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Abstract: A 2-noncrossing tree is a connected graph without cycles that can be drawn in the
plane with its vertices on the boundary of circle such that the edges are straight line segments that
do not cross and all the vertices are coloured black and white with no ascent (i, j), where i and j

are black vertices, in a path from the root. In this paper, we use generating functions to prove a
formula that counts 2-noncrossing trees with a black root to take into account the number of white
vertices of indegree greater than zero and black vertices. Here, the edges of the 2-noncrossing
trees are oriented from a vertex of lower label towards a vertex of higher label. The formula is
a refinement of the formula for the number of 2-noncrossing trees that was obtained by Yan and
Liu and later on generalized by Pang and Lv. As a consequence of the refinement, we find an
equivalent refinement for 2-noncrossing trees with a white root, among other results.
Keywords: 2-noncrossing trees, Local orientation, Sources.
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1 Introduction and preliminaries

A noncrossing tree is a connected acyclic graph that can be drawn in the plane with its vertices
on the boundary of a circle such that the edges are straight line segments that do not cross. The
number of these trees on n vertices is known to be given by

1

n− 1

(
3n− 3

n− 2

)
, (1)

see [1, 3, 4] for details.
If the vertices of the noncrossing trees are coloured black and white such that there is no

ascent (i, j), where i and j are black vertices, in a path from the root, then the noncrossing tree
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is called 2-noncrossing tree, [9]. If the root is coloured black, then the number of such trees on n

vertices is given by

1

5n− 4

(
5n− 4

n− 1

)
. (2)

Formula (2) also counts the number of 5-ary trees with n − 1 internal vertices. The number of
2-noncrossing trees on n vertices with a white root is given by

2

5n− 3

(
5n− 3

n− 1

)
.

These trees were generalized by Pang and Lv in [7] to k-noncrossing trees. A k-noncrossing tree
is a noncrossing tree where each node receives a label in {1, 2, . . . , k} such that the sum of labels
along an ascent does not exceed k + 1. The aforementioned authors showed that these trees with
root labelled by k on n vertices are counted by (2k + 1)-Catalan number,

1

2k(n− 1) + 1

(
(2k + 1)(n− 1)

n− 1

)
.

They also showed that the formula counts (2k+1)-ary trees. A refinement of this formula to take
into account the number of nodes of each label was obtained by Okoth and Wagner in [6].

1

1

4

4

2
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Figure 1. A 2-noncrossing tree rooted at a black vertex 1

In this paper, we consider 2-noncrossing trees with a local orientation. Here, all edges are
oriented from a vertex of lower label towards a vertex of higher label, [2]. A source (respectively,
sink) is a vertex with indegree (respectively, outdegree) zero. A vertex which is not a source will
be referred to as non-source vertex. In Figure 1, we have a 2-noncrossing tree on 6 vertices rooted
at a black vertex 1, and equipped with a local orientation. Vertex 3 is a white source while vertex
2 is a non-source white vertex. The number of noncrossing trees, having a local orientation, with
a given number of sources and sinks was obtained by the present author and his co-author in [5].
These trees are called locally oriented noncrossing trees or lnc-trees therein. The main aim of
this paper is to prove the following theorem:

Theorem 1.1 (Main theorem). The number of 2-noncrossing trees on n vertices with a black
root such that there are k black vertices and ` non-source white vertices is given by

1

n− 1

(
2n− 2

k − 1

)(
2n− 2

`− 1

)(
n− 1

k + `− 1

)
. (3)
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In Section 2, we prove the theorem by means of generating functions. In the proof, we make
use of butterfly decomposition of noncrossing trees introduced by Flajolet and Noy in [3]. By a
butterfly, we mean an ordered pair of noncrossing trees that have a common root. Let T (z) and
B(z) be the generating function for noncrossing trees and butterflies respectively then

T (z) =
z

1−B
and B(z) =

T 2

z
.

Quite a number of corollaries of the main theorem follow in Section 3 and an equivalent result of
Theorem 1.1, for 2-noncrossing trees with a white root, is presented in Section 4.

2 Proof of the main theorem

We consider decomposition of 2-noncrossing trees. There are two cases to consider:
Case I: The root of the 2-noncrossing tree is black.

Figure 2. Decomposition of a 2-noncrossing tree with a black root.

Here, all the children of the root are white since there are no black-black ascents. The
functional equation satisfied by these trees is

T =
z

1− S2

z

,

where T (z) and S(z) are the generating functions for the number of 2-noncrossing trees with
black and white roots, respectively.

Case II: Root of the 2-noncrossing tree is white. In this case, children of the root are either black
or white.

Figure 3. Decomposition of a 2-noncrossing tree with a white root.

For the trees with white children, a butterfly is represented as:

w
A B

Here, a butterfly is equivalent to two 2-noncrossing trees with white roots. Thus it is represented
as S2/z.
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For the trees with black children, a butterfly is represented as:

w
A B

labels > w labels < w

Part A is a 2-noncrossing tree with a black root. Part B is different: since the root of B
has the largest label now, the ascent rule does not apply to edges between the root and its
children. Therefore, B can be considered as a 2-noncrossing tree with a white root which has
been recoloured. So the butterflies are represented by ST/z and we get the functional equation
satisfied by these trees as

S =
z

1−
(
S2

z
+ ST

z

) .
Now, let u mark the number of white sources and v mark the number of black vertices (of any

kind).
We will need to distinguish two types of 2-noncrossing trees with a white root now:

• Type 1: root has lowest label (label 1)

• Type 2: root has highest label (label n)

Let the generating functions of trees of Types 1 and 2 be S1 and S2, respectively. The root is
not counted as a source. In the decomposition of trees with a black root we get:

Type 1

Type 2
Type 1

Type 2

Type 1

Type 2

We have one additional black vertex (the root) and every white source must be a source in one
of the smaller trees in the decomposition. So we get

T =
zv

1− S1S2

z

.

We now consider trees with a white root. For those trees of Type 1, the decomposition is:

Type 1

Type 2
Type 1

Type 2

Type 1

Type 2
(root colour changed)

Black root

Figure 4. Decomposition of a 2-noncrossing tree with a white root of Type 1.
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In this decomposition, there are two types of butterflies which correspond to S1S2

z
and S2T

z
,

respectively. Each black vertex or white source must already occur in one of the smaller trees of
the decomposition. So we get,

S1 =
z

1−
(
S1S2

z
+ S2T

z

) .
For these trees of Type 2, the root has highest label. So this only changes the orientation of

the edges from the root. Thus, if w is a white root of a butterfly, then w becomes a source if B
consists only of the root. So the equation changes to

S2 =
z

1−
(
uS1 +

S1(S2−z)
z

+ S2T
z

) .
Here, uS1 means that B is only one node and S1(S2 − z)

z
implies that B has more than one

node. So we have a system

T =
zv

1− S1S2

z

, (4)

S1 =
z

1−
(
S1S2

z
+ S2T

z

) , (5)

S2 =
z

1−
(
uS1 +

S1(S2−z)
z

+ S2T
z

) , (6)

which we solve.
First we substitute T = vz(1 + Y ). Then Equation (4) gives

1− S1S2

z
=

vz

T
=

1

1 + Y

and thus

S1S2 =
zY

1 + Y
(7)

or

S2 =
zY

S1(1 + Y )
. (8)

We substitute Equations (7) and (8) in Equation (5) to give

S1 =
z

1−
(

Y
1+Y

+ Y T
S1(1+Y )

) =
z

1−
(

Y
1+Y

+ vzY
S1

)
=

z
1

1+Y
− vzY

S1

=
zS1(1 + Y )

S1 − vzY (1 + Y )
.

Since S1 6= 0, it follows that

S1 − vzY (1 + Y ) = z(1 + Y )

and finally

S1 = vzY (1 + Y ) + z(1 + Y ) = z(1 + Y )(1 + vY ). (9)
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Since S2 =
zY

S1(1 + Y )
(by Equation (8)), we have

S2 =
Y

(1 + Y )2(1 + vY )
. (10)

Plugging Equations (9) and (10) and T = zv(1 + Y ) into Equation (6), we obtain
Y

(1 + Y )2(1 + vY )
=

z

1− uz(1 + Y )(1 + vY )− Y
1+Y

+ z(1 + Y )(1 + vY )− vY
(1+Y )(1+vY )

=
z(

1− Y
1+Y
− vY

(1+Y )(1+vY )

)
− (u− 1)z(1 + Y )(1 + vY )

=
z

1
(1+Y )(1+vY )

− (u− 1)z(1 + Y )(1 + vY )
.

So,
Y

(1 + Y )3(1 + vY )2
− (u− 1)zY

1 + Y
= z.

Thus
Y

(1 + Y )3(1 + vY )2
= z

1 + uY

1 + Y

or

Y = z(1 + Y )2(1 + vY )2(1 + uY ).

This is the right format for applying Lagrange Inversion Formula, ( See [8, Theorem 5.4.2] for
details). We extract the coefficient of zn in the generating function T (z) as follows:

[zn]T = v[zn−1]Y

= v · 1

n− 1
[yn−2]((1 + y)2(1 + vy)2(1 + uy))n−1

= v · 1

n− 1
[yn−2](1 + y)2n−2(1 + vy)2n−2(1 + uy)n−1

= v · 1

n− 1
[yn−2]

∑
j≥0

∑
i≥0

(
2n− 2

j

)(
n− 1

i

)
vjyjuiyi(1 + y)2n−2

=
1

n− 1

∑
j≥0

∑
i≥0

[yn−j−i−2]

(
2n− 2

j

)(
n− 1

i

)
vj+1ui(1 + y)2n−2

=
1

n− 1

∑
j≥0

∑
i≥0

(
2n− 2

j

)(
n− 1

i

)
vj+1ui

(
2n− 2

n− j − i− 2

)
=

1

n− 1

∑
k≥1

∑
i≥0

(
2n− 2

k − 1

)(
n− 1

i

)
vkui

(
2n− 2

n− k − i− 1

)
Thus the number of 2-noncrossing trees with a black root, n vertices in total, k of which are black
and i white sources is given by

1

n− 1

(
2n− 2

k − 1

)(
n− 1

i

)(
2n− 2

n− k − i− 1

)
.

Setting n− k − i = `, we obtain the required result.
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3 Consequences of the main theorem

In this section, we obtain several corollaries of the main theorem. If we sum over all ` in Equation
(3), we obtain

1

n− 1

(
2n− 2

k − 1

)(
3n− 3

n− k − 1

)
, (11)

as the number of 2-noncrossing trees on n vertices with with a black root and exactly k

black vertices. Since formula (3) is symmetric in k and `, Equation (11) gives the number of
2-noncrossing trees on n vertices with a black root and exactly k non-source white vertices.

Remark 1. We remark that setting k = 1 in Equation (11), we recover the formula (1) for the
number of noncrossing trees on n vertices. Since the root is always a source, then setting k = 1

and ` = n− i, we rediscover the formula

1

n− 1

(
2n− 2

n− i− 1

)(
n− 1

i− 1

)
for the number of noncrossing trees on n vertices with i sources. This formula was first obtained
by Okoth and Wagner in [5].

The following corollary follows by seting ` = n − k − i in Equation (3) and summing over
all k:

Corollary 3.0.1. There are

1

n− 1

(
n− 1

i

)(
4n− 4

n− i− 2

)
(12)

2-noncrossing trees on n vertices with i white sources such that vertex 1, coloured black, is
identified as the root.

Corollary 3.0.2. The mean and variance of the number of white sources in 2-noncrossing trees
on n vertices with a black root are equal to (n − 2)/5 and (16n2 − 44n + 24)/(125n − 150)

respectively.

Proof. From Equations (2) and (12), the probability that a 2-noncrossing tree with a black root
on n vertices has i white sources is given by(

n−1
i

)(
4n−4
n−i−2

)(
5n−5
n−2

) . (13)

Now multiplying Equation (13) by i and summing over all i, we obtain the mean. To obtain
variance, we multiply Equation (13) by i2 and sum over all i. We then subtract square of the
mean.

Corollary 3.0.3. The number of 2-noncrossing trees on n vertices with a black root such that
there are a total of r black vertices and non-source white vertices is given by

1

n− 1

(
n− 1

r − 1

)(
4n− 4

r − 2

)
. (14)
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Proof. The result follows by setting k = r − ` and summing over all ` in Equation (3), or setting
i = n− r in Equation (12).

Setting r = n, we find a generalized Catalan number,

1

n− 1

(
4n− 4

n− 2

)
.

This formula counts the number of 2-noncrossing trees on n vertices in which a vertex is either
a non-source white vertex or a black vertex. In the next corollary, we find a structure counted by
the famous Catalan numbers.

Corollary 3.0.4. The number of 2-noncrossing trees on n vertices with a black root such that
there are either n−1 non-source white vertices or, n−1 black vertices and one non-source white
vertex is given by the (n− 1)-th Catalan number,

1

n− 1

(
2n− 2

n− 2

)
.

Proof. The formula follows by setting k = 1 and ` = n− 1, or ` = 1 and k = n− 1 in Equation
(3).

Corollary 3.0.5. The mean and variance of the number of black vertices or the number of
non-source white vertices are equal to (2n+1)/5 and (24n2−66n+36)/(125n−150), respectively.
The covariance of the two equals (−16n2 + 44n− 24)/(125n− 150).

Proof. From Theorem 1.1 and Equation (2), the probability of a 2-noncrossing tree to have k

black vertices and ` non-source white vertices is given by(
2n−2
k−1

)(
2n−2
`−1

)(
n−1

k+`−1

)(
5n−5
n−2

) . (15)

Now, multiplying Equation (15) by ` and summing over all ` and k, we obtain the mean. To obtain
the variance, we multiply the said equation by `2 and sum over all ` and k, and then subtract the
square of the mean. For covariance, we multiply Equation (15) by k` and sum over all k and `.
We then subtract the square of the mean.

Corollary 3.0.6. The mean and variance of the number of non-source white vertices in
2-noncrossing trees with a black root and n vertices, k of which are black, are given by
(2n− 2k + 1)/3, and (4n2 − 2k2 − 8n− 2nk + 2k + 4)/(27n− 36) respectively.

Proof. From Theorem 1.1 and Equation (11), the probability of a 2-noncrossing tree with a black
root on n vertices, k of which are black to have ` non-source white vertices is given by(

2n−2
`−1

)(
n−1

k+`−1

)(
3n−3
n−k−1

) . (16)

Now, multiplying Equation (16) by ` and summing over all `, we obtain the mean. To obtain the
variance, we multiply equation (16) by `2 and sum over all `. We then subtract the square of the
mean.
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4 Enumeration of trees with a white root

The following theorem gives the number of 2-noncrossing trees with a white root such that the
number of non-source white vertices and black vertices are simultaneously given.

Theorem 4.1. The number of 2-noncrossing trees on n vertices with a white root such that there
are k black vertices and ` non-source white vertices is given by

1

2n− 1

(
2n− 1

k

)(
2n− 1

`

)(
n− 2

k + `− 1

)
. (17)

Proof. 2-noncrossing trees with a white root (here the root has the lowest possible label) has the
generating function S1, given in the proof of the main theorem. From Equation (9), we have that
S1 = z(1+Y )(1+vY ) where Y satisfies the functional equation Y = z(1+Y )2(1+vY )2(1+uY ).
As mentioned in Section 2, u marks white sources and v marks black vertices. We have,

[zn]S1 = [zn−1](1 + vY + Y + vY 2)

= v[zn−1]Y + [zn−1]Y + v[zn−1]Y 2. (18)

By Lagrange inversion we have,

v[zn−1]Y =
1

n− 1

∑
k≥1

∑
i≥0

(
2n− 2

k − 1

)(
n− 1

i

)
vkui

(
2n− 2

n− k − i− 1

)
. (19)

We also have

[zn−1]Y =
1

n− 1

∑
k≥0

∑
i≥0

(
2n− 2

k

)(
n− 1

i

)
vkui

(
2n− 2

n− k − i− 2

)
(20)

and

v[zn−1]Y 2 =
2

n− 1

∑
k≥1

∑
i≥0

(
2n− 2

k − 1

)(
n− 1

i

)
vkui

(
2n− 2

n− k − i− 2

)
. (21)

Now, from Equations (18), (19), (20) and (21), we have that the number of 2-noncrossing trees
with a white root and n vertices, k of which are black and i of which are white sources, is given
by

[znvkui]S1 =
1

n− 1

(
2n− 2

k − 1

)(
n− 1

i

)(
2n− 2

n− k − i− 1

)
+

1

n− 1

(
2n− 2

k

)(
n− 1

i

)(
2n− 2

n− k − i− 2

)
+

2

n− 1

(
2n− 2

k − 1

)(
n− 1

i

)(
2n− 2

n− k − i− 2

)
.

After simple algebraic manipulations we obtain

[znvkui]S1 =
1

2n− 1

(
2n− 1

k

)(
n− 2

i

)(
2n− 1

n− k − i− 1

)
.

Now, upon setting n− k − i− 1 = ` we obtain the desired result.

Remark 2. Following a similar trend as in Section 2, we can obtain equivalent results such as
mean number of black vertices, non-source white vertices, white sources among many interesting
corollaries, for 2-noncrossing trees with white roots.
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