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Introduction The quantum Rabi model describes the dynamics of a quantized electromagnetic field mode
interacting with a two-level atom generated by Hamiltonian [1-5]

1
Hy = She (ala + aat) + hwos. + hg(a+a) (s +s-) (la)

where w , @ , @' are the quantized field mode angular frequency, annihilation and creation operators, while
wo , Sz , St , s— are the atomic state transition angular frequency and operators. We have used o, = s_ + s+
and expressed the free field mode Hamiltonian in the symmetrized normal and anti-normal order form
1hw(a'a + aa') for reasons which will become clear below.

Collecting the normal and anti-normal order terms in equation (la), we express the Rabi Hamiltonian in
the symmetrized form

HR:%(H+F) (1b)

where we have identified the normal order rotating component as the Jaynes-Cummings Hamiltonian H
obtained as
H = h( wala +wos, +2g(as, +as_)) (1e)

and the anti-normal order anti-rotating component as the anti-Jaynes-Cummings Hamiltonian H obtained
as
H = h( waa' + wps, +2g(as_ +alsy) ) (1d)

We observe that the operator ordering principle which distinguishes the rotating (Jaynes-Cummings) and
anti-rotating (anti-Jaynes-Cummings) components H , H is not arbitrary, but has physical foundation.
Noting that an electromagnetic field mode is composed of positive and negative frequency components [6],
we provide the physical interpretation that the Jaynes-Cummings interaction represents the coupling of the
atomic spin to the rotating positive frequency component of the field mode, such that the algebraic operations
which generate the resulting red-sideband state transitions are achieved through normal-operator-ordering,
while the anti-Jaynes-Cummings interaction represents the coupling of the atomic spin to the anti-rotating
negative frequency component of the field mode, such that the algebraic operations which generate the
resulting blue-sideband state transitions are achieved through anti-normal-operator-ordering. We note that
blue-sideband effects arising from interactions involving negative frequency radiation have been observed in
recent experiments [ 7, 8 |.

In [2], the Jaynes-Cummings and ant-Jaynes-Cummings Hamiltonians H , H have been characterized as
the chiral and anti-chiral components, respectively, of the Rabi Hamiltonian. In this respect, we generalize
the models of interaction between a single quantized field mode and a single two-level atom to include the
asymmetric (anisotropic) Rabi models [3 , 4] by introducing a rotation-symmetry or chirality parameter r
taking values —1 < r <1 to express the Rabi Hamiltonian in equation (1b) in general symmetrization form

1 —

HRZE((l—FT)H—F(l—T)H) ; -1<r<1 (le)
such that r = 1,0, —1 specifies that the Rabi Hamiltonian takes respectively the fully rotating (Jaynes-
Cummings) , symmetric (isotropic) or fully anti-rotating (anti-Jaynes-Cummings) form, while for all other
values 7 # 1,0, —1 the Rabi Hamiltonian is asymmetric (anisotropic).
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A major challenge, which has remained an outstanding problem in the Rabi model over the years, is
that while the Jaynes-Cummings component has a conserved excitation number operator and is invariant
under the corresponding U (1)-symmetry operation [1 , 3], a conserved excitation number and corresponding
U(1)-symmetry operators for the anti-Jaynes-Cummings component have never been determined, leading
to the general belief that the anti-Jaynes-Cummings interaction violates energy conservation principle. We
address the long outstanding problem of excitation number and U(1)-symmetry operators of the anti-Jaynes-
Cummings Hamiltonian in this letter.

Excitation number operators It follows from the physical interpretation given above that an excitation
number operator in the Jaynes-Cummings interaction should be defined in normal-order form, while an
excitation number operator in the anti-Jaynes-Cummings interaction should be defined in anti-normal-order
form. Taking this operator ordering principle into account, we add and subtract an atomic spin normal order
term fiwsys_ in equation (1c) and anti-normal order term fiws_s4 in equation (1d), then reorganize, noting
S48 = % +5, , S_54 = % — S,, to obtain the Jaynes-Cummings Hamiltonian in the form

H=hw(a'a+sys )+ 2hg(as, +as, +a's_ ) — %hw ; a= % (2a)

and the anti-Jaynes-Cummings Hamiltonian in the form
— Aat _ R A 1 . wotw
H =hw(aa" + s_sy) + 2hg(as, + as— +a'sy ) — Ehw ; a=—— (2b)
g
where we factored out 2¢g and introduced respective dimensionless frequency-detuning parameters o , @
defined as indicated.
In the Jaynes-Cummings Hamiltonian H, we identify the normally-ordered Jaynes-Cummings excitation
number operator N, while in the anti-Jaynes-Cummings Hamiltonian H, we identify the anti-normally ordered

anti-Jaynes-Cummings excitation number operator N, respectively defined by

N=dala+s,s_ ; N=aa' +s_s, (2¢)
which we introduce in equations (2a) , (2b) as appropriate to express the Jaynes-Cummings and anti-Jaynes-
Cummings Hamiltonians in the form

. 1 — = 1
H = hwN +2hg( as, +as, +a's_ ) — ghw 5 H=ThwN +2hg(@s. +as— + als, ) — Sl (2d)

We observe that the Jaynes-Cummings excitation number operator N =ala+ s4+5_ is a standard conserved
operator in the dynamics generated by the rotating component of the Rabi Hamiltonian, while the anti-Jaynes-

Cummings excitation number operator N = aa' + s_s., which we establish here as a conserved operator in
the dynamics generated by the anti-rotating component of the Rabi Hamiltonian, is a new operator discovered
and presented for the first time in the present letter. The discovery of the anti-Jaynes-Cummings excitation
number operator, proof of its conservation and specification of the corresponding U(1) and parity symmetry
operators in the dynamics generated by the anti-Jaynes-Cummings Hamiltonian are the main results of this
letter.

Proof of conservation : state transition operators Using standard atomic spin and field mode operator
algebraic relations

1 1
[s4,5-] =28, ; [sz,8-]=—s_3 [2,84]=54+; sys_= 3 +5,; S_sp= 3~ 5
[s48—, syl =81 ; [s—8+, S4]=—54; [$45-, s_]=—s_; [s_s4, s_|]=s_
aat =a'a+1 ; [a'a,al=-a ; [afa,af]=al (3a)

we easily prove that the excitation number operators N , N in equation (2¢) commute with the respective
Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians H , H in equation (2d) according to

[N,H]=0 : [N,H]=0 (3b)

which proves the standard dynamical property that the excitation number operator N = afa + SyS_ is
conserved in the dynamics generated by the Jaynes-Cummings Hamiltonian H and the new dynamical



property that the excitation number operator N = aa' + s_s, is conserved in the dynamics generated by
the anti-Jaynes-Cummings Hamiltonian H.
To make the proof even more transparent, we introduce two new conserved dynamical operators, namely,

Jaynes-Cummings state transition operator A and anti-Jaynes-Cummings state transition operator A, re-
spectively defined by

A=as, + asy +als_ : A=as, +as_ +a's, (3¢)

which on squaring and applying standard atomic spin and field mode operator algebraic relations

2 ;S :sizo; S+S_+s_sy=1; s,51+545,=0; s,5_+s_s,=0; ddede—i—l(?)d)

provide the respective Jaynes-Cummings and anti-Jaynes-Cummings excitation number operators N, N
defined in equation (2¢) in the form

1 2 1 =
2 N +

R N 1 S
Azszd—Fers,—l—Zoz = N—|—Zoz2 ; A :d&T—l—s,er—FZEQ—l a’ -1 (3e)

1
4
Substituting A , A from equation (3¢) and N = A% — 102, N=4 - 3@ + 1 from equation (3¢) into

equation (2d), we express the Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians in terms of the
respective state transition operators in the form

n - — 22 S
H = h( wA? +2gA) — ihwoﬁ— %hw ; H="h(wA —|—2gA)—iﬁw62—|—%ﬁw (31)

Using equations (3e) and (3f) easily confirms the commutation relations in equation (3b). In addition, it is
easy to establish that the Jaynes-Cummings excitation number operator is not conserved in the dynamics
generated by the anti-Jaynes-Cummings Hamiltonian H and likewise, the anti-Jaynes-Cummings excita-
tion number operator is not conserved in the dynamics generated by the Jaynes-Cummings Hamiltonian H
according to the commutation relations

[N,H]#0 ; [N, H]#0 (39)

Similarly, the state transition operators A , A are conserved in the dynamics generated by the respective
Hamiltonians H , H, but not in the dynamics generated by the other component Hamiltonian according to
the commutation relations

(A, H]=0 ; [A,H]#£0 ; [A,H]=0 ; [A,H]#0 (3h)

We have thus proved the desired conservation of the anti-Jaynes-Cummings excitation number operator
and the state transition operators. We have established in another paper [9] that the Jaynes-Cummings
state transition operator A generates red-sideband transitions between polariton qubit states arising in the
rotating Jaynes-Cummings interaction 2hg(afs_ + as, ), while the anti-Jaynes-Cummings state transition

operator A generates blue-sideband transitions between anti-polariton qubit states arising in the anti-rotating
anti-Jaynes-Cummings interaction 2hg(asy + a's;). Eigenvectors and eigenvalues of the respective Jaynes-
Cummings and anti-Jaynes-Cummings Hamiltonians H , H in equation (3f), interpreted as polariton and
anti-polariton qubit Hamiltonians, have been determined easily in [9]. The coupling of the atomic spin to the
anti-rotating negative frequency component of the field mode leading to blue-sideband transitions accounts
for the excitation number and energy conservation in the anti-Jaynes-Cummings interaction.

U(1)-symmetry operators The Jaynes-Cummings excitation number operator N =afa+ 54+5_ generates
a free time evolution operator Up(t) obtained as

Up(t) = e N = Ul(t) =Nt (4a)
which provides field mode and atomic spin operator time evolution in the form

Ul®)als(t) = e “ta;  Ul@®)alUy(t) = etal ; Ul(t)s_Up(t) = e ™'s_ ; Ul(t)s,Up(t) = s, (4b)



The operator Up(¢) thus generates symmetry operations on the Jaynes-Cummings and anti-Jaynes-Cummings
Hamiltonians in equation (2d) in the form

— -~ . . 1
UlHUy(t) =H Ul (tYHUy(t) = hwN + 2hg( s, + e 2*tas_ 4+ e*tals, ) — 3w (4c)

which shows that the Jaynes-Cummings excitation number operator generated free time evolution operator

Uo(t) = e~ Wt i a U (1)-symmetry operator of the Jaynes-Cummings Hamiltonian H, but not a symmetry
operator of the anti-Jaynes-Cummings Hamiltonian H.

On the other hand, the anti-Jaynes-Cummings excitation number operator N = aa' 4+ s_s, generates a
free time evolution operator Ug(t) obtained as

To(t) =e N = Tl) =Nt (4d)

which provides field mode and atomic spin operator time evolution in the form

Tl0alo(t) = et s Th()alTolt) = etal ; Tht)s_To(t) = ets_ ; T (t)syTolt) = e s,
(4e)
The operator Uy (t) thus generates symmetry operations on the Jaynes-Cummings and anti-Jaynes-Cummings

Hamiltonians H , H in equation (2d) in the form
o _ _ _ . , , 1
U ATt =H U () HTo(t) = hwlN + 2hig( as, + e~ 2as, + e“tals_ ) — 5/ (4f)

which shows that the anti-Jaynes-Cummings excitation number operator generated free time evolution op-

erator Ug(t) = e"™*V is a U(1)-symmetry operator of the anti-Jaynes-Cummings Hamiltonian H, but not a
symmetry operator of the Jaynes-Cummings Hamiltonian H.

Parity-symmetry operator It follows from equations (4c¢) and (4f) that we can determine a common
symmetry operator of both Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians H , H by imposing
the free evolution symmetry condition

e 2wt — Wt — = 2wt=2nmt ; wt=nm ; n=1273,.. (5a)

where n = 0 defines the identity operator. Substituting wt = n7 into equations (4a) , (4d), we obtain the
common Jaynes-Cummings and anti-Jaynes-Cummings symmetry operator I, (7) in the form

I, (1) = Up(nw) = e~V = Up(nm) = e=inmN ;o n=1,2,3, .. (5b)

which we express in the form

[ (m) = (7™ )" = (e7™ )" = ()" (5¢)
from which we identify the standard Jaynes-Cummins and anti-Jaynes-Cummings parity-symmetry operator
II defined here by A

ﬁ — e*iﬂ'N — e*iﬂ'N (5d>

Substituting N = afa + s;s_ , N = aal + s_s; and using algebraic relations

aat =ata+1 ; S_Sy =845- — 28, ; N=N+ 2s_s4 (5¢)

we obtain

e—zﬂ'N _ e—zﬂ'Ne—217rs,s+ : 6—217rs,SJr =7 = e—zﬂ'N _ e—zﬂ'N (5f)

which establishes the common Jaynes-Cummings and anti-Jaynes-Cummings parity-symmetry operator re-
lation in equation (5d).

It is easy to establish that the Jaynes-Cummings and anti-Jaynes-Cummings parity-symmetry operator I
is a symmetry operator of the Rabi Hamiltonian Hr = %(H + H) in equation (1b) according to the symmetry
transformation operations

MtHII=H MMHI=H ; It Hg 11 = Hy (59)



Finally, we observe that an important dynamical feature emerges from the Jaynes-Cummings-anti-Jaynes-

A A s 22
Cummings common parity-symmetry relation in equation (5d). Substituting N = A2—%a2 ,N=A —%524—1
from equation (3e) into equation (5d) and reorganizing, we obtain the common parity-symmetry relation in
the form

e—imA? _ efiﬂ';\ pim(5a%—Fa’~1) (6a)
which on using v = =4-= @ = ““’;g““ from equations (2a) , (2b) to evaluate
1., 1 5, wow 9
@It =2 = 6b
10T e P (60)
takes the form »
—imA? _  —imA " in(8%-1 : 2 _ Wow
e = € e ( ) ) B - 492 (60)

which suggests that there exists a critical coupling constant g. at which the global phase factor eim(B=1)
equals unity obtained as

9  Wow 1

. 2
g=49gc ; e”"(Bc 1) =1: Bc = 4—92 =1 = Gec = 5\/(,00(,0 (6d)

giving common parity-symmetry relation at the critical coupling g. in the form

2

_ W —w — eimA, (6e)

wWow ~ i A2
: 62 . Hc e im A7
29.

g - gC N aC - aC - 493 I
We identify g. = %\/m to be exactly the critical coupling constant at which the Rabi interaction undergoes
quantum phase transition as determined in a recent study [5]. It follows that parity-symmetry breaking may
occur at a quantum phase transition. We have presented quantum phase transition phenomena in the Rabi
and the more general Dicke models in another paper.

Conclusion We have applied operator-ordering as the fundamental algebraic property to determine the
conserved excitation number and U(1)-symmetry operators for the rotating (Jaynes-Cummings) and anti-
rotating (anti-Jaynes-Cummings) components of the Rabi Hamiltonian. The specification of the anti-Jaynes-
Cummings excitation number operator means that the eigenvalue spectrum of the anti-Jaynes-Cummings
Hamiltonian can now be determined explicitly. The Rabi Hamiltonian is thus composed of two algebraically
complete Jaynes-Cummings and anti-Jaynes-Cummings components, each specified by its characteristic ex-
citation number, state transitions, U(1)-symmetry and red or blue sideband eigenvalue spectrum. We have
determined the parity-symmetry operator as the common symmetry operator for both Jaynes-Cummings
and anti-Jaynes-Cummings components, leading to the standard algebraic property that parity operator is a
symmetry operator of the Rabi Hamiltonian. The parity-symmetry may break at a critical coupling constant
g where quantum phase transition occurs.
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