OF SHAREHOLDER VALUE

CREATION

6.1 Introduction

In this chapter, we applied the proposed hybrid methodology that involves the use

of EAIC to choose an appropriate correlation structure and QIC to select the set of

covariates to the shareholder value creation data. A study was designed in which a

retrospective longitudinal study design was used to collect secondary quantitative data

for public listed firms in the NSE. The data were obtained from the annual financial

statements of the firms covering a period of 6 years (2011-2016). The sampling frame

of the study was 61 firms registered in Nairobi Security Exchange(NSE) comprising 7

agricultural firms; 4 auto-mobile and accessories firms; 11 banking firms; 9 commercial

services firms; 5 construction and allied firms; 4 energy and petroleum firms; 6 insurance

firms; 5 investment firms; 9 manufacturing firms and 1 telecommunication firm. These

were the listed companies whose shares were trading as at January 2011. The sample

size of 53 firms was determined using the Cochran [14] formula as shown below:

n =
∑L
i=1

N2
i p(1−p)
wi

N2d2

Z2
α
2

+Np(1− p)

=
72×0.5×0.5

0.11667 + ......+ 12×0.5×0.5
0.016667

17.34277
= 53 (6.1)

Where, n= the desired sample size, Z=the standard normal deviate at the required

confidence level (1.96), p=the proportion of the target population estimated to be having

the characteristic being measured (0.5), d= the absolute precision defined as d = Zα
2
SE,

where SE is the standard error, α= level of statistical significance (0.05), Ni is the

number of firms in each stratum i = 1......L such that N = N1 +N2 +N3.....NL. wi = Ni
N
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is the stratum weight and L=Number of strata.

Proportionate stratified sampling method was used to select the representative sam-

ple of 53 firms based on their categorization. The sampling technique was preferred

because if we let VProp represent the variance under stratified random sampling and

VRand represent variance under simple random sampling and assume that variation be-

tween strata is more than variation within strata, then Vprop ≤ Vrand (Cochran,[14]).

The sample comprised 8 agricultural firms; 3 auto-mobile and accessories firms; 10

banking firms; 8 commercial services firms; 4 construction and allied firms; 3 energy

and petroleum firms; 5 insurance firms; 3 investment firms; 8 manufacturing firms and

1 telecommunication firm.

6.2 Basic Model for the Determinants of Shareholder Value Creation

The basic model that is used to make predictions on the determinants of shareholder

value creation is the constant-growth model (Gordon [28]). The model predicts that

changes in shareholder value creation depends on dividends and the discount rate:

MV = DPS

ke − g

= EPS(1− b)
ke − g

(6.2)

The market value (MV) is the present value of the expected stream of Dividends Per

Share (DPS) which is equal to the Earnings Per Share (EPS) multiplied by the pay-out

ratio (1-b). This implies that DPS depends on the firm’s payout ratio and the earnings

growth per year (g) which depend on the retention ratio (b) and on the Return on

Equity (ROE) [ROE × b = g]. ke is the cost of equity capital computed using the

dividend capitalization formula i.e.

ke = D0(1 + gd)
P0

+ gd, gd = 1
m

m∑
t=1
{ Dt

Dt−1
− 1} (6.3)

where;

D0=Current year’s DPS, P0=Current year’s share price, gd=growth rate of dividend

per year, Dt= DPS at year t.
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Model (6.2) assumes that dividends grow at a constant rate in perpetuity. EPS

depends on the firm’s ROE and the equity investment normally expressed as book value

per equity share (BV) such that [EPS = ROE × BV ]. Equation 6.2 can therefore be

re-written as:

MV = BV ×ROE(1− b)
ke − g

= BV (ROE − b ∗ROE
ke − g

(6.4a)

Thus
MV

BV
= ROE − g

ke − g
(6.4b)

Equation 6.4b implies that shareholder value will be created if MV
BV

> 1 and value will

be destroyed if MV
BV

< 1. Further, equation 6.4b indicates that economic profitability

and growth are the main determinants of MV
BV

hence shareholder value creation depends

on the economic spread and the volume of future investment opportunities (g) and the

generic representation of the value based model is;

MV

BV
= β0 + β1(ROE − ke)it + β2git + β3(ROE − ke)it ∗ git (6.5)

Equation 6.5 implies that the level of economic profitability (ROE − ke) to be earned,

the volume of future investment opportunities expressed as the growth of earnings per

year (g) and the interaction term are the main drivers of shareholder value creation.

However, authors have tried to capture the determinants of shareholder value cre-

ation based on theoretical hypotheses on firm value. Copeland and Weston [15] tested

the relationship between dividend policy and firm value. Modgiliani and Miller (MM)

showed that in a world without taxes, agency costs or information asymmetry debt

policy had no effect on the value of a firm. Rappaport [64] argued that accounting

profitability is a very important value driver whereas Pandey [62] had the opinion that

it was economic profitability that had an effect on value creation. As such the main

determinants of shareholder value creation should include variables that capture the div-

idend policy, debt relevance policy and profitability hypothesis. Likewise, other scholars

have identified board size, working capital policy, level of financial distress and the size
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of the firm as determinants of shareholder value creation. The expanded model could

therefore be expressed as ;

MV

BV
= β0 + β1(ROE − ke)it + β2git + β3(ROE − ke)it ∗ git

+β4ROAit + β5DPRit + β6levit + β7logtait + β8wctait

+β9Zit + β10bsizeit + εit (6.6)

where MV
BV

is the market value to book value ratio; (ROE − ke) is the economic prof-

itability, ROA is the Return On Assets that represents accounting profitability, ’g’ is the

rate of growth of earnings per year, DPR is the dividend pay-out ratio that represents

the firm’s dividend policy, lev represents the the firms’ financial policy, logta is the log-

arithm of the total assets which represents the firm size, wcta is the net working capital

to to total assets which represents the working capital policy of the firms, ’Z’ is the

Altman’s Z-score value representing the level of financial distress and bsize represents

the board size.

6.3 Determinants of Shareholder Value Creation

6.3.1 The GEE model

Suppose each firm i is a cluster such that Yit is the MV
BV

history {(0, 1} such that

Yit =

 1 if MV
BV

> 1

0 if MV
BV
≤ 1

The observed time t corresponds to the time values at which the MV
BV

history is measured

(t=1.......6). Let Yi = [Yi1....Yi6]T be the 6 × 1 random vector of MV
BV

history of the ith

firm for the 6 years studied. The covariates X1it, X2it, X3it, X4it, X5it, X6it, X7it, X8it,

X9it and X10it are associated with the ith firm and tth year. Further, Suppose Pit is the

probability that the ith firm’s MV
BV

> 1 during the tth financial year , then

Pit = Pr(Yit = 1 | Xjit) = g(β0 + β1X1it + β2X2it + β3X3it + β4X4it + β5X5it

+β6X6it + β7X7it + β8X8it + β9X9it + β10X10it) (6.7)
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such that

logit(Pr(Yit = 1 | Xjit) = β0 + β1X1it + β2X2it + β3X3it + β4X4it + β5X5it

+β6X6it + β7X7it + β8X8it + β9X9it + β10X10it (6.8)

For i=1,2......53 and t=1,2...6

g(u) = eu

1+eu is the logistic function and the logit transform yields the equation

log( µit
1− µit

) = β0 + β1X1it + β2X2it + β3X3it + β4X4it + β5X5it + β6X6it

+β7X7it + β8X8it + β9X9it + β10X10it (6.9)

where,

• X1=Economic profitability which is the difference between Return On Equity

(ROE = Netprofit
BV ofEquity

) and Cost of Equity.

• X2=growth (g) measured by the growth rate of earnings per year.

• X3=interaction effect between growth in earnings and economic profitability,

• X4=Firm Size measured using the logarithm of the firm’s total assets. Firm size

has been confirmed as a significant predictor of firm performance. According to

Honjo and Harada [37], a small firm is more likely to register lesser MV
BV

because

of inadequate experience in the market, limited connections and limited financial

distress

• X5= Leverage which measures the long-term solvency of a company. The analysis

of financial leverage is concerned with the capital structure of the firm. Leverage

will be measured by the debt ratio which compares a company’s total debt to its

total assets. The lower the percentage means that the company is dependent on

leverage hence the stronger its equity position. Lev = TD
TA

where TD=Total debt

and TA=Total assets

• X6=Dividend Policy measured by the dividend payout Ratio which is the amount of

dividends paid to stockholders relative to the amount of total net income. It shows

the portion of the profits the firm decides to keep to fund operations. DPR = D
NI

,

Where DPR = Dividend Payout Ratio, D = Total Dividends and NI=Net Income
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• X7=Likelihood of financial distress of the firms measured by the Altman Z-score:

Z = 6.56T1 + 3.26T2 + 6.72T3 + 1.05T4 Where;

T1 = WC

TA
; T2 = RE

TA
; T3 = EBIT

TA
and T4 = MVE

TVL

Where, WC=Working Capital; RE=Retained Earnings; EBIT=earnings before in-

terest and tax; MVE=market value of equity; TVL=Total value of Liabilities and

TA=Total=Assets.

• X8= Board size

• X9= Accounting profitability measured by:ROA = EAT
TA

, where ROA=Return On

Assets, EAT=Earnings After Tax and TATotal Assets. The profitability Ratio

measures the ability of a company to generate earnings.

• X10=working capital policy which is measured by CA
CL

, where CA=current assets

and CL=current liabilities

The mean vector of Yi is

µi =



E(Yi1)

E(Yi2)
...

E(Yi6)


=



Pi1

Pi2
...

Pi6


= Pi (6.10)

Where Pit = µit = Pr(Yit = 1 | Xit), t=1,2..6 and i=1....53. The probability of not

creating value for firm i in the financial year t is (1− Pit) and the variance of Yit is

V ar(Yit = 1 | Xit) = µit(1− µit) = euit

(1 + euit)2 . (6.11)

The 6× 6 variance-covariance matrix of Yi is given by

V ar(Yi) =



V ar(Yi1) Cov(Yi1, Yi2) . . . Cov(Yi1, Yi6)

Cov(Yi1, Yi2) V ar(Yi2) . . . Cov(Yi2, Yi6)
... ... . . . ...

Cov(Yi1, Yi6) Cov(Yi2, Yi6) . . . V ar(Yi6)


(6.12)

In addition to the mean and covariance of the vector of responses Yit, Liang and Zeger

[83] suggested the use of an mi ×mi working correlation matrix for Yi, R(ρ), assumed
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to be fully specified by ρ such that;

Vi = A
1
2Ri(ρ)A 1

2 (6.13)

Where, Ai = diag[V ar(Yi1), V ar(Yi2), ..., V ar(Yim)] is a diagonal matrix which can be

expressed as:

Ai =



V ar(Yi1) 0 . . . 0

0) V ar(Yi2) . . . 0
... ... . . . ...

0 0 . . . V ar(Yi6)


(6.14)

If we let Di = dµi
dβT

and if X ′is are observable covariates for each firm, the vector of

parameters β = [β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10]T for model 6.8 could be obtained

by solving iteratively the following generalized estimating equations

U(β) =
53∑
i=1

DT
i V
−1
i (Yi − µi) = 0 (6.15)

To solve equation 6.15, we consider the mean vector µi = [µi1...µi6] and the variance-

covariance matrix Vi which varies depending on the nature of the correlation structure

Ri(ρ), where (Yi − µi) is a residual vector which measures deviations of observed re-

sponses of the ith firm from its mean. Liang and Zeger [49] established that β̂ satis-

fies U(β)=0 hence is asymptotically unbiased in the sense that limn→∞(E[U(β)]) = 0.

Moreover,
√
n(β̂G − β) is asymptotically multivariate normal.
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6.3.2 Model Selection Procedure

EQAIC model selection procedures was applied to select the best model from the 210

candidate set of models which are illustrated as:

 1

X1

⊗
 1

X2

⊗ · · · ⊗
 1

X10

 =



1

X1

X2

X1X2

X1X2X3

·

·

X1X2X3X4X5X6X7X8X9X10



. (6.16)

1. First, using the full model, we fixed the mean structure and computed the EAIC

of the models under different covariance structures. The covariance structure that

yielded the lowest EAIC value was considered the best.

2. Next, we fixed the selected covariance structure obtained in the first stage and

computed the QIC of each sub-model selected from the preceding stage above.

The model that yielded the smallest QIC was considered the best model. Model

ranking was accomplished using the MuMIn R package.

3. We repeated the procedures above but we used QIC to select the working correla-

tion structure in stage 1.

4. We applied delta (∆i = QICi − QICmin) which represent the information loss

experienced if we are using a fitted model fi rather than the best model fmin

for inference to extract models with stronger evidence of being nearer the truth.

According to Burnham and Anderson [7], for the true model ∆ = 0 and models

having ∆i ≤ 2 have substantial support than those in which 4 ≤ ∆i ≤ 7 and

models with ∆i ≥ 10 have essentially no support. We applied ∆i ≤ 4 to extract

the top set of models.
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5. We then computed the the MSE of β̂EQAICG of the selected model and compared it

with the MSE of β̂QICG so as to validate our hybrid methodology. To achieve this,

we made use of K-Fold cross-validation technique.

6.4 Selection of Correct Working Correlation Structure for Shareholder

Value Creation Data

We first fit the the full GEE model using correlation structures independence, exchange-

able, AR-1 and Toeplitz and unstructured. Empirical likelihood ratio is defined with

the general correlation structure Toeplitz. EAIC and QIC values were obtained with

each of the five sets of GEE estimates. We used the results to determine the correlation

structure preferred by EAIC and the one preferred by QIC for the Shareholder Value

Creation data (SVA). The results are shown in Table 6.1. (See Appendix E.1).

Table 6.1: Working Correlation Structure Selection for the SVA Data
Working Correlation Structures

IN EX AR-1 Toep UN

EAIC 1268.282 968.789 967.706 1062.735 1151.333

QIC 941.925 1003.983 844.322 3245.05 799.670

The result indicate that EAIC chooses the AR-1 working correlation structure for

the SVA data which has a minimum value of 967.706. The estimated ρ-value for the

selected AR-1 correlation structure is 0.775 which implies that the estimated correlation

matrix is:

RAR−1 =



1 0.775 0.601 0.466 0.361 0.280

0.775 1 0.775 0.601 0.446 0.361

0.601 0.775 1 0.775 0.601 0.466

0.466 0.601 0.775 1 0.775 0.601

0.361 0.466 0.601 0.775 1 0.775

0.280 0.361 0.466 0.601 0.775 1


(6.17)

On the other hand, QIC chooses the unstructured correlation structure with a minimum

QIC value of 799.670. The estimated correlation structure in this case is;
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RUN =



1 0.566 0.587 0.465 0.773 0.189

0.556 1 0.648 0.547 0.534 0.330

0.587 0.648 1 0.871 0.616 0.316

0.465 0.547 0.871 1 0.758 0.534

0.773 0.534 0.616 0.758 1 0.795

0.189 0.330 0.316 0.534 0.795 1


(6.18)

The results indicate that whereas EAIC prefers a parsimonious AR-1 correlation struc-

ture, QIC prefers the over-parameterized unstructured correlation structure with 15

correlation parameters.

6.5 Application of QIC to Select SVA Model Based on the WCS Selected

by EAIC

Based on the AR-1 working correlation structure selected by EAIC, we applied QIC to

select the best model out of the 210 possible models. We used the Multi-Model Inference

(MuMIn) R package to generate the model selection table in which the models were

ranked based on their QIC values with the model with the minimum QIC value ranked

first. We extracted models whose ∆i < 4. This resulted in the top 15 models which are

given Table 6.2. (See Appendix E.2)
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Table 6.2: Model Selection Table by QIC When R0 = AR− 1
Model No. Int X6 X2 X5 X4 X9 X1 X7 X3 X8 X10 QIC Delta

479 X X X X X X X X 394 0.00

351 X X X X X X X 395 0.71

349 X X X X X X 396 1.26

477 X X X X X X X 396 1.38

223 X X X X X X X 396 1.44

95 X X X X X X 396 1.97

221 X X X X X X 397 2.59

511 X X X X X X X X X 397 2.75

471 X X X X X X X X 398 2.97

93 X X X X X 398 3.04

343 X X X X X X 398 3.10

509 X X X X X X X X 398 3.21

383 X X X X X X X X 398 3.25

255 X X X X X X X X 398 3.43

495 X X X X X X X X 398 3.48

The results indicate that the model with covariates X6 (dividend policy), X2 (growth

rate of earnings), X5 (debt policy), X4 (firm size), X1 (economic spread), X7 (Level of

financial distress) and X3 (interaction between economic spread and growth) was ranked

first hence was the preferred model. The relative variable importance based on the sum

of the Akaike Weights over all models including the particular explanatory variable is

given in Table 6.3.

Table 6.3: Relative Variable Importance
Covariate X2 X1 X4 X7 X3 X6 X5 X9 X8

R. Importance 1.00 1.00 0.88 0.81 0.62 0.62 0.56 0.27 0.08

N containing Models 192 192 160 160 64 160 160 160 160

Table 6.3 shows that X2 (growth rate of earnings) and X1 (economic spread) are

key drivers of shareholder value creation hence giving credence to the Gordon-Constant

Growth model. Other important determinants are X4(firm size), X5 (leverage), X3
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(interaction between g and (ROE-ke)), X6 (dividend policy) and X7 (firm’s level of

financial distress) all with relative importance values greater than 0.5.

6.6 Validation of the Model Selected by EQAIC

We first run a model selection using the unstructured working correlation structure

which was selected by QIC. The top 15 models are given in the Table 6.4.

Table 6.4: Model Selection Table by QIC When R0=Unstructured
Model Int X6 X2 X5 X4 X9 X1 X7 X3 X8 X10 QIC Weight

224 X X X X X X X X 401 0.00

96 X X X X X X X 402 0.49

216 X X X X X X X X 405 2.56

70 X X X X 410 8.23

219 X X X X X X 420 19.1

91 X X X X X 421 19.2

217 X X X X X 421 19.8

89 X X X X 421 20.0

251 X X X X X X X 424 22.1

123 X X X X X 424 22.3

211 X X X X X 424 22.6

83 X X X X 424 23.0

249 X X X X X X 424 23.3

121 X X X X X 425 23.5

209 X X X X 425 23.6

The results indicate that the model with explanatory variables board size (X8),

dividend policy (X6), growth of earnings (X2), debt policy (X5), economic spread (X1)

and level of financial distress (X7) was ranked as the best model. This model was not

among the top 15 models selected under the EQAIC procedure.

We compared the predictive performance of the two models selected under the two

settings using 10-fold cross-validation to establish efficiency gain of EQAIC over QIC.

The MSE(β̂EQAICG ), MSE(β̂QICG ) and the relative error {RE = MSE(β̂QICG )
MSE(β̂EQAICG )

} for 10

iterations are given in Table 6.5. (See Appendix E.3)
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Table 6.5: Efficiency of the model Selected under the EQAIC Procedure
Iteration MSE(β̂EQAICG ) MSE(β̂QICG ) RE

1 7.567 9.594 1.268

2 7.944 9.220 1.161

3 1.022 10.023 9.866

4 1.016 10.302 10.140

5 1.010 10.032 9.932

6 5.215 7.129 1.275

7 8.031 9.822 1.223

8 7.790 9.731 1.249

9 1.014 10.328 10.186

10 8.596 9.830 1.144

The results show that MSE(β̂EQAICG ) were far much less than MSE(β̂QICG ). Further

the relative efficiency values were all more than 1 hence it was inferred that the proposed

procedure EQAIC significantly improves the efficiency of the GEE estimates (β̂G) hence

the conclusion that the selection of the correct working correlation structure significantly

improves the efficiency of estimates. The high MSE(β̂QICG ) as asserted by Chen and

Nicole [12] could be as a result of the unstructured correlation structure preferred by QIC

which had more nuisance parameters to estimate and estimating them cost efficiency.
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CHAPTER 7

SUMMARY OF RESULTS, CONCLUSIONS AND

RECOMMENDATIONS

7.1 Introduction

This Chapter provides a summary of findings on the properties of QIC in selecting

the correct working correlation structure and set of covariates for the mean structure.

It also provides summary results on the hybrid methodology and its performance in

terms of increasing efficiency of GEE estimates and the results of its application to

modeling shareholder value creation data. Further, it provides conclusions drawn from

the summary results as well as recommendations for statistical modelers and future

studies

7.2 Summary of Results

The first objective of the study sought to investigate through simulations, the properties

of QIC in selecting the true working correlation structure. We established that when

the selection set comprised both parsimonious and over-parameterized structures, QIC

selected the true AR-1 and unstructured correlation matrices with rates that increased

with the sample size, measurements per subject and degree of correlation. However,

the rates of selection hardly reached 50% even at n=200. The slow rate of increase

was an indicator that convergence was not with a probability of one. For the true

exchangeable structure, QIC’s selection rates were less than 20% and declined with

increase in n, m and ρ. These results showed that QIC was not consistent in selecting

the true correlation structure in the presence of over-parameterized structures. In such

scenarios, QIC favored the over-parameterized structures with higher probabilities even

when they were not correct ones. It was established that consistency was achieved when

only parsimonious structures were considered. There was a big difference in selection
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rates of QIC between the two selection sets (ω1), a set with both parsimonious and

over-parameterized structures and (ω2), a set of parsimonious structures only for AR-

1 and exchangeable true structures. For instance, QIC selection rate of the true AR-1

structure was 20.7% under ω1 (n=20, m=3, ρ = 0.2) while it was 41.7% under ω2 (n=20,

m=3, ρ = 0.2). For the same settings, the selection rates of the exchangeable structure

were 10.5% and 34.2% for ω1 and ω2 respectively. Further, we developed a modified

version of QIC in which we considered the number (q) of correlation parameters in

the working correlation structure and the number (p) of regression parameters as cost

components. Using simulation, the new criteria (QICm(R)) was established to select

the true correlation structure with probabilities which were more than twice those of

QIC. Also, whereas QIC preferred over-parameterized structures, QICm(R) preferred a

parsimonious correct structure.

The second objective of the study sought to investigate the properties of QIC in

selecting the correct set of covariates for the mean structure. We sought to establish

the over-fitting and under-fitting probabilities of QIC hence its consistency in selecting

the true model, its sensitivity and sparsity. Theoretical results showed that the prob-

ability of QIC selecting under-fit models converged to zero in the limit as n −→ ∞

while its over-fitting probability converged in the limit to a value greater than zero.

Using numerical simulations, we verified the result that QIC’s under-fitting probabili-

ties converged to Zero as n → ∞ hence had a sensitivity rate of 100%. On the other

hand the over-fitting probability of QIC converged to 0.3 as n −→ ∞ hence was 70%

specific. This implied that QIC failed to exclude all the non-important variables from

the selected model hence was inferred to have low sparsity. This was supported by the

finding that QIC selected over-specified models with a probability approaching one as

n −→∞. We also established that QIC had a high statistical power which ranged from

0.66 to 1 as a result of the low type II error rate. This power test results showed that

rejecting any given false null hypothesis was guaranteed for sufficiently large samples

even when the effect size was small making QIC good for predictive modeling.

The third objective sought to propose a model selection procedure that will improve
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efficiency of the GEE estimator through the selection of the correct correlation struc-

ture. We proposed an hybrid methodology that involved the use of EAIC in selecting

the working correlation structure and then QIC to select the set of covariates for the

mean structure. K-fold cross-validation was used to establish the gain in efficiency of

our hybrid methodology over QIC. We established EAIC’s selection rates of the true

correlation structure to be more than twice those of QIC. Also, the probability of EAIC

selecting the true working correlation structure converged to one in the limit as n −→∞

hence was consistent. When the hybrid methodology (EQAIC) was used for model se-

lection, the resulting model was found to be approximately 24% more efficient than the

one selected by QIC only.

The fourth objective sought to apply the hybrid methodology( EQAIC) to model

shareholder value creation data. Through the proposed model selection procedure, the

AR-1(0.775) correlation structure was preferred for the shareholder value creation data

and the model with the covariates: annual growth of earnings, economic spread, size of

the firm, dividend policy, leverage and level of financial distress was selected as the best

model for shareholder value creation. The relative variable importance index showed

that the growth rate of earnings (g) and the economic spread (ROE − ke) were the

key drivers of shareholder value creation hence giving credence to the Gordon-Constant

Growth model. Other important determinants were firm size, leverage, dividend policy

and the firm’s level of financial distress all with relative importance values greater than

0.5. When QIC was used to select both the working correlation structure and the

covariates, the unstructured correlation matrix was preferred for the shareholder value

creation data and the model with covariates: board size, dividend policy, growth of

earnings, debt policy, economic spread and level of financial distress was ranked as

the best model. This model was not among the top 15 models selected under the

EQAIC procedure. Comparison of the two models selected showed that MSE(β̂EQAICG )

≪ MSE(β̂QICG ). The Relative efficiency values indicated that GEE estimates under

EQAIC were between 14.4% and 918.6% more efficient than those under QIC. Further, it

was established that selecting the correct working correlation structure greatly improved
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efficiency of the GEE estimates.

7.3 Conclusions

Based on the study findings, the following conclusions are made.

(i) QIC is not effective in selecting the correct working correlation structure for GEE

modeling when the selection set includes over-parameterized correlation structures.

Its effectiveness can improve if only parsimonious structures are considered.

(ii) Penalizing for the number of correlation and regression parameters estimated im-

proves the consistency of a model selection criteria in selecting the true correlation

structure

(iii) QIC does not select the true model with a probability of one hence is not consistent

but rather conservative since it includes all of important variables in the model

selected. However, dues to its over-fitting level, its use results to models with

greater variability.

(iv) Use of the proposed Hybrid methodology (EQAIC) in GEE ensures that both the

right correlation structure and covariates are selected thus leading to models with

lower MSE hence higher prediction performance

(v) Gordon-Constant Growth model (Gordon, [28]) still remains important in predict-

ing shareholder value creation.

7.4 Recommendations

7.4.1 Recommendations for Practice

Since the study findings showed that QIC was not effective in selecting the true working

correlation structure in the presence of over parameterized structures, we recommend

for its use when the selection set consists of parsimonious structures only. Otherwise,

we recommend the use of techniques such as QICm(R) which penalize for all parameters

estimated. Secondly, since QIC was established to be conservative in model selection,

we recommend for its use in predictive modeling as it will result to models with better
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prediction performance. Third, we recommend the use of the proposed hybrid method-

ology (EQAIC) for model selection in GEE rather than the routine use of QIC. This

will help in achieving the objective of efficiency along side consistency of the GEE es-

timates. Fourth, we recommend that researchers in the areas of financial modeling to

consider the factors: firm size, debt policy, dividend policy and level of financial distress

alongside the Gordon-Constant Growth model in establishing the probability of a firm

creating value for its shareholders.

7.4.2 Directions for Future Studies

Our simulation experiments used complete observations. Missing values are common

issues in longitudinal data analysis. The impact of missing data on the performance of

QIC in selecting the correct working correlation structure and set of covariates should

be examined. Future studies on this line can examine the effect of missing data on the

performance of QIC and explore whether imputation methodologies remedies the effect

or propose modification of QIC to take into account the effect of missing data.

In our real data analysis we assumed that the data were measured accurately. How-

ever, in real life data can contain measurement errors and these can affect the per-

formance of a model selection criteria. Future studies can examine the influence of

measurement errors on the performance of Kullback I-divergence based model selection

criteria in the GEE framework.

Our proposed modified QIC (QICm(R)) was numerically established to be consistent

in selecting the true correlation structure even with the inclusion of over-parameterized

structures. We recommend future studies that will develop a theoretical justification for

the consistency of QICm(R) in the selection the correct working correlation structure.

In our simulation studies, the marginal mean model and variance function were

correctly specified. However, the effect of a misspecified or more complicated mean

structure resulting from increasing the size of p was not investigated hence we recom-

mend future studies that could investigate the performance of QIC in a high dimensional

framework in which the number of covariates (p) increase as n with a possibility of p > n.
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In our model selection, we assumed the existence of one model that is nearest to the

truth. We recommend future studies that incorporate model averaging of the possible

models for the longitudinal data incorporating the GEE approach to establish whether

for prediction, model averaging is better than the best-model strategy employed in this

study.
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APPENDICES

Appendix A

PROOF OF THEOREM AND LEMMA

A.1 Regularity Conditions

Let Yi, i=1,...,n be iid variable distributed with density f(y|θ) and let θ̂ and θ0 be the

MLE of the parameter vector θ and the true unknown parameter value respectively.

Some of the regularity conditions that the density function of Yi must satisfy are:

(i) θ0 ∈ Θ0 where Θ is the parameter space and Θ0 is in the interior θ

(ii) the true but unknown parameter value θ0 is identifiable i.e.

θ0 = argmin
θ∈Θ

E(logf(Yi|θ))

(iii) the log-likelihood function `(θ|y1, ..., yn) = ∑n
i=1 logf(yi|θ) is continuous in θ

(iv) E(logf(Y1, ..., Yn)|θ) exists

(v) the log-likelihood function is such that 1
n
`(θ|y1, ..., yn) converges almost surely to

Elog(Yi|θ) uniformly in θ ∈ Θ i.e.

Sup
θ∈Θ
| 1
n
`(θ|y1, ..., yn)− Elog(Yi|θ)| < ε, ε > 0

(vi) the log-likelihood function is twice continuously differentiable in a neighbourhood

of θ0

(vii) the expected Fisher information matrix

I(θ0) = E{−∂
2logf(Y1, ..., Yn)|θ0

∂θ∂θT
}

exists and is non-singular
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A.2 Proof of Theorem (1.6.11)

Let ρ∗(β) = ρ̂[β, φ̂(β)]. Under some regularity conditions
√
n(β̂G− β)→ N(0, VLZ) can

be approximated by;

{
n∑
i=1
− δ

δβ
Ui[β, ρ∗(β)]}−1{Ui[β, ρ∗(β)/

√
n}, (A.1)

where,

δ

δβ
Ui[β, ρ∗(β)] = δ

δβ
Ui[β, ρ∗(β)] + [ δ

δρ∗
Ui[β, ρ∗(β)][ δ

δβ
ρ∗(β)]

= Pi +QiR (A.2)

Let β be fixed so that the Taylor expansion gives

n−
1
2

∑
Ui[β, ρ∗(β)] = n−

1
2Ui(β, ρ) +

∑ ∂Ui(β,ρ)
∂ρ

n
n−

1
2 (ρ∗ − ρ) + op(1)

= P ∗ +Q∗R∗ + op(1) (A.3)

where the sum are over i=1...n. Now Q∗ = op(1) since ∂Ui(β,ρ)
∂ρ

are linear functions of

(yi − µi) whose means are zero. Based on conditions (i) and (iii) in (1.6.11)

R∗ =
√
n{ρ̂(β, φ∗)− ρ̂(β, φ) + ρ̂(β, φ)− ρ}

=
√
n{∂ρ̂
∂φ

(β, phi∗)(phi∗ − φ) + ρ̂(β, φ)− ρ}

= Op(1) (A.4)

Consequently,
∑n
i=1 Ui[β, ρ∗]√

n
is asymptotically equivalent to P ∗ whose asymptotic dis-

tribution is multivariate Gaussian with zero mean and covariance matrix

lim
n→∞
{
n∑
i=1

D
′

iV
−1
i Cov(Yi)V −1

i Di/n} (A.5)

Then it follows that ∑n
i=1 Qi = op(n), R = Op(1)and that ∑n

i=1
Pi
n

converges as n −→∞

to −
∑n
i=1D

′
iV
−1
i Di

n
which completes the proof.

A.3 Proof of Lemma (1.6.21)

Define I(θk) = E〈− δ2Q(θk|y)
δθkδθ

T
k
〉 to denote the expected fisher information matrix and

I(θk|y) = − δ2Q(θk|y)
δθkδθ

T
k

to be the observed fisher information matrix and if we consider a
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second order expansion of −2Q(θ0|y) about θ̂k and evaluate the expectation of the result

we obtain:

−2Q(θ0|y) = E{−2Q(θ̂k|y)}

+ [E{(θ̂k − θ0)T [I(θ̂k|y)](θ̂k − θ0)}

+ o(1) (A.6)

Thus we have;

E{−2Q(θ0|y)} − E{−2Q(θ̂k|y)} = E{(θ̂k − θ0)T [I(θ̂k|y)](θ̂k − θ0)}+ o(1) (A.7)

Next, we consider taking a second order expansion of d(θ0, θ̂k) about θ0 and we have;

d(θ0, θ̂k) = d(θ0, θ0) + (θ̂k − θ0)T [I(θ0)](θ̂k − θ0)}+R(θ0, θ̂k) (A.8)

In this case R(θ0, θ̂k) is of op(1) such that E{R(θ0, θ̂k)} is o(1). Using this result together

with the result in (1.79) and evaluating the expectation of (A.8), we have;

E{d(θ0, θ̂k)} = E{−2Q(y|θ0)}

+ E{(θ̂k − θ0)T [I(θ0)](θ̂k − θ0)}

+ o(1) (A.9)

Thus;

E{d(θ0, θ̂k)} − E{−2Q(y|θ0)} = E{(θ̂k − θ0)T [I(θ0)](θ̂k − θ0)}+ o(1) (A.10)

Accordingg to Cavanaugh [10], the quadratic forms (θ̂k − θ0)T [I(θ̂k|y)](θ̂k − θ0) and

(θ̂k − θ0)T [I(θ0)](θ̂k − θ0) converge to centrally distributed chi-square random variables

with k degrees of freedom. Since θ0 ∈ Θ(k), the expectation of both the quadratic forms

are within o(1) of k. This fact along with (A.7) and (A.10) establishes (1.113a) and

(1.113b).
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Appendix B

R-CODE FOR THE INVESTIGATION OF THE PERFORMANCE OF

QIC IN SELECTING THE TRUE WORKING CORRELATION

STRUCTURE

B.1 R-Code for the Performance of QIC in Selecting the True Correlation

Structure

library(geepack);library(MESS);library(SimCorMultRes)

N=1000 # number of runs

n=20, #n=30, #n=50, #n=100, #n=200 # number of subjects

clsize=3; #clsize=6; #clsize=9 # number of measurements per subject

intercepts=0.25

betas=c(-0.25, -0.25)

#correlation Matrices#

#AR-1 (alpha=0.2)#

cor.matrix=toeplitz(c(1,0.2,0.04))................#m=3)

cor.matrix=toeplitz(c(1,0.2,0.04,0.008,1.6e-03,3.2e-04))....#m=6)

cor.matrix=toeplitz(c(1,0.2,0.04,0.008,1.6e-03,3.2e-04,6.4e-05,1.28e-05,2.56e-06))..#m=9)

#AR-1 (alpha=0.5)#

cor.matrix=toeplitz(c(1,0.5,0.25))................#m=3)

cor.matrix=toeplitz(c(1,0.5,0.25,0.125,0.0625,0.03125))....#m=6)

cor.matrix=toeplitz(c(1,0.5,0.25,0.125,0.0625,0.03125,1.5625e-02,7.8125e-03,3.9063e-03))..#m=9)

#AR-1 (alpha=0.8)#

cor.matrix=toeplitz(c(1,0.8,0.64))................#m=3)

cor.matrix=toeplitz(c(1,0.8,0.64,0.512,0.4096,0.3277))....#m=6)

cor.matrix=toeplitz(c(1,0.8,0.64,0.512,0.4096,0.3277,2.6214e-01,2.0972e-01,1.6777e-01))..#m=9)

#EXCHANGEABLE (alpha=0.2)#

cor.matrix=toeplitz(c(1,0.2,0.2))................#m=3)
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cor.matrix=toeplitz(c(1,0.2,0.2,0.2,0.2,0.2))....#m=6)

cor.matrix=toeplitz(c(1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2))..#m=9)

#EXCHANGEABLE (alpha=0.5)#

cor.matrix=toeplitz(c(1,0.5,0.5))................#m=3)

cor.matrix=toeplitz(c(1,0.5,0.5,0.5,0.5,0.5))....#m=6)

cor.matrix=toeplitz(c(1,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5))..#m=9)

#EXCHANGEABLE (alpha=0.8)#

cor.matrix=toeplitz(c(1,0.8,0.8))................#m=3)

cor.matrix=toeplitz(c(1,0.8,0.8,0.8,0.8,0.8))....#m=6)

cor.matrix=toeplitz(c(1,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8))..#m=9)

#UNSTRUCTURED #

cor.matrix =



1.00 0.80 0.60 0.14 0.10 0.23

0.80 1.00 0.70 0.18 0.17 0.18

0.60 0.70 1.00 0.25 0.24 0.22

0.14 0.18 0.25 1.00 0.45 0.22

0.10 0.17 0.24 0.45 1.00 0.16

0.23 0.18 0.22 0.22 0.16 1.00


min.qic =rep(0,4)

p = c(3,4,4,5)

for (j in 1:N){

x1=rep(rnorm(n),each=clsize)

x2=rep(rbinom(n,2,0.5),each=clsize)

corres=rbin(clsize=clsize,intercepts=intercepts,betas=betas,

xformula=∼x1+x2,cor.matrix=cor.matrix,link=”probit”)

wm1=geeglm(y∼x1+x2,family=binomial(link=”logit”),id=id,corstr=”independence”,

data=corres$simdata)

wm2=geeglm(y∼x1+x2,family=binomial(link=”logit”),id=id,corstr=”exchangeable”

data=corres$simdata)

wm3=geeglm(y∼x1+x2,family=binomial(link=”logit”),id=id,corstr=”ar1”
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data=corres$simdata)

wm4=geeglm(y∼x1+x2,family=binomial(link=”logit”),id=id,corstr=”unstructured”

data=corres$simdata)

qic1=QIC(wm1)

qic2=QIC(wm2)

qic3=QIC(wm3)

qic4=QIC(wm4)

qic=c(qic1,qic2,qic3, qic4)

print( ”QIC”);print(qic)

id1=which.min(qic)

min.qic[id1]=min.qic[id1]+1

print(j) }

min.qic;

B.2 R-Code for the Comparison of QICm(R) and QIC in Selecting the True

Correlation Structure

library(MASS) library(bindata) library(gee) library(geepack)

# Defining the Working Correlation Matrices #

indep.corr = function(t,aplha){

diag(1,t)

}

exch.corr = function(t,alpha){

exch = matrix(1,t,t)

exch[1,] = c(1,rep(alpha,(t-1)))

for (i in 2:t){

exch[i,] = c(exch[i-1,t],exch[i-1,-t])

}

return(exch)
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}

ar1.corr = function(t,alpha){

ar1 = matrix(1,t,t)

for (i in 1:(t-1)){

for (j in (i+1):t) {

ar1[i,j] = alpha(̂j-i)

ar1[j,i] = ar1[i,j]

}

return(ar1)

}

toep.corr=function(t,a){

toep = diag(1,t)

m = length(a)

for (i in 1:m){

toep[abs(col(toep)-row(toep))==i] = a[i]

}

return(toep)

}

# My Gee function. Defining QIC and QICm(R) Functions #

mygee = function(y, x , t, fam, corr=”exch”, scale=1, tol=1e-7) for binary

x1 = x[,1]

x2 = x[,2]

beta.old = glm(y ∼ 0 + x1 + x2, family=fam)$coef

n = length(y)/t

x = aperm(array(t(x),c(2,t,n)),c(2,1,3))

y = matrix(y,t,n)

stop = 0

count = 0

while (stop==0) {
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count = count+1

alpha.num = 0

alpha1.num = alpha2.num =0

error = p.err = matrix(0,t,n)

D = array(0,c(t,3,n))

A = array(0,c(t,t,n))

left = array(0,c(3,3,n))

right = matrix(0, 3,n)

if (corr==”ind”){

stop =1

beta.new = beta.old

for (i in 1:n) {

fitted = plogis( x[„i] %*% beta.old )

error[,i] = y[,i]-fitted

p.err[,i] = error[,i]*(fitted *(1-fitted))ˆ(-1/2(

}

phi=sum(p.errˆ2)/(n*t-3)

theta.new = c(beta.new, phi)

}

else if ( corr==”exch” ) {

for (i in 1:n) { # cal. pearson resd.

fitted = plogis( x[„i] %*% beta.old )

error[,i] = y[,i]-fitted

p.err[,i] = error[,i]*(fitted*(1-fitted))ˆ(-1/2)

D[„i] = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A[„i] = diag(as.vector((fitted(1-fitted))ˆ(-1)))

alpha.num = alpha.num + sum(p.err[,i]%*%p.err[,i])-sum(p.err[,i]*p.err[,i]) # exchange-

able

}
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phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*t*(t-1)-6)/phi # exchangeable

R = exch.corr(t,alpha)

for (i in 1:n) {

A.half = A[„i]ˆ(1/2)

left[„i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% D[„i]))

right[,i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% error[,i]))

}

beta.new = beta.old + solve(apply(left,c(1,2),sum),apply(right,1,sum))

if ( max(abs(beta.new-beta.old))=tol) {

alpha.num = 0

p.err = matrix(0,t,n)

for (i in 1:n) { # cal. pearson resd.

fitted = plogis(x[„i]%*% beta.new )

p.err[,i] = (y[,i]-fitted)*(fitted*(1-fitted))ˆ(-1/2)

alpha.num = alpha.num + sum(p.err[,i]%o%p.err[,i])- sum(p.err[,i]*p.err[,i]) exchange-

able

}

phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*t*(t-1)-6)/phi # exchangeable

theta.new = c(beta.new, alpha, phi)

stop = 1

}

else beta.old = beta.new

}

# end if ”exch”

else if (corr==”ar1”) {

for (i in 1:n) { # cal. pearson resd.

fitted = plogis( x[„i] error[,i] = y[,i]-fitted
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p.err[,i] = error[,i]*(fitted*(1-fitted))ˆ(-1/2)

D[„i] = matrix(rep(fitted*(1-fitted),3),t,3)* x[„i]

A[„i] = diag(as.vector((fitted(1-fitted))ˆ(-1))

alpha.num = alpha.num + sum(p.err[-t,i]*p.err[-1,i]) # AR(1)

}

phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*(t-1)-3)/phi # AR(1)

R = ar1.corr(t,alpha)

for (i in 1:n) {

A.half = A[„i]ˆ(1/2)

left[„i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% D[„i]))

right[,i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% error[,i]))

} beta.new = beta.old + solve(apply(left,c(1,2),sum),apply(right,1,sum))

if ( max(abs(beta.new-beta.old)) ¡= tol) {

alpha.num = 0

p.err = matrix(0,t,n)

for (i in 1:n) { # cal. pearson resd.

fitted = plogis(x[„i]p.err[,i] = (y[,i]-fitted)*(fitted*(1-fitted))ˆ(-1/2)

alpha.num = alpha.num + sum(p.err[-t,i]*p.err[-1,i]) # AR(1)

}

phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*(t-1)-3)/phi # AR(1)

theta.new = c(beta.new, alpha, phi)

stop = 1

} @ end if

else beta.old = beta.new

} #@ end else

else if (corr==”toep”){

for (i in 1:n) { # cal. pearson resd.
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fitted = plogis( x[„i] %*% beta.old )

error[,i] = y[,i]-fitted

p.err[,i= error[,i]*(fitted*(1-fitted))ˆ(-1/2)

D[„i] = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A[„i] = diag(as.vector((fitted*(1-fitted))ˆ(-1))

alpha1.num = alpha1.num + p.err[1,i]*p.err[2,i] + p.err[2,i]*p.err[3,i] # Toeplitz

alpha2.num = alpha2.num + p.err[1,i]*p.err[3,i]

}

phi = sum(p.errˆ2)/(n*t-3)

alpha1 = alpha1.num/(2*n-3)/phi # Toep

alpha2 = alpha2.num/(n-3)/phi

R = toep.corr(t, c(alpha1, alpha2))

for (i in 1:n) {

A.half = A[„i]ˆ(1/2)

left[„i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% D[„i]))

right[,i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% error[,i]))

}

beta.new = beta.old + solve(apply(left,c(1,2),sum),apply(right,1,sum))

if ( max(abs(beta.new-beta.old)) = tol) {

alpha1.num = alpha2.num = 0

p.err = matrix(0,t,n)

for (i in 1:n) { # cal. pearson resd.

fitted = plogis(x[„i]%*% beta.new )

p.err[,i] = (y[,i]-fitted)*(fitted*(1-fitted))ˆ(-1/2)

alpha1.num = alpha1.num + p.err[1,i]*p.err[2,i] + p.err[2,i]*p.err[3,i] # Toeplitz

alpha2.num = alpha2.num + p.err[1,i]*p.err[3,i]

}

phi = sum(p.errˆ2)/(n*t-3)

alpha1 = alpha1.num/(2*n-3)/phi Toep
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alpha2 = alpha2.num/(n-3)/phi

theta.new = c(beta.new, alpha1, alpha2, phi)

stop = 1

} #@ end if

else beta.old = beta.new

}

} #@ end while

return(theta.new)

}

qicf = function(b, a, phi.i, phi, corr){

x = aperm(array(t(x),c(3,t,n)),c(2,1,3)) data transformation

y = matrix(y, t,n)

D = array(0,c(t,3,n))

A = array(0,c(t,t,n))

omega.i = I0 = matrix(0,3,3)

ql = 0

if (corr==”indep”)

R = indep.corr(t)

else if (corr==”exch”)

R = exch.corr(t,a)

else if (corr==”ar1”)

R = ar1.corr(t,a)

else if (corr==”toep”)

R = toep.corr(t,a)

for (i in 1:n){

fitted = plogis( x[„i] error = y[,i]-fitted

D = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A = diag(as.vector((fitted*(1-fitted))ˆ(-1)))

A.half = Aˆ(1/2)

153



omega.i = omega.i + crossprod(D, A%*%D)

I0 = I0 + crossprod(D, A.half %*% solve(R, A.half %*% D))

I1.left = crossprod(D, A.half %*% solve(R, A.half %*% error))

I1 = I1 + tcrossprod(I1.left, I1.left)

ql = ql + sum( y[,i]*(log(fitted)-log(1-fitted))+log(1-fitted) )

}

omega.i = omega.i/phi.i

V.r = solve(I0, I1)%*%solve(I0)

print(solve(I0)*phi)

print(V.r)

qic.v = 2*(-ql/phi.i)+ 2*sum(diag(omega.i%*%V.r))

return(qic.v)

}

# Defining the modified QIC(QICm(R)) Function#

Mqicf = function(b, a, phi.i, phi, corr, q){

x = aperm(array(t(x),c(3,t,n)),c(2,1,3)) # data transformation

y = matrix(y, t,n)

# D = array(0,c(t,3,n))

# A = array(0,c(t,t,n))

omega.i = I0 ¡- I1 ¡- matrix(0,3,3)

ql = 0

if (corr==”indep”)

R = indep.corr(t)

else if (corr==”exch”)

R = exch.corr(t,a)

else if (corr==”ar1”)

R = ar1.corr(t,a)

else if (corr==”toep”)

R = toep.corr(t,a)
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if (corr==”indep”)

q = 0

else if (corr==”exch”)

q = 1

else if (corr==”ar1”)

q = 1

else if (corr==”toep”)

q= t-1

for (i in 1:N){

fitted = plogis( x[„i] %*% b )

error = y[,i]-fitted

D = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A = diag(as.vector((fitted*(1-fitted))ˆ(-1)))

A.half = Aˆ(1/2)

omega.R = omega.i + crossprod(D, A.half %*% solve(R, A.half %*% D))

I0 = I0 + crossprod(D, A.half %*% solve(R, A.half %*% D))

I1.left = crossprod(D, A.half %*% solve(R, A.half %*% error))

I1 = I1 + tcrossprod(I1.left, I1.left)

ql = ql + sum( y[,i]*(log(fitted)-log(1-fitted))+log(1-fitted) )

}

omega.i = omega.i/phi.i

V.r = solve(I0, I1)%*%solve(I0)

# print(solve(I0)*phi)# print(V.r)

Mqic.v = 2*(-ql/phi.i)+ 4*p*sum(diag(omega.i*V.r))

+(2*q/(t*(t-1)))*sum(diag(omega.R*V.r))

return(Mqic.v)

}

# correlated binary data generator #

bin.gen = function(x, beta, bcorr, n, t){
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x = aperm(array(t(x), c(3,t,n)),c(2,1,3)) # data transformation

B = numeric(0)

for (i in 1:n) {

mu = plogis(x[„i] y = as.vector(rmvbin(1, margprob=mu, bincorr=bcorr))

B = c(B, y)

}

return(B)

}

# Data generation #

N = 1000 # number of runs

n=20, #n=30, #n=50, #n=100, #n=200 # number of subjects

t = 3 #number of measurements per subject

beta = c(0.25, -0.25, -0.25) # true params.

alpha = 0.5 #within subject correlation

I.t = diag(rep(1,t)) t by t identity matrix

sub = rep(1:n,rep(t,n))

bcorr = indep.corr(t)

#bcorr = exch.corr(t, alpha)

#bcorr = ar1.corr(t, alpha)

#bcorr = toep.corr(t, c(0.5,0.35))

# Wc2=[IN, EXCH, AR1, TOEP] #

#SIMULATION 4 #

est.gee1 = est.gee2 = est.gee3 = est.gee4 = est.qic=est.Mqic =numeric(0)

min.qic= min.mqic = rep(0,4)

p = c(3,4,4,5)

for (j in 1:N) {

x = cbind(rep(1,t*n), rbinom(n*t,1,0.5), rep(seq(0,t-1),n)) # the long vector

p=dim(x)[2]

y = bin.gen(x, beta, bcorr,n,t)
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new.gee1 = mygee(y,x,t,binomial, corr=”ind”)

est.gee1 = c(est.gee1, new.gee1[c(1,2,3)] )

new.gee2 = mygee(y,x,t,binomial, corr=”exch”)

est.gee2 = c(est.gee2, new.gee2[c(1,2,3)] )

new.gee3 = mygee(y,x,t,binomial, corr=”ar1”)

est.gee3 = c(est.gee3, new.gee3[c(1,2,3)])

new.gee4 = mygee(y,x,t,binomial, corr=”toep”)

est.gee4 = c(est.gee4, new.gee4[c(1,2,3)])

aex.hat = new.gee2[4]

aar.hat = new.gee3[4]

ast.hat = new.gee4[c(4,5)]

phi.i = 1; new.gee1[2]

qic1 = qicf(new.gee1[c(1,2,3)], 0, phi.i, phi.i, corr=”indep”)

qic2 = qicf(new.gee2[c(1,2,3)], aex.hat, phi.i, new.gee2[5], corr=”exch”)

qic3 = qicf(new.gee3[c(1,2,3)], aar.hat, phi.i, new.gee3[5], corr=”ar1”)

qic4 = qicf(new.gee4[c(1,2,3)], ast.hat, phi.i, new.gee4[6], corr=”toep”)

mqic1 = Mqicf(new.gee1[c(1,2,3)], 0, phi.i, phi.i, corr=”indep”)

mqic2 = Mqicf(new.gee2[c(1,2,3)], aex.hat, phi.i, new.gee2[5], corr=”exch”)

mqic3 = Mqicf(new.gee3[c(1,2,3)], aar.hat, phi.i, new.gee3[5], corr=”ar1”)

mqic4 = Mqicf(new.gee4[c(1,2,3)], ast.hat, phi.i, new.gee4[6], corr=”toep”)

qic= c(qic1,qic2,qic3,qic4)

mqic = c(mqic1,mqic2,mqic3,mqic4)

print(”QIC”); print(qic)

print(”MQIC”); print(mqic)

id5=which.min(qic);

min.qic[id3] = min.qic[id3]+1

id6=which.min(mqic); min.mqic[id4] = min.mqic[id4]+1

print(j) }

min.qic; min.mqic;
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Appendix C

R-CODE FOR THE INVESTIGATION OF THE PERFORMANCE OF

QIC IN VARIABLE SELECTION

library(SimCorMultRes)

N=1000 # number of runs

n=20, #n=30, #n=50, #n=100, #n=200 # number of subjects

clsize=3; #clsize=6; #clsize=9 # number of measurements per subject

intercepts=0.25; betas=c(-0.25, -0.25, 0, 0)

#AR-1 (alpha=0.2)#

cor.matrix=toeplitz(c(1,0.2,0.04))................#m=3)

cor.matrix=toeplitz(c(1,0.2,0.04,0.008,1.6e-03,3.2e-04))....#m=6)

cor.matrix=toeplitz(c(1,0.2,0.04,0.008,1.6e-03,3.2e-04,6.4e-05,1.28e-05,2.56e-06))..#m=9)

#AR-1 (alpha=0.5)#

cor.matrix=toeplitz(c(1,0.5,0.25))................#m=3)

cor.matrix=toeplitz(c(1,0.5,0.25,0.125,0.0625,0.03125))....#m=6)

cor.matrix=toeplitz(c(1,0.5,0.25,0.125,0.0625,0.03125,1.5625e-02,7.8125e-03,3.9063e-03))..#m=9)

qic1=qic2=qic3=qic4=qic5=qic6=qic7=qic8=est.qic =numeric(0)

min.qic =rep(0,8)

p = c(3,4,4,5,5,6,6,7)

for (j in 1:N){

x1=rep(rnorm(n),each=clsize); x2=rep(rbinom(n,2,0.5),each=clsize)

x3=rep(runif(n,0,1),each=clsize); x4=rep(runif(n,0,1),each=clsize)

corres=rbin(clsize=clsize,intercepts=intercepts,betas=betas,

xformula=∼x1+x2+x3+x4,cor.matrix=cor.matrix,link=”probit”)

library(geepack); library(MESS); library(MuMIn)

m1=geeglm(y∼x1+x2+x3+x4,family=binomial(link=”logit”),id=id,

data=corres$simdata)
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m2=geeglm(y∼ x1+x2+x3,family=binomial(link=”logit”),id=id,

data=corres$simdata)

m3=geeglm(y∼x1+x2+x4,family=binomial(link=”logit”),id=id,

data=corres$simdata)

m4=geeglm(y∼x1+x3+x4,family=binomial(link=”logit”),id=id,

data=corres$simdata)

m5=geeglm(y∼x1+x2,family=binomial(link=”logit”),id=id,

data=corres$simdata)

m6=geeglm(y∼x1+x3,family=binomial(link=”logit”),id=id,

data=corres$simdata)

m7=geeglm(y∼x1+x4,family=binomial(link=”logit”),id=id,

data=corres$simdata)

m8=geeglm(y∼x1,family=binomial(link=”logit”),id=id,

data=corres$simdata)

qic1=QIC(m1)

qic2=QIC(m2)

qic3=QIC(m3)

qic4=QIC(m4)

qic5=QIC(m5)

qic6=QIC(m6)

qic7=QIC(m7)

qic8=QIC(m8)

qic=c(qic1,qic2,qic3, qic4, qic5,qic6,qic7, qic8)

print( ”QIC”);print(qic)

id2=which.min(qic)

min.qic[id2]=min.qic[id2]+1

print(j) }

min.qic;
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Appendix D

R-CODE TO INVESTIGATE PERFORMANCE OF (EQAIC) IN

IMPROVING EFFICIENCY OF β̂

D.1 R-Code to Investigate Performance of EAIC in Selecting the True

Working Correlation Structure

library(MASS)

library(emplik)

library(bindata)

library(gee)

library(geepack)

D.1.1 Defining the Working Correlation Structures

indep.corr = function(t,aplha){

diag(1,t)

}

exch.corr = function(t,alpha){

exch = matrix(1,t,t)

exch[1,] = c(1,rep(alpha,(t-1)))

for (i in 2:t){

exch[i,] = c(exch[i-1,t],exch[i-1,-t])

}

return(exch)

}

ar1.corr = function(t,alpha){

ar1 = matrix(1,t,t)

for (i in 1:(t-1)){
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for (j in (i+1):t) {

ar1[i,j] = alphaˆ

j-i)

ar1[j,i] = ar1[i,j]

}

return(ar1)

}

toep.corr=function(t,a){

toep = diag(1,t)

m = length(a)

for (i in 1:m){

toep[abs(col(toep)-row(toep))==i] = a[i]

}

return(toep)

D.1.2 Defining the Empirical Likelihood Ratio (ELR) with a Toeplitz Struc-

ture

elr.st = function(b,a1,a2) { # toeplitz

m = 5 # m — the dim of the est. func. g

x = aperm(array(t(x),c(3,t,n)),c(2,1,3)) # data transformation

y = matrix(y, t,n)

g = matrix(0, m,n)

R = toep.corr(t, c(a1, a2))

error = p.err = matrix(0,t,n)

D = array(0,c(t,3,n))

A = array(0,c(t,t,n))

for (i in 1:n) {

fitted = plogis( x[„i] %*% b )

161



error[,i] = y[,i]-fitted

p.err[,i] = error[,i]*(fitted*(1-fitted))̂ (-1/2)

D[„i] = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A[„i] = diag(as.vector((fitted*(1-fitted))ˆ(-1))

}

phi= sum(p.errˆ2)/(n*t-3)

for (i in 1:n) {

A.half = A[„i]ˆ(1/2)

g[c(1,2,3),i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% error[,i]))*phi (̂-1)

g[4,i] = p.err[1,i]*p.err[2,i] + p.err[2,i]*p.err[3,i] - a1*phi*(2-3/n)

g[5,i] = p.err[1,i]*p.err[3,i] - a2*phi*(1-3/n)

}

g = t(g)

g.mu = rep(0,m) el.test(g, g.mu,gradtol=1e-9)$”-2LLR”

}

D.1.3 Defining QIC and CIC Functions

# My Gee function. Defining QIC and CIC Functions #

mygee = function(y, x , t, fam, corr=”exch”, scale=1, tol=1e-7) for binary

x1 = x[,1]

x2 = x[,2]

beta.old = glm(y ∼ 0 + x1 + x2, family=fam)$coef

n = length(y)/t

x = aperm(array(t(x),c(2,t,n)),c(2,1,3))

y = matrix(y,t,n)

stop = 0

count = 0

while (stop==0) {
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count = count+1

alpha.num = 0

alpha1.num = alpha2.num =0

error = p.err = matrix(0,t,n)

D = array(0,c(t,3,n))

A = array(0,c(t,t,n))

left = array(0,c(3,3,n))

right = matrix(0, 3,n)

if (corr==”ind”){

stop =1

beta.new = beta.old

for (i in 1:n) {

fitted = plogis( x[„i] %*% beta.old )

error[,i] = y[,i]-fitted

p.err[,i] = error[,i]*(fitted*(1-fitted))ˆ(-1/2)

}

phi = sum(p.errˆ2)/(n*t-3)

theta.new = c(beta.new, phi)

}

else if ( corr==”exch” ) {

for (i in 1:n) { # cal. pearson resd.

fitted = plogis( x[„i] %*% beta.old )

error[,i] = y[,i]-fitted

p.err[,i] = error[,i]*(fitted*(1-fitted))ˆ(-1/2)

D[„i] = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A[„i] = diag(as.vector((fitted*(1-fitted))ˆ(-1)))

alpha.num = alpha.num + sum(p.err[,i]%*%p.err[,i])-sum(p.err[,i]*p.err[,i]) exchange-

able

}
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phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*t*(t-1)-6)/phi # exchangeable

R = exch.corr(t,alpha)

for (i in 1:n) {

A.half = A[„i]ˆ(1/2)

left[„i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% D[„i]))

right[,i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% error[,i]))

}

beta.new = beta.old + solve(apply(left,c(1,2),sum),apply(right,1,sum))

if ( max(abs(beta.new-beta.old)) <= tol) {

alpha.num = 0

p.err = matrix(0,t,n)

for (i in 1:n) { # cal. pearson resd.

fitted = plogis(x[„i%*% beta.new )

p.err[,i] = (y[,i]-fitted)*(fitted*(1-fitted))ˆ(-1/2)

alpha.num = alpha.num + sum(p.err[,i]%*%p.err[,i])- sum(p.err[,i]*p.err[,i]) exchange-

able

}

phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*t*(t-1)-6)/phi # exchangeable

theta.new = c(beta.new, alpha, phi)

stop = 1

}

else beta.old = beta.new

}

else if (corr==”ar1”) {

for (i in 1:n) # cal. pearson resd.

fitted = plogis( x[„i] %*% beta.old )

error[,i] = y[,i]-fitted
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p.err[,i] = error[,i]*(fitted*(1-fitted))ˆ(-1/2)

D[„i] = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A[„i] = diag(as.vector((fitted*(1-fitted))ˆ(-1)))

alpha.num = alpha.num + sum(p.err[-t,i]*p.err[-1,i]) # AR(1)

}

phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*(t-1)-3)/phi # AR(1)

R = ar1.corr(t,alpha)

for (i in 1:n) {

A.half = A[„i]ˆ(1/2)

left[„i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% D[„i]))

right[,i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% error[,i]))

} beta.new = beta.old + solve(apply(left,c(1,2),sum),apply(right,1,sum))

if ( max(abs(beta.new-beta.old)) <= tol) {

alpha.num = 0

p.err = matrix(0,t,n)

for (i in 1:n) { # cal. pearson resd.

fitted = plogis(x[„i]p.err[,i] = (y[,i]-fitted)*(fitted*(1-fitted))ˆ(-1/2)

alpha.num = alpha.num + sum(p.err[-t,i]*p.err[-1,i]) # AR(1)

}

phi = sum(p.errˆ2)/(n*t-3)

alpha = alpha.num/(n*(t-1)-3)/phi # AR(1)

theta.new = c(beta.new, alpha, phi)

stop = 1

} @ end if

else beta.old = beta.new

} #@ end else

else if (corr==”toep”){

for (i in 1:n) { # cal. pearson resd.
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fitted = plogis( x[„i] error[,i] = y[,i]-fitted

p.err[,i= error[,i]*(fitted*(1-fitted))ˆ(-1/2)

D[„i] = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A[„i] = diag(as.vector((fitted*(1-fitted))ˆ(-1)))

alpha1.num = alpha1.num + p.err[1,i]*p.err[2,i] + p.err[2,i]*p.err[3,i] # Toeplitz

alpha2.num = alpha2.num + p.err[1,i]*p.err[3,i]

}

phi = sum(p.errˆ2)/(n*t-3)

alpha1 = alpha1.num/(2*n-3)/phi # Toep

alpha2 = alpha2.num/(n-3)/phi

R = toep.corr(t, c(alpha1, alpha2))

for (i in 1:n) {

A.half = A[„i]ˆ(1/2)

left[„i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% D[„i]))

right[,i] = crossprod(D[„i], A.half %*% solve(R, A.half %*% error[,i]))

}

beta.new = beta.old + solve(apply(left,c(1,2),sum),apply(right,1,sum))

if ( max(abs(beta.new-beta.old)) <= tol) {

alpha1.num = alpha2.num = 0

p.err = matrix(0,t,n)

for (i in 1:n) { # cal. pearson resd.

fitted = plogis(x[„i]%*% beta.new )

p.err[,i] = (y[,i]-fitted)*(fitted*(1-fitted))ˆ(-1/2)

alpha1.num = alpha1.num + p.err[1,i]*p.err[2,i] + p.err[2,i]*p.err[3,i] # Toeplitz

alpha2.num = alpha2.num + p.err[1,i]*p.err[3,i]

}

phi = sum(p.errˆ2)/(n*t-3)

alpha1 = alpha1.num/(2*n-3)/phi Toep

alpha2 = alpha2.num/(n-3)/phi
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theta.new = c(beta.new, alpha1, alpha2, phi)

stop = 1

} #@ end if

else beta.old = beta.new

}

} #@ end while

return(theta.new)

}

qicf = function(b, a, phi.i, phi, corr){

x = aperm(array(t(x),c(3,t,n)),c(2,1,3)) data transformation

y = matrix(y, t,n)

D = array(0,c(t,3,n))

A = array(0,c(t,t,n))

omega.i = I0 = matrix(0,3,3)

ql = 0

if (corr==”indep”)

R = indep.corr(t)

else if (corr==”exch”)

R = exch.corr(t,a)

else if (corr==”ar1”)

R = ar1.corr(t,a)

else if (corr==”toep”)

R = toep.corr(t,a)

for (i in 1:n){

fitted = plogis( x[„i] %*% b )

error = y[,i]-fitted

D = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A = diag(as.vector((fitted*(1-fitted))ˆ(-1)))

A.half = Aˆ(1/2)
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omega.i = omega.i + crossprod(D, A%*%D)

I0 = I0 + crossprod(D, A.half %*% solve(R, A.half %*% D))

I1.left = crossprod(D, A.half %*% solve(R, A.half %*% error))

I1 = I1 + tcrossprod(I1.left, I1.left)

ql = ql + sum( y[,i]*(log(fitted)-log(1-fitted))+log(1-fitted) )

}

omega.i = omega.i/phi.i

V.r = solve(I0, I1)%*%solve(I0)

print(solve(I0)*phi)

print(V.r)

qic.v = 2*(-ql/phi.i)+ 2*sum(diag(omega.i%*%V.r))

return(qic.v)

}

}

cicf = function(b, a, phi.i, phi, corr){

x = aperm(array(t(x),c(3,t,n)),c(2,1,3)) # data transformation

y = matrix(y, t,n)

# D = array(0,c(t,3,n))

# A = array(0,c(t,t,n))

omega.i = I0 = I1 = matrix(0,3,3)

if (corr==”indep”)

R = indep.corr(t)

else if (corr==”exch”)

R = exch.corr(t,a)

else if (corr==”ar1”)

R = ar1.corr(t,a)

else if (corr==”toep”)

R = toep.corr(t,a)

for (i in 1:n){
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fitted = plogis( x[„i] %*% b )

error = y[,i]-fitted

D = matrix(rep(fitted*(1-fitted),3),t,3)*x[„i]

A = diag(as.vector((fitted*(1-fitted))ˆ(-1))

A.half = Aˆ(1/2)

omega.i = omega.i + crossprod(D, A%*%D)

I0 = I0 + crossprod(D, A.half %*% solve(R, A.half %*% D))

I1.left = crossprod(D, A.half %*% solve(R, A.half %*% error))

I1 = I1 + tcrossprod(I1.left, I1.left)

}

omega.i = omega.i/phi.i

V.r = solve(I0, I1)%*%solve(I0)

# print(solve(I0)*phi)

# print(V.r)

cic.v = sum(diag(omega.i%*%V.r))

return(cic.v)

}

D.1.4 Correlated Binary Data Generator

bin.gen = function(x, beta, bcorr,n,t){

x = aperm(array(t(x), c(3,t,n)),c(2,1,3)) # data transformation

B = numeric(0)

for (i in 1:n) {

mu = plogis(x[„i] %*% beta)

y = as.vector(rmvbin(1, margprob=mu, bincorr=bcorr))

B = c(B, y)

}

return(B)
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}

D.1.5 Data generation

N = 1000 # number of runs

n = 20 # number of subjects

# n = 30;# n = 50; # n = 100; #n = 200;

t = 3; #number of measurements per subject

beta = c(0.25, -0.25, -0.25) # true params.

alpha = 0.5 #within subject correlation

# alpha = 0.8;

beta = c(0.25, -0.25, -0.25) # true params.

I.t = diag(rep(1,t)) # t by t identity matrix

sub = rep(1:n,rep(t,n))

bcorr = indep.corr(t)

bcorr = exch.corr(t, alpha)

bcorr = ar1.corr(t, alpha)

bcorr = toep.corr(t, c(0.5,0.35))

# Wc2=[IN, EXCH, AR1, TOEP] #

# SIMULATION 4#

est.gee1 = est.gee2 = est.gee3 = est.gee4 = est.aic = est.qic =numeric(0)

eaic = qic = cic= rep(0,4)

min.eaic = min.qic = min.cic =rep(0,4)

min.cic =rep(0,4)

p = c(3,4,4,5)

for (j in 1:N) {

# data generation #

x = cbind(rep(1,t*n), rnorm(n*t,0,1) rbinom(n*t,1,0.5),n)) the long vector

y = bin.gen(x, beta, bcorr,n,t)
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new.gee1 = mygee(y,x,t,binomial, corr=”ind”)

est.gee1 = c(est.gee1, new.gee1[c(1,2,3)] )

new.gee2 = mygee(y,x,t,binomial, corr=”exch”)

est.gee2 = c(est.gee2, new.gee2[c(1,2,3)] )

new.gee3 = mygee(y,x,t,binomial, corr=”ar1”)

est.gee3 = c(est.gee3, new.gee3[c(1,2,3)])

new.gee4 = mygee(y,x,t,binomial, corr=”toep”)

est.gee4 = c(est.gee4, new.gee4[c(1,2,3)])

aex.hat = new.gee2[4]

aar.hat = new.gee3[4]

ast.hat = new.gee4[c(4,5)]

h1 = elr.st(new.gee1[c(1,2,3)], 0, 0)

h2 = elr.st(new.gee2[c(1,2,3)], aex.hat, aex.hat) # hi = c(”-2LLR”, wts)

h3 = elr.st(new.gee3[c(1,2,3)], aar.hat, aar.hat̂2)

h4 = elr.st(new.gee4[c(1,2,3)], ast.hat[1], ast.hat[2])

phi.i = 1; new.gee1[2]

qic1 = qicf(new.gee1[c(1,2,3)], 0, phi.i, phi.i, corr=”indep”)

qic2 = qicf(new.gee2[c(1,2,3)], aex.hat, phi.i, new.gee2[5], corr=”exch”)

qic3 = qicf(new.gee3[c(1,2,3)], aar.hat, phi.i, new.gee3[5], corr=”ar1”)

qic4 = qicf(new.gee4[c(1,2,3)], ast.hat, phi.i, new.gee4[6], corr=”toep”)

cic1 = cicf(new.gee1[c(1,2,3)], 0, phi.i, phi.i, corr=”indep”)

cic2 = cicf(new.gee2[c(1,2,3)], aex.hat, phi.i, new.gee2[5], corr=”exch”)

cic3 = cicf(new.gee3[c(1,2,3)], aar.hat, phi.i, new.gee3[5], corr=”ar1”)

cic4 = cicf(new.gee4[c(1,2,3)], ast.hat, phi.i, new.gee4[6], corr=”toep”)

elrs = c(h1, h2, h3, h4)

eaic = elrs + 2*p; # extract ”-2LLR”

qic = c(qic1,qic2,qic3,qic4)

cic = c(cic1,cic2,cic3,cic4)

print(”EAIC”); print(eaic)
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print(”QIC”); print(qic)

print(”CIC”); print(cic)

id4=which.min(eaic);

min.eaic[id4] = min.eaic[id4]+1;

id5=which.min(qic);

min.qic[id5] = min.qic[id5]+1

id6=which.min(cic);

min.cic[id6] = min.cic[id6]+1

print(j)

}

min.eaic; min.qic; min.cic;

D.2 R-Code to Investigate Efficiency Gain in GEE When EQAIC is Used

Compared to QIC Based on Ohio Data Set

# OHIO DATA LOADING AND SELECTION OF CORRELATION STRUCTURE

#

data(ohio)

ohio

y = ohio$resp

x = cbind(ohio$age, ohio$smoke, ohio$age:smoke) # the long vector

t =4

n= length(y)/t

p = dim(x)[2]

new.gee1 = mygee(y,x,t,binomial, corr=”ind”)

est.gee1 = c(est.gee1, new.gee1[c(1,2,3)] )

new.gee2 = mygee(y,x,t,binomial, corr=”exch”)

est.gee2 = c(est.gee2, new.gee2[c(1,2,3)] )

new.gee3 = mygee(y,x,t,binomial, corr=”ar1”)
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est.gee3 = c(est.gee3, new.gee3[c(1,2,3)])

new.gee4 = mygee(y,x,t,binomial, corr=”toep”)

est.gee4 = c(est.gee4, new.gee4[c(1,2,3)])

aex.hat = new.gee2[4]

aar.hat = new.gee3[4]

ast.hat = new.gee4[c(4,5)]

h1 = elr.st(new.gee1[c(1,2,3)], 0, 0)

h2 = elr.st(new.gee2[c(1,2,3)], aex.hat, aex.hat) # hi = c(”-2LLR”, wts)

h3 = elr.st(new.gee3[c(1,2,3)], aar.hat, aar.hat2)

h4 = elr.st(new.gee4[c(1,2,3)], ast.hat[1], ast.hat[2])

phi.i = 1; # new.gee1[2]

qic1 = qicf(new.gee1[c(1,2,3)], 0, phi.i, phi.i, corr=”indep”)

qic2 = qicf(new.gee2[c(1,2,3)], aex.hat, phi.i, new.gee2[5], corr=”exch”)

qic3 = qicf(new.gee3[c(1,2,3)], aar.hat, phi.i, new.gee3[5], corr=”ar1”)

qic4 = qicf(new.gee4[c(1,2,3)], ast.hat, phi.i, new.gee4[6], corr=”toep”)

elrs = c(h1, h2, h3, h4)

eaic = elrs + 2*p; # extract ”-2LLR”

qic = c(qic1,qic2,qic3,qic4)

print(”EAIC”); print(eaic)

print(”QIC”); print(qic)

# MODEL SELECTION BASED ON WCS SELECTED BY EQAIC #

library(MuMIn)

library(MESS)

data(ohio)
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mm1=geeglm(resp∼ 1,family=binomial(link=”logit”),id=id, data=ohio, corstr = ”ex-

changeable”, std.err=”san.se”)

mm2=geeglm(resp∼age,family=binomial(link=”logit”),id=id, data=ohio, corstr = ”ex-

changeable”, std.err=”san.se”)

mm3=geeglm(resp∼smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr =

”exchangeable”, std.err=”san.se”)

mm4=geeglm(resp∼age:smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr

= ”exchangeable”, std.err=”san.se”)

mm5=geeglm(resp∼age+smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr

= ”exchangeable”, std.err=”san.se”)

mm6=geeglm(resp∼age+age:smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr

= ”exchangeable”, std.err=”san.se”)

mm7=geeglm(resp∼smoke+age:smoke,family=binomial(link=”logit”),id=id, data=ohio,

corstr = ”exchangeable”, std.err=”san.se”)

mm8=geeglm(resp∼age+smoke+age:smoke,family=binomial(link=”logit”),id=id, data=ohio,

corstr = ”exchangeable”, std.err=”san.se”)

model.sel(mm1, mm2, mm3, mm4, mm5, mm6, mm7, mm8, rank=QIC)

# MODEL SELECTION BASED ON WCS SELECTED BY QIC #

m1=geeglm(resp∼ 1,family=binomial(link=”logit”),id=id, data=ohio, corstr = ”inde-

pendence”, std.err=”san.se”)

m2=geeglm(resp∼ age,family=binomial(link=”logit”),id=id, data=ohio, corstr = ”in-

dependence”, std.err=”san.se”)

m3=geeglm(resp∼ smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr = ”in-

dependence”, std.err=”san.se”)

m4=geeglm(resp∼ age:smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr

= ”independence”, std.err=”san.se”)

m5=geeglm(resp∼ age+smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr

= ”independence”, std.err=”san.se”)
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m6=geeglm(resp∼ age+age:smoke,family=binomial(link=”logit”),id=id, data=ohio, corstr

= ”independence”, std.err=”san.se”)

m7=geeglm(resp∼ smoke+age:smoke,family=binomial(link=”logit”),id=id, data=ohio,

corstr = ”independence”, std.err=”san.se”)

m8=geeglm(resp∼ age+smoke+age:smoke,family=binomial(link=”logit”),id=id, data=ohio,

corstr = ”independence”, std.err=”san.se”)

model.sel(m1, m2, m3, m4, m5, m6, m7, m8, rank=QIC)

# Efficiency of the models ranked 1st in each case: K.fold cross-validation #

data(ohio)

ohio

library(tidyverse)

library(modelr)

N=200

for (j in 1:N){

cv = crossv kfold(ohio, k = 10)

cv

models1 = map(cv$train, ∼geeglm(resp∼age+smoke, family=binomial(link=”logit”),

id=id,corstr = ”exchangeable”, std.err=”san.se”, data = .))

models2 = map(cv$train, ∼geeglm(resp∼age+smoke, family=binomial(link=”logit”),

id=id,corstr = ”independence”, std.err=”san.se”, data = .))

get−pred = function(model, test−data){

data = as.data.frame(test−data)

pred = add−predictions(data, model)

return(pred)

}

pred1 = map2−df(models1, cv$test, get−pred, .id = ”Run”)

pred2 = map2−df(models2, cv$test, get−pred, .id = ”Run”)

MSE1 = pred1 % > % group−by(Run) % > %
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summarise(MSE = mean( (resp - pred)2))

MSE1

MSE2 = pred2%¿%group−by(Run) % > %

summarise(MSE = mean( (resp− pred)2))

MSE2

}

mean(MSE1$MSE)

mean(MSE2$MSE)
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Appendix E

R-CODE FOR THE ANALYSIS OF SHAREHOLDER VALUE

CREATION DATA

E.1 Selection of Working Correlation Structure

data = read.csv(”F:/SOFTWARES/data.csv”)

y = data$sva

x = cbind(data$logta, data$DPR2, data$bsize, data$roe, data$wcta, data$g, data$roa,

data$z1,data$lev)

t =6

n= length(y)/t

p = dim(x)[2]

gee1 = mygee(y,x,t, binomial, corr=”ind”)

gee2 = mygee(y,x,t, binomial, corr=”exch”)

gee3 = mygee(y,x,t, binomial, corr=”ar1”)

gee4 = mygee(y,x,t, binomial, corr=”toep”)

phi1 = phi.f(gee1[1:9])

phi2 = phi.f(gee2[1:9])

phi3 = phi.f(gee3[1:9])

phi4 = phi.f(gee4[1:9])

aex.hat = gee2[10]

aar.hat = gee3[10]

ast.hat = gee4[c(10,11,12)]

h1 = elr.st(as.vector(gee1[1:9]), 0,0,0)

h2 = elr.st(as.vector(gee2[1:9]), aex.hat, aex.hat, aex.hat)

h3 = elr.st(as.vector(gee3[1:9]), aar.hat, aar.hat2, aar.hat3)

h4 = elr.st(as.vector(gee4[1 : 9]), ast.hat[1], ast.hat[2], ast.hat[3])
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qic1 = qicf(as.vector(gee1[1 : 9]), 0, phi1, phi1, corr = ”indep”)

qic2 = qicf(as.vector(gee2[1 : 9]), aex.hat, phi1, phi2, corr = ”exch”)

qic3 = qicf(as.vector(gee3[1 : 9]), aar.hat, phi1, phi3, corr = ”ar1”)

qic4 = qicf(as.vector(gee4[1 : 9]), ast.hat, phi1, phi4, corr = ”stat”)

pn = c(p, p+ 1, p+ 1, p+ t− 1)

elrs = c(h1, h2, h3, h4)

qic = c(qic1, qic2, qic3, qic4)

eaic = elrs+ 2 ∗ p

eaic; qic

E.2 Model Selection for SVA Data

# data analysis : Model Selection #

library(tidyverse)

library(MuMIn)

library(modelr)

fit.ar=geeglm(formula = sva ∼ logta + DPR2 + bsize + roe + g+roe:g +bsize+ roa +

z1 + lev, family = binomial(link = ”logit”),

data = data, id = id, corstr = ”ar1”, std.err = ”san.se”)

options(na.action=”na.fail”)

m2=dredge(fit.ar)

model.sel(m2, rank=QIC) subset(m2,delta<4) summary(get.models(m2, 1)[[1]])

# data analysis : Model Validation K-Fold Cross-validation #

fit.un=geeglm(formula = sva ∼ logta + DPR2 + bsize + roe + g+roe:g +bsize+ roa

+ z1 + lev, family = binomial(link = ”logit”),

data = data, id = id, corstr = ”unstructured”, std.err = ”san.se”)

options(na.action=”na.fail”)

m1=dredge(fit.un)

model.sel(m1, rank=QIC)
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subset(m1,delta<6)

model.avg(m1.delta<6)

model.avg(m1,subset=cumsum(weight)<=.95)

summary(get.models(m1, 1)[[1]])

E.3 Establishment of Efficiency of EQAIC Over QIC

N=10

for (I in 1:10){

cv = crossv−kfold(data, k = 10)

cv

models1 = map(cv$train, ∼geeglm(sva∼DPR2+g+lev+logta+z1+roe+g:roe,

family=binomial(link=”logit”),id=id,corstr = ”ar1”, std.err=”san.se”, data = .))

models2 = map(cv$train, geeglm(sva∼DPR2+g+lev+logta+z1+roe+bsize,

family=binomial(link=”logit”),id=id,corstr = ”unstructured”, std.err=”san.se”, data =

.))

get−pred = function(model, testdata){

data = as.data.frame(test−data)

pred = add−predictions(data, model)

return(pred)

}

pred1 = map2−df(models1, cv$test, get−pred, .id = ”Run”)

pred2 = map2−df(models2, cv$test, get−pred, .id = ”Run”)

MSE1 = pred1 % > % group−by(Run) % > %

summarise(MSE = mean( (sva− pred)2))

MSE1

MSE2 = pred2 % > % group−by(Run) % > %

summarise(MSE = mean( (sva - pred)2))

MSE2

mean(MSE1/MSE)
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mean(MSE2/MSE)

RE = mean(MSE2/MSE)/mean(MSE1/MSE)

RE;
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