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Introduction The quantum Rabi model describes the dynamics of a quantized electromagnetic field mode
interacting with a two-level atom generated by Hamiltonian [1-5]

HR =
1

2
h̄ω

(

â†â+ ââ†
)

+ h̄ω0sz + h̄g(â+ â†)(s+ + s−) (1a)

where ω , â , â† are the quantized field mode angular frequency, annihilation and creation operators, while
ω0 , sz , s+ , s− are the atomic state transition angular frequency and operators. We have used σx = s−+s+
and expressed the free field mode Hamiltonian in the symmetrized normal and anti-normal order form
1
2 h̄ω(â

†â+ ââ†) for reasons which will become clear below.
Collecting the normal and anti-normal order terms in equation (1a), we express the Rabi Hamiltonian in

the symmetrized form

HR =
1

2
( H +H ) (1b)

where we have identified the normal order rotating component as the Jaynes-Cummings Hamiltonian H

obtained as
H = h̄( ωâ†â+ ω0sz + 2g(âs+ + â†s−) ) (1c)

and the anti-normal order anti-rotating component as the anti-Jaynes-Cummings Hamiltonian H obtained
as

H = h̄( ωââ† + ω0sz + 2g(âs− + â†s+) ) (1d)

We observe that the operator ordering principle which distinguishes the rotating (Jaynes-Cummings) and
anti-rotating (anti-Jaynes-Cummings) components H , H is not arbitrary, but has physical foundation.
Noting that an electromagnetic field mode is composed of positive and negative frequency components [6],
we provide the physical interpretation that the Jaynes-Cummings interaction represents the coupling of the
atomic spin to the rotating positive frequency component of the field mode, such that the algebraic operations
which generate the resulting red-sideband state transitions are achieved through normal-operator-ordering,
while the anti-Jaynes-Cummings interaction represents the coupling of the atomic spin to the anti-rotating
negative frequency component of the field mode, such that the algebraic operations which generate the
resulting blue-sideband state transitions are achieved through anti-normal-operator-ordering. We note that
blue-sideband effects arising from interactions involving negative frequency radiation have been observed in
recent experiments [ 7 , 8 ].

In [2], the Jaynes-Cummings and ant-Jaynes-Cummings Hamiltonians H , H have been characterized as
the chiral and anti-chiral components, respectively, of the Rabi Hamiltonian. In this respect, we generalize
the models of interaction between a single quantized field mode and a single two-level atom to include the
asymmetric (anisotropic) Rabi models [3 , 4] by introducing a rotation-symmetry or chirality parameter r

taking values −1 ≤ r ≤ 1 to express the Rabi Hamiltonian in equation (1b) in general symmetrization form

HR =
1

2
( (1 + r)H + (1− r)H ) ; −1 ≤ r ≤ 1 (1e)

such that r = 1, 0,−1 specifies that the Rabi Hamiltonian takes respectively the fully rotating (Jaynes-
Cummings) , symmetric (isotropic) or fully anti-rotating (anti-Jaynes-Cummings) form, while for all other
values r 6= 1, 0,−1 the Rabi Hamiltonian is asymmetric (anisotropic).
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A major challenge, which has remained an outstanding problem in the Rabi model over the years, is
that while the Jaynes-Cummings component has a conserved excitation number operator and is invariant
under the corresponding U(1)-symmetry operation [1 , 3], a conserved excitation number and corresponding
U(1)-symmetry operators for the anti-Jaynes-Cummings component have never been determined, leading
to the general belief that the anti-Jaynes-Cummings interaction violates energy conservation principle. We
address the long outstanding problem of excitation number and U(1)-symmetry operators of the anti-Jaynes-
Cummings Hamiltonian in this letter.

Excitation number operators It follows from the physical interpretation given above that an excitation
number operator in the Jaynes-Cummings interaction should be defined in normal-order form, while an
excitation number operator in the anti-Jaynes-Cummings interaction should be defined in anti-normal-order
form. Taking this operator ordering principle into account, we add and subtract an atomic spin normal order
term h̄ωs+s− in equation (1c) and anti-normal order term h̄ωs−s+ in equation (1d), then reorganize, noting
s+s− = 1

2 + sz , s−s+ = 1
2 − sz, to obtain the Jaynes-Cummings Hamiltonian in the form

H = h̄ω(â†â+ s+s−) + 2h̄g(αsz + âs+ + â†s− )− 1

2
h̄ω ; α =

ω0 − ω

2g
(2a)

and the anti-Jaynes-Cummings Hamiltonian in the form

H = h̄ω(ââ† + s−s+) + 2h̄g(αsz + âs− + â†s+ )− 1

2
h̄ω ; α =

ω0 + ω

2g
(2b)

where we factored out 2g and introduced respective dimensionless frequency-detuning parameters α , α

defined as indicated.
In the Jaynes-Cummings Hamiltonian H , we identify the normally-ordered Jaynes-Cummings excitation

number operator N̂ , while in the anti-Jaynes-Cummings HamiltonianH , we identify the anti-normally ordered

anti-Jaynes-Cummings excitation number operator N̂ , respectively defined by

N̂ = â†â+ s+s− ; N̂ = ââ† + s−s+ (2c)

which we introduce in equations (2a) , (2b) as appropriate to express the Jaynes-Cummings and anti-Jaynes-
Cummings Hamiltonians in the form

H = h̄ωN̂ + 2h̄g( αsz + âs+ + â†s− )− 1

2
h̄ω ; H = h̄ωN̂ + 2h̄g( αsz + âs− + â†s+ )− 1

2
h̄ω (2d)

We observe that the Jaynes-Cummings excitation number operator N̂ = â†â+ s+s− is a standard conserved
operator in the dynamics generated by the rotating component of the Rabi Hamiltonian, while the anti-Jaynes-

Cummings excitation number operator N̂ = ââ† + s−s+, which we establish here as a conserved operator in
the dynamics generated by the anti-rotating component of the Rabi Hamiltonian, is a new operator discovered
and presented for the first time in the present letter. The discovery of the anti-Jaynes-Cummings excitation
number operator, proof of its conservation and specification of the corresponding U(1) and parity symmetry
operators in the dynamics generated by the anti-Jaynes-Cummings Hamiltonian are the main results of this
letter.

Proof of conservation : state transition operators Using standard atomic spin and field mode operator
algebraic relations

[s+, s−] = 2sz ; [sz, s−] = −s− ; [sz, s+] = s+ ; s+s− =
1

2
+ sz ; s−s+ =

1

2
− sz

[s+s− , s+] = s+ ; [s−s+ , s+] = −s+ ; [s+s− , s−] = −s− ; [s−s+ , s−] = s−

ââ† = â†â+ 1 ; [â†â , â] = −â ; [â†â , â†] = â† (3a)

we easily prove that the excitation number operators N̂ , N̂ in equation (2c) commute with the respective
Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians H , H in equation (2d) according to

[ N̂ , H ] = 0 ; [ N̂ , H ] = 0 (3b)

which proves the standard dynamical property that the excitation number operator N̂ = â†â + s+s− is
conserved in the dynamics generated by the Jaynes-Cummings Hamiltonian H and the new dynamical

2



property that the excitation number operator N̂ = ââ† + s−s+ is conserved in the dynamics generated by
the anti-Jaynes-Cummings Hamiltonian H .

To make the proof even more transparent, we introduce two new conserved dynamical operators, namely,

Jaynes-Cummings state transition operator Â and anti-Jaynes-Cummings state transition operator Â, re-
spectively defined by

Â = αsz + âs+ + â†s− ; Â = αsz + âs− + â†s+ (3c)

which on squaring and applying standard atomic spin and field mode operator algebraic relations

s2z =
1

4
; s2− = s2+ = 0 ; s+s−+s−s+ = 1 ; szs++s+sz = 0 ; szs−+s−sz = 0 ; ââ† = â†â+1 (3d)

provide the respective Jaynes-Cummings and anti-Jaynes-Cummings excitation number operators N̂ , N̂
defined in equation (2c) in the form

Â2 = â†â+ s+s− +
1

4
α2 = N̂ +

1

4
α2 ; Â

2

= ââ† + s−s+ +
1

4
α2 − 1 = N̂ +

1

4
α2 − 1 (3e)

Substituting Â , Â from equation (3c) and N̂ = Â2 − 1
4α

2 , N̂ = Â
2

− 1
4α

2 + 1 from equation (3e) into
equation (2d), we express the Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians in terms of the
respective state transition operators in the form

H = h̄( ωÂ2 + 2gÂ)− 1

4
h̄ωα2 − 1

2
h̄ω ; H = h̄( ωÂ

2

+ 2gÂ)− 1

4
h̄ωα2 +

1

2
h̄ω (3f)

Using equations (3e) and (3f) easily confirms the commutation relations in equation (3b). In addition, it is
easy to establish that the Jaynes-Cummings excitation number operator is not conserved in the dynamics
generated by the anti-Jaynes-Cummings Hamiltonian H and likewise, the anti-Jaynes-Cummings excita-
tion number operator is not conserved in the dynamics generated by the Jaynes-Cummings Hamiltonian H

according to the commutation relations

[ N̂ , H ] 6= 0 ; [ N̂ , H ] 6= 0 (3g)

Similarly, the state transition operators Â , Â are conserved in the dynamics generated by the respective
Hamiltonians H , H, but not in the dynamics generated by the other component Hamiltonian according to
the commutation relations

[ Â , H ] = 0 ; [ Â , H ] 6= 0 ; [ Â , H ] = 0 ; [ Â , H ] 6= 0 (3h)

We have thus proved the desired conservation of the anti-Jaynes-Cummings excitation number operator
and the state transition operators. We have established in another paper [9] that the Jaynes-Cummings
state transition operator Â generates red-sideband transitions between polariton qubit states arising in the
rotating Jaynes-Cummings interaction 2h̄g(â†s− + âs+), while the anti-Jaynes-Cummings state transition

operator Â generates blue-sideband transitions between anti-polariton qubit states arising in the anti-rotating
anti-Jaynes-Cummings interaction 2h̄g(âs+ + â†s+). Eigenvectors and eigenvalues of the respective Jaynes-
Cummings and anti-Jaynes-Cummings Hamiltonians H , H in equation (3f), interpreted as polariton and
anti-polariton qubit Hamiltonians, have been determined easily in [9]. The coupling of the atomic spin to the
anti-rotating negative frequency component of the field mode leading to blue-sideband transitions accounts
for the excitation number and energy conservation in the anti-Jaynes-Cummings interaction.

U(1)-symmetry operators The Jaynes-Cummings excitation number operator N̂ = â†â+ s+s− generates
a free time evolution operator U0(t) obtained as

U0(t) = e−iωtN̂ ⇒ U
†
0 (t) = eiωN̂t (4a)

which provides field mode and atomic spin operator time evolution in the form

U
†
0 (t)âU0(t) = e−iωtâ ; U

†
0 (t)â

†U0(t) = eiωtâ† ; U
†
0 (t)s−U0(t) = e−iωts− ; U

†
0 (t)s+U0(t) = eiωts+ (4b)
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The operator U0(t) thus generates symmetry operations on the Jaynes-Cummings and anti-Jaynes-Cummings
Hamiltonians in equation (2d) in the form

U
†
0 (t)HU0(t) = H ; U

†
0 (t)HU0(t) = h̄ωN̂ + 2h̄g( αsz + e−2iωtâs− + e2iωtâ†s+ )− 1

2
h̄ω (4c)

which shows that the Jaynes-Cummings excitation number operator generated free time evolution operator

U0(t) = e−iωtN̂ is a U(1)-symmetry operator of the Jaynes-Cummings Hamiltonian H , but not a symmetry
operator of the anti-Jaynes-Cummings Hamiltonian H.

On the other hand, the anti-Jaynes-Cummings excitation number operator N̂ = ââ† + s−s+ generates a
free time evolution operator U0(t) obtained as

U0(t) = e−iωt
ˆ
N ⇒ U

†

0(t) = eiω
ˆ
Nt (4d)

which provides field mode and atomic spin operator time evolution in the form

U
†

0(t)âU0(t) = e−iωtâ ; U
†

0(t)â
†U0(t) = eiωtâ† ; U

†

0(t)s−U0(t) = eiωts− ; U
†

0(t)s+U0(t) = e−iωts+
(4e)

The operator U0(t) thus generates symmetry operations on the Jaynes-Cummings and anti-Jaynes-Cummings
Hamiltonians H , H in equation (2d) in the form

U
†

0(t)HU0(t) = H ; U
†

0(t)HU0(t) = h̄ωN̂ + 2h̄g( αsz + e−2iωtâs+ + e2iωtâ†s− )− 1

2
h̄ω (4f)

which shows that the anti-Jaynes-Cummings excitation number operator generated free time evolution op-

erator U0(t) = e−iωt
ˆ
N is a U(1)-symmetry operator of the anti-Jaynes-Cummings Hamiltonian H, but not a

symmetry operator of the Jaynes-Cummings Hamiltonian H .
Parity-symmetry operator It follows from equations (4c) and (4f) that we can determine a common

symmetry operator of both Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians H , H by imposing
the free evolution symmetry condition

e−2iωt = e2iωt = 1 ⇒ 2ωt = 2nπ ; ωt = nπ ; n = 1, 2, 3, ... (5a)

where n = 0 defines the identity operator. Substituting ωt = nπ into equations (4a) , (4d), we obtain the
common Jaynes-Cummings and anti-Jaynes-Cummings symmetry operator Π̂n(π) in the form

Π̂n(π) = U0(nπ) = e−inπN̂ = U0(nπ) = e−inπ
ˆ
N ; n = 1, 2, 3, ... (5b)

which we express in the form

Π̂n(π) = (e−iπN̂ )n = (e−iπ
ˆ
N )n = (Π̂)n (5c)

from which we identify the standard Jaynes-Cummins and anti-Jaynes-Cummings parity-symmetry operator
Π̂ defined here by

Π̂ = e−iπN̂ = e−iπ
ˆ
N (5d)

Substituting N̂ = â†â+ s+s− , N̂ = ââ† + s−s+ and using algebraic relations

ââ† = â†â+ 1 ; s−s+ = s+s− − 2sz ; N̂ = N̂ + 2s−s+ (5e)

we obtain

e−iπ
ˆ
N = e−iπN̂e−2iπs

−
s+ ; e−2iπs

−
s+ = I ⇒ e−iπ

ˆ
N = e−iπN̂ (5f)

which establishes the common Jaynes-Cummings and anti-Jaynes-Cummings parity-symmetry operator re-
lation in equation (5d).

It is easy to establish that the Jaynes-Cummings and anti-Jaynes-Cummings parity-symmetry operator Π̂
is a symmetry operator of the Rabi Hamiltonian HR = 1

2 (H+H) in equation (1b) according to the symmetry
transformation operations

Π̂† H Π̂ = H ; Π̂† H Π̂ = H ; Π̂† HR Π̂ = HR (5g)
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Finally, we observe that an important dynamical feature emerges from the Jaynes-Cummings-anti-Jaynes-

Cummings common parity-symmetry relation in equation (5d). Substituting N̂ = Â2− 1
4α

2 , N̂ = Â
2

− 1
4α

2+1
from equation (3e) into equation (5d) and reorganizing, we obtain the common parity-symmetry relation in
the form

e−iπÂ2

= e−iπ
ˆ
A

2

eiπ(
1
4
α2− 1

4
α2−1) (6a)

which on using α = ω0−ω
2g , α = ω0+ω

2g from equations (2a) , (2b) to evaluate

1

4
α2 − 1

4
α2 =

ω0ω

4g2
= β2 (6b)

takes the form

e−iπÂ2

= e−iπ
ˆ
A

2

eiπ(β
2−1) ; β2 =

ω0ω

4g2
(6c)

which suggests that there exists a critical coupling constant gc at which the global phase factor eiπ(β
2−1)

equals unity obtained as

g = gc ; eiπ(β
2
c
−1) = 1 : β2

c =
ω0ω

4g2c
= 1 ⇒ gc =

1

2

√
ω0ω (6d)

giving common parity-symmetry relation at the critical coupling gc in the form

g = gc : αc = αc =
ω0 − ω

2gc
; β2

c =
ω0ω

4g2c
; Π̂c = e−iπÂ2

c = e−iπ
ˆ
A

2

c (6e)

We identify gc =
1
2

√
ω0ω to be exactly the critical coupling constant at which the Rabi interaction undergoes

quantum phase transition as determined in a recent study [5]. It follows that parity-symmetry breaking may
occur at a quantum phase transition. We have presented quantum phase transition phenomena in the Rabi
and the more general Dicke models in another paper.

Conclusion We have applied operator-ordering as the fundamental algebraic property to determine the
conserved excitation number and U(1)-symmetry operators for the rotating (Jaynes-Cummings) and anti-
rotating (anti-Jaynes-Cummings) components of the Rabi Hamiltonian. The specification of the anti-Jaynes-
Cummings excitation number operator means that the eigenvalue spectrum of the anti-Jaynes-Cummings
Hamiltonian can now be determined explicitly. The Rabi Hamiltonian is thus composed of two algebraically
complete Jaynes-Cummings and anti-Jaynes-Cummings components, each specified by its characteristic ex-
citation number, state transitions, U(1)-symmetry and red or blue sideband eigenvalue spectrum. We have
determined the parity-symmetry operator as the common symmetry operator for both Jaynes-Cummings
and anti-Jaynes-Cummings components, leading to the standard algebraic property that parity operator is a
symmetry operator of the Rabi Hamiltonian. The parity-symmetry may break at a critical coupling constant
gc where quantum phase transition occurs.
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