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Abstract We prove that the group of weighted composition operators induced by contin-

uous automorphism groups of the upper half plane U is strongly continuous on the weighted

Dirichlet space of U, Dα(U). Further, we investigate when they are isometries on Dα(U). In

each case, we determine the semigroup properties while in the case that the induced compo-

sition group is an isometry, we apply similarity theory to determine the spectral properties

of the group.
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1 Introduction

For an open subset Ω of C, let H(Ω) denotes the Fréchet space of analytic functions on Ω

endowed with the topology of uniform convergence on compact subsets of Ω. In this note, Ω

can be either the open unit disk D or the upper half plane U. If ϕ is a self analytic map on

Ω, then the induced composition operator Cϕ acting on H(Ω) is defined by Cϕf = f ◦ ϕ, with

the corresponding weighted composition operator on H(Ω) given by Sϕ = (ϕ′)γCϕ for some

appropriately chosen weight γ.

Composition operators on spaces of analytic functions on the unit disc H(D) have been

extensively studied in the literature comparatively to their counterparts on the analytic spaces

of the upper half plane H(U). Even though there are isomorphisms between the corresponding

spaces of D and of U, composition operators act differently in the two cases. For instance,

unlike the case of Hardy or Bergman spaces of D, not every composition operator is bounded

on Hardy or Bergman spaces of U, see [1, 2]. It has also been proved in [3, 4] that there are no

non-trivial (i.e. with symbol not constant) compact composition operators on the Hardy space

H2(U) or the weighted Bergman space L2
a(U, µα) which is not the case for H2(D) or L2

a(D,mα).

∗Received July 18, 2019; revised March 14, 2020. This work was partially supported by a grant from the

Simons Foundation.
†Corresponding author: J.O. BONYO.
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Unlike the Hardy and Bergman spaces of D cases, composition operators on the (weighted)

Dirichlet space of the unit disk Dα(D) are not necessarily bounded; an indication that the

action of composition operators on the weighted Dirichlet space of the upper half plane Dα(U)

is very much complicated. Recent attempts to study composition operators on Dα(U) can be

found in [5, 6]. Schroderus [5] obtained the spectrum of composition operators induced by linear

fractional transformations (LFTs) of the upper half plane U; while Sharma, Sharma and Raj [6]

characterized boundedness and compactness of composition operators on D0(U). In particular,

it is proved in [6] that every LFT of U induces a bounded composition operator on D0(U).

This therefore implies that continuous groups (ϕt)t∈R of automorphisms of the upper half plane

may induce a bounded group of (weighted) composition operators Tt := Sϕt
on Dα(U). It is

important to note that the study of composition semigroups on the Dirichlet spaces has scantly

been considered with the only reference [7] being on the Dirichlet space of the unit disk.

In this paper, we extend the study carried out by the second author with his co-authors

in [8] on Hardy and weighted Bergman spaces of U to the setting of the weighted Dirichlet

space of U. In particular, we prove that the group (Tt)t∈R of weighted composition operators

is strongly continuous on Dα(U). Using the classification theorem of continuous groups of

automorphisms of U [8, Proposition 2.3], we consider the corresponding weighted composition

operator groups (Tt)t∈R on Dα(U) and investigate when they are isometries. It turns out that the

scaling and translation groups do not induce weighted composition operator groups on Dα(U)

which are isometries as is the case for Hardy and Bergman spaces of U [8]. The infinitesimal

generators of the composition groups are calculated and their properties discussed. For the

rotation automorphism group, (Tt)t∈R turns out to be a group of isometries on Dα(D). In this

case therefore, we determine both its semigroup and spectral properties.

2 Preliminaries and Definitions

The set D := {z ∈ C : |z| < 1} is called the open unit disk. Let dA(z) denotes the area

measure on D, normalized so that the area of D is 1. In terms of rectangular and polar co-

ordinates, we have dA(z) = 1
π
dxdy = r

π
drdθ where z = x+ iy = reiθ ∈ D. For α ∈ R, α > −1,

we define a positive Borel measure dm
α

on D by dmα(z) = (1−|z|2)αdA(z). On the other hand,

the set U := {ω ∈ C : ℑ(ω) > 0} denotes the upper half of the complex plane C, where ℑ(w)

denotes the imaginary part of a complex number ω. For α > −1, we define a weighted measure

on U by dµα(ω) = (ℑ(ω))αdA(ω), for each ω ∈ U and where dA(ω) denotes the Lebesgue

measure on U. The function ψ(z) = i(1+z)
1−z

is referred to as the Cayley transform and maps the

unit disk D conformally onto the upper half-plane U with the inverse ψ−1(ω) = ω−i
ω+i mapping

U onto D. See [9] for details. Let {V1, V2} = {D,U}, and let LF (Vi, Vj) denote the collection of

all linear fractional transformations (LFTs) from Vi onto Vj . Then LF (Vi, Vi) = Aut(Vi), the

group of automorphisms on Vi.

For 1 ≤ p < ∞, α > −1, the weighted Bergman spaces of the upper half plane, Lp
a(U, µα),

are defined by

Lp
a(U, µα) :=

{

f ∈ H(U) : ‖f‖L
p
a(U,µα) =

(
∫

U

|f(z)|p dµα(z)

)
1
p

<∞

}

,



No.6 M.O. Agwang & J.O. Bonyo: COMPOSITION GROUPS ON THE DIRICHLET SPACE 1741

while the corresponding weighted Bergman spaces of the unit disc, Lp
a(D,mα), by

Lp
a(D,mα) :=

{

f ∈ H(D) : ‖f‖L
p
a(D,mα) =

(
∫

D

|f(z)|p dmα(z)

)
1
p

<∞

}

.

Take note that Lp
a(.) is a Banach space and that L2

a(.) is a Hilbert space. For a comprehensive

theory of Bergman spaces, we refer to [9–11].

For α > −1, the weighted Dirichlet space of the unit disk, Dα(D), is defined by

Dα(D) :=

{

f ∈ H(D) : ‖f‖2
Dα,1(D) =

∫

D

|f ′(z)|2dmα(z) <∞

}

with the norm given as:

‖f‖Dα(D) =
(

|f(0)|2 + ‖f‖2
Dα,1(D)

)
1
2

.

The corresponding weighted Dirichlet space of the upper half-plane U is given by

Dα(U) :=

{

f ∈ H(U) : ‖f‖2
Dα,1(U) =

∫

U

|f ′(ω)|2dµα(ω) <∞

}

with the norm given as:

‖f‖Dα(U) =
(

|f(i)|2 + ‖f‖2
Dα,1(U)

)
1
2

.

Again, we note that ‖ · ‖Dα,1(·) is a seminorm and Dα(·) is a Banach space with respect to the

norm ‖ ·‖Dα
. Moreover, Dα(·) is a Hilbert space. By definition, it is easy to see that f ∈ Dα(U)

if and only if f ′ ∈ L2
a(U, µα). Indeed, by definition, f ∈ Dα(U) if and only if

‖f‖Dα,1(U) =

∫

U

|f ′(z)|2dµα(z) <∞.

But again
∫

U

|f ′(z)|2dµα(z) = ‖f ′‖2
L2

a(U,µα),

which means that f ∈ Dα(U) if and only if f ′ ∈ L2
a(U, µα), as claimed. Similarly, f ∈ Dα(D) if

and only if f ′ ∈ L2
a(D,mα).

For f ∈ Dα(D), then f satisfies the growth condition:

|f(z)| ≤ c‖f‖Dα(D)

√

log
1

1 − |z|2
. (2.1)

Very little is known about Dα(U). For instance, the growth condition for Dα(U) is not well

captured in the literature. We refer to [12–14] for a comprehensive theory of Dirichlet spaces.

Let X be an arbitrary Banach space. A semigroup (Tt)t≥0 of bounded linear operators on

X is strongly continuous if lim
t→0+

Ttx = x, that is,

lim
t→0+

‖Ttx− x‖ = 0 for all x ∈ X.

The infinitesimal generator Γ of a strongly continuous semigroup (Tt)t≥0 is defined by

Γx = lim
t→0+

Ttx− x

t
=

∂

∂t
(Ttx)

∣

∣

∣

∣

t=0

for each x ∈ dom(Γ), where the domain of Γ is given by

dom(Γ) =

{

x ∈ X : lim
t→0+

Ttx− x

t
exists

}

.
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We refer to [15–17] for details on the theory of semigroups.

If X and Y are arbitrary Banach spaces, we denote the Banach space of bounded linear

operators from X to Y by L(X,Y ). We shall write L(X) instead of L(X,X). Let T be a closed

operator on X . The resolvent set ρ(T ) of T is given by ρ(T ) = {λ ∈ C : λI − T is invertible}

and its spectrum is σ(T ) = C\ρ(T ). The spectral radius of T is defined by r(T ) = sup{|λ| : λ ∈

σ(T )} and satisfies the relation r(T ) ≤ ‖T ‖. The point spectrum σp(T ) = {λ ∈ C : Tx = λx

for some 0 6= x ∈ dom(T )}. For λ ∈ ρ(T ), the operator R(λ, T ) := (λI − T )−1 is by the closed

graph theorem a bounded operator on X and is called the resolvent of T at the point λ or

simply the resolvent operator. See [15, 16, 18] for details.

If X and Y are arbitrary Banach spaces and U ∈ L(X,Y ) is an invertible operator, then

clearly (At)t∈R ⊂ L(X) is a strongly continuous group if and only if Bt := UAtU
−1, t ∈ R, is a

strongly continuous group in L(Y ). In this case, if (At)t∈R has a generator Γ then (Bt)t∈R has

generator ∆ = UΓU−1 with domain

D(∆) = UD(Γ) := {y ∈ Y : Uy ∈ D(Γ)}.

Moreover, σp(∆, Y ) = σp(Γ, X) and σ(∆, Y ) = σ(Γ, X). If λ is in the resolvent set ρ(Γ, X) :=

C \ σ(Γ, X), we have that R(λ,∆) = UR(λ,Γ)U−1. For more details on the theory of similar

semigroups, we refer to [15–17].

All self analytic maps of U were identified and classified in [8] into three distinct groups

according to the location of their fixed points, namely; scaling, translation and rotation groups.

Specifically we give the following classification theorem:

Theorem 2.1 (see [8, Proposition 2.3]) Let ϕ : R → Aut(U) be a nontrivial continuous

group homomorphism. Then exactly one of the following cases holds:

1. There exists k > 0, k 6= 1, and g ∈ Aut(U) so that ϕt(z) = g−1(ktg(z)) for all z ∈ U and

t ∈ R.

2. There exists k ∈ R, k 6= 0, and g ∈ Aut(U) so that ϕt(z) = g−1(g(z) + kt) for all z ∈ U

and t ∈ R.

3. There exists k ∈ R, k 6= 0, and a conformal mapping g of U onto D such that ϕt(z) =

g−1(eiktg(z)) for all z ∈ U and t ∈ R. Equivalently, there exist θ ∈ R \ 0 and h ∈ Aut(U) so

that:

ϕt(z) = h−1

[

h(z) cos(θt) − sin(θt)

h(z) sin(θt) + cos(θt)

]

.

Corollary 2.2 Let (ϕt)t∈R be defined as in Theorem 2.1 above. Then it follows that

ϕ′
t(z) −−−→

t→0
1 and ϕ′′

t (z) −−−→
t→0

0 uniformly on compact subsets of U.

Proof Let g and k be as defined in Theorem 2.1 for each case. Then for case 1, ϕt(z) =

g−1(ktg(z)) for all z ∈ U and t ∈ R, implying that g(ϕt(z)) = ktg(z). Taking derivative on both

sides yields

g′(ϕt(z))ϕ
′
t(z) = ktg′(z). (2.2)

Taking limits as t→ 0 on both sides of equation (2.2), we get

g′(z) lim
t→0

ϕ′
t(z) = g′(z) ⇒ lim

t→0
ϕ′

t(z) = 1,

since g′(z) 6= 0 (g is an automorphism).
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Now from (2.2) again, we obtain

g′′(ϕt(z))ϕ
′
t(z)ϕ

′
t(z) + g′(ϕt(z))ϕ

′′
t (z) = ktg′′(z)

⇒ g′′(z) + g′(z) lim
t→0

ϕ′′
t (z) = g′′(z)

⇒ lim
t→0

ϕ′′
t (z) = 0.

The proofs for cases 2 and 3 are similar. We omit the details. �

The assertions 1, 2 and 3 of Theorem 2.1 above corresponds to the automorphism groups:

scaling, translation and rotation groups respectively. In this study and as noted in [8], we shall

consider without loss of generality, the following special cases:

I. For the scaling group, we consider ϕt(z) = e−tz, z ∈ U.

II. For the translation group, we consider ϕt(z) = z + t, z ∈ U.

III. For the rotation group, we consider ϕt(z) = eiktz, z ∈ D.

3 Scaling and Translation Groups

3.1 Strong continuity

We prove that the groups of composition operators induced by the automorphism groups I

and II above are strongly continuous on the Dirichlet space of the upper half plane Dα(U). The

strong continuity of composition groups on the Dirichlet space of the unit disc D was proved

by Siskakis in [7]. For α > −1, let Di
α(U) denotes the space consisting of f ∈ H(U) for which

∫

U
|f ′(ω)| dµα(ω) <∞ with the norm

‖f‖Di
α(U) =

(
∫

U

|f ′(ω)| dµα(ω)

)

1
2
.

In particular, the space Di
α(U) is given by Di

α(U) := {f ∈ Dα(U) : f(i) = 0}. The space Di
α(U)

was discussed in [19, Section 6] and recently considered in [5, Section 5]. Using a version of

the Paley-Wiener theorem for the weighted Dirichlet space as well as some spectral results,

Schroderus [5] established the relation

Di
α(U) = L2

a(U, µτ ), (3.1)

where τ = α− 2. With the help of equation (3.1), we prove the following result.

Theorem 3.1 Let (ϕt)t∈R be the continuous groups in Aut(U) given by I and II above,

and let (Tt)t∈R be the induced group of weighted composition operators on Dα(U), where

Ttf = (ϕ′
t)

γ(f ◦ ϕt) and γ = α+2
2 . Then (Tt)t∈R is strongly continuous.

Proof To prove strong continuity of (Tt)t∈R, it suffices to show that for any f ∈ Dα(U) :

lim
t→0+

‖Ttf − f‖Dα(U) = 0.

But following the above remarks as well as equation (3.1),

‖Ttf − f‖2
Dα(U) = |(Ttf − f)(i)|2 +

∫

U

|(Ttf − f)′(z)|
2
dµα(z)

= |(Ttf − f)(i)|2 + ‖Ttf − f‖2
Di

α(U)

= |(Ttf − f)(i)|2 + ‖Ttf − f‖2
L2

a(U,µτ ).



1744 ACTA MATHEMATICA SCIENTIA Vol.40 Ser.B

Thus, we need to show that: |(Ttf − f)(i)|2 → 0 and

‖Ttf − f‖2
L2

a(U,µτ ) =

∫

U

|(Ttf − f)(z)|2 dµτ (z) → 0 as t→ 0,

where γτ = γ + 1 and γ := γα = α+2
2 . By using Corollary 2.2, it is clear that

|(Ttf − f)(i)| → |(T0f − f)(i)| = 0 as t→ 0.

Next, suppose that tn → 0 in R. Let fn = Ttn
f . Then fn(z) → f(z) uniformly on compact

subsets of U, by (2.1) and Corollary 2.2. Moreover, we have:

‖Ttn
f‖L2

a(U,µτ ) = ‖f‖L2
a(U,µτ ). (3.2)

Indeed, for the specific case I (scaling group), we have by change of variables

‖Ttf‖
2
L2

a(U,µτ ) =

∫

U

|Ttf(z)|2 dµτ (z)

=

∫

U

∣

∣e−tγτ f(e−tz)
∣

∣

2
dµτ (z)

=

∫

U

|f(ω)|2 dµτ (ω) = ‖f‖2
L2

a(U,µτ ).

For the specific case II, again by change of variables we have

‖Ttf‖
2
L2

a(U,µτ ) =

∫

U

|f(z + t)|2 dµτ (z) =

∫

U

|f(ω)|2 dµτ (ω) = ‖f‖2
L2

a(U,µτ ).

Therefore (3.2) holds for both the I and II cases. Now, let gn := 2(|f |2 + |fn|2) − |f − fn|2.

Then gn ≥ 0 and gn(z) → 22|f(z)|2 on L2
a(U, µτ ) as n→ ∞. By Fatou’s lemma, we have

∫

U

22|f |2dµτ =

∫

U

lim inf
n

gndµτ

≤ lim inf
n

∫

U

gndµτ

= lim inf
n

∫

U

(

2(|f |2 + |fn|
2
)

− |f − fn|
2)dµτ

= 2

∫

U

|f |2dµτ + 2

∫

U

|f |2dµτ − lim sup
n

∫

U

|f − fn|
2dµτ

= 4

∫

U

|f |2dµτ − lim sup
n

∫

U

|f − fn|
2dµτ .

Thus, 0 ≤ − lim sup
n

∫

U
|f − fn|2 dµτ ≤ 0. This implies that lim sup

n

∫

U
|f − fn|2dµτ = 0 and

hence lim
n

‖fn − f‖2
L2

a(U,µτ ) = 0. Therefore, ‖Ttf − f‖Dα(U) → 0 as t→ 0 as desired. �

3.2 Scaling group

Here, we consider the self analytic maps on U of the form ϕt(z) = e−tz, z ∈ U.

The induced groups of weighted composition operators on Dα(U) are therefore given by

Ttf(z) = e−tγf(e−tz) (3.3)

for all f ∈ Dα(U), where γ = α+2
2 . By Theorem 3.1, this group is strongly continuous and we

compute its infinitesimal generator Γ in the following theorem.

Theorem 3.2 Let (Tt)t∈R be the group of weighted composition operators given by equa-

tion (3.3). The infinitesimal generator Γ of (Tt)t∈R is given by Γf(z) = −γf(z) − zf ′(z) with

domain dom(Γ) = {f ∈ Dα(U) : zf ′(z) ∈ Dα(U)}.
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Proof For f ∈ Dα(U)), we have by definition;

Γf(z) = lim
t→0+

e−γtf(e−tz) − f(z)

t
=

∂

∂t
(e−γtf(e−tz))|t=0

= −γe−γtf(e−tz) − ze−γtf ′(e−tz)|t=0 = −γf(z)− zf ′(z).

Therefore, dom(Γ) ⊂ {f ∈ Dα(U) : zf ′(z) ∈ Dα(U)}.

Conversely, let f ∈ Dα(U) be such that zf ′(z) ∈ Dα(U). Then for z ∈ U, we have

Ttf(z) − f(z) =

∫ t

0

∂

∂s
(e−γsf(ϕs(z))ds

=

∫ t

0

(−e−γsϕs(z)f
′(ϕs(z)) − γe−γsf(ϕs(z)))ds

=

∫ t

0

TsF (z)ds,

where F (z) = −γf(z) − zf ′(z).

Thus, lim
t→0

Tt(f)−f

t
= lim

t→0

1
t

∫ t

0 TsFds and strong continuity of (Ts)s∈R implies that

1

t

∫ t

0

‖TsF − F‖ds→ 0 as t→ 0

since F ∈ Dα(U) by hypothesis. Thus

dom(Γ) ⊇ {f ∈ Dα(U) : zf ′(z) ∈ Dα(U)}.

�

In the next theorem, we show that this group fails to be an isometry on Dα(U).

Theorem 3.3 The group (Tt)t∈R given by equation (3.3) is not a group of isometries on

Dα(U).

Proof By change of variables, we have

‖Ttf‖
2
Dα(U) = |Ttf(i)|2 +

∫

U

|(Ttf)′(ω)|2 dµα(ω)

= e−2tγ |f(e−ti)|2 +

∫

U

e−2tγe−2t|f ′(e−tω)|2ℑ(ω)α dA(ω)

= e−2tγ |f(e−ti)|2 +

∫

U

e−2tγe−2t|f ′(z)|2etαℑ(z)αe2t dA(z)

= e−2tγ

(

|f(e−ti)|2 + etα

∫

U

|f ′(z)|2dµα(z)

)

. (3.4)

The RHS of equation (3.4) is not equal to the norm ‖f‖2
Dα(U) for all f ∈ Dα(U). This implies

that the weighted composition operator Tt is not an isometry on Dα(U). �

Remark 3.4 The fact that the weighted composition operator Tt fails to be an isometry

on Dα(U) complicates the spectral analysis of the group (Tt)t∈R. This is because the theory of

spectra of semigroups of linear operators are easily applied when we can identify exactly what

the spectrum of (Tt)t∈R is. For the case when (Tt)t∈R is an isometry, then spectral mapping

theorem for semigroups readily gives the spectrum of (Tt)t∈R and together with Hille-Yosida

theorem, a complete spectral analysis of the infinitesimal generator as well as the resulting re-

solvents can be easily carried out. For this composition group therefore, we shall only determine
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the point spectrum of the infinitesimal generator Γ on Dα(U), but first we state the following

Lemma.

Lemma 3.5 (see [8, Lemma 3.2]) Let X denote one of the spaces Hp(U) or Lp
a(U, µα),

1 ≤ p <∞ and α > −1 (α = −1 if X = Hp(U)) and let γ = (α + 2)/p. If c ∈ R and λ, ν ∈ C,

then;

1. f(ω) = (ω − c)λ(ω + i)ν ∈ X if and only if ℜ(λ + ν) < −γ < ℜ(λ). In particular:

(ω − c)λ /∈ X for any λ ∈ C and (ω + i)ν ∈ X if and only if ℜν < −γ.

2. f(ω) = eω/ωc ∈ X if and only if 1/p < c < γ. In particular, eω/ωc /∈ Hp(U) for any

c ∈ R.

The point spectrum of the infinitesimal generator Γ is given in the following theorem:

Proposition 3.6 Let Γ be the infinitesimal generator of the group (Tt)t∈R given by

equation (3.3). Then the point spectrum of Γ is empty, that is, σp(Γ) = ∅.

Proof Let λ ∈ σp(Γ). Then there exists 0 6= f ∈ Dα(U) such that Γf = λf . This implies

that −γf(z) − zf ′(z) = λf(z) which simplifies to f ′(z)
f(z) = −(γ + λ)1

z
. Integrating both sides

yield

ln f(z) = −(γ + λ) ln z + C1,

which is equivalent to

f(z) = Cz−(γ+λ),

where C is a constant.

It remains to determine for which λ′s is f ∈ Dα(U) given that f(z) = Cz−(γ+λ). Now by

definition, f ∈ Dα(U) if and only if f ′ ∈ L2
a(U, µα). By calculation, f ′(z) = −C(γ+λ)z−(γ+λ+1)

which is not in L2
a(U, µα) by Lemma 3.5. Thus, σp(Γ) = ∅. �

3.3 Translation group

For this group, we consider the self analytic maps on U of the form ϕt(z) = z + t, z ∈ U

with the induced group of composition operators defined on Dα(U) given by;

Ttf(z) = f(z + t) for all f ∈ Dα(U). (3.5)

This group is strongly continuous by Theorem 3.1 and we determine its infinitesimal generator

Γ in the following theorem:

Theorem 3.7 Let Γ be the infinitesimal generator of the group (Tt)t∈R given by equation

(3.5) on Dα(U). Then Γf(z) = f ′(z) with domain dom(Γ) = {f ∈ Dα(U) : f ′ ∈ Dα(U)}.

Proof If f ∈ dom(Γ), then by definition

Γf(z) = lim
t→0+

(

(ϕ′
t(z))

γf(ϕt(z)) − f(z)

t

)

=
∂

∂t
(f(z + t))

∣

∣

∣

∣

t=0

= f ′(z).

Thus, dom(Γ) ⊂ {f ∈ Dα(U) : f ′ ∈ Dα(U)}.

Conversely, if f ∈ Dα(U) is such that f ′ ∈ Dα(U), then for z ∈ U, we have

Ttf − f

t
=

∫ t

0

∂

∂s
(Tsf) ds =

∫ t

0

f ′(z + s)ds =

∫ t

0

TsF (z)ds,

where F (z) = f ′(z).
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Thus,
∥

∥

∥

∥

Ttf

t
− f ′

∥

∥

∥

∥

≤
1

t

∫ t

0

‖Tsf
′ − f ′‖ ∂s→ 0 as t→ 0

by strong continuity since f ′ ∈ Dα(U). Hence, dom(Γ) ⊇ {f ∈ Dα(U) : f ′ ∈ Dα(U)}. �

In the next theorem we show that this group also fails to be a group of isometries on Dα(U).

Theorem 3.8 The group (Tt)t∈R given by equation (3.5) is not a group of isometries on

Dα(U).

Proof Again by change of variables, we have

‖Ttf‖
2
Dα(U) = |Ttf(i)|2 +

∫

U

|(Ttf)′(ω)|
2

dµα(ω)

= |f(i+ t)|2 +

∫

U

|f ′(ω + t)|
2
ℑ(ω)α dA(ω)

= |f(i+ t)|2 +

∫

U

|f ′(z)|
2
ℑ(z)α dA(z)

= |f(i+ t)|2 +

∫

U

|f ′(z)|
2
dµα(z),

which cannot be equal to ‖f‖2
Dα(U) for all f ∈ Dα(U) and t 6= 0. �

In the next theorem, we determine the point spectrum of the infinitesimal generator Γ,

Theorem 3.9 Let Γ be the infinitesimal generator of the group (Tt)t∈R given by equation

(3.5). Then σp(Γ) = ∅.

Proof Let λ ∈ C be such that λ ∈ σp(Γ). Then Γf = λf for some 0 6= f ∈ Dα(U), which

is equivalent to the differential equation;

f ′(z) = λf(z) for all z ∈ U, (3.6)

and whose solution is given as f(z) = Ceλz , where C is a constant. It remains to check for

which λ′s is f ∈ Dα(U).

Recall that f ∈ Dα(U) if and only if f ′ ∈ L2
a(U, µα). Now, f ′(z) = λCeλz . Using Lemma

3.5, it follows that f ′(z) = λCeλz ∈ L2
a(U, µα) if and only if 1

2 < 0 < α+2
2 which is impossible

and therefore no such λ ∈ C exists. Hence σρ(Γ) = ∅, as claimed. �

4 Rotation Group

For the rotation group, the self-analytic maps are given by ϕt(z) = eiktz for z ∈ D and we

consider the induced groups of weighted composition operators on Dα(D) of the form

Sϕt
f(z) = eictf(eiktz) (4.1)

for all f ∈ Dα(D) and c, k ∈ R with k 6= 0. Arguing as in Theorem 3.1, we see that (Sϕt
)
t∈R

is a strongly continuous group on Dα(D); and as we prove in the next theorem, this group is a

group of isometries. Let Γc,k be the generator of the group (Sϕt
)t∈R given by equation (4.1).

Then as remarked in [20], to analyze the group (Sϕt
)t∈R, it is sufficient to consider the case

when c = 0 and k = 1 since the properties are related in the following ways.

Theorem 4.1 Let (Sϕt
)t∈R be a group of weighted composition operators defined on

Dα(D) by Sϕt
f(z) = eictf(eiktz) and let Γc,k be its infinitesimal generator. Then:
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1. (Sϕt
)
t∈R

is an isometry on Dα(D).

2. Sϕt
= Cϕt

for c = 0, k = 1.

3. Γc,k = ic+ kΓ0,1 with the domain dom(Γc,k) = dom(Γ0,1) = {f ∈ Dα(D) : f ′ ∈ Dα(D)}.

4. σ(Γc,k) = {ic+ kσ(Γ0,1)}, and σρ(Γc,k) = {ic+ kσρ(Γ0,1)}.

5. λ ∈ σ(Γ0,1) if and only if ic+ kλ ∈ σ(Γc,k) and

R(ic+ kλ,Γc,k) =
1

k
R(λ,Γ0,1).

Proof We begin by proving that (Sϕt
)t∈R is an isometry on Dα(D). A change of variables

argument will yield

‖Sϕt
f‖2

Dα(D) = |Sϕt
f(0)|2 +

∫

D

| (Sϕt
f)

′
(z)|2 dmα(z)

= |eictf(0)|2 +

∫

D

|eicteiktf ′(eiktz)|2 dmα(z)

= |f(0)|2 +

∫

D

|f ′(eiktz)|2 dmα(z)

= |f(0)|2 +

∫

D

|f ′(ω)|2 dmα(ω)

= ‖f‖2
Dα(D),

as desired. Now, from the definition, Sϕt
f(z) = eictf(eiktz). Taking c = 0 and k = 1, we get

Sϕt
f(z) = f(eiktz) = Cϕt

f(z),

where ϕt(z) = eiktz for z ∈ D. This proves assertion 1. The rest of the proof is similar to the

proof of [20, Lemma 4.3] but taking note that f ∈ Dα(D) in this setting. We omit the details.

�

Because of Theorem 4.1, we shall therefore restrict our attention to the group Cϕt
f(z) =

f(eitz) for all f ∈ Dα(D) whose infinitesimal generator is Γ0,1, and using similarity theory of

semigroups, we carry out a complete analysis of both the semigroup and spectral properties of

(Cϕt
)
t∈R

.

Now, define Cϕt
: Dα(D) → Dα(D) by Cϕt

f(z) = f(eitz) for all t ∈ R, z ∈ D and f ∈ Dα(D),

and where ϕt(z) = eitz. Then we have the following proposition.

Proposition 4.2 Let Cϕt
: Dα(D) → Dα(D) be given by Cϕt

f(z) = f(eitz). Then

Cτt
:= ϕ′

tCϕt
is a group of composition operators on L2

a(D,mα).

Proof By definition f ∈ Dα(D) if and only if f ′ ∈ L2
a(D,mα). Now, let f ∈ Dα(D). Then

Cϕt
f = f ◦ ϕt and so;

(Cϕt
f)′ = (f ◦ ϕt)

′ = ϕ′
tf

′(ϕt) = ϕ′
tf

′ ◦ ϕt ∈ L2
a(D,mα)

since f ∈ Dα(D) if and only if f ′ ∈ L2
a(D,mα).

Next, we need to show that the family (Cτt
)t∈R defines a group of weighted composition

operators on L2
a(D,mα). Since ϕt(z) = eitz, for z ∈ D, it follows that for all f ∈ L2

a(D,mα),

Cτt
f(z) = ϕ′

tCϕt
f(z) = ϕ′

tf(ϕt)(z) = eitf(eitz)

Now, Cτ0
f(z) = e0f(e0z) = f(z) and therefore Cτ0

= I, the identity operator on L2
a(D,mα).

For t, s ∈ R, we have

Cτt
◦ Cτs

f(z) = Cτt
(Cτs

f(z)) = ϕ′
tCϕt

(Cτs
f(z)) = ϕ′

tCϕt
(ϕ′

sCϕs
f(z)) ,
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which on further simplification gives

Cτt
◦ Cτs

f(z) = eiteisCϕt
(f(ϕs(z))) = ei(t+s)f(ϕs(ϕt(z)))

= ei(t+s)f(ei(t+s)z) = Cτs+t
f(z).

Thus, Cτt
◦ Cτs

= Cτs+t
, as desired. Hence, (Cτt

)t∈R is a group on L2
a(D,mα). �

Now, we define the set D∗
α(D) = {f ∈ Dα(D) : f(0) = 0}. Then D∗

α(D) is a closed subspace

of Dα(D) and is therefore a Banach space with respect to the norm ‖ · ‖D∗

α(D) = ‖ · ‖Dα,1(D).

Then we give the following proposition.

Proposition 4.3 Let U : D∗
α(D) → L2

a(D,mα) be given by Uf = f ′. Then U is unitary.

Proof For all f ∈ D∗
α(D), we have by norm definition,

‖Uf‖2
L2

a(D,mα) = ‖f ′‖2
L2

a(D,mα) =

∫

D

|f ′(z)|
2
dmα(z) = ‖f‖2

D∗

α(D).

Therefore U is an isometry. Moreover U is invertible since every g ∈ L2
a(D,mα) has a (unique)

primitive vanishing at 0, which is, by definition, in D∗
α(D). Since D∗

α(D) and L2
a(D,mα) are

Hilbert spaces, it follows that U is unitary, as claimed. �

We can therefore summarize the actions of the mappings U , U−1 and Cτt
as we give below;

D∗
α(D)

U
−→ L2

a(D,mα)
Cτt−−→ L2

a(D,mα)
U−1

−−−→ D∗
α(D). (4.2)

It is therefore apparent from (4.2) that Cϕt
= U−1Cτt

U and since U is unitary, we conclude

that Cτt
= UCϕt

U−1.

Theorem 4.4 Let Cϕt
: D∗

α(D) → D∗
α(D) be given by Cϕt

f(z) = f(eitz), and Cτt
:

L2
a(D,mα) → L2

a(D,mα) by Cτt
:= ϕ′

tCϕt
. Then Cϕt

and Cτt
are similar.

Proof Let g ∈ L2
a(D,mα). Then f := U−1g is in D∗

α(D) and

UCϕt
U−1g = UCϕt

f = U(f ◦ ϕt) = (f ◦ ϕt)
′ = ϕ′

t (f ′ ◦ ϕt)

= ϕ′
t (Cϕt

f ′) = Cτt
f ′ = Cτt

Uf = Cτt
g.

Therefore, (Cϕt
)t and (Cτt

)t are similar semigroups. �

Before we state the main results of this section, recall that the multiplication operator Mz

given by Mzf(z) := zf(z) is bounded and bounded below on the space Lp
a(D,mα), 1 ≤ p <∞

and α > −1, with

ran(Mz) = {f ∈ Lp
a(D,mα) : f(0) = 0} .

The left inverse of Mz is the operator Qf(z) := f(z)−f(0)
z

. For every m ∈ N, Lp
a(D,mα) =

ran(Mm
z ) ⊕ span{zn : n ∈ Z+, n < m}, and Pm = Mm

z Q
m is the projection of Lp

a(D,mα) onto

ran(Mm
z ) with kernel span {zn : n ∈ Z+, n < m}. We then give the following Lemma.

Lemma 4.5 1. The infinitesimal generator of (Cτt
)t≥0 ⊂ L(L2

a(D,mα)) is given by

Γf = i (f(z) + zf ′(z)) with domain given by

dom(Γ) =
{

f ∈ L2
a(D,mα) : f ′ ∈ L2

a(D,mα)
}

.

2. σ(Γ, L2
a(D,mα)) = σp(Γ, L

2
a(D,mα)) = {i(n+ 1) : n ∈ Z+} and for each n ≥ 0, ker(i(n+

1) − Γ) = span(zn).
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3. If λ ∈ ρ(Γ), then ran(Mm
z ) is R(λ,Γ) - invariant for everym ∈ Z+ such thatm+1 > ℑ(λ).

In fact, if h ∈ ran(Mm
z ), then

R(λ,Γ)h(z) = z−(1+λi)

∫ z

0

ωih(ω)iω = zm

∫ 1

0

tm+λiQmh(tz)dt.

Proof Take note that Cτt
f(z) = eitf(eitz) for all f ∈ L2

a(D,mα). The result therefore

follows from [8, Theorem 5.1] by taking c = k = 1 and p = 2. �

Our main result which characterizes the properties of the group (Cϕt
)
t∈R

on D∗
α(D) is the

following.

Theorem 4.6 Let Cϕt
: D∗

α(D) → D∗
α(D) and ∆ be its generator. Then the following

hold:

1. ∆h(z) = izh′(z) with dom(∆) = {h ∈ D∗
α(D) : h′ ∈ dom(Γ)}.

2. σp(∆) = σ(∆) = {i(n+ 1) : n ∈ Z+}, and for each n ≥ 0, ker(i(n+ 1) − ∆) = span(zn).

3. If λ ∈ ρ(∆), then ran(Mm
z ) is R(λ,Γ)-invariant for everym ∈ Z+ such that m+1 > ℑ(λ).

In fact, if h ∈ ran(Mm
z ), then

R(λ,∆)h(z) =
i

λ

(

−h(z) +
1

zλi

∫ z

0

ωλih′(ω) iω

)

.

4. R(λ,∆) is compact on D∗
α(D).

5.

σ (R(λ,∆)) = σp (R(λ,∆)) =

{

ω ∈ C :

∣

∣

∣

∣

ω −
1

2ℜλ

∣

∣

∣

∣

=
1

2ℜλ

}

.

Moreover,

r (R(λ,∆)) = ‖R(λ,∆)‖ =
1

|ℜ(λ)|
.

Proof Since Cτt
= UCϕt

U−1, it follows that Cϕt
= U−1Cτt

U . Using the similarity

theory of semigroups, it follows that if Γ is the generator of the group (Cτt
)t∈R and ∆ is the

generator of the group (Cϕt
)t∈R, then ∆ = U−1ΓU with the domain dom(∆) = U−1dom(Γ).

Now, let f ′ ∈ L2
a(D,mα). Then f ∈ dom(Γ) and h := U−1f belongs to dom(∆) with

f = Uh. Then;

△ (h(z)) = U−1ΓUh(z) = U−1Γf(z) = U−1(if(z) + zf ′(z))

= i
(

U−1f(z) + U−1(zf ′(z))
)

= i (h(z) + zh′(z) − h(z))

= izh′(z),

as desired. Moreover,

dom(∆) = U−1dom(Γ) =
{

U−1f : f ∈ dom(Γ)
}

Now, h ∈ dom(∆) ⇔ Uh ∈ dom(Γ) ⇔ h′ ∈ dom(Γ), and thus

dom(∆) = {h ∈ D∗
α(D) : h′ ∈ dom(Γ)} .

This proves assertion 1.

The proof of 2 follows from Lemma 4.5 and the fact that the operators Cϕt
: D∗

α(D) →

D∗
α(D) and Cτt

: L2
a(D,mα) → L2

a(D,mα) are similar; in which case,

σp(△) = σ(∆) = {i(n+ 1) : n ∈ Z+} ,
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and for each n ≥ 0, ker(i(n+ 1) − ∆) = span(zn).

To prove assertion 3, we recall that by the similarity of the corresponding semigroups,

we have that if λ ∈ ρ(∆), and since ρ(∆) = ρ(Γ), then for m ∈ Z+, m + 1 > ℑ(λ), and if

h ∈ ran(Mm
z ), then by Lemma 4.5,

R(λ,∆)h(z) = U−1R(λ,Γ)Uh(z) = U−1R(λ,Γ)h′(z)

= U−1

(

z−(1+λi)

∫ z

0

ωλih′(ω)dω

)

=

∫
(

z−(1+λi)

∫ z

0

ωλih′(ω)dω

)

dz

=
i

λ

(

−h(z) +
1

zλi

∫ z

0

ωλih′(ω)dω

)

as claimed.

Compactness of the resolvent R(λ,∆) follows from the compactness of the resolvent R(λ,Γ)

(see [8, Theorem 5.2]) since the relation R(λ,Γ) = U−1R(λ,Γ)U preserves compactness.

For assertion 5, the spectral mapping theorem for resolvents and the assertion 2 above

imply that for all λ ∈ ρ(∆),

σ(R(λ,∆)) =

{

1

λ− z
: z ∈ σ(∆)

}

∪ {0}

=

{

1

λ− (n+ 1)i
: n ∈ Z+

}

∪ {0}

=

{

ω ∈ C :

∣

∣

∣

∣

ω −
1

2ℜ(λ)

∣

∣

∣

∣

=
1

2ℜ(λ)

}

.

Since R(λ,∆) is compact on D∗
α(D), we have by [16, Corollary V.1.15] that

σ(R(λ,∆)) = σρ(R(λ,∆)).

Now from the obtained spectrum σ(R(λ,∆)), it follows that the spectral radius of the resolvent

is given by r(R(λ,∆)) = 1
|ℜ(λ)| . Finally, the boundedness of the spectral radius r(R(λ,∆)) by

the norm ‖R(λ,∆)‖ as well as the Hille-Yosida theorem immediately yield

r(R(λ,∆)) =
1

|ℜ(λ)|
≤ ‖R(λ,∆)‖ ≤

1

|ℜ(λ)|
.

This completes the proof. �
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