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Abstract

Banach space structure of the Bloch space of the unit disc B(D) has been

studied widely by many Mathematicians. Cima, Anderson, among others

have proved that the Bloch space of the unit disc, B(D) and the little

Bloch space of the unit disc, B0(D) are Banach spaces with respect to the

Bloch norm. Boundedness, compactness, as well as semigroup properties

have been studied on the Bloch spaces of the unit disc. Zhu among other

scholars have studied the generalized little Bloch space of the unit disc

Bα◦ (D), as closed, separable subspace of the generalized Bloch space of the

unit disc Bα(D). On the other hand, there is little and much less complete

literature on Bloch space of other domains. On the upper half plane, U,

the properties of the generalized Bloch spaces as Banach spaces are not

known. In our study therefore, we have investigated the properties of

the generalized Bloch space of the upper half plane, Bα(U). Specifically,

we have proved that Bα(U) and the generalized little Bloch space of the

upper half plane, Bα◦ (U) are Banach spaces. Cayley transform has been

employed in getting equivalent representation of functions from Bα(D)

to Bα(U). By use of classification theorem for the automorphisms of U,

we have established that automorphism groups of U generate strongly

continuous semigroups on Bα◦ (U). We applied the theory of linear opera-

tors in the study of semigroup properties of the composition semigroups.

The results of this study have contributed to the existing knowledge and

enhanced further research in this field of study.
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Chapter 1

Introduction

1.1 Background of the study

Banach spaces of analytic functions have played a prominent role in both

classical and modern analysis. Most studies on the classical analytic func-

tion spaces such as Hardy spaces, Bergman spaces, Bloch spaces, Analytic

spaces of Bounded Mean Oscillations (BMOA), among others are based

on the unit disc. K. Zhu among other authors [7, 12, 22, 28] proved that

the Bloch space of the unit disc is a Banach space with respect to its

norm. He proved that the little Bloch space of the unit disc is a separa-

ble, closed, nowhere dense subspace of the Bloch space of the unit disc.

In addition, it has been proved that the little Bloch space of the unit disc

is identical with the closure of the polynomials in the Bloch norm [28].

He further introduced generalized Bloch spaces of the unit disc and inves-

tigated their properties where he established that the generalized Bloch

spaces of the unit disc are Banach spaces with respect to their norm.

He also obtained the corresponding generalized little Bloch spaces of the

unit disc and proved that the latter are closed, separable subspaces of the
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generalized Bloch spaces. He later established the generalized little Bloch

spaces as the closure of the set of polynomials in the norm topology of the

generalized Bloch spaces of the unit disc. Vast majority of the literature

on Bloch spaces [8, 14] focus on the properties of these spaces of analytic

functions on the unit disc. On the other hand, there is very little litera-

ture on Bloch space of other domains and in particular, of the upper half

plane, see for instance [29] and references therein. We therefore studied

properties of the generalized Bloch spaces in the setting of the upper half

plane.

1.2 Basic concepts and Notation

1.2.1 Unit disk and upper half plane

Let C be the complex plane. The set D := {z ∈ C : |z| < 1} is called

the open unit disc. On the other hand, the set U := {ω ∈ C : =(ω) >

0} denotes the upper half of the complex plane C, where =(ω) is the

imaginary part of ω ∈ C. The function ψ(z) = i(1+z)
1−z is referred to as the

Cayley transform and maps the unit disc D conformally onto the upper

half-plane U, with the inverse ψ−1(ω) = ω−i
ω+i

mapping the upper half

plane U, onto the unit disc, D. We refer to [27] for details.
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1.3 Linear fractional transformations

Let Ω ⊂ C be an open set. A function f : Ω → C is said to be complex

differentiable at a point z0 ∈ Ω if the limit

lim
4z→0

f(z0 +4z)− f(z0)

4z
, (1.1)

exists. A holomorphic function is a complex-valued function of one or

more complex variables that is, at every point of its domain, complex

differentiable in a neighbourhood of the point. A function ϕ is known

as analytic self map of Ω if ϕ is analytic and ϕ(Ω) ⊆ Ω. A mapping

φ : Ω→ C is biholomorphic if

(i) φ is one to one and onto,

(ii) φ is holomorphic, and

(iii) φ−1 is holomorphic.

Linear fractional transformations (LFTs) are mappings of the form

ϕ(z) =
az + b

cz + d
, where z ∈ C, a, b, c, d ∈ R and ad− bc 6= 0 (1.2)

Each linear fractional transformation is a one to one holomorphic map of

a domain to itself. We denote the set of all LFTs from a domain Ω to

itself by LFT(Ω,Ω). Moreover, if z0 ∈ C is such that ϕ(z0) = z0 then z0

is a fixed point of ϕ.
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Linear fractional transformations of the unit disc, D are maps of the form

f(z) =
az + b

bz + a
(1.3)

where z ∈ C, a, b ∈ C and |a|2 − |b|2 = 1. On the upper half plane U,

linear fractional transformations are of the form

f(z) =
az + b

cz + d
(1.4)

where a, b, c, d ∈ R and ad− bc = 1.

A homomorphism is a structure preserving map between two algebraic

structures of the same type. A bijective homomorphism of an object to

itself is called an automorphism, that is Aut(Ω) = LFT(Ω,Ω). The set

(Aut(Ω), ◦) of all automorphisms of Ω forms a group under composition

operator ◦. We verify that (Aut(Ω), ◦) indeed forms a group. To prove

closure, let f, g ∈ Aut(Ω), and consider the composition g◦f . Since g and

f are bijective, it follows that g ◦ f is bijective. Moreover, for z1, z2 ∈ Ω

(g ◦ f)(z1z2) = g(f(z1z2))

= g(f(z1)f(z2)

= g(f(z1))g(f(z2))

= (g ◦ f)(z1)(g ◦ f)(z2)

hence g ◦ f ∈ Aut(Ω) as desired.

Secondly, we need to show that ◦ is associative. Let f, g, h ∈ Aut(Ω).

4



Then ∀z ∈ Ω, we have

(h ◦ g) ◦ f(z) = (h ◦ g)f(z)

= h(g(f(z))

= h(g ◦ f)(z)

= h ◦ (g ◦ f)(z).

Thus ◦ is associative.

Thirdly, we need to check that there is an identity element in Aut(Ω).

Let e : Ω→ Ω be defined by e(z) = z for all z ∈ Ω. Consider g ∈ Aut(Ω).

For any z ∈ Ω, we have

g ◦ e(z) = g(z) = e ◦ g(z).

Hence e is the identity element. Lastly, we need to prove that f ∈ Aut(Ω)

has an inverse for ◦. Consider the inverse function f−1. Clearly

f−1 ◦ f = e and f ◦ f−1 = e.

Since every inverse function must necessarily be bijective, we now prove

that the bijection f−1 is an automorphism. Let z1, z2 ∈ Ω. By definition,

there exist ω1, ω2 ∈ Ω such that f(ω1) = z1 and f(ω2) = z2. Hence

f−1(z1z2) = f−1(f(ω1)f(ω2))

= f−1(f(ω1ω2))

= ω1ω2.
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Similarly,

f−1(z1)f
−1(z2) = f−1(f(ω1))f

−1(f(ω2))

= ω1ω2.

So f−1(z1z2) = f−1(z1)f
−1(z2), and therefore f−1 ∈ Aut(Ω). Thus

(Aut(Ω), ◦) satisfies all the axioms of a group and hence, is a group.

1.4 Spaces of Analytic functions

Consider H(Ω) as the Fréchet space of analytic functions f : Ω → C

endowed with the topology of uniform convergence on compact subsets

of Ω. Some of the analytic spaces considered in this study are:

(i) Bloch space of the unit disc

A function f ∈ H(D) is in the Bloch space of the unit disc B(D) if

‖f‖B1(D) := sup
z∈D

(1− |z|2)|f ′(z)| <∞

and in the little Bloch space of the unit disc B0(D) if

lim
|z|−→1

(1− |z|2)|f ′(z)| = 0.

For f ∈ B(D), we define the norm on B(D) by

‖f‖B(D) := |f(0)|+ ‖f‖B1(D),

6



where ‖.‖B1(D) is a seminorm on B(D).

The space B(D) is a Banach space with respect to the norm ‖.‖B(D).

If X is a Banach space and Y ⊆ X be its subspace, then we say

that Y is dense in X if its closure is the whole of X, that is, Y = X.

As noted in [27], the little Bloch space of the unit disc, B0(D) is

a closed subspace of B(D) and it’s therefore a Banach space with

respect to the norm ‖.‖B(D). Moreover, the set of polynomials is

dense in B0(D). For comprehensive account of the theory of the

Bloch and the little Bloch spaces of the unit disc D, we refer to

[4, 14, 29].

(ii) Bloch space of the upper half plane

Bloch space of the upper half plane B(U) is a set of analytic func-

tions f ∈ H(U) such that

‖f‖B1(U) := sup
ω∈U
=(ω)|f ′(ω)| <∞.

For f ∈ B(U), we define the norm on B(U) by

‖f‖B(U) := |f(i)|+ ‖f‖B1(U),

where ‖.‖B1(U) is a seminorm on B(U). Indeed, ‖f‖B(U) defines a

norm on B(U). We note that,

‖f‖B(U) = 0⇔ |f(i)|+ ‖f‖B1(U) = 0.

7



Therefore, we have

‖f‖B(U) = 0⇔
(
|f(i)|+ sup

ω∈U
= (ω) |f ′(ω)|

)
= 0,

which is equivalent to

|f(i)| = 0 and sup
ω∈U
= (ω) |f ′(ω)| = 0.

Since = (ω) > 0 and f is holomorphic we have

|f ′(ω)| = 0⇔ f is a constant.

Now |f(i)| = 0 ⇔ f(i) = 0. Hence f = 0, as desired. Other norm

axioms are clear.

The space B(U) is a Banach space with respect to the norm ‖.‖B(U).

The little Bloch space of the upper half plane B0(U) is defined by

B◦(U) := {f ∈ H(U) : lim
=(ω)−→0

= (ω) |f ′(ω)| = 0}

with the same norm as B(U). It is also known that B0(U) is a

Banach space with respect to the norm ‖.‖B(U). See [28, 29] for

details.

(iii) Generalized Bloch Space of the unit disc

Let α > 0 be a real number, we define the generalized Bloch space

of the unit disc, Bα(D) as the space of all functions f ∈ H(D) such
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that

‖f‖Bα1 (D) := sup
z∈D

(
1− |z|2

)α |f ′(z)| <∞

For f ∈ Bα(D), we define the norm on Bα(D) by

‖f‖Bα(D) := |f(0)|+ ‖f‖Bα1 (D). (1.5)

We also define the corresponding generalized little Bloch space of

the unit disc as the space of all functions f ∈ H(D) for which

lim
|z|→1

(
1− |z|2

)α |f ′(z)| = 0,

with the same norm given by (1.5). Here, Bα(D) and Bα◦ (D) are

both Banach spaces with respect to the norm ‖.‖Bα(D). The gener-

alized little Bloch space of the unit disc, Bα◦ (D) is the closure of the

set of polynomials in the norm topology of Bα(D). For more details

we refer to [28, 29].

(iv) Generalized Bloch Space of the upper half plane

A function f ∈ H(U) belongs to the generalized Bloch space of the

upper half plane, Bα(U) if

‖f‖Bα1 (U) := sup
ω∈U
= (ω)α |f ′(ω)| <∞

with the norm given by

‖f‖Bα(U) := |f(i)|+ ‖f‖Bα1 (U).

9



The corresponding generalized little Bloch space of the upper half

plane, Bα0 (U) is defined as

Bα◦ (U) := {f ∈ H(U) : lim
=(ω)−→0

= (ω)α |f ′(ω)| = 0}

having the same norm as Bα(U). There is little literature on the

properties of the generalized Bloch space of the upper half plane as

Banach spaces.

(v) Let X be a Banach space, 1 ≤ q, r ≤ ∞ and s ∈ R. The Besov

space Bsq,r(RN, X) is the space of all f ∈ S ′(RN, X) for which

‖f‖Bsq,r(RN,X) := ‖2ks(ϕvk ∗ f)
∞
k=0‖lr(Lq(X)).

For more details we refer to [13]

1.4.1 Semigroups of Linear Operators

Let X be a Banach space. A one-parameter family (Tt)t≥0 is a semigroup

of bounded linear operators on X, if

(i) To = I (Identity operator on X), and

(ii) Tt+s = Tt ◦ Ts for every t, s,≥ 0 (Semigroup property).

A semigroup (Tt)t≥0 of bounded linear operators onX is strongly continuous

if

lim
t→0+
‖Ttx− x‖ = 0 for all x ∈ X.

10



The infinitesimal generator denoted by Γ of (Tt)t≥0 is defined by

Γx := lim
t→0+

Ttx− x
t

=
∂

∂t
(Ttx)

∣∣∣∣
t=0

for each x ∈ dom(Γ),

where dom(Γ) denotes the domain of Γ given by

dom(Γ) =

{
x ∈ X : lim

t→0+

Ttx− x
t

exists

}
.

We define a group of bounded linear operators as

(Tt)t∈R =


Tt, t ≥ 0,

T−t, t ≥ 0.

if both (Tt)t≥0 and (T−t)t≥0 are semigroups on X. For more details see

[10, 11, 16].

1.4.2 Composition Operators and Semigroups

Suppose ϕ : Ω → Ω is a self analytic map. The composition operator

induced by ϕ on H(Ω) is defined as

Cϕ(f) = f oϕ,

for all f ∈ H(Ω). On the other hand, given t ≥ 0 we define a semigroup

as a family (ϕt)t≥0 of self analytic maps on Ω satisfying the following

properties

(i) ϕ0(z) = z (Identity map on Ω).

11



(ii) ϕt+s = ϕt ◦ ϕs,∀ t, s ≥ 0 (Semigroup property).

(iii) ϕt → ϕ0 uniformly on compact subsets of Ω as t→ 0.

Composition semigroup induced by ϕt on H(Ω) is defined as

Cϕt(f) = fo ϕt, for all f ∈ H(Ω).

We refer to [5, 6, 11, 16, 28] for more details on semigroups.

1.5 Statement of the Problem

Extensive research has been done on the properties of the Bloch spaces as

well as operators defined on them. Most of the studies are based on the

Bloch spaces of the open unit disc. The immense interest in generalizing

these spaces has partly succeeded. For instance, the generalized Bloch

spaces including the little Bloch spaces of the unit disc have been proved

to be Banach spaces with respect to their norms, among other proper-

ties. However, their counterparts on the upper half plane have hardly

been studied in literature. In this study, we have considered the gener-

alized Bloch spaces of the upper half plane and studied their properties.

Moreover, we have defined the composition semigroups on the general-

ized Bloch spaces of the upper half plane and determined their semigroup

properties.
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1.6 Objective of the Study

The main objective of this study was to investigate the properties of

the generalized Bloch spaces of the upper half-plane, Bα(U), as well as

composition semigroups defined on them. The specific objectives were to

(i) Investigate the properties of the generalized Bloch spaces of the

upper half plane.

(ii) Determine the composition semigroups on the generalized Bloch

spaces of the upper half-plane.

(iii) Investigate the semigroup properties of composition semigroups de-

termined in (ii) above.

1.7 Significance of the Study

The study of the semigroups of composition operators has wide applica-

tion in applied mathematics. In particular, evolution equations arise in

many disciplines of science. An abstract way to study and dissect these

equations is through semigroups. For instance, solution of the heat equa-

tion is given by a semigroup. Using semigroups is advantageous as the

associated theory is quite rich. Studying semigroups, as we have for this

study, heightens our awareness of their prevalence throughout applied

mathematics.
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1.8 Research methodology

In this section, we outline the methods used to achieve the objectives of

the study.

To investigate the properties of the generalized Bloch spaces of the up-

per half plane Bα(U), we used Cayley transform to obtain the equivalent

representations of functions on the generalized Bloch spaces of the unit

disk to functions on the corresponding spaces of the upper half plane.

We then considered the known properties of the Bloch space of the disc

and investigated the corresponding properties of the Bloch space of the

upper half plane. We then extended these properties to the setting of

generalized Bloch spaces of the upper half plane.

To determine composition semigroups on the generalized Bloch spaces of

the upper half plane, we used the classification theorem for the automor-

phisms of the upper half plane, U and from the definition of composition

operators, we obtained three distinct composition semigroups on the gen-

eralized Bloch spaces of the upper half plane as induced by the automor-

phism groups.

Finally, we used the theory of semigroups of linear operators on Banach

spaces to determine the semigroup properties of the obtained composition

semigroups on the generalized Bloch spaces of the upper half plane.
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Chapter 2

Literature Review

In 1974, J. Anderson [9] obtained various characterizations of Bloch func-

tions on B(D), where he presented basic theory of Bloch functions with

emphasis given to connections, which Bloch functions provide between

function theory and harmonic analysis. In 1979, J. Cima [8] extended

Anderson’s work where he established that a Bloch function is an ana-

lytic function on the unit disc D, whose derivative grows no faster than

a constant times the reciprocal of the distance from a point z to the

boundary of the disc. He also proved the Bloch theorem and gave equiv-

alence conditions for a function holomophic on the Bloch space of the

disc. J. Cima [8] established that bounded holomorphic functions are

Bloch functions. He further proved basic analytic facts concerning Bloch

functions. On the Banach space structure, J. Cima noted that a set of

Bloch functions is a complex vector space which when equipped with a

norm becomes a Banach space. He further proved the analytic space

of bounded mean oscillation (BMOA) as a subspace of the Bloch space

and collected facts concerning the geometry of the space. In 1991, K.

Zhu [29] proved the Bloch space, B(D), as a Banach space with its semi

15



norm, ‖f‖B1(D) = supz∈D(1 − |z|2)|f ′(z)| ∀f ∈ B(D), being complete and

invariant under the action of an automorphism. He proved that the lit-

tle Bloch space, B◦(D) is a closed subspace of B(D) and that the set of

polynomials is dense in B◦(D) [29]. The space B(D) has been studied

by many authors because of its intrinsic interest since its introduction

[1, 4, 14, 17, 21, 25, 29]. In 1993, K. Zhu [28] defined the generalized

Bloch spaces of the open unit disc, Bα(D) and proved that they are Ba-

nach spaces with respect to their norm. Zhu established generalized lit-

tle Bloch spaces of the unit disc B◦(D), as closed, separable subspaces of

Bα(D). There is little literature on the properties of the generalized Bloch

spaces of the upper half plane Bα(U), including whether they are Banach

spaces.

On the Bloch space of the unit disc, boundedness and compactness of

composition operators is well captured in the literature. For instance, in

1995, Madigan and Matheson [15] gave sufficient and necessary conditions

for composition operators to be compact on B(D) and the corresponding

B◦(D). In 1997, A. Siskakis [19] initiated the study of semigroups of

composition operators in the framework of analytic spaces of bounded

mean oscillation (BMOA) and the Bloch space of the unit disc B(D).

On strong continuity of composition semigroups, he [19] proved that no

non trivial composition semigroups are strongly continuous on the Bloch

space of the unit disc B(D). In 2000, Shi and Luo [20] studied compo-

sition operators on the Bloch space of several complex variables. This

study [20] was then extended in the year 2001 by Ohno and Zhao [24]

who examined compactness and boundedness of weighted composition

operators on the Bloch space of several complex variables. In 2003, on

16



the generalized Bloch spaces of the disc, B. Macluer [14] obtained the

essential norms of composition operators between the generalized Bloch

spaces of the unit disc. He [14] further obtained estimates for the essen-

tial norm of the composition operator mapping the standard Bloch space

into the weighted generalized Bloch spaces of the disc. In Siskakis’ review

[19], he established strong continuity of composition semigroups on the

little Bloch space. Further research on compactness was done in 2017

by the author in [17] who studied compact composition operators on the

Bloch space and the growth space of the upper half plane. In 2019, M.

Bagasa [2] studied spectral properties of semigroups of weighted compo-

sition operators on the little Bloch space B◦(D), which were obtained as

adjoints of composition semigroups defined on the nonreflexive Bergman

space using the duality relations. For a comprehensive theory of compo-

sition operators on the Bloch space, we refer the reader to monographs;

[7, 17, 21, 26]. Evidently, the study of composition semigroups defined

on generalized Bloch spaces of the upper half plane has not yet been ex-

hausted. In this study therefore, we have investigated the properties of

the generalized Bloch spaces of the upper half plane as Banach spaces and

extended the study of semigroups of composition operators to the setting

of the generalized Bloch spaces of the upper half plane. The following

theorem has been useful in this study

Theorem 2.0.1 (Classification theorem for Aut(U) [3])

Let ϕ : R −→ Aut(U) be a nontrivial continuous group homomorphism.

Then exactly one of the following cases holds:

1. There exists k > 0, k 6= 1, and g ∈ Aut(U) so that ϕt(z) =

g−1(ktg(z)) for all z ∈ U and t ∈ R.
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2. There exists k ∈ R, k 6= 0, and g ∈ Aut(U) so that ϕt(z) =

g−1(g(z) + kt) for all z ∈ U and t ∈ R.

3. There exists k ∈ R, k 6= 0, and a conformal mapping g of U onto D

such that ϕt(z) = g−1(eiktg(z)) for all z ∈ U and t ∈ R.
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Chapter 3

Generalized Bloch spaces of

the upper half plane

In this chapter, we study properties of the generalized Bloch spaces as

Banach spaces. We also relate functions in the generalized Bloch space of

the upper half plane U to their counterparts in the unit disc D, but first,

we state the following propositions that are readily available in literature.

Proposition 3.0.1 ([29])

Bα(D) is a Banach space with respect to the norm ‖.‖Bα(D)

Proposition 3.0.2 ([29])

Bα0 (D) is a Banach space with respect to the norm ‖.‖Bα(D)

In the next proposition, we state density of polynomials in Bα(D).

Proposition 3.0.3 ([28])

The set of analytic polynomials C[z] :=

{
∞∑
n=0

an z
n : z ∈ C

}
is dense in

Bα0 (D).

In the following theorem, we establish the completeness of Bα(U) with

respect to the norm ‖.‖Bα(U).
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Theorem 3.0.4

Bα(U) is a Banach space with respect to the norm ‖.‖Bα(U)

Proof. We first note that Bα(U) is a vector space under the pointwise

operations given as: For f, g ∈ Bα(U) and λ ∈ C, we have for every z ∈ U

(f + g)(z) = f(z) + g(z)

and

(λf) = λf(z).

To check that Bα(U) is a normed space, we need to verify that the

definition of ‖.‖Bα(U) indeed defines a norm on Bα(U). We note that,

∀f ∈ Bα(U), ‖f‖Bα(U) > 0 since |f(i)| > 0, =(ω) > 0 and |f ′(ω)| > 0 by

definition for f 6= 0.

Moreover,

‖f‖Bα(U) = 0 ⇔ |f(i)|+ ‖f‖Bα1 (U) = 0

⇔
(
|f(i)|+ sup

ω∈U
= (ω)α |f ′(ω)|

)
= 0,

which is equivalent to

|f(i)| = 0 and sup
ω∈U
= (ω)α |f ′(ω)| = 0.

Since = (ω) > 0 and f is holomorphic we have

|f ′(ω)| = 0⇔ f is a constant.

Now |f(i)| = 0⇔ f(i) = 0. Hence f = 0, as desired.
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Now, for λ ∈ C and f ∈ Bα(U), we have

‖λf‖Bα(U) = |(λf)(i)|+ ‖λf‖Bα1 (U)

= |λf(i)|+ sup
ω∈U
= (ω)α |(λf)′(ω)|

= |λ||f(i)|+ sup
ω∈U
= (ω)α |λf ′(ω)|

= |λ||f(i)|+ sup
ω∈U
= (ω)α |λ||f ′(ω)|

= |λ|
(
|f(i)|+ sup

ω∈U
= (ω)α |f ′(ω)|

)
= |λ|‖f‖Bα(U), as desired.

Finally, for the triangle inequality property of the norm, we have for

f, g ∈ Bα(U),

‖f + g‖Bα(U) = |(f + g)(i)|+ ‖f + g‖Bα1 (U)

= |f(i) + g(i)|+ sup
ω∈U
= (ω)α |(f + g)′(ω)|

= |f(i) + g(i)|+ sup
ω∈U
= (ω)α |f ′(ω) + g′(ω)|

≤ |f(i)|+ |g(i)|+ sup
ω∈U
= (ω)α (|f ′(ω)|+ |g′(ω)|)

≤ |f(i)|+ |g(i)|+ sup
ω∈U
= (ω)α |f ′(ω)|+ sup

ω∈U
=(ω)α|g′(ω)|

=

(
|f(i)|+ sup

ω∈U
= (ω)α |f ′(ω)|

)
+

(
|g(i)|+ sup

ω∈U
= (ω)α |g′(ω)|

)
= ‖f‖Bα(U) + ‖g‖Bα(U).

Therefore,
(
Bα(U), ‖.‖Bα(U)

)
is a normed space.

Next, we prove that the space Bα(U) is complete in ‖.‖Bα(U).

Let (fk)k denote a Cauchy sequence in Bα(U). For ε > 0, there exists

N ∈ N such that ‖fk − fl‖Bα(U) < ε, ∀ k, l > N. Hence by the definition
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of the norm, we have for all ∀ k, l > N,

|fk(i)− fl(i)|+ sup
ω∈U
= (ω)α |f ′k(ω)− f ′l (ω)| < ε,

which means that

|fk(i)− fl(i)| < ε and (=(ω))α |f ′k(ω)− f ′l (ω)| < ε,

for ω ∈ U. So, (fk(i))k∈N is Cauchy in C. By the completeness of C,

(fk(i))k converges to a limit, say u0. Similarly, (f ′k(ω))k∈N is Cauchy in C

and therefore converges to a limit, say g.

Since |f ′k(ω)−f ′l (ω)| < ε
=(ω)α and f ′k(ω)→ g uniformly on compact subsets

of U, then g ∈ H(U).

Now, take f such that f ′(ω) = g(ω)∀ω ∈ U and f(i) = u0.

Thus, ∀ ε > 0, ∃N such that

= (ω)α |f ′k(ω)− f ′l (ω)| < ε, ∀ω ∈ U.

Taking limits as l→∞, we obtain

= (ω)α |f ′k(ω)− f ′(ω)| < ε, ∀ω ∈ U.

It follows that

‖fk − f‖Bα(U) = |fk(i)− f(i)|+ sup
ω∈U
= (ω)α |f ′k(ω)− f ′(ω)| < ε

and so ‖fk − f‖Bα(U) → 0 as k →∞.
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Now, it remains to show that f ∈ Bα(U). We have

= (ω)α |f ′(ω)| = = (ω)α |f ′(ω)− f ′k(ω) + f ′k(ω)|

≤ = (ω)α |f ′(ω)− f ′kω|+ = (ω)α |f ′k(ω)|

< ε+ = (ω)α |f ′k(ω)| <∞

since (fk)k ⊂ Bα(U).

Now, taking supremum over all ω ∈ U in the above equation, we have

that

sup
ω∈U
= (ω)α |f ′(ω)| <∞

which implies that f ∈ Bα(U), as desired. �

As an immediate consequence, we have

Corollary 3.0.5

B(U) is a Banach space with respect to the norm ‖ . ‖B(U)

Proof. Follows immediately by taking α = 1 in Theorem (??). �

Under the norm ‖ . ‖Bα(U), the space Bα0 (U) also becomes a Banach space

as in the following theorem,

Theorem 3.0.6

Bα0 (U) is a Banach space with respect to the norm ‖ . ‖Bα(U).

Proof. Following Theorem (??), we need to show that every sequence

in Bα0 (U) convergent in Bα(U) has its limit in Bα0 (U).

Let (fn) ⊂ Bα0 (U) and g ∈ Bα(U) be such that fn → g as n→∞. We need

to prove that g ∈ Bα0 (U). Since fn, g are holomorphic on compact subsets

of U, and fn → g, we have f ′n → g′ uniformly. Now that fn ⊂ Bα0 (U), we
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have

lim
=(ω)→0

(=(ω))α |f ′n(ω)| = 0,∀n. (3.1)

Since limn→∞ f
′
n = g′, we have

lim
=(ω)→0

(=(ω))α |g′(ω)| = lim
=(ω)→0

(=(ω))α | lim
n→∞

f ′n(ω)|

which is equivalent to

lim
=(ω)→0

(=(ω))α |g′(ω)| = lim
n→∞

(
lim
=(ω)→0

(=(ω))α |f ′n(ω)|
)
.

Following equation (3.1), we see that

lim
=(ω)→0

(=(ω))α |g′(ω)| = 0.

So, g ∈ Bα0 (U), completing the proof. �

As a consequence, we have the following,

Corollary 3.0.7

B0(U) is a Banach space with respect to the norm ‖.‖Bα(U)

Proof. Follows immediately by taking α = 1 in Theorem (??). �

In the next results, we generate a relationship between functions in the

generalized Bloch space of the upper half plane U and their counterparts

in the unit disc D

Proposition 3.0.8

Let f ∈ Bα(U) and ψ be the Cayley transform, then

‖f‖Bα1 (U) =
1

2α
|ψ′(z)α−1|‖f ◦ ψ‖Bα1 (D).
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Proof. Let f be a function in Bα(U). Then by definition,

‖f‖Bα1 (U) = supω∈U=(ω)α|f ′(ω)| <∞.

Now, by changing variables, let ω = ψ(z), where ψ is the Cayley trans-

form. Then

=(ω) =
ω − ω

2i

=
ψ(z)− ψ(z)

2i
.

Using ψ(z) = i(1+z)
1−z and ψ(z) = −i(1+z)

1−z , we have

=(ω) =

i(1+z)
1−z −

−i(1+z)
1−z

2i

=
i(1 + z)(1− z) + i(1 + z)(1− z)

2i(1− z)(1− z)

=
i(2− 2zz)

2i(1− z)(1− z)

=
1− |z|2

|1− z|2
.

We get the absolute of ψ′(z) = 2i
(1−z)2 as

|ψ′(z)| = 2

|1− z|2
. (3.2)

Now, by definition we have

‖f‖Bα1 (U) = sup
z∈D

(
1− |z|2

|1− z|2

)α
|f ′(ψ(z))|.
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From equation (3.2), we have |1− z|2 = 2
|ψ′(z)| , therefore

‖f‖Bα1 (U) =
1

2α
sup
z∈D

(1− |z|2)α|ψ′(z)|α|f ′(ψ(z))|.

Since, (f ◦ ψ)(z)′ = f ′(ψ(z))ψ′(z), we have

|ψ′(z)|α|f ′(ψ(z))| = |(f ◦ ψ)′(z)ψ′(z)α−1| and hence

‖f‖Bα1 (U) =
1

2α
sup
z∈D

(1− |z|2)α|(f ◦ ψ)′(z)ψ′(z)α−1|.

=
1

2α
|ψ′(z)α−1|‖f ◦ ψ‖Bα1 (D), as desired.

�

An immediate consequence is the following,

Corollary 3.0.9

Let f ∈ B(U) and ψ be the Cayley transform, then

‖f‖B1(U) =
1

2
‖f ◦ ψ‖B1(D) (3.3)

In particular, a function f ∈ B(U) if and only if f ◦ ψ ∈ B(D).

Proof. From Theorem (??), we have that for α = 1,

‖f‖B1(U) =
1

2
‖f ◦ ψ‖B1(D).

But from the definition, f ∈ B(U) if and only if ‖f‖B1(U) < ∞. Equiv-

alently, by equation (3.3) we conclude that f ∈ B(U) if and only if

‖f ◦ ψ‖B1(D) <∞, which completes the proof. �

Another result that relates functions in the generalized little Bloch space

of the upper half plane and their counterparts in the unit disc D is the
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following

Proposition 3.0.10

A function f ∈ Bα0 (U) if and only if f ◦ ψ ∈ Bα0 (D)

Proof. From the definition of Bα0 (U), we have

f ∈ Bα0 (U)⇔ lim
=(ω)→0

(=(ω))α |f ′(ω)| = 0.

From equation (3.3) and (3.2), we have

=(ω) =
1− |z|2

|1− z|2
and |ψ′(z)| = 2

|1− z|2
,

respectively.

Now, by changing variables, let ω = ψ(z), so that we obtain

lim
|z|→1

(
1− |z|2

|1− z|2

)α
|f ′(ψ(z))| = 0. (3.4)

Substituting |1− z|2 = 2
|ψ′(z)| in equation (3.4), we have

lim
|z|→1

(1− |z|2)α|f ′(ψ(z))| |ψ
′(z)|α

2α
= 0.

Simplifying and rearranging, we get

1

2α
lim
|z|→1

(1− |z|2)α|ψ′(z)|α−1|(f ◦ ψ)′(z)| = 0.

Since |ψ′(z)|α−1 does not converge to 0 as |z| → 1, it follows that

lim
|z|→1

(1− |z|2)α|(f ◦ ψ)′(z)| = 0.

27



Equivalently, f ◦ ψ ∈ Bα0 (D), and hence f ∈ Bα0 (U) ⇔ f ◦ ψ ∈ Bα0 (D), as

claimed. �

As a consequence, we give the following result

Corollary 3.0.11

A function f ∈ B0(U) if and only if f ◦ ψ ∈ B0(D).

Proof. Follows immediately by taking α = 1 in Proposition 3.0.10. �
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Chapter 4

Composition semigroups on

the generalized little Bloch

space of the upper half plane

4.1 Introduction

Following Theorem 2.0.1, the non trivial automorphisms of the upper half

plane U were classified according to the location of their fixed points into

three distinct classes namely; scaling, translation and rotation groups. In

this chapter, we determine composition semigroups induced by these au-

tomorphism groups of the upper half plane U, on the generalized Bloch

space of the upper half plane Bα(U). We then employ the theory of linear

operators on Banach spaces to investigate the semigroup properties of

the induced composition semigroup. For any given semigroup ϕt, the in-

duced operator semigroup Cϕt is known to be strongly continuous on the

little Bloch space. On the other hand, no non trivial composition semi-

group is strongly continuous on the big Bloch space. See [18]. Therefore,
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we shall determine the composition semigroup induced by these automor-

phism groups on the generalized little Bloch space of the upper half plane,

Bα0 (U). In particular, in section 4.1 and 4.2, we show that composition

semigroups induced by scaling and translation groups respectively, are

strongly continuous on Bα0 (U). In section 4.3, we determine composition

semigroups induced by rotation group on Bα0 (D). The infinitesimal gener-

ator is identified and its domain stated. We start by defining the scaling

group in the next section.

4.2 Scaling group

The automorphisms of this group are of the form ϕt(z) = ktz, where

z ∈ U and k, t ∈ R with k 6= 0. As noted in [3], the semigroup properties

of the induced composition operators will differ significantly depending

on whether 0 < k < 1 or k > 1. Thus for 0 < k < 1, we consider without

loss of generality, the analytic self maps ϕt : U −→ U of the form

ϕt(z) = e−tz, z ∈ U. (4.1)

The composition semigroup induced by (4.1) on Bα0 (U) is given by

Cϕtf(z) = (f ◦ ϕt) (z)

= f
(
e−tz

)
. (4.2)

In the following proposition, we prove that (4.2) defines a group on

Bα0 (U).
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Proposition 4.2.1

(Cϕt)t∈R is a group on Bα0 (U).

Proof. It suffices to show that both (Cϕt)t≥0 and
(
Cϕ−t

)
t≥0 are semi-

groups on Bα0 (U).

Indeed Cϕ0 = I and for every f ∈ Bα0 (U), we have

Cϕt ◦ Cϕsf(z) = Cϕt (Cϕsf(z)) (4.3)

= Cϕtf(ϕs(z))

= f (ϕt(ϕs(z)))

= f
(
ϕt(e

−sz)
)

= f
(
e−te−sz

)
= f

(
e−(t+s)z

)
= Cϕt+sf(z),

as desired. Therefore (Cϕt)t≥0 is a semigroup on Bα0 (U). Similarly, it can

be shown that
(
Cϕ−t

)
t≥0 is also a semigroup on Bα0 (U). Thus (Cϕt)t∈R is

a group on Bα0 (U). �

In what follows, we prove that the composition semigroup given by (4.2)

fails to be an isometry on Bα0 (U).

Proposition 4.2.2

The operator Cϕt fails to be an isometry on Bα0 (U)

Proof. By the definition of the norm, we have for all f ∈ Bα0 (U)

‖Cϕtf‖Bα(U) = |Cϕtf(i)|+ sup
ω∈U
=(ω)α| (Cϕtf)′ (ω)|

= |f(e−ti)|+ sup
ω∈U
=(ω)α|e−tf ′(e−tω)|.
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Now by change of variables:

Let z = e−tω, then ω = etz, and =(ω) = et=(z). Therefore,

‖Cϕtf‖Bα(U) = |f(e−ti)|+ sup
z∈U

etα=(z)α|e−tf ′(z)|

= |f(e−ti)|+ e(α−1)t sup
z∈U
=(z)α|f ′(z)|

6= |f(i)|+ sup
z∈U
=(z)α|f ′(z)| = ‖f‖Bα(U),

which completes the proof. �

Next, we prove that the operator Cϕt given by (4.2) is strongly continuous

on Bα0 (U).

Theorem 4.2.3

(Cϕt)t∈R is strongly continuous on Bα0 (U).

Proof. To prove strong continuity of (Cϕt)t∈R, it suffices to show that

‖Cϕtf − f‖Bα(U) → 0 as t → 0. That is, | (Cϕtf − f) (i)| + ‖Cϕtf −

f‖Bα1 (U) → 0 as t → 0. This is equivalent to | (Cϕtf − f) (i)| → 0 and

‖Cϕtf − f‖Bα1 (U) → 0, as t→ 0. For the former, we have

| (Cϕtf − f) (i)| = |Cϕtf(i)− f(i)| (4.4)

= |f(ϕt(i))− f(i)|

= |f(e−ti)− f(i)| → 0 as t→ 0,

as desired. We now prove that ‖Cϕtf − f‖Bα1 (U) → 0 as t → 0. Recall

that ψ : D → U, ϕt : U → U andψ−1 : U → D. We can therefore

have D ψ−→ U ϕt−→ U ψ−1

−−→ D. Now, let Xt = ψ−1 ◦ ϕt ◦ ψ : D → D. If

(ϕt)t≥0 is an automorphism of the upper half plane U, then (Xt)t≥0 is an

automorphism of the unit disc D. Since Xt = ψ−1 ◦ ϕt ◦ ψ, it follows that
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‖Cϕtf−f‖Bα1 (U) → 0 as t→ 0 if and only if ‖CXtf ∗−f ∗‖Bα(D) → 0 as t→ 0

Cayley transform is given by ψ(z) = i(1+z)
1−z . We therefore have

ψ−1 ◦ ϕ−t ◦ ψ(z) = ψ−1 (ϕt (ψ(z))) .

= ψ−1
(
ϕt

(
i(1 + z)

1− z

))
= ψ−1

(
e−t
(
i(1 + z)

1− z

))
.

Substituting ψ−1(z) = z−i
z+i

, we obtain

ψ−1 ◦ ϕ−t ◦ ψ(z) =
e−t( i(1+z)

1−z )− i
e−t( i(1+z)

1−z ) + i
.

Simplifying the fraction, we have

ψ−1 ◦ ϕ−t ◦ ψ(z) =
e−t (i(1 + z))− i(1− z)

e−t (i(1 + z)) + i(1− z)
.

=
e−t (−(1 + z)) + (1− z)

e−t (−(1 + z))− (1− z)
.

=
e−t(1 + z)− (1− z)

e−t(1 + z) + (1− z)
.

=
z + e−tz − 1 + e−t

−z + e−tz + 1 + e−t
.

Now, by factorizing z and dividing both the numerator and denominator

by (1 + e−t), we obtain

ψ−1 ◦ ϕ−t ◦ ψ(z) =
z − (1−e−t)

(1+e−t)

1− (1−e−t)
1+e−t

z
.
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Let bt = 1−e−t
1+e−t

, and substitute to obtain

ψ−1 ◦ ϕ−t ◦ ψ(z) =
z − bt
1− btz

:= Xt(z).

Next, we apply density of polynomials in Bα0 (D) to prove that for f ∗ ∈

Bα0 (D), we have ‖CX tf ∗ − f ∗‖Bα1 (D) → 0 as t→ 0.

By the definition of the norm, we have

lim
t→0+
‖CX tf ∗ − f ∗‖Bα(D) = lim

t→0+

(
|(CX tf ∗ − f ∗)(0)|+ sup

z∈D

(
1− |z|2

)α |(CX tf ∗ − f ∗)′(z)|
)
.

Let f ∗(z) = zn and z ∈ D.

We need to show that ‖ (CXtf
∗ − f ∗) ‖Bα1 (D) → 0, as t→ 0.

Since

CXtz
n − zn = (Xt(z))n − zn, n ≥ 1,

differentiating (Xt(z))n − zn with respect to z, we obtain

(CXtf
∗ − f ∗)′(z) = n(Xt(z))n−1X ′t (z)− nzn−1

= n[(Xt(z))n−1X ′t (z)− zn−1].

Substituting for

Xt(z) =
z − bt
1− btz
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and

X ′t (z) =
(1− btz)1− (z − bt)(−bt)

(1− btz)2

=
(1− b2t )

(1− btz)2
,

we obtain

(CXtf
∗ − f ∗)′(z) = n

[(
z − bt
1− btz

)n−1
(1− b2t )

(1− btz)2
− zn−1

]

= n

[
(z − bt)n−1(1− b2t )

(1− btz)n−1(1− btz)2
− zn−1

]
= n

[
(z − bt)n−1(1− b2t )− zn−1(1− btz)n+1

(1− btz)n+1

]

It therefore follows that limt→0+ ‖CX tf ∗ − f ∗‖Bα1 (D) is equivalent to

lim
t→0+

(
(sup
z∈D

(
1− |z|2

)α ∣∣∣∣n [(z − bt)n−1(1− b2t )− zn−1(1− btz)n+1

(1− btz)n+1

]∣∣∣∣) .
Now, let bt → 0 as t→ 0, we obtain

lim
t→0+
‖CX tf ∗ − f ∗‖Bα1 (D) = sup

z∈D
(1− |z|2)α

∣∣n[zn−1 − zn−1]
∣∣

= 0.

Since limt→0+ ‖(CXtf ∗ − f ∗‖Bα1 (D) = 0, it follows that

lim
t→0+

(
‖Cϕtf − f‖Bα1 (U)

)
= 0.

Therefore ‖Cϕtf−f‖Bα(U) = |ϕtf(i))−f(i)|+‖Cϕtf−f‖Bα1 (U) → 0 as t→

0, as desired. �
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In the next proposition, we compute the infinitesimal generator and de-

termine the domain of the composition semigroup in equation (4.2).

Proposition 4.2.4

The infinitesimal generator Γ of (Cϕt)t≥0 on Bα0 (U) is given by Γf(z) =

−zf ′(z) with the domain dom (Γ) = {f ∈ Bα0 (U) : zf ′(z) ∈ Bα0 (U)}.

Proof. Using the definition of the infinitesimal generator Γ of (Cϕt)t≥0,

for f ∈ Bα0 (U) we have

Γf(z) = lim
t→0+

Cϕtf(z)− f(z)

t

= lim
t→0+

f (ϕt(z))− f(z)

t

= lim
t→0+

f (e−tz)− f(z)

t

=
∂

∂t
f(e−tz)

∣∣∣∣
t=0

= −e−tzf ′(e−tz)
∣∣
t=0

= −zf ′(z).

This implies that Γf(z) = −zf ′(z) and therefore dom(Γ) ⊆ {f ∈ Bα0 (U) :

zf ′ ∈ Bα0 (U)}. To prove reverse inclusion, we let f ∈ Bα0 (U) be such that
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zf ′ ∈ Bα0 (U). Then for z ∈ U,

Cϕtf(z)− f(z)

t
=

1

t

∫ t

0

∂

∂s
(Cϕsf(z))ds

=
1

t

∫ t

0

∂

∂s
(f(e−sz))ds

=
1

t

∫ t

0

(−e−szf ′(e−sz))ds

=
1

t

∫ t

0

−e−szf ′(e−sz))ds

=
1

t

∫ t

0

CϕsF (z)ds, whereF (z) = −zf ′(z).

Since F (z) is a function in Bα0 (U), it remains to show that the limit of

F (z) exist in Bα0 (U). Thus

lim
t→0+

Cϕsf(z)− f(z)

t
= lim

t→0+

1

t

∫ t

0

CϕsF (z)ds.

By strong continuity of (Cϕs)s≥0 we have

1

t

∫ t

0

‖CϕsF − F‖ds→ 0 as t→ 0+. (4.5)

Hence

{f ∈ Bα0 (U) : zf ′ ∈ Bα0 (U)} ⊆ dom(Γ).

This completes the proof. �

4.3 Translation group

In this case the automorphisms are of the form ϕt(z) = z + kt, where

z ∈ U and k, t ∈ R with k 6= 0. As noted in [3], we can consider the self
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analytic maps of U of the form

ϕt(z) = z + t. (4.6)

The composition semigroup induced by (4.6) defined on Bα0 (U) is given

by

Cϕtf(z) = f(z + t). (4.7)

Next, we show that (Cϕt)t≥0 given by (4.7) defines a group on Bα0 (U).

Proposition 4.3.1

(Cϕt)t∈R is a group on Bα0 (U).

Proof. It suffices to prove that both (Cϕt)t≥0 and
(
Cϕ−t

)
t≥0 are semi-

groups on Bα0 (U).

Indeed Cϕ0 = I and for every f ∈ Bα0 (U), we have

Cϕt ◦ Cϕsf(z) = Cϕt (Cϕsf(z))

= Cϕtf(ϕs(z)

= f (ϕt(ϕs(z)))

= f (ϕt(z + s))

= f (t+ s+ z)

= f ((t+ s) + z)

= Cϕt+sf(z),

as desired. Therefore (Cϕt)t≥0 is a semigroup on Bα0 (U). Similarly, it can

be shown that
(
Cϕ−t

)
t≥0 is also a semigroup on Bα0 (U). Thus, (Cϕt)t∈R is

a group on Bα0 (U), as desired. �.
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In the next proposition, we prove that the composition semigroup (4.7),

fails to be an isometry on the generalized little Bloch space of the upper

half plane Bα0 (U).

Proposition 4.3.2

The operator Cϕt fails to be an isometry on Bα0 (U).

Proof. By norm definition, we have

‖Cϕtf‖Bα(U) = |Cϕtf(i)|+ sup
z∈U
=(z)α| (Cϕtf)′ (z)|

= |f(i+ t)|+ sup
z∈U
=(z)α|f ′(z + t)|.

Now by change of variables: Let z+t = ω then z = ω−t, and =(z) = =(ω).

Therefore,

‖Cϕtf‖Bα(U) = |f(i+ t)|+ sup
ω∈U
=(ω)α|f ′(ω)| (4.8)

The right hand side of equation (4.8) is not equal to the norm ‖f‖Bα(U)

for any t > 0. This implies that (4.7) is not an isometry on Bα0 (U). This

completes the proof. �

We prove in the next proposition that the composition semigroup (4.7)

is strongly continuous on the generalized little Bloch space of the upper

half plane, Bα0 (U).

Proposition 4.3.3

The operator Cϕt is strongly continuous on Bα0 (U).

Proof. We need to show that ‖Cϕtf − f‖Bα(U) → 0 as t → 0. This

approach is similar to (4.5). We omit the details. We compute the auto-
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morphism of the unit disc D, denoted by Xt as follows

Xt(z) = ψ−1 (ϕt (ψ(z)))

= ψ−1
(
ϕt

(
i(1 + z)

1− z

))
= ψ−1

(
i(1 + z)

1− z
+ t

)
.

Since the inverse of Cayley transform is given by ψ−1 = z−i
z+i

, we substitute

to obtain

Xt =

i(1+z)
1−z − t− i
i(1+z)
1−z − t+ i

=

i(1+z)
1−z − (t+ i)
i(1+z)
1−z + (i− t)

.

We simplify further by multiplying both the numerator and denominator

by (1− z) to obtain

Xt(z) =
i(1 + z) + (t− i)(1− z))

i(1 + z) + (t+ i)(1− z)

=
i+ iz + (t− tz − i+ iz)

i+ iz + (t− tz + i− iz)

=
2iz − tz − t
2i− tz + t

=
(2i− t)z − t
(2i+ t)− tz

.

By dividing both the numerator and denominator by 2i− t, we get

Xt =
z + t

2i−t
2i+t
2i−t −

t
2i−tz.
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Letting kt = t
2i−t and mt = 2i+t

2i−t . We have

Xt =
z + kt
mt − ktz

.

Next, we apply density of polynomials in Bα0 (D) to prove that for f ∗ ∈

Bα0 (D), we have ‖CX tf ∗− f ∗‖Bα1 (D) → 0 as t→ 0. By norm definition, we

have

lim
t→0+
‖CX tf ∗ − f ∗‖Bα1 (D) = lim

t→0+

(
sup
z∈D

(
1− |z|2

)α |(CX tf ∗ − f ∗)′(z)|
)
.

Using density of polynomials in Bα0 (D), let f ∗(z) = zn and z ∈ D be such

that

CX tz
n − zn = (Xt(z))n − zn, n ≥ 1. (4.9)

Now, differentiating (Xt(z))n − zn with respect to z, we get

(CX tf
∗ − f ∗)′(z) = n(Xt(z))n−1X ′t (z)− nzn−1

= n[(Xt(z))n−1X ′t (z)− zn−1]. (4.10)

We also differentiate Xt = z+kt
mt−ktz by quotient rule to obtain

X ′t (z) =
(mt − ktz)1− (z + kt)(−kt)

(mt − ktz)2

=
(mt − ktz)1− (−ktz − k2t )

(mt − ktz)2

=
mt − ktz + ktz + k2t

(mt − ktz)2

=
mt + k2t

(mt − ktz)2
.

Substituting for Xt = z+kt
mt+ktz

and X ′t (z) =
mt−k2t

(mt−ktz)2 in equation (4.10) we
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have

(CX tf
∗ − f ∗)′(z) = n[(Xt(z))n−1X ′t (z)− zn−1]

= n

[(
z + kt
mt − ktz

)n−1
mt − k2t

(mt − ktz)2
− zn−1

]

= n

[
(z + kt)

n−1(mt − k2t )
(mt − ktz)n−1(mt − ktz)2

− zn−1
]

= n

[
(z + kt)

n−1(mt − ktz2)
(mt − ktz)n+1

− zn−1
]
.

= n

[
(z + kt)

n−1(mt − ktz2)− zn−1(mt − ktz)n+1

(mt − ktz)n+1

]

It therefore follows that as t→ 0, we have

‖CX tf ∗ − f ∗‖Bα(D) = (|(Xt(0))n − 0|)

+ (sup
z∈D

(
1− |z|2

)α ∣∣n[(Xt(z))n−1X ′t (z)− zn−1]
∣∣ = 0.

Therefore ‖Cϕtf−f‖Bα(U) = |ϕtf(i))−f(i)|+‖Cϕtf−f‖Bα1 (U) → 0 as t→

0, as desired. This completes the proof. �

In the next theorem, we obtain the infinitesimal generator of the strongly

continuous composition semigroup given in equation (4.7).

Theorem 4.3.4

The infinitesimal generator Γ of (Cϕt)t≥0 on Bα0 (U) is given by Γf(z)=f ′(z)

with the domain dom(Γ) = {f ∈ Bα0 (U) : f ′(z) ∈ Bα0 (U)}.

Proof. Using the definition of the infinitesimal generator Γ, for f ∈
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Bα0 (U), we have;

Γf(z) = lim
t→0+

f(z + t)− f(z)

t

=
∂

∂t
f(z + t)

∣∣∣∣
t=0

= f ′(z).

This means that dom(Γ) ⊂ {f ∈ Bα0 (U) : f ′(z) ∈ Bα0 (U)}.

It remains to prove the reverse inclusion. Let f ∈ Bα0 (U) be such that

f ′(z) ∈ Bα0 (U).

Then for z ∈ U, we have;

Cϕtf(z)− f(z) =

∫ t

0

∂

∂s
f(z + s)ds

=

∫ t

0

f ′(z)ds.

Letting F (z) = f ′(z), we obtain

Cϕtf(z)− f(z) =

∫ t

0

F (z)ds.

This implies that F (z) = f ′(z) is a function of Bα0 (U). It remains to show

that the limit of F (z) exists in Bα0 (U). Since

Cϕtf(z)− f(z)

t
=

1

t

∫ t

0

F (z)ds,

we now take limits as t→ 0+ and invoke strong continuity of (Cϕs)s≥0 to

obtain

lim
t→0+

1

t

∫ t

0

‖CϕsFds− F‖ = 0.
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Hence dom(Γ) ⊇ {f ∈ Bα0 (U) : f ′(z) ∈ Bα0 (U)} which completes the

proof. �

4.4 Rotation group

The induced composition semigroups for rotation group are defined on the

analytic spaces of the unit disk. We shall therefore generate composition

semigroups induced by rotation group on the generalized little Bloch space

of the disc. The results obtained can then be mapped onto the upper half

plane by use of Cayley transform. In this case, the self analytic maps of

D are of the form ϕt(z) = eiktz. We consider the composition semigroup

induced by the rotation group on Bα0 (D) given by

Cϕtf(z) = (f ◦ ϕt) (z)

= f
(
eitz
)
, (4.11)

for all f ∈ Bα0 (D).

Proposition 4.4.1

(Cϕt)t∈R defines a group on Bα0 (D).

Proof. We need to show that both (Cϕt)t≥0 and
(
Cϕ−t

)
t≥0 are semi-
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groups on Bα0 (D). Clearly, Cϕ0 = I and for every f ∈ Bα0 (D), we have

Cϕt ◦ Cϕsf(z) = Cϕt (Cϕsf(z))

= Cϕtf(ϕs(z)

= f (ϕt(ϕs(z)))

= f
(
ϕt(e

isz)
)

= f
(
eiteisz

)
= f

(
ei(t+s)z

)
= Cϕ(t+s)

f(z)

as desired. Therefore (Cϕt)t≥0 is a semigroup on Bα0 (D). Equivalently,(
Cϕ−t

)
t≥0 is also a semigroup on Bα0 (D). Therefore, (Cϕt)t∈R is a group

on Bα0 (D). �

Moreover, this group is an isometry, as we prove in the next proposition.

Proposition 4.4.2

The operator Cϕt given by (4.11) is an isometry on Bα0 (D).

Proof. We shall prove that for each t ∈ R, the group (Cϕt)t∈R is an

isometry on Bα0 (D). It suffices to prove that

‖Cϕtf‖Bα(D) = ‖f‖Bα(D).
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It follows from the definition that

‖Cϕtf‖Bα(D) = |Cϕtf(0)|+ sup
z∈D

(
1− |z|2

)α |(Cϕtf)′(z)|

= |(eit)f(0)|+ sup
z∈D

(
1− |z|2

)α |eitf ′(eitz)|

= |f(0)|+ sup
z∈D

(
1− |z|2

)α |f ′(eitz)|.

Now, let ω = eitz so that z = e−itω. Then;

‖Cϕtf‖Bα(D) = |f(0)|+ sup
ω∈D

(
1− |e−itω|2

)α |f ′(ω)|)

= |f(0)|+ sup
ω∈D

(1− |ω|2)α|f ′(ω)|

= ‖f‖Bα(D).

�

Theorem 4.4.3

The operator Cϕt given by (4.11) is strongly continuous on Bα0 (D).

Proof. Since polynomials are dense in Bα0 (D), it suffices to show that

(Cϕt)t∈R is strongly continuous on Bα0 (D) that is, for a polynomial (zn)n≥0

where z ∈ D we obtain

lim
t→0+
‖Cϕtzn − zn‖Bα(D) = 0.

Clearly,

lim
t→0+
‖Cϕtzn−zn‖Bα(D) = lim

t→0+
|Cϕtf(0)−f(0)|+

(
sup
z∈D

(1− |z|2)α|(Cϕtzn − zn)′|)
)
.

But

Cϕtz
n − zn = (eint − 1)zn.
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So its derivative is given by

(Cϕtz
n − zn)′ = n(eint − 1)zn−1,

implying that

lim
t→0+
‖Cϕtzn−zn‖Bα(D) = lim

t→0+
|eitf(0)−f(0)|+

(
sup
z∈D

(1− |z|2)α|nzn−1||(eint − 1)|)
)
.

Hence,

lim
t→0+
‖Cϕtzn − zn‖Bα(D) = 0 as desired .

�

Proposition 4.4.4

The infinitesimal generator Γ of (Cϕt) is given by Γf(z) = izf ′(z) with

the domain dom(Γ) = {f ∈ Bα0 (D) : zf ′(z) ∈ Bα0 (D)}.

Proof. We obtain the infinitesimal generator as follows

Γf(z) = lim
t→0+

Cϕt(z)− f(z)

t

= lim
t→0+

f (ϕt(z))− f(z)

t

= lim
t→0+

f (eitz))− f(z)

t

=
∂

∂t
f(eitz)

∣∣∣∣
t=0

= ieitzf ′(eitz)
∣∣
t=0

= izf ′(z).

It therefore follows that dom(Γ) ⊆ {f ∈ Bα0 (D)} : zf ′(z) ∈ Bα0 (D)}. On
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the other hand, let f ∈ Bα0 (D)} be such that zf ′(z) ∈ Bα0 (D)}, then for

z ∈ D we have by the Fundamental theorem of Calculus,

Cϕtf(z)− f(z) =

∫ t

0

∂

∂s
(Cϕsf(z))ds

=

∫ t

0

∂

∂s
f(eisz))ds

=

∫ t

0

ieiszf ′(eisz)ds

=

∫ t

0

CϕsF (z)ds,

where F (z) = izf ′(z) is a function in Bα0 (D). Thus limt→0+
Cϕtf−f

t
=

limt→0+
1
t

∫ t
0
CϕsFds and strong continuity of (Cϕs)s≥0 implies that ‖1

t

∫ t
0
CϕsFds−

F‖ ≤ 1
t

∫ t
0
‖CϕsF −F‖ds→ 0+ as t→ 0+. Thus dom(Γ) ⊇ {f ∈ Bα0 (D) :

zf ′(z) ∈ Bα0 (D)}, as desired. �
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Chapter 5

Summary and

Recommendations

5.1 Summary

In this work, we investigated the properties of the generalized Bloch spaces

of the upper half plane Bα(U), as Banach spaces as well as those of com-

position semigroups. We employed the approach used by K. Zhu to study

the Banach space properties of Bα(U). We established generalized Bloch

space of the upper half plane Bα(U) and its closed subspace Bα0 (U) to be

Banach spaces, see Theorem 3.0.4 and 3.0.6. Using Cayley transform, we

obtained equivalent representations of functions on the generalized Bloch

space of the unit disc Bα(D) to their counterparts on the upper half plane

U, see Proposition 3.0.8

Following Theorem 2.0.1, we obtained composition semigroups generated

by scaling, translation and rotation groups on the generalized little Bloch

space of the upper half plane, Bα0 (U) as given in equations (4.2), (4.7)

and (4.11). The theory of linear operators on Banach spaces enabled us
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to investigate the semigroup properties of the composition semigroups

defined on Bα0 (U) as given in Propositions 4.4.2, 4.4.3 and 4.4.4. Den-

sity of polynomials in Bα0 (D) aided in establishing strong continuity of

the composition semigroups on Bα0 (U). This thesis therefore completes

a comprehensive analysis of the generalized Bloch spaces of the upper

half plane as Banach spaces as well as composition semigroups defined on

them.

5.2 Recommendations

From the results obtained in this study, we recommend the following for

further research:

1. We considered composition semigroups on Bα0 (U) and determined

their semigroup properties. It would be interesting to consider an

investigation of spectral properties of these composition semigroups

on the generalized little Bloch space of the upper half plane Bα0 (U).

2. In this work, we examined the concept of strong continuity of com-

position semigroups on Bα0 (U), we suggest further research on strong

continuity of the weighted composition operators.

3. We considered composition semigroups on the generalized little Bloch

space of the upper half plane, we strongly advocate for an exten-

sion of the same to other spaces of analytic functions like Besov

spaces, where the study of composition semigroups has never been

considered.
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