RESPONSE OF CLONAL TEA TO DIFFERENT TEA GROWING LOCATIONS, NITROGENOUS FERTILISER RATES AND PLUCKING INTERVALS IN THE KENYA HIGHLANDS

BY:

ERICK OMOLLO JONDIKO

A Thesis Submitted In Partial Fulfilment of the Requirements for the degree of Master of Science in Environmental Chemistry

Maseno University

©2010

DECLARATIONS

I certify that this thesis has not been previously presented for a degree in Maseno University or in any other University. The work reported herein is my original work and all sources of information have been supported by relevant references.

Sign:	Date:
Erick Omollo Jondiko	
ADM No: PG/MSC/059/2006	

Supervisors:

This thesis has been submitted for examination with our approval as the University supervisors.

1 st Supervisor:	
Sign:	Date:
Prof: P. Okinda Owuor	
Department of Chemistry	
Maseno University	
P.O. Box 333, Maseno	
Kenya.	
2 nd supervisor:	
Sign:	Date:
Dr: David M. Kamau	
Department of Chemistry	
Tea Research Foundation of Kenya	
P.O. Box 820, Kericho	
Kenya.	

ACKNOWLEDGEMENT

I am forever thankful to Maseno University for giving me the opportunity to pursue my MSc degree. My first supervisor, Prof: Philip Okinda Owuor who tirelessly guided and advised me throughout the entire research. The teaching and technical members of staff in the Department of Chemistry for giving me the technical knowledge necessary for carrying out my research and analysis work.

Tea Research Foundation of Kenya (TRFK) who funded the sampling and chemical analysis. Much regards go to my second supervisor Dr David Murathe Kamau of the TRFK who gave me the necessary assistance required, Mr Samson Kamunya who accommodated me at his residence together with the technicians at the Department of Chemistry TRFK, namely: Mr Robert Mbeda, Mr Humphrey Aoro, Mr Simon Mwangi, Mr Joseph Towett and Mr Kimutai Tembur. The black tea sensory evaluations were kindly performed by the Tea Brokers of East Africa and Africa Tea Brokers, both in Mombasa. I am sincerely grateful for their professional input.

Much appreciation goes to my father Prof I. Jondiko Ogoche who paid my tuition fees and upkeep while pursuing my studies. I also recognise the relentless moral support and encouragement I received from my siblings Dennis, Tom, Damaris and Philip without which I would not have achieved my dream. Lastly, much appreciation goes to my classmates namely: Elly Tetty, Dora Orony, Peris Ochola, Martin Mojo, Peter Odhiambo, Jenipher Adipo and Patrick Musungu with whom we encouraged and motivated one another in the course of our rigorous coursework and research.

DEDICATION

To my entire family.

ABSTRACT

Tea Camellia sinensis, is widely grown in the highlands of Kenya for manufacture of mainly black tea. The most costly inputs in tea cultivation are nitrogenous fertiliser and plucking which are key determinants of yield and quality. Previous studies evaluated yield and quality responses in single locations and results used to draw general agronomic recommendations. Consequently, recommendations are uniform in different locations despite variations in conditions responsible for growth. Blanket input use, may be subjecting some locations to lower yield and quality. Trials were conducted in five different tea growing locations in Kenya to assess yields and quality response of clone BBK 35 cultivar to location of production, nitrogenous fertiliser rates (0, 75, 150, 225, 300 Kg N/ha/year) and plucking rounds (7, 14, 21 days). From each location the green leaves were plucked and yield recorded. On three occasions when plucking intervals coincided, leaf was CTC manufactured and quality determined. There were significant ($P \le 0.05$) yield increase and quality decline with increasing nitrogenous fertiliser rates at all locations, with significant (P ≤ 0.05) interaction between geographical area of production and nitrogenous fertiliser rates in yields, demonstrating that the pattern of yield response of clone BBK 35 to nitrogen varies with locality. All the plain black tea quality potentials except thearubigins varied significantly ($P \le 0.05$) with location of production. It is therefore impossible to make black tea with similar black tea quality parameters in all the locations. There were significant ($P \le 0.05$) yield responses in various locations with three locations indicating yield increase with plucking intervals and two indicating decline with increase in plucking rounds with significant ($P \le 0.05$) interaction between location and plucking intervals in yields, demonstrating that the pattern of yield response of clone BBK 35 to plucking intervals did not occur uniformly. Theaflavins, thearubigins, total colour, brightness and taster A and B scores varied significantly ($P \le 0.05$) with plucking intervals while theaflavins, brightness and taster B declined while thearubigins and total colour increased at all locations. Quality of black tea declined with long plucking intervals at all locations. To increase yield in tea production, it is necessary to optimise nitrogen fertiliser application rates and plucking intervals for different locations. Shortening plucking intervals also leads to maximisation of quality. The various tea growing locations in Kenya therefore require different agronomic inputs to maximise on yield and quality.

TABLE OF CONTENTS

Contents Pages
DECLARATIONS
ACKNOWLEDGEMENTiii
DEDICATION iv
ABSTRACT
TABLE OF CONTENTS
LIST OF ABREVIATIONS
LIST OF TABLES
LIST OF FIGURES
LIST OF APPENDICES
1.0: INTRODUCTION
1.0: INTRODUCTION 1 1.1: Background information 1
-
1.2: Nutrition
1.3: Harvesting (plucking) intervals 2
1.4: Locational effects
1.5: Tea clones and cultivars
1.6: Black tea quality
1.7: Statement of the problem
1.8: Justification
1.9: Research questions
1.10: Research objectives
1.10.1: Broad objective
1.10.2 Specific objectives
1.11: Hypotheses
CHAPTER TWO
2.0: LITERATURE REVIEW
2.1: Importance of tea to Kenyan economy
2.2: Tea chemistry
2.3: Nitrogenous fertiliser effects on quality and yield
2.5: Effects plucking intervals on quality 11
2.6: Effects of plucking techniques on yield and quality 12
2.7: Locational effects on yield and quality 12
2.8: Effects of location, nitrogenous fertiliser rates and plucking intervals
on yield and quality 13
CHAPTER THREE
3.0: MATERIALS AND METHODS

3.1: Site selection and cultivar	4
3.2: Design of experiments and treatments	4
3.3: Yields1	5
3.4: Processing/manufacture of black tea1	5
3.5: Analysis of plain black tea quality parameters and sensory evaluations . 1	5
3.5.1: Theaflavin analysis1	5
3.5.2: Determination of thearubigins1	6
3.5.4: Determination of dry matter contents	7
3.5.5: Sensory evaluation1	7
3.6: Statistical analyses	7
CHAPTER FOUR	
4.1: Yield responses to nitrogenous fertiliser rates and geographical	
area of production1	8
4.2: Quality responses to nitrogenous fertiliser rates and	
location of production	0
4.3: Yield response to plucking intervals and region of production	8
4.4: Quality response to plucking intervals and locations of production 3	0
4.5: Yield response to fertiliser rates and plucking rounds	5
4.6: Plain black tea quality response to fertiliser rates and plucking rounds 3	6
CHAPTER FIVE	
5.0: CONCLUSIONS	8
5.1: RECOMMENDATIONS	8
5.2: SUGGESTIONS FOR FUTURE STUDY	8
REFERENCES	0
APPENDICES	8

LIST OF ABREVIATIONS

BBK 35	Cultivar/Clone BBK 35
BR%	Brightness %
CTC	Cut Tear and Curl
DM%	Dry matter percentage
С	Catechin
EC	Epicatechin
ECG	Epicatechin gallate
EGC	Epigallocatechin
EGCG	Epigallocatechin gallate
IBMK	Isobutyl methyl Ketone
ISO	International Organisation for Standardisation
Mt	Made tea
Ν	Nitrogen
NS	Non significant
S15/10	Cultivar/Clone AHP S15/10
TC	Total colour by Robert's method
TF	Theaflavins
TR	Thearubigins
TRFK	Tea Research Foundation of Kenya

LIST OF TABLES

Table 2.1: Area under tea and tea production in Kenya	6
Table 3.1.1 Site locality and history	14
Table 4.1.1: Effects of region of production and nitrogenous fertiliser rates on	
yield (Kg mt ha/year) of clone BBK 35 in 2007	18
Table 4.1.3: Effects of plucking intervals and region of production on yield	
(Kg mt ha/year) of_clone BBK 35 in 2007	28
Figure 4.0.7: Effects of region of production and plucking rounds on yields	29
Table 4.1.4: Effects of plucking intervals and locations of production on the plain	
black tea quality_of clone BBK 35 in 2007	31
Table 4.1.5: Effects of plucking intervals and fertiliser rates on yield	
(Kg mt/ha/year) of_clone BBK 35 in 2007	35
Table 4.1.6: Effects of plucking intervals and fertiliser rates on the plain black	
tea quality_parameters of clone BBK 35	37

LIST OF FIGURES

Figure 2.1: The flavan-3-ols (catechins) in fresh tea leaves
Figure 2.2: Simple representation of formation of theaflavin molecule
Figure 2.3: Scheme showing formation of thearubigins
Figure 4.0.1: Yield response of BBK 35 to varying nitrogenous fertiliser rates
Figure 4.0.2: Changes in theaflavin (µmol/g) levels due to nitrogen fertiliser rates
Figure 4.0.3: Changes in total colour levels (%) levels due to nitrogen fertiliser rates 24
Figure 4.0.4: Changes in brightness (%) levels due to nitrogen fertiliser rates
Figure 4.0.5: Changes in Sensory evaluation levels of Taster A due to nitrogen
fertiliser rates
Figure 4.0.6: Changes in Sensory evaluation levels of Taster B due to nitrogen
fertiliser rates
Figure 4.0.7: Effects of region of production and plucking rounds on yields
Figure 4.0.8: Changes in theaflavin levels (µmol/g) due to plucking rounds
Figure 4.0.9: Changes in thearubigins levels (%) due to plucking rounds
Figure 4.0.10: Changes in brightness (%) levels due to plucking rounds
Figure 4.0.11: Changes in total colour levels (%) due to plucking rounds
Figure 4.0.12: Changes in taster B sensory evaluation levels due to plucking rounds 34

LIST OF APPENDICES

7.1: Appendix 1: Table of means for all the variables.	48
7.2: Appendix 2 Assigned treatments to plots	86
7.3: Appendix 3 Experimental layout	87
7.4: Appendix 4: Publications	92

CHAPTER ONE

1.0: INTRODUCTION

1.1: Background information

Tea, *Camellia sinensis* L. O. Kuntze, is widely grown in the highlands of Kenya and is mainly used to process black tea. It is grown on the foothills of Aberdares and Kenya mountains in the East of the Rift Valley and on the foothills of Mau ranges, Nandi, Kisii and Kakamega Hills in the West of the Rift Valley (Anon, 2004). However, the different locations record variable yields and quality leading to non-uniform earnings of the tea growers in different parts of the country.

Most tea growing agronomic recommendations in Kenya were developed at the Tea Research Foundation of Kenya (TRFK) in Kericho and recommended for use in the whole country (Othieno, 1988; Anon, 2002). However variations in yields (Wachira *et al.*, 2002) and quality (Owuor *et al.*, 1987c, 1988, 2010) have been recorded even in the same cultivar grown in different parts of Kenya. Thus the uses of recommended agronomic practices have not given identical tea yields and quality, in different locations of Kenya. There is urgent need to assess the agronomic inputs to establish the optimum requirements for high production and quality of tea in different Kenyan locations.

1.2: Nutrition

Fertiliser application is the second most expensive agronomic input in tea production (Othieno, 1980; Ellis & Grice, 1981; Ruto *et al*, 1994) after harvesting. Nitrogenous fertiliser application influences the yield through variations in rate of shoot extension, individual shoot weight and density (Odhiambo, 1989; Owuor *et al.*, 1997). Appropriate use of nitrogenous fertilisers lead to increase in tea production (Wanyoko, 1983; Willson, 1975; Owuor *&* Wanyoko, 1996) but the high rates of fertiliser application reduce black tea quality (Owuor *et al.*, 1990d, 2000). Despite the lowering of quality, high rate of application of nitrogenous fertiliser to tea is mandatory since it enhances yields (Othieno, 1988; Bonheure & Willson, 1992).

At present, uniform rates of nitrogenous fertilisers are recommended across the country (Othieno, 1988; Anon, 2002). The recommended rate of fertiliser application in Kenya is 100 to 250 Kg N/ha/year as NPKS 25:5:5:5 or NPK 20:10:10 (Othieno, 1988; Anon, 2002) the actual rate being dependent on level of production. But it is unknown if the optimal rate of nitrogen for production of high yields and quality tea vary with the region. These fertiliser

recommendations were established under Kericho conditions, and may not be suitable for other tea growing locations in Kenya.

An evaluation of the fertiliser application rates is necessary so as to establish region specific requirements that would lower the cost of production due to the high price of fertiliser, indeed it is necessary to establish nitrogen fertiliser rates that would be a compromise between yield and quality in different tea growing areas of Kenya so that farmers realise high net returns.

1.3: Harvesting (plucking) intervals

Plucking is an important step in tea production. During the operation, young leaves are removed (Willson, 1992) for processing into various tea beverages. In the processing of black tea, the recommended plucking standard is two leaves and a bud that gives desirable good quality teas (Othieno, 1988; Owuor *et al.*, 1987a; Willson, 1992).

Generally, long plucking intervals reduce tea yields and produce coarser leaf than short plucking intervals (Odhiambo, 1989; Owuor & Odhiambo, 1993). However, conflicting information has been reported where yields decrease with shorter plucking intervals in Malawi and India, respectively (Palmer-Jones, 1977; Tanton, 1979) while in Kenya, yields increased with short plucking intervals (Othieno, 1988; Owuor *et al.*, 1997, 2000; Owuor & Odhiambo 1993, 1994). This could be due to differences in regional conditions of growth.

Tea grows at different rates in different locations (Obaga *et al.*, 1988, 1989; Squire *et al.*, 1993; Ng'etich & Stephens, 2001a, 2001b; Ng'etich *et al.*, 2001c). This leads to achievement of the recommended two leaves and a bud (Othieno, 1988) after different time lengths in different locations, suggesting that suitable plucking intervals may vary with locality. It is necessary to establish region specific plucking intervals that give high yields and quality tea to enable farmers maximise incomes from the tea.

1.4: Locational effects

The effect of region on growth is one of the factors determining the potential productivity of tea cultivars (Ng'etich & Stephens, 2001a, 2001b; Ng'etich *et al.*, 2001c). Cultivars that were bred and selected in Kericho are now grown in the entire Kenya tea growing locations and in many parts of Africa. Most farmers believe a cultivar will maintain the yield and quality potential as assessed in the region it was developed and respond uniformly to the agronomic practices everywhere it is grown. It is not known if the cultivars maintain their yield and quality potentials in the new habitats which differ widely in regional conditions such as total

rainfall and its distribution, temperature and edaphic factors including drought, cold, frost, high solar radiation and soil characteristics (Wachira *et al.*, 2002). There is need to evaluate suitability of the use of uniform fertiliser rates and plucking frequencies suitable for providing high yields and good quality tea in different tea growing areas.

1.5: Tea clones and cultivars

Clones are tea plants that are derived from one bush (a mother bush) through vegetative propagation. Cultivars are plants that have been purposely selected and maintained through cultivation, i.e. culti(vated)+var(iety). They differ from others of the same species in minor but heritable characteristics e.g. clone BBK 35. Cultivars are normally registered and protected under law (Kamau, 2008).

1.6: Black tea quality

World tea production has been rising faster than demand (Anon, 2007), whilst costs of production continues to rise (Herath & Weersink, 2007). As a result only producers of high quality tea can sell at reasonable prices (Anon, 2007). Tea quality is traditionally judged by tea tasters through sensory/organoleptic methods. The quality parameters perceived by sight and taste are collectively called plain black tea quality parameters. They are composed of mainly theaflavins and thearubigins (Hilton & Ellis, 1972; Roberts & Smith, 1963). The theaflavins influence black tea astringency, briskness and brightness while thearubigins affect black tea thickness and infusion colour.

Many studies have shown significant relationship between theaflavin levels and sensory evaluation and/or price of black tea (Cloughley, 1983; Deb & Ullah, 1968; Owuor *et al.*, 1986, 2006). Indeed, the theaflavin levels have been proposed for use as an indicator standard in the tea trade (Davis, 1983). It is necessary to develop agronomic practices in tea production that lead to high quality teas.

1.7: Statement of the problem

Making the correct choice of agronomic inputs remains a big drawback among farmers. It is not known if nitrogenous fertiliser rate and plucking interval leading to production of high yield and quality at one site will be suitable in other tea growing locations. As a result the current blanket agronomic recommendations in all locations may not be ideal and may lead to farmers' failure to achieve the desired yields and quality, hence low incomes. There is need to assess how adaptable and successful the current agronomic recommendations are and to develop region specific agronomic recommendations to increase productivity that give maximum profit and reduce losses due to poor agronomic practices.

1.8: Justification

Nitrogenous fertiliser application and harvesting are the most expensive field agronomic inputs in tea production (Anon, 2002; Othieno, 1988). Inappropriate fertiliser use leads to farming losses through low yields and poor quality. It is necessary to evaluate various nitrogenous fertiliser rates in different tea growing locations of Kenya aimed at developing optimal rates specific to each region for maximisation of yield and quality and reduction of tea farming losses.

Recommended plucking frequencies (Anon, 2002; Othieno, 1988) in Kenya tea growing locations are the same. However yields (Wachira *et al.*, 2002) and quality (Owuor *et al.*, 1987c, 1988) vary with geographical area of production suggesting variations in growth rates. It is necessary to establish the most appropriate fertiliser rates and plucking intervals that would compromise between yield and quality in different tea growing areas in Kenya.

1.9: Research questions

- 1. Will the fertiliser requirements for BBK 35 vary with locality?
- 2. Will plucking intervals for BBK 35 vary with locality?
- 3. Will yield and quality potentials vary due to fertiliser rates and plucking intervals?

1.10: Research objectives

1.10.1: Broad objective

1. To evaluate the black tea yield and quality response of clone BBK 35 tea grown in different parts of Kenya to varying nitrogenous fertiliser rates and plucking intervals.

1.10.2 Specific objectives

- 1) To establish if fertiliser requirements for clonal tea varies in various localities.
- To determine if yield and quality response of one clone in different localities varies with plucking frequency.
- To establish the effects of nitrogenous fertiliser rates and plucking frequency of clonal tea in different parts of Kenya.

1.11: Hypotheses

Stable performance of a crop cultivar over a wide range of locations is regarded as desirable. It is hypothesized that the black tea quality and yield response of clone BBK 35 cultivar planted in different locations of the country would not vary due to nitrogenous fertiliser rates and plucking intervals.

CHAPTER TWO

2.0: LITERATURE REVIEW

2.1: Importance of tea to Kenyan economy

Tea, *Camellia sinensis* L. O. Kuntze, is an important commodity crop in Kenya and the leading single foreign exchange earner. Kenya is the fourth leading producer of tea in the world after China, India and Sri Lanka accounting for about 20% of world tea production (Anon, 2007). The tea industry and its allied activities employ directly over 500,000 families, each on the average supporting 6 members (Ogola & Kibiku, 2004). It is estimated that tea and allied industries/activities support over 3 million Kenyans, most of them being smallholder families living in rural areas where economic activities are low. Multinationals also contribute to the success by creating job opportunities to the local population in the factories and in the estates. Tea therefore contributes to poverty reduction, promotes infrastructure development in the rural areas and earns the government foreign exchange and revenue.

The favourable conditions for tea cultivation include suitable temperature $(15-25^{\circ}C)$, high relative humidity (80-90%), high annual rainfall (1200-2000 mm) and acidic soils pH (4.0-5.6) (Othieno, 1988; Anon, 2002) conditions that prevail in Kenya highlands. Such lands have high potential and should be subjected to maximum economic production for faster industrial development and poverty reduction. The lands under tea and total tea production in Kenya over the years is summarised in (Table 2.1).

Year	Area under tea (Ha)	Tea production (metric tons)
1997	110,222	209,422
1998	114,458	294,165
1999	117,437	248,818
2000	117,350	236,286
2001	118,650	294,631
2002	124,201	287,102
2003	126,203	293,670
2004	131,581	324,609
2005	139,976	328,584
2006	131,419	310,607
Source: Anon, 2007.		

Table 2.1: Area under tea and tea production in Kenya

2.2: Tea chemistry

Tea leaf contains high levels of polyphenols. These polyphenols are dominated by (+)-catechins (C) [1], (-)-Epicatechin (EC) [2], (-)-Epicatechin-3-gallate (ECg) [3], (-)-Epigalocatechin (ECG) [4], and (-)-Epigalocatechin-3-gallate (EGCG) [5] flavan-3-ols. [6] (Balentine *et al.*, 1998). The structures (Robertson, 1983a) of the catechins are summarised in Figure 2.1 below:-

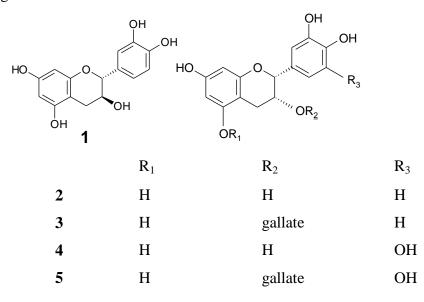
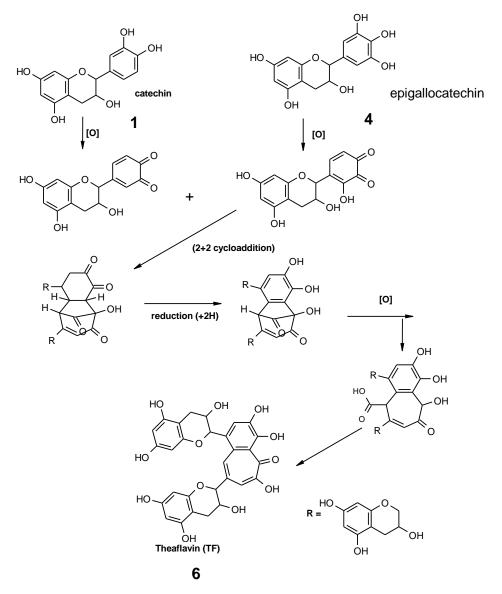
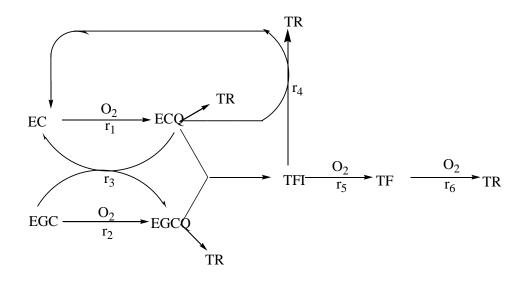



Figure 2.1: The flavan-3-ols (catechins) in fresh tea leaves


During the fermentation phase of tea processing various theaflavins (5) are produced by oxidative dimerisation of a simple dihydroxy catechin [3] and a trihydroxy catechin [4]. The fermentation is catalysed by polyphenol oxidase O-diphenol: O_2 oxido reductase (Takino *et al.*, 1964) in presence of oxygen as outlined in (Figure 2.2).

Source: Takino et al., 1964

Figure 2.2: Simple representation of formation of theaflavin molecule

Theaflavins [6] contribute to the astringency (briskness) and brightness, thearubigins contribute to the colour and thickness (mouth feel) and caffeine is responsible for the stimulatory effects of black tea (Biswas *et al.*, 1971, 1973; Biswas & Biswas, 1971). Thus, the correct levels and balance between theaflavins and thearubigins ensure high quality in tea production.

EC, epicatechin; EGC, epigallocatechin; ECQ, epicatechin quinones; EGCQ, epigallocatechin quinone; TFI, theaflavin

intermediate; TF, theaflavin; TR, thearubigin

Source: Robertson, 1983a.

Figure 2.3: Scheme showing formation of thearubigins

2.3: Nitrogenous fertiliser effects on quality and yield

Beneficial yield responses have been recorded in tea production due to nitrogenous fertiliser applications (Bonheure & Willson, 1992; Othieno, 1988; Owuor et al., 2008a). Nitrogen is the most important nutrient for tea (Ranganathan & Natesan, 1987) and it is required in large quantities, accounting for approximately 4 to 5% of the dry weight of the harvested shoots. Nitrogenous fertiliser use varies from 45 Kg N/ha/year in Democratic Republic of Congo to 800 Kg N/ha/year in Japan (Owuor & Wanyoko, 1996). For most tea cultivars, 100 to 150 Kg N/ha/year range is the most economical (Owuor & Othieno, 1996; Ruto et al., 1994; Kamau et al., 2005). In the Kenya highlands where tea is planted, there are usually heavy rains leading to massive leaching of nutrients. Additionally, the harvested crop also carries with it high amounts of nutrients (Owuor, 1997). Fertilisation is therefore an important approach to nutrient replenishment. High nitrogen fertiliser rates has been reported to improve the fresh weight of shoots harvested in Malawi but the dry matter yields declined and the proportion of waste fibre in the final product increase (Tanton, 1979, 1982; Grice, 1982; Mitini-Nikhoma, 1989). In Kenya, yields have been increased by application of NPKS 25:5:55 fertilisers (Owuor & Odhiambo, 1994; Wanyoko, 1983; Owuor & Othieno, 1996; Owuor & Wanyoko, 1996). The recommended rate of nitrogen application on tea in Kenya varies from 100 to 250 Kg N Ha/Yr (Othieno, 1988). However,

no fertiliser trial has compared yield responses to nitrogen fertiliser rates using a single cultivar grown in different locations of Kenya. Application of fertiliser to improve plant growth and crop yield has long been a common practice in tea cultivation, but high quantity of nitrogenous fertilisers has a deleterious effect on quality of made tea (Guseinov, 1973; Ranganathan & Natesan, 1987; Owuor, 1989, 1997; Owuor & Othieno, 1996; Owuor & Wanyoko, 1996; Owuor *et al.*, 1987, 1997, 2000). However, trials used to formulate fertiliser use recommendations were conducted at single locations and it is not known if the results would be repeated at different locations. Where comparisons have been done at different locations the varieties have been different (Owuor, 1997, Kamau *et al.*, 2005; Owuor & Othieno, 1996) making it difficult to isolate the effects of locality and cultivars. Indeed, no fertiliser trial has compared quality and yield responses to nitrogenous fertiliser using the same cultivar grown in different locations of Kenya.

2.4: Plucking intervals and yields

Late plucking interval leads to over growth making it necessary that extra leaf is broken back (Mwakha & Anyuka, 1984). This late harvesting can be overcome by plucking at optimal harvesting interval. The yield potential in tea production is highly dependent upon the plucking interval. Whenever plucking intervals are too long, puckers' harvest mostly young tender shoots of two leaves and a bud and then break-back, a practice done to remove extra mature leaf left above the plucking table. The "broken-back" leaves are thrown away and are losses to farmers (Mwakha & Anyuka, 1984). Alternatively, some farmers pluck everything on the plucking table leading to quality decline. Conflicting yield results have been obtained due to long plucking intervals. It has been observed in Malawi (Tanton, 1979, 1982; Grice, 1982; Mitini-Nikhoma, 1989) and South India (Sharma, 1987) that long plucking intervals improves yields. The yield increase with long plucking intervals in Malawi was due to faster production of a large number of shoots of harvested size; production of more shoots per unit area of bush surface and enhanced photosynthetic efficiency due to better light penetration in the lower crop canopy. For example 80% of tea in Malawi is produced within 5 months of the year that is December to April (Cloughley, 1983).

In Kenya yield increase has been reported with short plucking intervals (Odhiambo, 1989; Owuor &Odhiambo, 1993, 1994; Owuor *et al.*, 1997, 2000). Such variations in response could be due to regional factors or length of the experiments. Growth in Kenya is continuous throughout the year, although high yields are observed in April to June and October to December (Owuor *et al.*, 1990b). The studies in Kenya were however carried out over longer

periods (Odhiambo, 1989) than those in Malawi (Mitini-Nikhoma, 1989). It has been argued in Kenya that the higher total number of shoots harvested in the shorter plucking intervals compensate for the higher mean shoot weights obtained with the longer plucking intervals (Odhiambo, 1989). It is necessary to correctly assess plucking interval for various teagrowing areas in Kenya for farmers to realise high economic production and the high potential lands to be optimally utilised.

2.5: Effects plucking intervals on quality

Plucking is a very labour intensive and costly exercise (Ellis & Grice, 1981). In India, it is estimated that harvesting constitutes up to 70% of the total costs of field operations (Sharma *et al.*, 1981; Sharma, 1987). Despite the high costs, the undertaking is indispensable but incorrect plucking operations lead to farming losses. Black tea quality varies with plucking standards (Owuor *et al.*, 1987b; Mahanta *et al.*, 1988). The recommended plucking standard practiced in Kenya, is the tender two leaves and a bud (Othieno, 1988; Anon, 2002). This produces black teas with acceptably high quality and good economic returns (Mahanta *et al.*, 1988; Owuor & Obanda, 1998; Owuor *et al.*, 1987a, 2000; Obanda & Owuor, 1994). It is necessary to harvest leaves when they have attained the recommended plucking standards.

Plucking intervals affect black tea quality (Baruah *et al.*, 1986; Owuor & Odhiambo, 1994). Black teas plucked from short plucking rounds have been shown to have superior quality compared to those from long plucking rounds (Mahanta *et al.*, 1988; Owuor & Odhiambo, 1993; Owuor *et al.*, 1990c, 1997, 2000). Previous studies have also shown that leaf standard, chemical composition and quality of black tea also vary due to plucking intervals (Owuor *et al.*, 1990c).

With long plucking intervals, there is a higher proportion of coarse leaf to fine leaf and low black tea quality. With frequent plucking, the shoots obtained are mostly young as the proportion of coarse leaf or leaves to be broken back leaf is reduced (Grice, 1982). Where there is no selection of leaf, long plucking intervals reduce black tea quality (Baruah *et al.*, 1986; Owuor *et al.*, 1990c, 1997; Owuor & Odhiambo, 1993, 1994). However, even when the plucking standard is maintained at two leaves and a bud, long plucking intervals reduced tea quality in a single site study using high yielding clone S15/10 (Owuor *et al.*, 2000). However, these studies were conducted at single site and it is not known if the responses would vary with locality. Plucking intervals need to be optimised in different localities in Kenya to improve black tea quality and reduce crop losses.

2.6: Effects of plucking techniques on yield and quality

Quality chemical and sensory evaluation parameters of black tea change with method of plucking. In South India (Ravichandran & Pathiban, 1998) hand-plucked teas were found to be very rich in their green-leaf biochemical quality precursors and had higher contents of made-tea quality constituents than shear-plucked teas. The quality deterioration with shear plucking is mainly due to mechanical injury and non-selective plucking with shear-harvesting. However, tea obtained by shear-harvesting from a continuously sheared field over a prolonged period is superior. At the same time quality parameters also change due to the use of mechanical harvesting due to varying plucking round lengths and height (Owuor *et al.*, 1991b).

The use of hand held shears reduced the yield and increased the plucking average with a net decrease in cost of production compared to hand plucking. Similarly in a study using two different cultivars, hand plucked teas had higher theaflavins (TF), caffeine, brightness, flavour index, and sensory evaluations than shear plucked teas irrespective of variety (Owuor & Odhiambo, 1993; Owuor *et al.*, 1991).

2.7: Locational effects on yield and quality

Even though tea production continues throughout the year in Kenya, seasonal variations in yields and chemical composition occur due to changes in regional conditions (Owuor et al., 1991; Obaga et al., 1988, 1989; Squire et al., 1993; Mahanta et al., 1988). Quality of tea has been found to change with region (Owuor et al., 1988, 2008a). Black tea quality and taste change with variations in geographical (Yamanishi et al., 1968; Horita & Owuor, 1987; McDowell et al., 1991; Borse et al., 2002; Peterson et al., 2004) and climatic (Howard, 1978; Cloughley et al., 1982; Owuor, 1992) conditions. In other studies, using five different clones, levels of black tea theaflavins, thearubigins and caffeine varied with geographical area of production (Owuor et al., 1987b, 1988). The green leaf composition varied with locations in China (Lin et al., 1996). Such changes did not occur in any predictable way and varied with cultivar and agronomic practices (Lin et al., 1996; Owuor, 1989). Due to these variations, black tea phenolic composition has been suggested as a way of predicting geographical origin (Mc Dowell et al., 1991). The quality variations were in part attributed to differences in regional factors (Lin et al., 1996; Anandacoomaraswamy et al., 2000). These factors cause changes in growth patterns leading to variations in the chemical components which affect quality (Owuor et al., 2008a). Where such comparisons have been done in the past (Owuor et al., 2008a; Howard, 1978; Lin et al., 1996; Yamanishi

et al., 1968), it has been assumed that the difference in regional factors were large. However, regional conditions in tea growing areas along the equator can be minimal. Despite this, region of production influences the black tea quality chemical characteristics even within Kenya (Owuor *et al.*, 1987c, 1988) suggesting that there may be variations in tea potentials depending on geographical area of production. In a study comparing teas of unknown backgrounds (Owuor *et al.*, 1986; Horita & Owuor, 1987a) large variations were noted in the chemical composition of black tea. This was partly due to regional conditions of growth but contributions of cultivars could not be isolated.

In a recent study, it has been shown that same tea cultivars ferment much faster in Malawi compared to Kenya possibly due to differences in regional conditions leading to different shoot growth rates and biochemical composition in the shoots (Owuor *et al.*, 2008a).

2.8: Effects of location, nitrogenous fertiliser rates and plucking intervals on yield and quality

There have been few trials in other localities to assess if these recommended agronomic inputs in Kenya are appropriate or optimal in their new locations. Trials from which the fertiliser use recommendations were derived were conducted at single locations and it is not known if the results would be repeated at different locations. Where comparisons have been done at different locations the varieties have been different (Owuor, 1997, Owuor & Othieno, 1996) making it difficult to isolate the effects of locality and cultivars.

Although widely used in various locations, it is not known if the fertiliser rates and plucking intervals recommended at the Tea Research Foundation of Kenya in Kericho are also optimal everywhere in the country, It is therefore necessary to evaluate the yield and quality response of one single cultivar to region, nitrogenous fertiliser rates and plucking intervals so as to establish compromised requirements that would give high yields and quality

CHAPTER THREE

3.0: MATERIALS AND METHODS

3.1: Site selection and cultivar

Table 3.1.1 Site locality and history

The trials were set on selected mature clone BBK 35 plantations that had been uniformly managed and with known past cultivation history in different geographical areas, namely Karirana Estate in Limuru, Timbilil Estate in (Tea Research Foundation of Kenya TRFK) in upper Kericho, Changoi Tea Estate in lower Kericho, Sotik Highlands Estate in Sotik and Kipkebe Tea Estate also in Sotik. The altitude, latitude/longitude, year of planting, age of plantation and last date of pruning are summarised in Table 3.1.1 below:

Site	Karirana	TRFK	Changoi	Sotik	Kipkebe
Locality/history		Timbilil		Highlands	
Altitude (m)	2260	2180	1860	1800	1800
Latitude	$1^{0}6'S$	$0^{0}22$ 'S	$0^{0}29$ 'S	0^{0} 35'S	0^{0} 41'S
Longitude	36 ⁰ 39'E	35 ⁰ 21'E	35 ⁰ 14'E	35 [°] 5'E	35 [°] 5'E
Year planted	1991	1986	1989	1974	1978
Plantation age*	17	22	19	34	30
Last prune date	2005	2005	2005	2005	2005

* As at year 2008.

Source: Individual Organisation Records.

3.2: Design of experiments and treatments

The experiments were a factorial two arrangement laid out in a randomised complete block design with five fertiliser rates (0, 75, 150, 225 and 300 Kg N/ha/year) and three plucking frequencies (7, 14 and 21 day rounds) replicated three times at each site (Appendix 3). Each effective plot comprised 60 plants surrounded by a line of tea bushes that served as guard rows. Fertiliser application was done in November every year. First fertiliser application was done in the year 1998. The plots were uniformly managed and were pruned every four years. Prior to the experiments, all the plots were receiving 150 Kg N/ha/year. Plucking was done in different plots as per the plucking treatments, depending on the plot.

3.3: Yields

Yields were recorded on the day plucking was carried out and then converted to Kg made tea per hectare per year (Othieno, 1988) using the formula:

Kg mt/ha/year = (Kg/green leaf) X 13448 X 0.225/60

Where:-

13,448 = Number of bushes per hectare.

0.225 =Conversion factor of green leaf to black tea (Anon, 2007).

60 = Number of plants per plot.

3.4: Processing/manufacture of black tea

On the day all the three plucking intervals coincided in each experiment, a mass of 600 grams of tea leaf was harvested/sampled from each plot and brought to TRFK for miniature CTC processing using recommended methods (Owuor & Reeves, 1986). The leaves were withered over open bed shelves lined with nylon netting material for ambient withering of between 14-18 hours to reduce the moisture content to 70%. The withered leaf was macerated by hand feeding into the miniature CTC machine four times to cut, tear and curl the leaf into "dhool" followed by fermentation for 90 minutes at 26-28°C before firing using a miniature bench top (Sherwood Scientific Cambridge UK) drier set at 90°C to terminate fermentation. Lastly, the processed black tea was subjected to chemical and sensory analysis without sorting.

3.5: Analysis of plain black tea quality parameters and sensory evaluations

3.5.1: Theaflavin analysis

Total theaflavins was determined by the Flavognost method (Roberts, 1958). About 9 grams of black tea leaves was weighed into a 500 ml capacity thermos flask and an infusion made by adding 375 ml of boiling deionised water and shaking done for 10 minutes. Clean infused tea liquor was then obtained by filtering through cotton wool and the hot liquor allowed to cool to room temperature. A volume of 10 ml of the infusion was transferred into a volumetric flask; 10 ml of (IBMK) isobutyl methyl ketone added and then shaken on an orbital shaker for 15 minutes. The mixture was then transferred into a test tube to allow for two layers to separate. Exactly 2 ml of the upper layer was transferred into a test tube and 4 ml of ethanol and 2 ml of Flavognost reagent (2 g diphenyl boric acid-2-aminoethyl ester dissolved in 100 ml of ethanol) added. The mixture was then allowed to stand for exactly 15 minutes, once colour formation was observed the absorbance was quickly read at

625 nm against a blank reading of IBMK/ethanol (1:1v/v) in a CE 393 Digital Grating Spectrophotometer. The theaflavins were calculated at 625 nm.

Theaflavins (μ mol/g) = A_{625nm} X 47.9 X 100/DM.

3.5.2: Determination of thearubigins

The method of (Roberts & Smith, 1963) was used. A volume of 50 ml of the cool, wellshaken and filtered standard tea infusion from theaflavin analysis was mixed with 50 ml of (IBMK) and gently shaken to avoid formation of an emulsion. The two layers were then allowed to separate and a 4 ml portion of the IBMK layer drawn and made up to 25 ml in a volumetric flask with methanol. A volume of 2 ml portion of the aqueous layer was diluted to 10 ml with distilled water and then made up to 25 ml with methanol (Solution B). Twenty-five millilitres of the remaining initial IBMK layer was then taken in a separate flask and mixed with 25 ml of 2.5% aqueous sodium hydrogen carbonate. The mixture was vigorously shaken before the layers were allowed to separate and the aqueous layer discarded. A 4 ml portion of the washed IBMK layer was made to 25 ml with methanol (Solution C).

Two millilitres of a saturated oxalic acid aqueous solution and 6 ml of water were added to a 2 ml portion of the aqueous layer left from the first extraction with IBMK, and diluted to 25 ml with methanol (Solution D). The absorbance A_A , A_B , A_C , A_D of solutions A, B, C and D at 380 and 460 nm was then obtained using a CE 393 Cecil Digital Grating Spectrophotometer with distilled water as the blank (Obanda *et al.*, 2001).

The results were then used to quantify thearubigins as follows: -

Thearubigins (%) = 7.06 X (4(A_B - A_A) X DM%

DM% = dry matter %

3.5.3: Determination of liquor colour and brightness

Total colour and brightness were assayed as outlined by (Roberts & Smith, 1963). Five millilitres of filtered standard tea infusion from theaflavins analysis was pipetted into 45 ml of distilled water in a 100 ml conical flask and shaken well to ensure thorough mixing. The absorbance of this solution was observed at 460 nm and read against distilled water blank. The result was then used to calculate total colour and brightness % in the black tea samples using the formulas below.

Liquor colour = $(A_{460nm} X \ 10)/(DM/100)$ DM% = dry matter % Brightness (%) = $(100 \text{ x A}_{\text{C}})/(\text{A}_{\text{A}} + 2\text{A}_{\text{B}})$

3.5.4: Determination of dry matter contents

A mass of 0.200 ± 0.001 grams of the test sample was weighed into vials and placed in an oven set at $103 \pm 2^{\circ}$ C for 4-5 hrs and the dry matter content calculated from the moisture content loss in mass in accordance with ISO 1570, (1981) for leaf tea.

3.5.5: Sensory evaluation

The black teas were evaluated by professional tea tasters at two tea broking firms in Mombasa city which is the second largest tea auction centre in world. The tasters have long experience in the Kenyan teas. A mass of 20 grams of the unsorted black tea leaves were packed in special aluminium coated sachets and sent to two professional tea testers for sensory evaluations. The teas were evaluated for brightness, briskness, colour, thickness and flavour on a scale of 0 to 20 for Taster A and 0 to 10 for Taster B for each attribute.

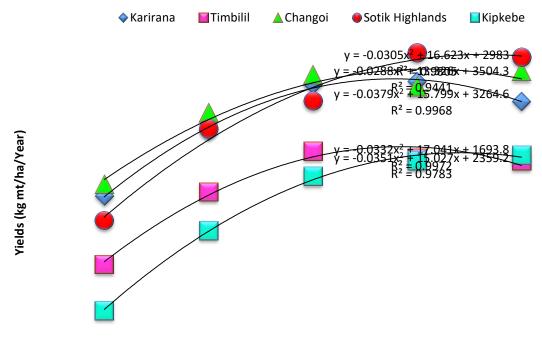
3.6: Statistical analyses

The results were analysed using a 5X5X3 factorial design with locations as main treatments, nitrogen NPKS 25:5:5:5 fertiliser rates as sub treatments and harvesting intervals days as sub-sub treatments. The results obtained from the analysis were then processed using (MSTAT-C, 1993) programme for ANOVA (Appendix, 1), while column charts, polynomial and linear regressions were performed using MS-Excel statistical packages.

CHAPTER FOUR

4.0: RESULTS AND DISCUSSION

Clone BBK 35 used in the study is a popular cultivar grown widely in Kenya for manufacture of black tea. It is recognised as high yielding with good tea quality potential (Ng'etich & Stephens, 2001c). In Tanzania it has yielded up to 6000 Kg mt/ha/year (Burges, 1983). In Kenya economic tea farming activities are located at higher altitudes between 1300 m amsl and 2700 m amsl. The lowest altitude field that was identified with well managed clone BBK 35 was at 1800 m amsl, while the highest altitude field was at 2260 m amsl.


4.1: Yield responses to nitrogenous fertiliser rates and geographical area of

production

Yield response of clone BBK 35 to varying rates of NPKS 25:5:5:5 fertiliser at five locations are presented in (Table 4.1.1). Yield varied significantly ($P \le 0.05$) due to nitrogen fertiliser rates. The control 0 Kg N/ha/year produced significantly ($P \ge 0.05$) lower yields. In deed in all the five locations, yields increases were observed with increase in nitrogenous fertiliser rates application (Table 4.1.1 & Figure 4.0.1). At all the locations, data were better represented by quadratic relationship between yields and nitrogenous fertiliser rates (Figure 4.0.1), with all having significant ($P \le 0.05$) and $r^2 = 0.9$.

Table 4.1.1: Effects of region of production and nitrogenous fertiliser rates on yield (Kg mt ha/year) of clone BBK 35 in 2007

	N-Rates (Kg N/ha/year)						
	0	75	150	225	300	Mean	
Karirana	3278	4192	4834	4875	4597	locations 4355	
Timbilil	2323	3334	3903	3808	3767	3427	
Changoi	3438	4438	4965	4803	5014	4531	
Sotik Highlands	2936	4215	4604	5275	5214	4449	
Kipkebe	1681	2794	3553	3772	3848	3129	
Mean N rate	2731	3794	4372	4507	4488		
CV (%)			8.15				
LSD,P ≤ 0.05			190			190	
Interactions			561				

N-Rates (Kg N/Ha/Year)

Figure 4.0.1: Yield response of BBK 35 to varying nitrogenous fertiliser rates

Yield _(Karirana) = $-0.0379x^2+15.799x+3264.6$, (R² = 0 9968). Max at 248 Kg N/ha/year Yield _(Timbilil) = $-0.0351x^2+15.027x+2359.2$, (R² = 0.9783). Max at 226 Kg N/ha/year Yield _(Changoi) = $-0.0288x^2+13.326x+3504.3$, (R² = 0.9441). Max at 244 Kg N/ha/year Yield _(Sotik Highlands) = $-0.0305x^2+16.623x+2983$, (R² = 0.9805). Max at 362 Kg N/ha/year Yield _(Kipkebe) = $-0.0332x^2+17.041x+1693.8$, (R² = 0.9972). Max at 263 Kg N/ha/year These results demonstrate that nitrogenous fertiliser application is important in all tea growing locations of Kenya for realisation of high yields. Similar yield responses to rate of nitrogen had been widely recorded for trials conducted on single locations (Bonheure & Wilson, 1992; Kamau *et al.*, 1998, 2008; Owuor *et al.*, 1997, 2000, 2008b; Ranganathan & Natesan, 1987) and the data used to develop fertiliser use recommendations. It was thought that these responses would be replicated in other tea growing locations. These results demonstrate for the first time, that yields of clone BBK 35 are not stable to regional variations.

Consequently, yields obtained at one location were not replicated at another location. In deed, there were significant ($P \le 0.05$) interaction effects between rates of nitrogenous fertiliser and geographical area of production (Table, 4.1.1) suggesting that yield responses did not occur in a similar pattern.

This could be due to several factors including temperature (Tanton, 1982) rainfall and rainfall distribution (Othieno *et al.*, 1992), altitude (Obaga *et al.*, 1989; Squire *et al.*, 1993) and sporadic hail damage experienced in the tea growing locations (Ng'etich *et al.*, 2001a; Ng'etich & Stephens, 2001b; Othieno *et al.*, 1992). Although these factors were not monitored in the present study, the extents of their variations may be large at the various geographical locations.

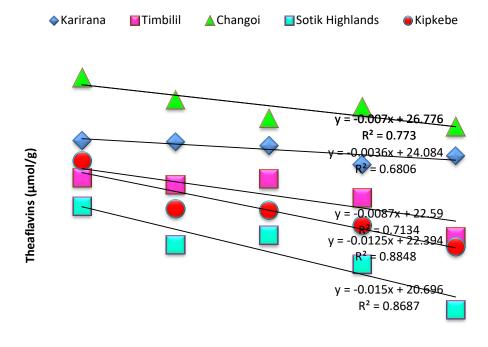
Although there were significant (P \leq 0.05) quadratic yield responses to rate of nitrogenous fertiliser in all the locations (Figure 4.0.1), a careful examination of the data reveals that the yield response at Kipkebe was very low. Indeed the difference between the highest and the lowest yield occurred between control 0 Kg N/ha/year and the highest rate 300 kg N/Ha/year was only 1167 Kg N/ha/year, the difference in mean yields between same rates in Sotik Highlands was 2278 Kg N/ha/year. Sotik Highlands and Kipkebe are within 10 km from each other and are both at 1800 m amsl implying that the locations have relatively similar regional conditions. But despite the short distance from each other, the yield responses were very different, with Sotik Highlands producing much higher yields than Kipkebe. This could be due to past management practices and/or inherent soil fertility gradient. However, the maximum responses at these two locations occurred at very high rates of nitrogenous fertiliser compared to the other locations. However, the results (Table 4.1.1 & Figure 4.0.1) show that before extensive plantation of a cultivar, it is necessary for tea growers to assess its performance relative to the other available genotypes (Wachira et al., 2002). The assessment will determine if a given cultivar in relation to other available cultivars is suitable for the location for realisation of high yields.

There may be many micro regional and management factors affecting yield responses. The earlier reported decline in tea yields with rise in altitudes, (Obaga *et al.*, 1989; Squire *et al.*, 1993; Othieno *et al.*, 1992) occurred when management and regional factors were uniform. The data presented in (Table 4.1.1 & Figure 4.0.1) suggest that the present blanket fertiliser recommendations need a review. More trials are needed to develop location specific fertiliser use recommendations of fertiliser rates using more tea cultivars.

4.2: Quality responses to nitrogenous fertiliser rates and location of production

Although sensory evaluation is subjective, it is the most practical method of assessing quality in tea trade; as done in previous studies (Owuor *et al.*, 1997, 2000; Vankatesan *et al.*, 2004, 2005). The plain black tea quality parameters and sensory evaluation variations due to rates of NPKS 25:5:5:5 fertiliser for five locations are presented in (Table 4.1.2 &

Figure 4.0.2). All the quality parameters significantly ($P \le 0.05$) varied with locations, therefore it is not possible to make black teas with similar quality parameters in all the five locations. This did not follow any pattern as had been observed in earlier studies with altitude (Owuor *et al.*, 1990b; Mahanta *et al.*, 1988). With experimentation in locations far away from each other there might have been too many regional variables changing as explained in the previous sub section. These changes were not uniform and did not follow any pattern, hence the lack of relationship with altitude.


Theaflavins, brightness and sensory evaluation of Taster B scores significantly ($P \le 0.05$) declined with increase in nitrogenous fertiliser rates (Table 4.1.2). Indeed, at all locations, these quality parameters declined with increasing rates of nitrogenous fertiliser as had been observed in previous studies conducted at single locations (Owuor *et al.*, 1997, 2000, 1987c, 1991). Thus irrespective of geographical area of production, high rate of nitrogen is deleterious to quality. It is therefore important to use nitrogen rates which are a compromise between yields and quality.

Thearubigins and sensory evaluation of Taster A did not vary due to rates of nitrogenous fertiliser (Table 4.1.2); meaning that it is possible to make black teas with similar thearubigins. The lack of significant differences in thearubigins explains why Kenya black teas are generally classified as plain tea. Although Taster A valuations did not reach significant differences, the pattern was similar to that of Taster B.

There were significant variations in theaflavins, total colour, brightness and sensory evaluation of Taster B with locations, (Table 4.1.2) indicating that tea quality change with locations even in the same cultivar when produced in different locations. Thus it is important for tea processors to enhance the production of parameters they can best produce. But it is unlikely they will match these parameters produced at different locations. There were no significant interaction effects between the geographical area of production and nitrogenous fertiliser rates in all the quality parameters assessed indicating that the quality responses followed a similar pattern (Table 4.1.2 & Figure 4.0.2).

	1			\mathcal{O}			
quality parameters of clone BBK 35							
Item	Locations N-Rates (kg N/ha/year))	
Theaflavins(µmol/)	Locations	0	75	150	225	300	, Mean locations
Thearta This (pintol)	Karirana	24.01	23.94	23.75	22.81	23.24	23.55
	Timbilil	22.15	21.81	22.09	21.15	19.21	21.42
	Changoi	27.14	26.03	25.10	25.68	24.70	25.73
	Sotik Highlands	20.72	18.81	19.27	17.84	15.57	18.44
	Kipkebe	22.99	20.59	20.53	19.77	18.71	20.52
	Mean N rate	23.54	22.23	22.15	21.45	20.29	20.02
	CV (%)	2010 1		13.06		20.22	
	LSD,P ≤ 0.05			1.68			1.68
Thearubigins (%)	Karirana	17.69	17.51	17.31	16.46	15.98	16.99
	Timbilil	19.37	17.83	17.30	17.05	16.05	17.52
	Changoi	18.41	18.52	16.66	17.05	16.05	17.47
	Sotik Highlands	18.25	18.02	17.55	16.78	15.41	17.20
	Kipkebe	18.48	18.33	17.45	16.79	17.31	17.31
	Mean N rate	18.44	18.04	17.25	16.83	15.94	
	CV (%)	10111	10101	8.45	10.00	1017	
	LSD,P ≤ 0.05			NS			0.85
Total colour (%)	Karirana	5.51	5.48	6.11	4.95	5.49	5.30
	Timbilil	5.48	5.43	6.02	4.86	5.04	5.33
	Changoi	5.42	5.41	5.79	4.81	4.97	5.88
	Sotik Highlands	5.12	5.29	5.79	4.72	4.86	4.73
	Kipkebe	4.97	5.03	5.67	4.32	4.77	5.03
	Mean N rate	5.51	5.37	5.28	5.16	4.96	5105
	CV (%)			7.11			
	LSD,P ≤ 0.05			0.23			0.23
Brightness (%)	Karirana	29.60	28.00	26.96	27.36	25.35	27.45
21181111000 (10)	Timbilil	25.40	23.38	23.32	22.41	20.97	23.10
	Changoi	26.59	25.99	25.57	24.60	23.75	25.30
	Sotik Highlands	25.01	23.10	20.94	20.94	20.72	22.14
	Kipkebe	25.54	25.21	24.74	24.56	22.87	24.58
	Mean N rate	26.43	25.14	24.31	23.97	22.73	
	CV (%)			11.46			
	$LSD, P \leq 0.05$			1.64			1.64
Taster A	Karirana	80.9	74.1	71.4	62.8	61.9	70.2
	Timbilil	90.3	76.8	71.2	69.6	67.2	75.0
	Changoi	72.6	61.3	62.1	59.3	62.0	63.5
	Sotik Highlands	97.3	87.8	78.0	50.2	37.8	70.2
	Kipkebe	85.9	75.4	73.2	57.9	51.2	68.7
	Mean N rate	85.4	75.1	71.2	60.0	56.0	
	CV (%)			34.8			
	$LSD, P \leq 0.05$			NS			14.15
Taster B	Karirana	21.0	20.9	19.9	19.8	19.2	20.16
	Timbilil	20.1	19.3	19.1	18.9	18.7	19.2
	Changoi	19.2	18.9	18.8	17.8	17.3	18.4
	Sotik Highlands	19.8	19.3	19.1	19.0	18.1	19.1
	Kipkebe	20.4	19.8	19.6	18.8	18.4	19.4
	Mean N rate	20.1	19.6	19.3	18.8	18.3	
	CV (%)			6.04			
	LSD,P <u><</u> 0.05			0.68			0.68

Table 4.1.2: Effects of location of production and nitrogen fertiliser rates on black tea

N-Rates (Kg N/ha/Year)

Figure 4.0.2: Changes in theaflavin (µmol/g) levels due to nitrogen fertiliser rates

TF _(Karirana) = -0.0036x+24.084, ($R^2 = 0.6806$) TF _(Timbilil) = -0.0087x+22.59, ($R^2 = 0.7134$) TF _(Changoi) = -0.007x+26.776, ($R^2 = 0.773$) TF _(Sotik Highlands) = -0.015x+20.696, ($R^2 = 0.8687$) TF _(Kinkebe) =-0.0125x+22.394, ($R^2 = 0.8848$)

The results presented here show that quality of tea produced in one area can not be reproduced in another area by same cultivar. The extent of variation in quality at different nitrogenous fertiliser rates due to geographical area of production were estimated using theaflavins, brightness, total colour and taster scores (Figure 4.0.2). Theaflavins have been shown to have higher significance to quality than other plain black tea quality parameters, since significant quality relationships between theaflavins and quality have been established (Owuor *et al.*, 2006; Wright *et al.*, 2002). The rates of decline in theaflavins levels were in the order Changoi < Karirana < Timbilil < Kipkebe < Sotik Highlands (Table 4.1.2 &, Figure 4.0.2).

The response of total colour levels to rates of nitrogen appeared sporadic and was neither linear nor quadratic. Generally, the r^2 values were very low below 0.5 for linear Karirana r^2

= 0.048, Timbilil r^2 = 0.260, Changoi r^2 = 0.366, Sotik Highlands r^2 = 0.170 and Kipkebe r^2 = 0.129. While quadratic Karirana r^2 = 0.005, Timbilil r^2 = 0.407 Changoi r^2 = 0.487, Sotik Highlands r^2 = 0.441 and Kipkebe r^2 = 0.258 (Figure 4.0.3) and insignificant.

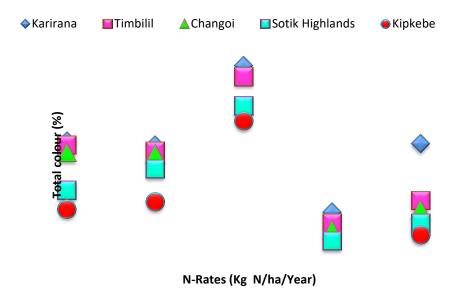
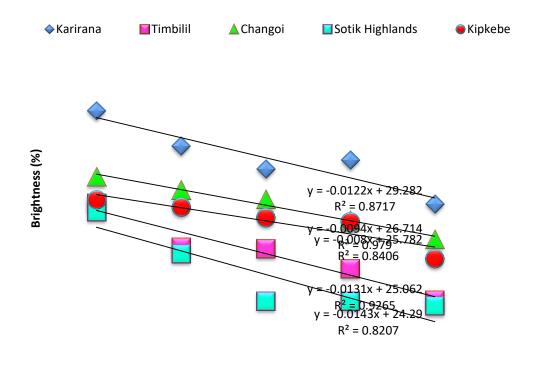
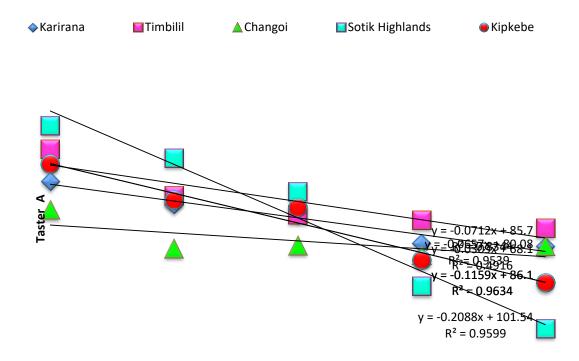



Figure 4.0.3: Changes in total colour levels (%) levels due to nitrogen fertiliser rates

The results demonstrate that changes in total colour with rates of nitrogenous fertiliser did not occur in any predictable manner. This aspect may need further experimentation using more cultivars to yield more information. Thearubigins levels usually dictate the total colour of black tea. It is therefore not surprising that both thearubigins and total colour levels did not follow any trend with fertiliser rates. Indeed the response of both with respect to nitrogenous fertiliser rates appeared sporadic.

However, brightness declined significantly ($P \le 0.05$), $r^2 \ge 0.8$ with increase in rates of nitrogenous fertiliser. The rates of decline depended on locations and followed the order Sotik Highlands > Timbilil > Karirana > Changoi > Kipkebe (Figure 4.0.5). The results demonstrate that black tea losses brightness with rise in nitrogenous fertiliser rates. Despite the variations, the order of brightness was retained for locations at different fertiliser rates. A location producing brighter teas maintained the characteristic over the others irrespective of nitrogenous fertiliser rates and *vice versa*.

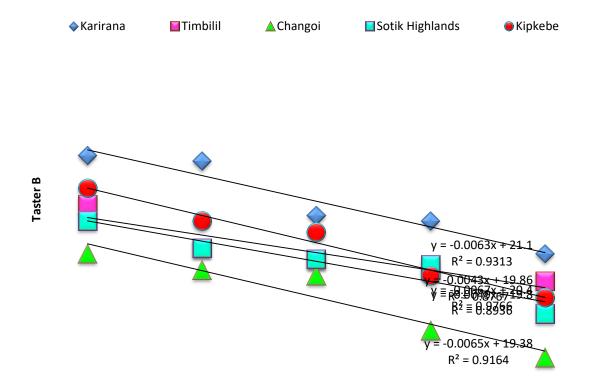


N-Rates (Kg N/ha/Year)

Figure 4.0.4: Changes in brightness (%) levels due to nitrogen fertiliser rates

BR _(Karirana) = -0.0122x+29.282, (R² = 0.8717) BR _(Timbilil) = -0.0131x+25.062, (R² = 0.9265) BR _(Changoi) = -0.0094x+26.714, (R² = 0.9790) BR _(Sotik Highlands) = -0.0143x+24.29, (R² = 0.8202) BR _(Kipkebe) = -0.008x+25.782, (R² = 0.8406)

Although the sensory evaluation scores for Taster A did not significantly decline with increase in nitrogen rates, the pattern of response was the same as for Taster B.



N-Rates (Kg N/ha/Year)

Figure 4.0.5: Changes in Sensory evaluation levels of Taster A due to nitrogen fertiliser rates

Taster A _(Karirana) = -0.0657x+80.03, (R² = 0.9539) Taster A _(Timbilil) = -0.0712x+85.07, (R² = 0.8344) Taster A _(Changoi) = -0.0309x+68.01, (R² = 0.4916) Taster A _(Sotik Highlands) = -0.2088x+101.54, (R² = 0.9599) Taster A _(Kipkebe) = -0.1159x+86.1, (R² = 0.9634)

Sensory evaluation of Taster B declined with increasing rates of nitrogen (Table 4.1.2 & Figure 4.0.6). Indeed, the decline was very significant explaining the fact that even by sensory evaluation, there is decline in quality of black tea with high rates of nitrogenous fertiliser.

N-Rates (Kg N/ha/Year)

Figure 4.0.6: Changes in Sensory evaluation levels of Taster B due to nitrogen fertiliser rates

Taster B _(Karirana) = -0.0063x+21.1, ($R^2 = 0.9313$) Taster B _(Timbilil) = -0.0043x+19.86, ($R^2 = 0.8767$) Taster B _(Changoi) = -0.0065x+19.38, ($R^2 = 0.9164$)

Taster B (Sotik Highlands) = -0.0049x+19.8, (R² = 0.8936)

Taster B (Kipkebe) = -0.0067x+20.4, (R² = 0.9766)

The response of plain black tea quality parameters to nitrogen fertiliser rates followed similar linear patterns at different locations illustrated in (Figures 4.0.2, 4.0.4 & 4.0.6) which fitted a linear regression model with theaflavin, brightness and Taster B having highly significant ($P \le 0.05$) $r^2 \ge 0.7$ values. As a result there were no significant interaction effects between the response in the parameters between geographical areas of production and nitrogen fertiliser rates.

The data presented here indicate that for both yield and quality, responses to nitrogen vary with geographical area of production. The responses occur such that the areas with good yield response to nitrogen suffer more in quality decline due to high rates of nitrogen fertilisers. Low rates of nitrogenous fertiliser will improve quality at the expense of yield. It is therefore necessary to use rates of nitrogenous fertiliser that are a compromise between yields and quality. However, some locations like Sotik Highlands could accommodate higher rates of nitrogenous fertiliser than the others. For each location, the recommended rates should be that which compromises yields and quality.

4.3: Yield response to plucking intervals and region of production

The yield responses to varying plucking intervals at different locations are presented in (Table 4.1.3). Yield varied significantly ($P \le 0.05$) with locations but did not vary with plucking intervals. The data presented here indicate that within Kenya, there are significant ($P \le 0.05$) variations in yields even when one cultivar is subjected to identical plucking practices in different locations (Table 4.1.3). Yields at Timbilil, Changoi and Kipkebe increased with plucking rounds while for Karirana and Sotik Highlands there was a decline in yield response due to increase in plucking rounds. Since the experiments were rain fed, regional conditions governing growth are not uniform in all the five locations (Othieno *et al.*, 1992). As a result there was significant ($P \le 0.05$) interaction effect observed for yield responses indicating that the response patterns were different at each region (Table 4.1.3 & Figure 4.0.7).

The results demonstrate that the current recommendation of short plucking intervals throughout Kenya may not be appropriate and could be limiting yields in some locations (Appendix, 1). However, the data presented here is only for one year, such short term data can be misleading for a perennial crop like tea. It may need long experimentation time to confirm these yield response data.

Table 4.1.3: Effects of plucking intervals and region of production on yield (Kg mt ha/year) of clone BBK 35 in 2007

			Locations			
Plucking	Karirana	Timbilil	Changoi	Sotik	Kipkebe	Mean
round (days)				Highlands		plucking
						round
7	4443	3217	4282	4572	2988	3900
14	4316	3866	4621	4395	3177	3942
21	4306	4282	4691	4380	3224	4093
Mean location	4355	3427	4531	4449	3129	
CV (%)			8.15			
LSD,P <u><</u> 0.05			190			NS
Interactions			324			

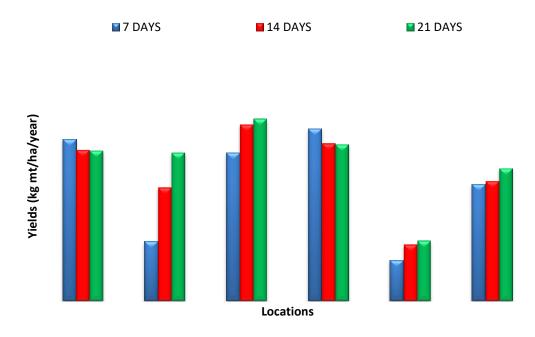


Figure 4.0.7: Effects of region of production and plucking rounds on yields

In previous studies, contradicting reports on yield responses to plucking intervals have been reported. Yields decreased in Malawi (Palmer-Jones, 1977; Tanton, 1989), but increased in Kenya with short plucking intervals (Odhiambo & Owuor, 1994). For the 7 days plucking round the yields were in the order: Sotik Highlands > Karirana > Changoi > Timbilil > Kipkebe, for the 14 days the order was Changoi > Sotik Highlands > Karirana > Timbilil > Kipkebe and 21 days order was Changoi > Sotik Highlands > Karirana > Timbilil > Kipkebe (Figure 4.0.7). These results indicate that the highest yield potential for Sotik highlands would be achieved best using the 7 days plucking round while Changoi would respond maximumly to both the 14 and 21 days rounds. In Karirana and Sotik Highlands there was a decline in yield with increasing plucking intervals whereas, in Timbilil Changoi and Kipkebe there was an increase in yield with increasing plucking rounds. This phenomenon was observed in a recent long term 18 year trial (Owuor *et al.*, 2008a) conducted at one site in Kenya using high yielding clone S15/10. Therefore, it is necessary to establish region specific plucking rounds for different tea growing locations for the realisation of high yields (Appendix, 1).

4.4: Quality response to plucking intervals and locations of production

The plain black tea quality parameters variations due to plucking intervals and geographical area of production at the five locations are presented in (Table 4.1.4). All the quality parameters significantly ($P \le 0.05$) varied with plucking intervals and geographical area of production except Taster A sensory evaluation scores. Thus it is not possible to make black teas from BBK 35 with similar quality potentials within different tea growing locations of Kenya. The responses occurred such that as the plucking intervals increased quality declined. There were no significant interactions for all the quality potentials suggesting that the responses occurred in a similar manner.

		Locations							
Item	Plucking	Karirana	Timbilil	Changoi	Sotik	Kipkebe	Mean		
	round(days)				Highlands		plucking		
							round		
(п Н	7	25.02	23.66	27.63	20.09	22.19	23.72		
neat	14	23.52	21.48	25.67	18.51	20.32	21.90		
Theaflavins (μmol/g)	21	22.10	19.12	23.89	16.72	19.03	20.17		
/ins	Mean locations	23.55	21.42	25.73	18.44	20.52			
01	CV (%)			13.06			2 (0		
_	$LSD, P \leq 0.05$	15.00	16.07	1.68	16.66	16.21	2.60		
The	7 14	15.99	16.07	17.34	16.66	16.31	16.49		
)	21	17.06 17.93	17.62 18.87	17.62 18.87	16.92 18.01	17.48 18.15	17.31 18.11		
ubi	Mean locations	16.99	17.52	17.47	17.20	17.31	10.11		
Thearubigins (%)	CV (%)	10.77	17.32	8.45	17.20	17.51			
\mathbf{S}	LSD,P <u>< 0.05</u>			0.85			1.33		
	7	5.04	4.93	5.66	4.28	4.64	4.91		
Total (%)	14	5.31	5.40	5.79	4.77	5.04	5.26		
<u>a</u> 1	21	5.55	5.66	6.19	5.14	5.40	5.59		
ç	Mean locations	5.30	5.33	5.88	4.73	5.03			
colour	CV (%)			7.11					
ur	LSD,P <u>< 0.05</u>			0.22			0.34		
(⁰ ₿	7	29.22	26.07	26.89	24.01	26.77	26.59		
Brightness (%)	14	27.56	22.97	25.57	22.36	24.15	24.52		
htn	21	25.57	20.25	23.44	20.06	22.83	25.43		
ess	Mean locations	27.45	23.10	25.30	22.14	24.58			
	CV (%)			11.46					
	LSD,P <u><</u> 0.05	o c 1 -		1.64	~~ ~~		2.55		
Ta	7	86.47	94.20	72.13	87.07	78.93	83.76		
Taster A	14	70.93	72.40	62.87	69.07	71.33	69.32		
r A	21 Maar la satisma	53.27	58.47 75.02	55.40	54.53	55.93	55.52		
	Mean locations $CV(0)$	70.22	75.02	63.47 24.78	70.22	68.73			
	CV (%) LSD,P < 0.05			34.78 NS			21.94		
. 1	LSD,F <u><</u> 0.03 7	21.33	20.21	19.53	19.93	20.73	21.94		
Γas	14	20.00	19.23	19.33	19.33	19.40	19.26		
Taster B	21	19.13	19.23	17.33	17.19	18.10	18.13		
В	Mean locations	20.16	19.21	18.40	19.06	19.41	10,10		
	CV (%)			6.04					
	LSD,P <u>< 0.05</u>			0.68			1.05		

Table 4.1.4: Effects of plucking intervals and locations of production on the plain black tea quality of clone BBK 35 in 2007

As the plucking rounds increased the levels of theaflavins (Figure 4.0.8), brightness (Figure 4.0.10) and Taster B evaluations (Figure 4.0.12) in all the locations declined. However, thearubigins (Figure 4.0.9) and total colour (Figure 4.0.11) levels increased with long plucking rounds. Black teas with high levels of theaflavins and total colour are usually less

bright and brisk and are classified as muddy, hence lower quality. The results demonstrate that short plucking intervals ensure production of high quality tea, irrespective of region.

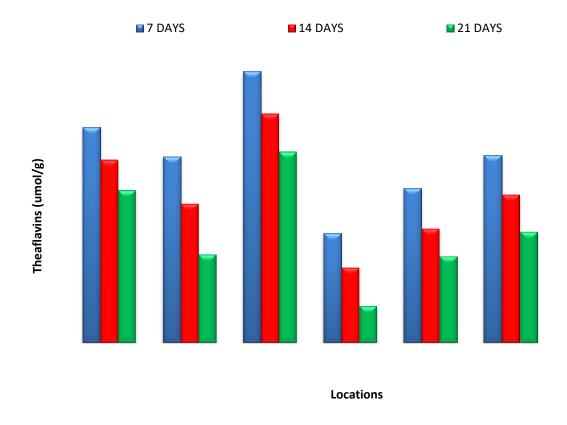


Figure 4.0.8: Changes in theaflavin levels (µmol/g) due to plucking rounds

These results are in agreement with the earlier results (Mahanta *et al.*, 1988; Owuor *et al.*, 1997; 2000; 2008a; Owuor & Odhiambo, 1993, 1994). Since plucking was unselective; the quality of the leaf obtained was dependent on the length of the harvesting intervals, such that long plucking intervals might have had higher percentage of mature leaf beyond two leaves and a bud.

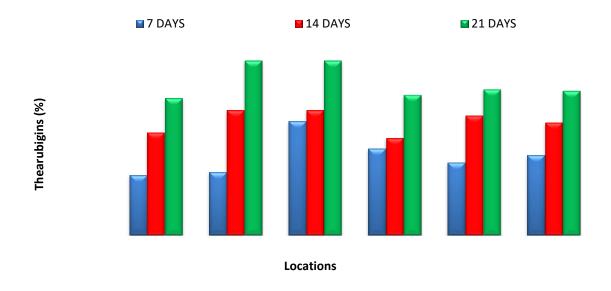
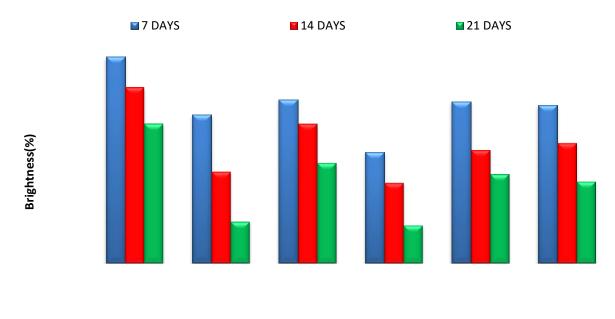



Figure 4.0.9: Changes in thearubigins levels (%) due to plucking rounds

Locations

Figure 4.0.10: Changes in brightness (%) levels due to plucking rounds

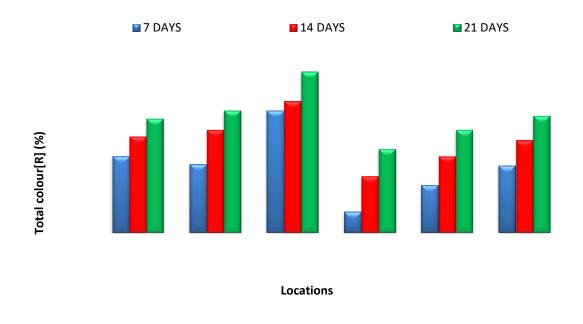


Figure 4.0.11: Changes in total colour levels (%) due to plucking rounds

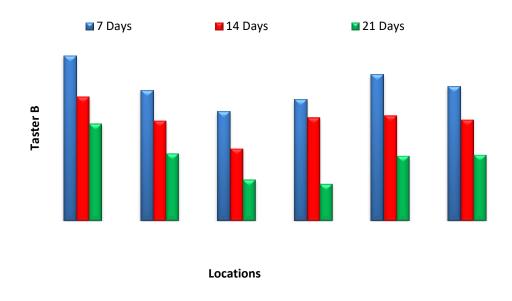


Figure 4.0.12: Changes in taster B sensory evaluation levels due to plucking rounds

The decline of quality at all locations was therefore attributed to an increase in proportion of mature leaf to fine leaf with long plucking intervals. But even where plucking is selective, quality declines with long plucking intervals (Owuor *et al.*, 2000). The results demonstrate that short plucking intervals ensure production of high quality tea. Thus, despite the conflicting results obtained on yields (Tables 4.1.4 & Figure 4.0.7), it is important to use short plucking intervals (Othieno, 1988) throughout Kenya to produce high

quality plain black teas. However, for realisation of high profits, there should be rationalisation of yields and quality at different locations. Plucking intervals should be adopted that are a compromise between yields and quality at different locations.

4.5: Yield response to fertiliser rates and plucking rounds

The effects of the nitrogenous fertiliser rates and plucking intervals on yield of BBK 35 cultivar for all locations combined are presented in (Table 4.1.5). Yield significantly (P \leq 0.05) varied nitrogenous fertiliser rates, but did not vary with plucking intervals. Consequently, there was no significant interaction suggesting uniform response pattern. Yields significantly (P \leq 0.05) increased with long plucking rounds at all fertiliser rates.

Table 4.1.5: Effects of plucking intervals and fertiliser rates on yield (Kg mt/ha/year) of clone BBK 35 in 2007

Plucking]		Mean Plucking		
round(days)	0	75	150	225	300	rounds
7	2786	3673	4298	4328	4415	3900
14	2659	3789	4372	4476	4411	3942
21	2748	3921	4445	4715	4638	4093
Mean N-rate	2731	3794	4372	4507	4488	
CV (%)			8.15			
LSD, P <u>< 0.05</u>			190			NS

The response to nitrogenous fertiliser rates results were similar to previous results obtained at single site studies (Bonheure & Wilson, 1992; Wanyoko, 1983; Owuor, 1989, 1997; Owuor *et al.*, 1990d, 1997, 2000). The results demonstrate the general need for applying nitrogenous fertiliser. However as noted earlier, (Table 4.1.1) the response can vary with localities. Contrary to previous studies (Owuor *et al.*, 1997, 2000; Owuor & Odhiambo, 1993, 1994) yields declined with short plucking intervals. Similar yield increase with long plucking intervals had been recorded in Malawi (Palmer-Jones, 1977; Tanton, 1989) when plucking was done over a short duration. Yield recorded here were for only one year.

4.6: Plain black tea quality response to fertiliser rates and plucking rounds

The effects of the nitrogenous fertiliser rates and plucking intervals on the plain black tea quality parameters are presented in (Table 4.1.6). All the quality parameters significantly (P ≤ 0.05) varied with plucking intervals and nitrogenous fertiliser rates. There were no significant interactions suggesting uniform response patterns for all the parameters. Thus quality response to nitrogen rates at different plucking intervals occurred in the same pattern.

Quality significantly ($P \le 0.05$) declined with increase in plucking rounds and nitrogenous fertiliser rates The theaflavins, brightness, Taster A and Taster B declined while for thearubigins and total colour increased with increasing plucking intervals at all fertiliser rates.

These results suggest that indeed high rates of nitrogenous fertiliser application compromised quality as had been observed in earlier studies (Owuor & Othieno, 1996; Owuor & Wanyoko, 1996; Cloughley, 1983; Hilton *et al.*, 1973). Similarly at long plucking intervals, plain black tea quality declined as noted in earlier studies (Mahanta *et al.*, 1988; Owuor & Odhiambo, 1993; Owuor *et al.*, 1997, 2000). In this study, moderate lower rates of nitrogenous fertiliser between 0 and 150 Kg N/ha/year coupled with shorter plucking rounds lead to high returns from tea enterprise.

Item	Plucking round(days)]	N-Rates			Mean Plucking rounds	
m Theaflavins (μmol/g)	7 14 21 Mean N-rate CV (%)	0 25.60 23.41 21.62 23.54	75 23.72 22.25 20.74 21.42	150 23.89 22.01 20.54 25.73 13.06	225 23.39 21.29 19.66 18.44	300 21.99 20.54 18.32 20.51	23.72 21.90 20.17	
Thearubigins (%)	LSD,P <u>< 0.05</u> 7 14 21 Mean N-rate CV (%) LSD,P <u>< 0.05</u>	17.68 18.28 19.36 18.44	17.39 17.85 18.88 18.04	1.67 16.10 17.34 18.32 17.25 8.45 0.85	16.04 16.96 17.48 16.83	15.16 16.11 16.55 15.94	2.60 16.47 17.31 18.12 1.33	
Total colour (%)	7 14 21 Mean N-rate CV (%) LSD,P ≤0.05	5.11 5.48 5.94 5.09	5.02 5.35 5.73 5.37	5.00 5.26 5.58 5.28 7.11 0.22	4.84 5.18 5.44 5.16	4.58 5.04 5.25 4.95	4.91 5.26 5.59 1.94	
Brightness (%)	7 14 21 Mean N-rate CV (%) LSD,P <u>< 0.05</u>	23.45 26.06 24.78 26.43	27.58 25.10 22.73 25.14	26.35 24.82 21.74 24.31 11.46 1.64	25.72 23.76 22.44 23.97	24.87 22.86 20.47 22.73	26.59 24.52 22.43 1.97	
Taster A	7 14 21 Mean N-rate CV (%) LSD,P <u>< 0.05</u>	101.73 85.67 68.80 85.40	88.93 75.73 60.60 75.09	88.87 68.27 56.47 71.20 34.78 14.14	74.07 59.20 46.60 59.96	65.20 57.73 45.13 56.02	83.76 69.32 55.52 17.0	
Taster B	7 14 21 Mean N-rate CV (%) LSD,P <u><</u> 0.05	21.39 19.90 19.04 20.11	20.95 19.60 18.31 19.62	20.40 19.53 17.97 19.30 6.04 0.68	19.73 18.87 17.93 18.84	19.27 18.40 17.39 18.35	20.35 19.26 18.13 1.05	

Table 4.1.6: Effects of plucking intervals and fertiliser rates on the plain black tea quality parameters of clone BBK 35

CHAPTER FIVE

5.0: CONCLUSIONS

- 1. This study has revealed that even in one cultivar the yield and quality response patterns to nitrogenous fertiliser rates varied from region to region, therefore optimal rates for different locations need to be established.
- 2. Yield and quality response to one cultivar with respect to plucking intervals also varied from region to region therefore regional specific plucking intervals need to be determined.
- 3. Yield and quality response to one cultivar varied due to nitrogenous fertiliser rates and plucking intervals therefore need to establish recommendations that both compromise between yield and quality.

5.1: RECOMMENDATIONS

- While plucking still remains a labour intensive and expensive undertaking and with, regional variations in terms of yield and quality due to plucking rounds for cultivar BBK 35, these trials indicate that farmers should shorten the plucking rounds so as to realise moderate yield and high quality tea. These would be good compromise between yields and quality, thus enhancing profitability of tea farming.
- Since yield and quality response varies due to nitrogenous fertiliser rates and plucking intervals for cultivar BBK 35. It is necessary that further research is done using more tea cultivars so that specific agronomic recommendations especially nitrogen rates and plucking intervals can be developed.

5.2: SUGGESTIONS FOR FUTURE STUDY

With the varied responses in yield and plain black tea quality realised with respect to nitrogen fertiliser rates application and plucking intervals with a single cultivar grown in different locations, future studies should identify and quantify how the individual theaflavin and theaflavin digallate equivalents vary with nitrogenous fertiliser rates and plucking intervals.

Secondly, flavoury teas also exist in some parts of the country. Studies need to be conducted to determine the changes in black tea aroma and fatty acids to nitrogen fertiliser rates application and plucking intervals in different locations. Although significant results have been obtained in the study, there is need for economic study to determine the most ideal recommendations.

This study has used only one cultivar. However yield (Wachira *et al.*, 2002) and quality (Owuor *et al.*, 2010) of tea cultivars vary with locations. It is therefore necessary to repeat this study using many cultivars as responses could vary.

REFERENCES

Anandacoomaraswamy, A.; De Costa, W.A.; Shyamalie, J.M.; Campbell, G.S. (2000). Factors controlling transpiration of mature field grown tea and its relationship with yield. *Agricultural and Forestry Meteorology*, **103**, 375-386.

- Anon. (2002). The Tea Research Foundation of Kenya. *Tea Grower's Handbook* 5th *Edition*. Kericho, Kenya.
- Anon. (2004). International Tea Committee, *Annual Bulletin of Statistics*. Aitken Spence Printing (Pvt) Ltd, Colombo, Sri Lanka.
- Anon. (2007). International Tea Committee, *Annual Bulletin of Statistics*. Aitken Spence Printing (Pvt) Ltd, Colombo, Sri Lanka.
- Balentine, D.A.; Harbowy, M.E.; Graham, H.N. (1998). Tea: In the Plant and Its Manufacture, Chemistry and Consumption of the Beverage. (G.A. Spiller, Eds), Caffeine.Boca Raton, FL: CRC.
- Baruah, S.; Hazakira, M.; Mahanta, P.K.; Horita, H.; Murai, T. (1986). The effects of plucking intervals on the chemical constituents of CTC black teas. *Agricultural and Biological Chemistry*, **50**, 1039-1041.
- Biswas, A. K.; Biswas, A. K.; Sarkar, A. R. (1971). Biological and chemical factors affecting the evaluations of North East India plain teas. *Journal of the Science of Food and Agriculture*, **22**, 191-195.

Biswas, A. K.; Biswas, A. K.; Sarkar, A. R. (1971). Biological and chemical factors affecting the evaluations of North East India plain teas. II. Statistical evaluation of the biochemical constituents and their effects on briskness, quality and cash valuation of black teas. *Journal of the Science of Food and Agriculture*, **22**, 191-198.

Biswas, A. K.; Sarkar, A. R.; Biswas, A. K. (1973). Biological and chemical factors affecting the valuations of North East India planters.III. Statistical evaluation of the biochemical constituents and their effects on colour, brightness, and strength of black teas, **24**, *Journal of the Science of Food and Agriculture*, 1457-477.

- Bonheure, D.; Willson, K.C. (1992). Mineral nutrition and fertilisers. *In Tea Cultivation to Consumption*. (Willson, K.C, Clifford, M.N. Eds), Chapman and Hall, London, pp 269-329.
- Borse, B.B.; Rao, L.J.M.; Nagalakshmi, S.; Krishnamurthy, N. (2002). Finger prints of black teas from India: Identification of the region–specific characteristics. *Food Chemistry*, **79**, 419-424.

Burges, P.J. (1983). Response of tea crop to drought in southern Tanzania. PhD thesis, *Cranfield University*, United Kingdom.

Cloughley, J.B. (1983). The effect of harvesting policy and nitrogen fertiliser application rates on the production of tea in Central Africa. 2. Quality and total value of clonal tea. *Experimental Agriculture*, **19**, 47-54.

- Cloughley, J.B.; Ellis, R.T.; Pedlington, S.; Humphrey, P. (1982). Volatile constituents of Central African black tea clones. *Journal of Agriculture and Food Chemistry*, **80**, 842-845.
- Davis, A.G. (1983). Theaflavins-Objective indicators of quality. *Tea Coffee Trade Journal*, 155, 34.
- Deb, S.B.; Ullah, M.R. (1968). The role of theaflavins and thearubigins in the evaluation of black tea. *Two and a Bud*, **15**, 101-102.
- Ellis, R.T.; Grice, W.J. (1981). Fertiliser for 1981. *Tea Research Foundation of Central Africa Quarterly Newsletter*, **61**, 23.
- Grice, W.J. (1982). The effect of plucking round length on yield, shoot size and standard break back and made tea. *Tea Research Foundation of Central Africa Quarterly Newsletter*, **65**, 10-41.
- Guseinov, R.K. (1973). The effect of long-term fertiliser application on soil fertility and on tea metabolism and productivity. *Horticultural Abstracts*, **44**, 29-37.
- Herath, D.; Weersink, A. (2007). Peasants and plantations in the Sri Lanka tea sector: Causes of change in their relative viability. *Australian Journal of Agricultural Resource Economics*, **51**, 73-89.
- Hilton, P.J. (1973). Tea. *In Encyclopaedia of Industrial Chemical Analysis*. (Snell, F.D & Ettre, L.S, Eds). vol 18, pp. 453-516. New York, USA: John Wiley.
- Hilton, P.J.; Ellis, R.T. (1972). Estimation of the market value of Central African tea by theaflavin analysis. *Journal of the Science of Food and Agriculture*, **23**, 227-232.
- Hilton, P.J.; Palmer-Jones, R. (1973). Relationship between flavanol composition of fresh tea shoots and theaflavin content of manufactured tea. *Journal of the Science of Food and Agriculture*, **24**, 813-818.
- Hilton, P.J.; Palmer-Jones, R.; Ellis, R.T. (1973). Effects of season and nitrogen fertiliser upon the flavanol composition and tea making quality of fresh shoots of tea (*Camellia Sinensis* L). *Journal of the Science of Food and Agriculture*, **24**, 819-826.
- Horita, H.; Owuor, P.O. (1987). Comparison and characterisation of volatile components of Kenyan clonal black teas and various black teas from other producing areas of the world.

Bulletin of the National Research Institute of Vegetables Ornamental Plants and Tea. (Japan), **1**(b), 55-65.

- Howard, G.E. (1978). The volatile constituents of tea. Food Chemistry, 4, 79-106.
- ISO 1570, (1981). Determination of loss of mass at 103°C. Methods of test for tea. *International Standard Organization*, Zurich Switzerland.
- Kamau, D.M. (2008). Productivity and resource use in ageing plantations. PhD thesis, University of Wageningen, Netherlands.
- Kamau, D.M.; Owuor, P.O.; Wanyoko, J.K. (1998). Economic analysis of nitrogen fertilisers in different tea cultivars East and West of the Rift valley. *Tea*, **19**, 27-37.
- Kamau, D.M.; Owuor, P.O.; Wanyoko, J.K. (2005). Mature leaf nutrients levels as a diagnostic tool for making fertilisers recommendations in mature tea the case of clone BBK 35. *Tea*, 26, 57-68.
- Kamau, D.M.; Spietz, J.H.; Oenema, O.; Owuor, P.O. (2008). Productivity and nitrogen use of tea in relation to plant age and genotype. *Field Crops Research*, **108**, 60-70.
- Lin, Yu-Li.; Juan, I-Ming.; Chen, Ying-Ling.; Liang, Yu-Chih.; Lin, Jen-Kun. (1996). Composition of polyphenols in fresh tea leaves and associations of their oxygen Radical-Absorbing capacity Anti-proliferative Actions in Fibroblast cells. *Journal of Agriculture Food Chemistry*, 44,(6),1387-1394.
- Mahanta, P.K.; Baruah, S.; Owuor, P.O.; Murai, T. (1988). Flavour volatiles of Assam black teas manufactured from different plucking standards and orthodox teas manufactured from different altitudes of Darjeeling. *Journal of the Science of Food and Agriculture*, **45**, 312-324.
- McDowell, I.; Feakes, J.; Gay, C. (1991). Phenolic compounds of black tea liquors as a means of predicting price and country of origin. *Journal of the Science of Food and Agriculture*, **55**, 627-641.
- Mitini-Nikhoma, S.P. (1989). The effect of round length on yield, price per kilogram and relative value. *Tea Research Foundation of Central Africa Quarterly Newsletter*, **95**, 12-13.
- MSTAT-C. (1993). A micro-computer program for the design, management and analysis of agronomic research experiments, MSTAT Distribution package, MSTAT Development team, *Michigan State University*, USA.
- Mwakha, E.; Anyuka, J.C.O. (1984). Effects of breaking-back and fertiliser on tea yields, plucking speed and table height. *Tea*, **5**, 6-13.

- Ng'etich, W.K.; Stephens, W. (2001a). Responses of tea to region in Kenya. I. Genotype X Region interactions for total dry matter production and yield. *Experimental Agriculture*, 37, 333-342.
- Ng'etich, W.K.; Stephens, W. (2001b). Response of tea to region in Kenya. II. Dry matter production and partitioning.. *Experimental Agriculture*, **37**, 343-360.
- Ng'etich, W.K.; Stephens, W.; Othieno, C.O. (2001c). Response of tea to region in Kenya. III. Yield and yield distribution, *Experimental Agriculture*, **37**, 361-372.
- Obaga, S.M.; Squire, G.R.; Lang'at, J.K. (1988). Altitude temperature and growth of tea shoots .*Tea*, **9**, 28-33.
- Obaga, S.M.O.; Othieno C.O.; Lang'at, J.K. (1989). Observations on the effect of altitude on yield attributes of some clones-growth and density of shoots. *Tea*, **10** (2), 73-79.
- Obanda, M.; Owuor, P.O. (1994). The effect of wither and plucking standard on the biochemical parameters of selected Kenyan teas. *Discovery and Innovation*, **6**, 190-197.
- Obanda, M.; Owuor, P.O.; Mang'oka, R. (2001). Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation on time and temperature. *Food Chemistry*, **75**, 395-404.
- Odhiambo, H.O. (1989). Nitrogen rates and plucking frequency on tea: The effects of plucking frequencies and nitrogenous fertiliser rates on yield and yield component of tea (*Camellia sinensis L*) Kuntze in Kenya. *Tea*, **10**, 90-96.
- Ogola, S.O.; Kibiku, P.N. (2004). Smallholder tea growing enterprise: Productivity and Profitability. *Tea Board of Kenya Survey Report*, Tea Board of Kenya, Nairobi.
- Othieno, C.O. (1980). Nutrient requirements of the tea plant. Tea, 1 (2), 11-19.
- Othieno, C.O. (1988). Summary of recommendations and observations from TRFK. *Tea*, **9**, 50-65.
- Othieno, C.O.; Stephens, W.; Carr, M.K.V. (1992). Yield variability at the Tea Research Foundation of Kenya, *Agriulture Forestry Meteoology*, **61**, 237-252.
- Owuor, P.O. (1989). Black tea quality: The effects of agronomic practices on tea quality. *Tea*, **10**, 134-146.
- Owuor, P.O. (1997). Fertiliser use in tea. The case of nitrogen. Tea, 18, 132-143.
- Owuor, P.O.; Horita, H.; Tsushida, T.; Murai, T. (1986). Comparison of the chemical composition of black teas from main black tea producing parts of the world. *Tea*,**7**(**2**), 71-78.

- Owuor, P.O.; Horita, H.; Tsushida, T.; Murai, T. (1988). Effects of geographical area of production on the composition of the volatile flavour compounds in Kenya black teas. *Experimental Agriculture*, **24**, 227-235.
- Owuor, P.O.; Ng'etich, W.K.; Obanda, M. (2000). Quality response of clonal black tea to nitrogen fertilisers, plucking intervals and standards. *Journal of the Science of Food and Agriculture*, **80**, 439-446.
- Owuor, P.O.; Obaga, S.M.O.; Othieno, C.O. (1990b). The effects of altitude on the chemical composition of black. *Journal of the Science of Food and Agriculture* tea, **50**, 9-17.
- Owuor, P.O.; Obanda, M. (1998). The changes in black tea quality due to variations of plucking standards and fermentation time. *Food Chemistry*, **61**, 435-444.
- Owuor, P.O.; Obanda, M.; Apostolides, Z.; Wright, L.P.; Nyirenda, H.E.; Mphangwe, N.I.K. (2006). The relationship between the chemical plain black tea quality parameters and black tea colour, brightness and sensory evaluation. *Food Chemistry*, **97**, 644-653.
- Owuor, P.O.; Obanda, M.; Nyirenda, H.E.; Mandala, W.L. (2008a). Influence of region of production on clonal black tea chemical characteristics. *Food Chemistry*, **108**, 363-271.
- Owuor, P.O.; Obanda, M.A.; Othieno, C.O.; Horita, H.; Tsushida, T.; Murai, T. (1987a). Changes in chemical composition and quality of black tea due to plucking standards. *Agricultural and Biological Chemistry*, **51**, 3383-3384.
- Owuor, P.O.; Obanda, M.A.; Tsushida, T.; Horita, H.; Murai, T. (1987b). Geographical variations in theaflavins, thearubigins and caffeine in Kenyan clonal black teas. *Food Chemistry*, **26**, 223-230.
- Owuor, P.O.; Odhiambo, H.O. (1993). The response of quality and yield of black tea of two *Camellia sinensis* varieties to methods and intervals of harvesting. *Journal of the Science of Food and Agriculture*, **62**, 337-343.
- Owuor, P.O.; Odhiambo, H.O. (1994). Response of some black tea quality parameters to nitrogen fertiliser rates and plucking frequencies. *Journal of the Science of Food and Agriculture*, **66**, 555-561.
- Owuor, P.O.; Odhiambo, H.O.; Robinson, J.M.; Taylor, S.J. (1990c). Variations in the leaf standard, chemical composition and quality of black tea (*Camellia sinensis*) due to plucking intervals. *Journal of the Science of Food and Agriculture*, **52**, 63-69.
- Owuor, P.O.; Othieno C.O.; Kamau, D.M.; Wanyoko, J.K.; Ng'etich, W.K. (2008b). Effects of long term fertiliser use on a high yielding tea clone AHP S15/10 Yields. *International Tea Journal*, **7**, 19-31.

- Owuor, P.O.; Othieno, C.O. (1996). Optimizing nitrogen fertiliser application rates to different tea cultivars. *Tropical Science*, **36**, 211-223.
- Owuor, P.O.; Othieno, C.O.; Horita, H.; Tsushida, T.; Murai, T. (1987c). Effects of nitrogenous fertilisers on the chemical composition of black tea. *Agricultural and Biological Chemistry*, **51**, 2665-2670.
- Owuor, P.O.; Othieno, C.O.; Odhiambo, H.O.; Ng'etich, W.K. (1997). Effects of fertiliser levels and plucking intervals on clonal tea (*Camellia sinensis* (L.O) Kuntze). *Tropical Agriculture* (Trinidad), 74, 184-191.
- Owuor, P.O.; Othieno, C.O.; Robinson, J.M.; Baker, D.M. (1991). Response of tea quality parameters to time of year and nitrogen fertiliser. *Journal of the Science of Food and Agriculture*, **55**, 1-11.
- Owuor, P.O.; Reeves, S.G. (1986). Optimising fermentation time in black tea manufacture. *Food Chemistry*, **21**, 195-203.
- Owuor, P.O.; Reeves, S.G.; Wanyoko, J.K. (1986). Correlations of theaflavin content and valuation of Kenyan black teas. *Journal of the Science of Food and Agriculture*, **37**, 507-513.
- Owuor, P.O.; Tsushida, T.; Horita, H.; Murai, T. (1988). Effects of geographical area of production on the composition of volatile flavour compounds in Kenyan clonal black CTC teas. *Experimental Agriculture*, **24**, 227-235.
- Owuor, P.O.; Wachira, F.N.; Ng'etich, W.K. (2010). Influence of region of production on relative clonal tea quality parameters in Kenya. *Food Chemistry*, **119**, 1168-1174.
- Owuor, P.O.; Wanyoko, J.K. (1996). Rationalisation of nitrogen fertiliser use in tea production. *Tea*, **17**, 53.
- Owuor, P.O.; Wanyoko, J.K.; Othieno, C.O. (1990d). High rates of nitrogen on tea. 1. Response and distribution of yield of clonal tea. *Tea*, **11**, 78-89.
- Owuor. P.O; Othieno, C.O.; Robinson, J.M.; Baker, D.M. (1991b). Changes in the quality parameters of seedling tea due to height and frequency of mechanical harvesting. *Journal of the Science of Food and Agriculture*, **55**, 241-249.
- Palmer-Jones R.W. (1977). Effects of plucking policies on the yield of tea in Malawi. *Experimental Agriculture*, **13**, 43-49.

Peterson, J.; Dwyer, J.; Jacques, P.; Rand, W.; Prior, R.; Chui, K. (2004). Tea variety and brewing techniques influence flavonoid content of black tea. *Journal of Food Composition and Analysis*, **17**, 397-405.

Ranganathan, V.; Natesan, S. (1987). Nutrient elements and quality of tea. *Planters Chronicles*, **82**, 55-59.

Ravichandran, R.; Pathiban, R. (1998). The impact of mechanisation of tea harvesting on quality of south Indian CTC teas. *Food Chemistry*, **63**, 61-64.

Roberts, E.A.H. (1958). The chemistry of tea manufacture. *Journal of the Science of Food* and Agriculture, **9**, 381-390.

- Roberts, E.A.H.; Smith, R.F. (1963). Phenolic substances of manufactured tea. ii. Spectrophotometric evaluation of tea liquors. *Journal of the Science of Food and Agriculture*, **14**, 689-700.
- Robertson, A. (1983a). Effects of physical and chemical conditions on the in vitro oxidation of tea leaf catechins. *Phytochemistry*, **22**, 889-896.
- Ruto, J.K.; Wanyoko, J.K.; Othieno, C.O. (1994). Economic analysis of seedling tea response to nitrogen fertilisers in West of Rift region: Nandi Hills. *Tea*, **15**, 94-98.
- Sharma, V.S. (1987). Harvesting tea. Planters Chronicle, 82 (8), 261-266.
- Sharma, V.S.; Harida, S.P.; Venkataram, K.S. (1981). Mechanisation of harvesting in tea. *UPASI Tea Science Department*, **37**, 40-52.
- Squire, G.R.; Obaga, S.M.O.; Othieno, C.O. (1993). Altitude, temperature and shoot production of tea in the Kenyan highlands. *Experimental Agriculture*, **29**, 107-120.
- Takino, Y.; Imagawa, H.; Horikawa, H.; Tanaka, A. (1964). Studies on the mechanism of the oxidation of tea leaf catechins. Part III. Formation of reddish orange pigment and its spectral relationship to some benzotropolone derivatives. *Agricultural. Biological Chemistry*, 28, 64-71.
- Tanton, T.W. (1979). Some factors affecting yield of tea. *Experimental Agriculture*, **15**, 187-191.
- Tanton, T.W. (1982). Regional factors affecting the yield of tea (*Camellia sinensis* L) Effect of air temperature. *Experimental Agriculture*, **18**, 47-52.
- Tanton, T.W. (1989). Some factors limiting yields of tea. *Experimental Agriculture*, **15** (2), 187-191.
- Vankatesan, S.; Murugesan, S.; Ganapathy, M.N.K.; Verma, D.P. (2004). Long-term impact of nitrogen and potassium fertilisers on yield, soil nutrients and biochemical parameters of tea. *Journal of the Science of Food and Agriculture*, **84** (14), 1939-1944.
- Vankatesan, S.; Murugesan, S.; Pandian, V.K.S.; Ganapathy, M.N.K. (2005). Impact of sources and doses of potassium on biochemical and green leaf parameters of tea. *Food Chemistry*, **90**, 535-539.

- Wachira, F.; Ng'etich, W.; Omollo, J.; Mamati, G. (2002). Genotype and regional interactions for tea yields *.Euphitica*, **127**, 289-296.
- Wanyoko, J.K. (1983). Fertilisers on tea: Nitrogen, A review. Tea, 4 (2), 28-25.
- Willson, K.C. (1975). Studies of the mineral nutrition of tea: Nitrogen. *Plant and Soil*, **42**, 306-316.
- Willson, K.C. (1992). Field operations. 2. *In Tea Cultivation to Consumption*. (Willson, K.C.; Clifford, M.N. Eds), Chapman and Hall, London, pp 227-268.
- Wright, L.P.; Mphangwe, N.I.K.; Nyirenda, H.E.; Apostolides, Z. (2002). Analysis of the theaflavin composition in black tea (*Camellia sinensis*) for predicting the quality of tea produced in central and southern Africa. *Journal of the Science of Food and Agriculture*, 82,517-525.
- Yamanishi, T.; Kobayashi, A.H.; Uchida, A.; Mori, S.; Ohsawa, X.; Ssakura, S. (1968). Flavour of black tea varieties and comparison of various types of black tea. *Agricultural Biological. Chemistry*, **32**, 379-383.

APPENDICES

7.1: Appendix 1: Table of means for all the variables.

Function: FACTOR

Experiment Model Number 10:

Three Factor Randomized Complete Block Design

Data case no. 1 to 225.

Factorial ANOVA for the factors:

Replication (3 REPS) with values from 1 to 3

Factor A (LOCATIONS (1=Karirana, 2=Timbilil, 3=Changoi, 4=Sotik, 5=Kipkebe)) with values from 1 to 5

Factor B (N-RATES (1=0, 2=75, 3=150, 4=225, 5=300) with values from 1 to 5 Factor C (FREQUENCY (1=7, 2=14, and 3=21 days) with values from 1 to 3

Variable 5: TF

Grand	l Mea	an =	21.932	Gr	and	Sum	= 493	34.600	Total Count =	225
				Т А	ВL	Ε	O F	MEA	AN S	
1	4	2	3				5		Total	
1	*	*	*			20	.807		1560.530	
2	*	*	*			22	.757		1706.760	
3	*	*	*			22	.231		1667.310	
*	1	*	*			23	.550		1059.740	
*	2	*	*			21	.422		963.990	
*	3	*	*			25	.729		1157.790	
*	4	*	*			18	.441		829.830	
*	5	*	*			20	.517		923.250	
*	*	1	*			23	.543		1059.450	
*	*	2	*			22	.235		1000.580	
*	*	3	*			22	.146		996.570	
*	*	4	*			21	.447		965.120	
*	*	5	*			20	.286		912.880	
*	1	1	*			24	.012		216.110	
*	1	2	*			23	.938		215.440	
*	1	3	*			23	.751		213.760	
*	1	4	*			22	.808		205.270	
*	1	5	*			23	.240		209.160	
*	2	1	*			22	.846		205.610	
*	2	2	*			21	.814		196.330	

*	2	3	*	22.088 198.790	
*	2	4	*	21.149 190.340	
*	2	5	*	19.213 172.920	
*	3	1	*	27.141 244.270	
*	3	2	*	26.026 234.230	
*	3	3	*	25.099 225.890	
*	3	4	*	25.676 231.080	
*	3	5	*	24.702 222.320	
*	4	1	*	20.724 186.520	
*	4	2	*	18.806 169.250	
*	4	3	*	19.267 173.400	
*	4	4	*	17.838 160.540	
*	4	5	*	15.569 140.120	
*	5	1	*	22.993 206.940	
*	5	2	*	20.592 185.330	
*	5	3	*	20.526 184.730	
*	5	4	*	19.766 177.890	
*	5	5	*	18.707 168.360	
*	*	*	1	23.717 1778.810	
*	*	*	2	21.902 1642.680	
*	*	*	3	20.175 1513.110	
*	1	*	1	25.020 375.300	
*	1	*	2	23.525 352.870	
*	1	*	3	22.105 331.570	
*	2	*	1	23.657 354.850	
*	2	*	2	21.481 322.220	
*	2	*	3	19.128 286.920	
*	3	*	1	27.627 414.400	
*	3	*	2	25.669 385.040	
*	3	*	3	23.890 358.350	
*	4	*	1	20.090 301.350	
*	4	*	2	18.513 277.700	
*	4	*	3	16.719 250.780	
*	5	*	1	22.194 332.910	
*	5	*	2	20.323 304.850	
*	5	*	3	19.033 285.490	
*	*	1		25.599 383.990	
*	*	1	2	23.413 351.190	
*	*	1	3	21.618 324.270	

*	*	2	1	23.717	355.750	
*	*	2	2	22.252	333.780	
*	*	2	3	20.737	311.050	
*	*	3	1	23.888	358.320	
*	*	3	2	22.014	330.210	
*	*	3	3	20.536	308.040	
*	*	4	1	23.391	350.860	
*	*	4	2	21.291	319.360	
*	*	4	3	19.660	294.900	
*	*	5	1	21.993	329.890	
*	*	5	2	20.543	308.140	
*	*	5	3	18.323	274.850	
						-
*	1	1	1	26.407	79.220	
*	1	1	2	22.883	68.650	
*	1	1	3	22.747	68.240	
*	1	2	1	25.213	75.640	
*	1	2	2	24.127	72.380	
*	1	2	3	22.473	67.420	
*	1	3	1	24.830	74.490	
*	1	3	2	24.500	73.500	
*	1	3	3	21.923	65.770	
*	1	4	1	23.630	70.890	
*	1	4	2	22.450	67.350	
*	1	4	3	22.343	67.030	
*	1	5	1	25.020	75.060	
*	1	5	2	23.663	70.990	
*	1	5	3	21.037	63.110	
*	2	1	1	25.040	75.120	
*	2	1	2	23.070	69.210	
*	2	1	3	20.427	61.280	
*	2	2	1	24.043	72.130	
*	2	2	2	21.053	63.160	
*	2	2	3	20.347	61.040	
*	2	3	1	23.690	71.070	
*	2	3	2	22.020	66.060	
*	2	3	3	20.553	61.660	
*	2	4	1	23.490	70.470	
*	2	4	2	21.260	63.780	
*	2	4	3	18.697	56.090	
*	2	5	1	22.020	66.060	

*	2	5	2	20.003	60.010
*	2	5	3	15.617	46.850
*	3	1	1	29.437	88.310
*	3	1	2	27.393	82.180
*	3	1	3	24.593	73.780
*	3	2	1	27.817	83.450
*	3	2	2	26.423	79.270
*	3	2	3	23.837	71.510
*	3	3	1	27.263	81.790
*	3	3	2	24.293	72.880
*	3	3	3	23.740	71.220
*	3	4	1	28.047	84.140
*	3	4	2	25.490	76.470
*	3	4	3	23.490	70.470
*	3	5	1	25.570	76.710
*	3	5	2	24.747	74.240
*	3	5	3	23.790	71.370
*	4	1	1	22.470	67.410
*	4	1	2	20.927	62.780
*	4	1	3	18.777	56.330
*	4	2	1	19.850	59.550
*	4	2	2	19.307	57.920
*	4	2	3	17.260	51.780
*	4	3	1	21.107	63.320
*	4	3	2	19.157	57.470
*	4	3	3	17.537	52.610
*	4	4	1	19.970	59.910
*	4	4	2	17.657	52.970
*	4	4	3	15.887	47.660
*	4	5	1	17.053	51.160
*	4	5	2	15.520	46.560
*	4	5	3	14.133	42.400
*	5	1	1	24.643	73.930
*	5	1	2	22.790	68.370
*	5	1	3	21.547	64.640
*	5	2	1	21.660	64.980
*	5	2	2	20.350	61.050
*	5	2	3	19.767	59.300
*	5	3	1	22.550	67.650
*	5	3	2	20.100	60.300
*	5	3	3	18.927	56.780

	* 5	4	1		21.817		65.450	
	* 5	4	2		19.597		58.790	
	* 5	4	3		17.883		53.650	
	* 5	5	1		20.300		60.900	
	* 5	5	2		18.780		56.340	
	* 5	5	3		17.040		51.120	
ANA	LYS	IS	O F	VARIZ	ANCE	ТАВ	LE	
K			Degr	ees of S	um of	Mean	F	
Value	Sour	ce	Fre	edom Sq	uares	Square	e Value	Prob
1 R	eplicat	ion	2	152.	629 7	6.314	9.3050	0.0002
2 F	actor A		4	1416.	805 35	4.201	43.1879	0.0000
4 F	actor E		4	255.	500 6	3.875	7.7883	0.0000
6	AB		16	75.	573	4.723	0.5759	
8 F	actor C		2	470.	739 23	5.369	28.6987	0.0000
10	AC		8	12.	873	1.609	0.1962	
12	BC		8	7.	193	0.899	0.1096	
14	ABC		32	44.	710	1.397	0.1704	
-15	Error		148	1213.	808	8.201		
	Total		224	3649.	828			
	Coeffic	ient	of Va	riation: 1	3.06%			
s_ fo	r means	grou	p 1:	0.3307	Numbe	r of Ol	bservations:	75
У								
s_ fo	r means	grou	p 2:	0.4269	Numbe	r of Ol	bservations:	45
У								
s_ fo	r means	grou	p 4:	0.4269	Numbe	r of Ol	bservations:	45
У								
s_ fo	r means	grou	p 6:	0.9546	Numbe	r of Ol	bservations:	9
У								
s_ fo	r means	grou	p 8:	0.3307	Numbe	r of Ol	bservations:	75
У								
s_ fo	r means	grou	p 10:	0.7394	Numbe	r of Ol	bservations:	15
У								
s_ fo	r means	grou	p 12:	0.7394	Numbe	r of Ol	bservations:	15
У								
s_ fo	r means	grou	p 14:	1.6534	Numbe	r of Ol	bservations:	3
У								

Variable 6: TR%

TABLE OF MEANS 1 4 2 3 6 Total 1 * * 16.492 1236.900 2 * * 17.774 1333.030 3 * * 17.634 1322.550 * 1 * * 16.990 764.560 * 2 * 17.519 788.360 * 3 * 17.202 774.080 * 3 * 17.315 779.170 * 1 * 18.440 829.800 * 2 * 18.040 811.820 * 1 * 18.440 829.800 * 2 * 18.040 811.820 * 3 * 17.252 776.340 * 4 * 16.827 757.210 * 4 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 1 * 16.460	Grand	Mea					Total Count = 225
1 * * 16.492 1236.900 2 * * * 17.774 1333.030 3 * * * 17.634 1322.550 * 1 * 16.990 764.560 * 2 * 17.519 788.360 * 3 * 17.474 786.310 * 4 * 17.202 774.080 * 5 * 17.315 779.170 * * 1 * 18.040 811.820 * 3 * 16.827 757.210 * * 1 1 17.693 159.240 * 3 * 17.311 155.800 * 1 3 * 17.311 155.800 * 1 * 19.368 174.310 * 2 * 17.828 160.450 * 2 * 17.828 160.450 * 2 * 18.524 166.70	1	4					Total
2 * * * 17.774 1333.030 3 * * 17.634 1322.550 * 1 * * 16.990 764.560 * 2 * * 17.634 1322.550 * 1 * * 16.990 764.560 * 2 * * 17.474 786.310 * 4 * 17.202 774.080 * 5 * 17.315 779.170 * 1 * 18.440 829.800 * 2 * 18.040 811.820 * 3 * 17.252 776.340 * 4 * 16.827 757.210 * 4 * 16.827 757.570 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 16.460 148.140 * 1 5<					·	· 	
3 * * 17.634 1322.550 * 1 * * 16.990 764.560 * 2 * * 17.519 788.360 * 3 * * 17.474 786.310 * 4 * * 17.202 774.080 * 5 * * 17.315 779.170 * * 1 * 18.440 829.800 * * 2 * 18.040 811.820 * * 3 * 17.252 776.340 * * 3 * 17.693 159.240 * * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 1 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4	1	*	*	*	16	5.492	1236.900
* 1 * * 16.990 764.560 * 2 * * 17.519 788.360 * 3 * * 17.474 786.310 * 4 * * 17.202 774.080 * 5 * * 17.315 779.170 * * 1 * 18.440 829.800 * * 2 * 18.040 811.820 * * 2 * 18.040 811.820 * * 3 * 17.252 776.340 * * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 2 1 * 19.368 174.310 *	2	*	*	*	17	.774	1333.030
* 2 * * 17.519 788.360 * 3 * * 17.474 786.310 * 4 * * 17.202 774.080 * 5 * * 17.315 779.170 * * 1 * 18.040 829.800 * 2 * 18.040 811.820 * 3 * 17.252 776.340 * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.298	3	*	*	*	17	7.634	1322.550
* 2 * * 17.519 788.360 * 3 * * 17.474 786.310 * 4 * * 17.202 774.080 * 5 * * 17.315 779.170 * * 1 * 18.040 829.800 * 2 * 18.040 811.820 * 3 * 17.252 776.340 * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.828	*		· *	*			764 560
* 3 * 17.474 786.310 * 4 * 17.202 774.080 * 5 * 17.315 779.170 * 5 * 17.315 779.170 * 1 * 18.440 829.800 * 2 * 18.040 811.820 * 3 * 17.252 776.340 * 4 * 16.827 757.210 * 4 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 3 * 17.411 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * <td>*</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	*	-					
* 4 * 17.202 774.080 * 5 * 17.315 779.170 * 5 * 17.315 779.170 * 1 * 18.440 829.800 * 2 * 18.040 811.820 * 3 * 17.252 776.340 * 4 * 16.827 757.210 * 4 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 1 5 * 15.979 143.810 * 2 1 <td>*</td> <td>_</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td>	*	_	*	*			
* 5 * 17.315 779.170 * * 1 * 18.440 829.800 * * 2 * 18.040 811.820 * * 3 * 17.252 776.340 * * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 1 * 19.368 174.310 * 2 3 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 *		-					
* 1 * 18.440 829.800 * 2 * 18.040 811.820 * 3 * 17.252 776.340 * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.298 155.680 * 2 3 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930	*	-	*	*			
* 2 * 18.040 811.820 * * 3 * 17.252 776.340 * * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.298 155.680 * 2 3 * 16.053 144.480 * 3 1 * 18.524 166.720 * 3 2 * 18.524 166.720 * 3 3 *					· ±		
* * 3 * 17.252 776.340 * * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 1 * 19.368 174.310 * 2 1 * 19.368 174.310 * 2 2 * 17.298 155.680 * 2 3 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 16.659 149.930 * 3 3 * 16.659 149.930 * 3 5	*	*	1	*	18	8.440	829.800
* * 4 * 16.827 757.210 * * 5 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 1 * 19.368 174.310 * 2 2 * 17.828 160.450 * 2 3 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 5	*	*	2	*	18	3.040	811.820
* * * 1 1 * 15.940 717.310 * 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 1 * 19.368 174.310 * 2 2 * 17.298 155.680 * 2 3 * 16.053 144.480 * 2 5 * 16.053 144.480 * 3 1 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 3 * 16.723 150.510 * 4 4 * 18.253 164.280 *	*	*	3	*	17	.252	776.340
* 1 1 * 17.693 159.240 * 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 1 * 19.368 174.310 * 2 2 * 17.298 160.450 * 2 3 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1	*	*	4	*	16	5.827	757.210
* 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.298 160.450 * 2 3 * 16.053 144.480 * 2 5 * 16.053 144.480 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 3	*	*	5	*	15	5.940	717.310
* 1 2 * 17.508 157.570 * 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.298 160.450 * 2 3 * 16.053 144.480 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 3 5 * 16.723 164.280 * 4 1 * 18.016 162.140 * 4 3							
* 1 3 * 17.311 155.800 * 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 1 * 19.368 174.310 * 2 2 * 17.828 160.450 * 2 3 * 17.298 155.680 * 2 3 * 16.053 144.480 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 3	*	1	1	*	17	7.693	159.240
* 1 4 * 16.460 148.140 * 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.828 160.450 * 2 3 * 17.298 155.680 * 2 4 * 16.053 144.480 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4	*	1	2	*	17	7.508	157.570
* 1 5 * 15.979 143.810 * 2 1 * 19.368 174.310 * 2 2 * 17.828 160.450 * 2 3 * 17.298 155.680 * 2 4 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3	*	1	3	*	17	.311	155.800
* 2 1 * 19.368 174.310 * 2 2 * 17.828 160.450 * 2 3 * 17.298 155.680 * 2 4 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	1	4	*	16	5.460	148.140
* 2 2 * 17.828 160.450 * 2 3 * 17.298 155.680 * 2 4 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 2 * 16.782 151.040	*	1	5	*	15	5.979	143.810
* 2 3 * 17.298 155.680 * 2 4 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 2 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	2	1	*	19	9.368	174.310
* 2 4 * 17.049 153.440 * 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	2	2	*	17	.828	160.450
* 2 5 * 16.053 144.480 * 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	2	3	*	17	.298	155.680
* 3 1 * 18.408 165.670 * 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	2	4	*	17	7.049	153.440
* 3 2 * 18.524 166.720 * 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	2	5	*	16	5.053	144.480
* 3 3 * 16.659 149.930 * 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	3	1	*	18	3.408	165.670
* 3 4 * 17.053 153.480 * 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	3	2	*	18	3.524	166.720
* 3 5 * 16.723 150.510 * 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	3	3	*	16	5.659	149.930
* 4 1 * 18.253 164.280 * 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	3	4	*	17	7.053	153.480
* 4 2 * 18.016 162.140 * 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	3	5	*	16	5.723	150.510
* 4 3 * 17.547 157.920 * 4 4 * 16.782 151.040	*	4	1	*	18	8.253	164.280
* 4 4 * 16.782 151.040	*	4	2	*	18	3.016	162.140
	*	4	3	*	17	.547	157.920
* 4 5 * 15.411 138.700	*	4	4	*	16	5.782	151.040
	*	4	5	*	15	5.411	138.700

*	5	1	*	18.478	166.300
*	5	2	*	18.327	164.940
*	5	3	*	17.446	157.010
*	5	4	*	16.790	151.110
*	5	5	*	15.534	139.810
*	*	*	1	16.475	1235.590
*	*	*	2	17.309	1298.180
*	*	*	3	18.116	1358.710
*	1	*	1	15.991	239.870
*	1	*	2	17.056	255.840
*	1	*	3	17.923	268.850
*	2	*	1	16.068	241.020
*	2	*	2	17.623	264.340
*	2	*	3	18.867	283.000
*	3	*	1	17.337	260.060
*	3	*	2	17.462	261.930
*	3	*	3	17.621	264.320
*	4	*	1	16.665	249.980
*	4	*	2	16.924	253.860
*	4	*	3	18.016	270.240
*	5	*	1	16.311	244.660
*	5	*	2	17.481	262.210
*	5	*	3	18.153	272.300
*	*	1	1	17.679	265.180
*	*	1	2	18.285	274.270
*	*	1	3	19.357	290.350
*	*	2	1	17.391	260.860
*	*	2	2	17.853	267.790
*	*	2	3	18.878	283.170
*	*	3	1	16.097	241.460
*	*	3	2	17.340	260.100
*	*	3	3	18.319	274.780
*	*	4	1	16.045	240.680
*	*	4	2	16.957	254.360
*	*	4	3	17.478	262.170
*	*	5	1	15.161	227.410
*	*	5	2	16.111	241.660
*	*	5	3	16.549	248.240

*	1	1	1	16.530	49.590
*	1	1	2	17.787	53.360
*	1	1	3	18.763	56.290
*	1	2	1	16.877	50.630
*	1	2	2	17.267	51.800
*	1	2	3	18.380	55.140
*	1	3	1	15.820	47.460
*	1	3	2	17.537	52.610
*	1	3	3	18.577	55.730
*	1	4	1	15.640	46.920
*	1	4	2	16.773	50.320
*	1	4	3	16.967	50.900
*	1	5	1	15.090	45.270
*	1	5	2	15.917	47.750
*	1	5	3	16.930	50.790
*	2	1	1	18.383	55.150
*	2	1	2	19.177	57.530
*	2	1	3	20.543	61.630
*	2	2	1	16.233	48.700
*	2	2	2	18.020	54.060
*	2	2	3	19.230	57.690
*	2	3	1	15.823	47.470
*	2	3	2	17.430	52.290
*	2	3	3	18.640	55.920
*	2	4	1	15.440	46.320
*	2	4	2	17.263	51.790
*	2	4	3	18.443	55.330
*	2	5	1	14.460	43.380
*	2	5	2	16.223	48.670
*	2	5	3	17.477	52.430
*	3	1	1	18.763	56.290
*	3	1	2	17.990	53.970
*	3	1	3	18.470	55.410
*	3	2	1	18.443	55.330
*	3	2	2	18.310	54.930
*	3	2	3	18.820	56.460
*	3	3	1	16.173	48.520
*	3	3	2	15.857	47.570
*	3	3	3	17.947	53.840
*	3	4	1	16.590	49.770

 * * *	5 5 5 5 5 5 5	5 5 5 A L	2 3 1 2 3 1 2 3 Y S I S	16.003 17.923 18.410 15.687 17.250 17.433 14.483 15.533 16.587 OFVARIANCE Sum of Mean	48.010 53.770 55.230 47.060 51.750 52.300 43.450 46.600 49.760 T A B L E
 * * * * * * *	5 5 5 5 5 5 5 5 5 5	3 3 4 4 5 5 5	1 2 3 1 2 3 1 2 3	17.923 18.410 15.687 17.250 17.433 14.483 15.533 16.587	48.010 53.770 55.230 47.060 51.750 52.300 43.450 46.600 49.760
* * * * * * *	5 5 5 5 5 5 5 5	3 3 4 4 4 5 5	1 2 3 1 2 3 1 2	17.923 18.410 15.687 17.250 17.433 14.483 15.533	48.010 53.770 55.230 47.060 51.750 52.300 43.450
* * * * * *	5 5 5 5 5 5 5	3 3 4 4 4 5	1 2 3 1 2 3 1	17.923 18.410 15.687 17.250 17.433	48.010 53.770 55.230 47.060 51.750 52.300
* * * *	5 5 5 5 5	3 3 3 4 4	1 2 3 1 2	17.923 18.410 15.687 17.250	48.010 53.770 55.230 47.060 51.750
* * *	5 5 5 5	3 3 3 4	1 2 3 1	17.923 18.410 15.687	48.010 53.770 55.230 47.060
* *	5 5 5	3 3 3	1 2 3	17.923 18.410	48.010 53.770 55.230
*	5 5	3 3	1 2	17.923	48.010 53.770
*	5	3	1		48.010
				16.003	
*	5	2	3		57.550
				19.330	57.990
*	5	2	2	18.163	54.490
*	5	2	1	17.487	52.460
*	5	1	3	19.007	57.020
*	5	1	2	18.533	55.600
*	4 5	1	1	17.893	53.680
*	4	5	3	15.800	47.400
*	4	5	2	15.380	46.140
*	4 4	4 5	3 1	17.630 15.053	45.160
*	4	4 4	2 3	15.847	47.540 52.890
	4	4	1	16.870	50.610
*	4	3	3	18.020	54.060
*	4	3	2	17.953	53.860
*	4	3	1	16.667	50.000
*	4	2	3	18.630	55.890
*	4	2	2	17.503	52.510
*	4	2	1	17.913	53.740
*	4	1	3	20.000	60.000
*	4	1	2	17.937	53.810
*	4	1	1	16.823	50.470
*	3	5	3	15.953	47.860
*	3	5	2	17.500	52.500
*	3	5	1	16.717	50.150
*	3	4	3	16.917	50.750

2	Factor	A	4		8.278	2.07	70 0	.9680)
4	Factor	В	4	17	6.535	44.13	34 20	.6430	6 0.0000
6	AB		16	2	6.765	1.6	73 0	.7825	ō
8	Factor	С	2	10	1.066	50.53	33 23	.6369	9 0.0000
10	AC		8	2	8.121	3.51	15 1	.6442	2 0.1170
12	BC		8		6.054	0.75	57 0	.3540	C
14	ABC		32	2	5.994	0.81	L2 0	.3800	C
-15	Erro	r	148	31	6.408	2.13	38		
	Total		224	76	3.384				
			of Varia						
						1	Number	of (Observations:75
	у								
	s_ for	means	group 2	:	0.2180	1	Jumber	of (Observations:45
	У								
	s_ for	means	group 4	:	0.2180	1	Number	of (Observations:45
	У								
	s_ for	means	group 6	:	0.4874	1	Number	of (Observations: 9
	У								
	s_ for	means	group 8	:	0.1688	1	Jumber	of (Observations:75
	У				0 0775		T]		
	—	eans	group 10	:	0.3775	Ľ	Numper	OI (Observations:15
	y s for m	eans (aroun 12		0 3775	٦	Jumber	of	Observations:15
	у	cans .	group iz	•	0.3773	1	VUINDEL	01 (JJJSCI Vacions.13
	s for m	eans	group 14	:	0.8442	1	Number	of (Observations: 3
	— У		5 1						
Varia	ble 7: TC (F)							
	Grand M	iean =	5.013	Gran	d Sum =	1127.83	30 то	otal	Count = 225
			ТАВ	LΕ	OF 1	MEAN	S		
	1 4	2	3			7		Tot	tal
	1 *	*	*		4.	747		356	.000
		*			5.	264		394.	.780
	-	*				027		377.	.050
		*	 *			 058			.600
	-	*				110			
	_	*				342		240	
	-	*				667			.010
	-					-		_ • •	-

*	5	*	*	4.886	219.880
*	*	1	*	5.287	237.920
*	*	2	*	5.120	230.390
*	*	3	*	5.021	225.940
*	*	4	*	4.917	221.260
*	*	5	*	4.718	212.320
*		1	*	5.266	47.390
*	1		*	5.200	46.800
*	1	3	*	5.191	46.720
*	1	4	*	4.952	44.570
*	1	5	*	4.680	42.120
*	2	1	*	5.277	47.490
*	2	2	*	5.293	47.640
*	2	3	*	5.006	45.050
*	2	4	*	4.982	44.840
*	2	5	*	4.992	44.930
*	3	1	*	5.706	51.350
*	3	1 2	*	5.516	
*	3	2	*		49.640
				5.230	47.070
*	3	4	*	5.146	46.310
*	3	5	*	5.113	46.020
*	4		*	5.000	45.000
*	4	2	*	4.687	42.180
*	4	3	*	4.739	42.650
*	4	4	*	4.668	42.010
*	4	5	*	4.241	38.170
*	5	1	*	5.188	46.690
*	5	2	*	4.903	44.130
*	5	3	*	4.939	44.450
*		4	*	4.837	43.530
*	5	5	*	4.564	41.080
*	*	*	1	4.638	347.880
*	*	*	2	5.029	377.140
*	*	*	3	5.371	402.810
 +		· +		4 000	70 440
*	1	*	1	4.829	72.440
*		*	2	5.062	75.930
*	1	*	3	5.282	79.230

*	2	*	1	4.680	70.200
*	2	*	2	5.173	77.590
*	2	*	3	5.477	82.160
*	3	*	1	5.029	75.440
*	3	*	2	5.301	79.520
*	3	*	3	5.695	85.430
*	4	*	1	4.228	63.420
*	4	*	2	4.664	69.960
*	4	*	3	5.109	76.630
*	5	*	1	4.425	66.380
*	5	*	2	4.943	74.140
*	5	*	3	5.291	79.360
*	*	1	1	4.844	72.660
*	*	1	2	5.331	79.970
*	*	1	3	5.686	85.290
*	*	2	1	4.773	71.600
*	*	2	2	5.075	76.130
*	*	2	3	5.511	82.660
*	*	3	1	4.662	69.930
*	*	3	2	5.008	75.120
*	*	3	3	5.393	80.890
*	*	4	1	4.496	67.440
*	*	4	2	4.993	74.890
*	*	4	3	5.262	78.930
*	*	5	1	4.417	66.250
*	*	5	2	4.735	71.030
*	*	5	3	5.003	75.040
*	1	1	1	4.933	14.800
*	1	1	2	5.293	15.880
*	1	1	3	5.570	16.710
*	1	2	1	4.947	14.840
*	1	2	2	5.183	15.550
*	1	2	3	5.470	16.410
*	1	3	1	5.097	15.290
*	1	3	2	5.057	15.170
*	1	3	3	5.420	16.260
*	1	4	1	4.757	14.270
*	1	4	2	5.007	15.020
*	1	4	3	5.093	15.280

*	1	5	1	4.413	13.240
*	1	5	2	4.770	14.310
*	1	5	3	4.857	14.570
*	2	1	1	4.787	14.360
*	2	1	2	5.303	15.910
*	2	1	3	5.740	17.220
*	2	2	1	4.970	14.910
*	2	2	2	5.343	16.030
*	2	2	3	5.567	16.700
*	2	3	1	4.363	13.090
*	2	3	2	5.183	15.550
*	2	3	3	5.470	16.410
*	2	4	1	4.523	13.570
*	2	4	2	5.083	15.250
*	2	4	3	5.340	16.020
*	2	5	1	4.757	14.270
*	2	5	2	4.950	14.850
*	2	5	3	5.270	15.810
*	3	1	1	5.590	16.770
*	3	1	2	5.680	17.040
*	3	1	3	5.847	17.540
*	3	2	1	5.157	15.470
*	3	2	2	5.460	16.380
*	3	2	3	5.930	17.790
*	3	3	1	4.920	14.760
*	3	3	2	5.153	15.460
*	3	3	3	5.617	16.850
*	3	4	1	4.610	13.830
*	3	4	2	5.260	15.780
*	3	4	3	5.567	16.700
*	3	5	1	4.870	14.610
*	3	5	2	4.953	14.860
*	3	5	3	5.517	16.550
*	4	1	1	4.597	13.790
*	4	1	2	4.903	14.710
*	4	1	3	5.500	16.500
*	4	2	1	4.073	12.220
*	4	2	2	4.563	13.690
*	4	2	3	5.423	16.270
*	4	3	1	4.323	12.970
*	4	3	2	4.703	14.110

			2	2					
	*	4	3	3	5.19		15.570		
	*	4	4	1	4.29		12.890		
	*	4	4	2	4.78		14.360		
	*	4	4	3	4.92		14.760		
	*	4	5	1	3.85		11.550		
	*	4	5	2	4.36		13.090		
	*	4	5	3	4.51	.0	13.530		
	*	5	1	1	4.31	.3	12.940		
	*	5	1	2	5.47	7	16.430		
	*	5	1	3	5.77	3	17.320		
	*	5	2	1	4.72	20	14.160		
	*	5	2	2	4.82	27	14.480		
	*	5	2	3	5.16	53	15.490		
	*	5	3	1	4.60	7	13.820		
	*	5	3	2	4.94	3	14.830		
	*	5	3	3	5.26	57	15.800		
	*	5	4	1	4.29	3	12.880		
	*	5	4	2	4.82	27	14.480		
	*	5	4	3	5.39	0	16.170		
	*	5	5	1	4.193 1			12.580	
	*	5	5	2	4.64	0	13.920		
	*	5	5	3	4.86	50	14.580		
		A N	AL	YSIS	OF VAR	RIANCE	ТАВЬН	£	
K]	Degrees of	f Sum of	Mean	F		
Valı	ue S	ource			Squares				
1	Repl	icat:	ion		10.050				
2	Fact	or A		4	11.498	2.875	21.2472	0.0000	
4	Facto	rВ		4	8.223	2.056	15.1946	0.0000	
6	AB			16	1.687	0.105	0.7792		
8	Facto	r C		2	20.144	10.072	74.4458	0.0000	
10	AC			8	1.118	0.140	1.0331	0.4138	
	BC			8	0.459	0.057	0.4239		
12		С		32	2.950	0.092	0.6813		
12 14	AB			1.0	20.023	0.135			
14									

```
У
```

s_	for means	group	2:	0.0548	Number	of	Observations:	45
У								
s_	for means	group	4:	0.0548	Number	of	Observations:	45
7	7							
s_	for means	group	6:	0.1226	Number	of	Observations:	9
У								
s_	for means	group	8:	0.0425	Number	of	Observations:	75
У								
s_	for means	group	10:	0.0950	Number	of	Observations:	15
У								
s_	for means	group	12:	0.0950	Number	of	Observations:	15
У								
s_	for means	group	14:	0.2124	Number	of	Observations:	3
У								

Variable 8: BR%

Gra	and	Mean		24.	.52	15		Gra	nd	Sum	=	55	515.	980	Total Count = 225
				Т	Α	В	L	Ε	0	F	М	Ε	A N	S	
-	1	4	2	3						8					Total
-	1	*	*	*						25	.83	35			1937.610
2	2	*	*	*						24	.35	50			1826.230
	3	*	*	*						23	.36	52			1752.140
ر	*	1	*	*						27	.45	54			1235.430
ر	*	2	*	*						23	.09	98			1039.400
7	*	3	*	*						25	.30)1			1138.550
7	*	4	*	*						22	.14	10			996.280
7	*	5	*	*						24	.58	35			1106.320
7	*	*	1	*						26	. 42	28			1189.250
7	*	*	2	*						25	.13	37			1131.160
۲	*	*	3	*						24	.30	06			1093.750
۲	*	*	4	*						23	.97	73			1078.780
ر	*	*	5	*						22	.73	34			1023.040
۲	*	1	1	*						29	.59	98			266.380
ر	*	1	2	*						28	.00)4			252.040
ر	*	1	3	*						26	.95	58			242.620
ر	*	1	4	*						27	.35	57			246.210
7	*	1	5	*						25	.35	53			228.180
ر	*	2	1	*						25	.40)2			228.620

	*	2	2	*	23.380	210.420
	*	2	3	*	23.323	209.910
	*	2	4	*	22.409	201.680
	*	2	5	*	20.974	188.770
	*	3	1	*	26.587	239.280
	*	3	2	*	25.992	233.930
	*	3	3	*	25.568	230.110
	*	3	4	*	24.604	221.440
	*	3	5	*	23.754	213.790
	*	4	1	*	25.008	225.070
	*	4	2	*	23.100	207.900
	*	4	3	*	20.936	188.420
	*	4	4	*	20.939	188.450
	*	4	5	*	20.716	186.440
	*	5	1	*	25.544	229.900
	*	5	2	*	25.208	226.870
	*	5	3	*	24.743	222.690
	*	5	4	*	24.556	221.000
	*	5	5	*	22.873	205.860
-	*	*	*	1	26.592	1994.430
	*	*	*	2	24.523	1839.190
	*	*	*	3	22.431	1682.360
-	*	1	*	1	29.223	438.350
	*	1	*	2	27.565	413.470
	*	1	*	3	25.574	383.610
	*	2	*	1	26.073	391.090
	*	2	*	2	22.971	344.570
	*	2	*	3	20.249	303.740
	*	3	*	1	26.887	403.300
	*	3	*	2	25.575	383.620
	*	3	*	3	23.442	351.630
	*	4	*	1	24.006	360.090
	*	4	*	2	22.356	335.340
	*	4	*	3	20.057	300.850
	*	5	*	1	26.773	401.600
	*	5	*	2	24.146	362.190
	*	5	*	3	22.835	342.530
-	*	*	1	1	28.440	426.600

*	*	1	2	26.063	390.940
*	*	1	3	24.781	371.710
*	*	2	1	27.581	413.720
*	*	2	2	25.103	376.550
*	*	2	3	22.726	340.890
*	*	3	1	26.351	395.270
*	*	3	2	24.822	372.330
*	*	3	3	21.743	326.150
*	*	4	1	25.721	385.820
*	*	4	2	23.760	356.400
*	*	4	3	22.437	336.560
*	*	5	1	24.868	373.020
*	*	5	2	22.865	342.970
*	*	5	3	20.470	307.050
*	1	1	1	31.670	95.010
*	1	1	2	29.390	88.170
*	1	1	3	27.733	83.200
*	1	2	1	30.093	90.280
*	1	2	2	28.590	85.770
*	1	2	3	25.330	75.990
*	1	3	1	29.080	87.240
*	1	3	2	27.243	81.730
*	1	3	3	24.550	73.650
*	1	4	1	28.047	84.140
*	1	4	2	27.227	81.680
*	1	4	3	26.797	80.390
*	1	5	1	27.227	81.680
*	1	5	2	25.373	76.120
*	1	5	3	23.460	70.380
*	2	1	1	28.910	86.730
*	2	1	2	24.190	72.570
*	2	1	3	23.107	69.320
*	2	2	1	27.087	81.260
*	2	2	2	22.080	66.240
*	2	2	3	20.973	62.920
*	2	3	1	25.293	75.880
*	2	3	2	24.233	72.700
*	2	3	3	20.443	61.330
*	2	4	1	25.460	76.380
*	2	4	2	22.267	66.800

*	2	4	3	19.500	58.500
*	2	5	1	23.613	70.840
*	2	5	2	22.087	66.260
*	2	5	3	17.223	51.670
*	3	1	1	26.467	79.400
*	3	1	2	26.563	79.690
*	3	1	3	26.730	80.190
*	3	2	1	29.013	87.040
*	3	2	2	26.657	79.970
*	3	2	3	22.307	66.920
*	3	3	1	27.557	82.670
*	3	3	2	25.647	76.940
*	3	3	3	23.500	70.500
*	3	4	1	25.587	76.760
*	3	4	2	24.767	74.300
*	3	4	3	23.460	70.380
*	3	5	1	25.810	77.430
*	3	5	2	24.240	72.720
*	3	5	3	21.213	63.640
*	4	1	1	27.363	82.090
*	4	1	2	24.767	74.300
*	4	1	3	22.893	68.680
*	4	2	1	24.183	72.550
*	4	2	2	23.457	70.370
*	4	2	3	21.660	64.980
*	4	3	1	22.837	68.510
*	4	3	2	21.633	64.900
*	4	3	3	18.337	55.010
*	4	4	1	23.010	69.030
*	4	4	2	21.347	64.040
*	4	4	3	18.460	55.380
*	4	5	1	22.637	67.910
*	4	5	2	20.577	61.730
*	4	5	3	18.933	56.800
*	5	1	1	27.790	83.370
*	5	1	2	25.403	76.210
*	5	1	3	23.440	70.320
*	5	2	1	27.530	82.590
*	5	2	2	24.733	74.200
*	5	2	3	23.360	70.080
*	5	3	1	26.990	80.970

	*	5	3	2	25.353	76.060
	*	5	3	3	21.887	65.660
	*	5	4	1	26.503	79.510
	*	5	4	2	23.193	69.580
	*	5	4	3	23.970	71.910
	*	5	5	1	25.053	75.160
	*	5	5	2	22.047	66.140
	*	5	5	3	21.520	64.560
_						

	ANA	LYSIS	S OF VA	RIANCE	TABLE	
K		Degrees d	of Sum of	Mean	F	
Valu	le Source	Freedom	Squares	Square	Value	Prob
1	Replicatior	n 2	232.418	116.209	14.7266	0.0000
2	Factor A	4	761.032	190.258	24.1106	0.0000
4	Factor B	4	339.947	84.987	10.7700	0.0000
6	AB	16	50.676	3.167	0.4014	
8	Factor C	2	649.257	324.628	41.1388	0.0000
10	AC	8	34.948	4.368	0.5536	
12	BC	8	23.614	2.952	0.3741	
14	ABC	32	81.448	2.545	0.3225	
-15	Error	148	1167.877	7.891		
	Total	224	3341.217			
	Coefficient	c of Varia	ation: 11.46%			
s_ f	for means gro	oup 1:	0.3244	Number of	Observations:	75
У						
s_ f	for means gro	oup 2:	0.4188	Number of	Observations:	45
У						
s_ f	for means gro	oup 4:	0.4188	Number of	Observations:	45

s_ for means group 6: 0.9364 Number of Observations: 9

s_ for means group 8: 0.3244 Number of Observations: 75

s_ for means group 10: 0.7253 Number of Observations: 15

s_ for means group 12: 0.7253 Number of Observations: 15

s_ for means group 14: 1.6218 Number of Observations: 3

У

У

У

У

У

У

Variable 9: Taster A

Grand	Mea	an =											Tota	1 (Сс	oun	t =	= 2	25
				ΑB	L	Ε	С) F			ΑN	S							
1	4	2	3						9) 			Tota	al 					
1	*	*	*					ц)	5.2	200			4140.0	00	0				
2	*	*	*					7	1.9	07			5393.0	000	0				
3	*	*	*					8	81.4	93			6112.0	000	0				
*	1	*	*						0.2	22			3160.0	000	0				
*	2	*	*					7	5.0	22			3376.0	000	0				
*	3	*	*					6	53.4	67			2856.0	00	0				
*	4	*	*					7	0.2	22			3160.0	000	0				
*	5	*	*						58.7										
*	*	1	*										3843.0						
*	*	2	*					7	5.0	89			3379.0	000	0				
*	*	3	*					7	1.2	200			3204.0						
*	*	4	*					5	9.9	56			2698.0						
*	*	5	*					ц)	6.0	22			2521.0	000	0				
*	 1		*						80.8	 889			728.0	000	 0				
*	1	2	*						4.1				667.0						
*	1	3	*						1.4				643.0						
*	1	4	*						52.7				565.0						
*	1	5	*						51.8				557.0						
*	2	1	*)0.3				813.0						
*	2	2	*						6.7				691.0						
*	2	3	*						1.2				641.0						
*	2	4	*						59.5				626.0						
*	2	5	*						57.2				605.0						
*	3	1	*						2.5				653.0						
*	3	2	*						2.3 51.3				552.0						
*	3	3	*						52 . 1				559.0						
*	3	4	*						59.3				534.0						
*	3	5	*						52.0				558.0						
*	4	1	*						97.3				876.0						
*	4	2	*						87.7				790.0						
*	4	3	*						8.0				702.0						
*	4	4	*						50.2				452.0						
*	4	5	*					3	37.7	78 7			340.0	000	0				

*	5	1	*	85.889	773.000
*	5	2	*	75.444	679.000
*	5	3	*	73.222	659.000
*	5	4	*	57.889	521.000
*	5	5	*	51.222	461.000
*	*	*	1	83.760	6282.000
*	*	*	2	69.320	5199.000
*	*	*	3	55.520	4164.000
*	1	*	1	86.467	1297.000
*		*	2		1064.000
*		*	3	53.267	799.000
*	2	*	1	94.200	1413.000
*	2	*	2	72.400	1086.000
*	2	*	3	58.467	877.000
*	0	*	1	72.133	1082.000
*	3	*	2	62.867	943.000
*	3	*	3	55.400	831.000
*	4	*	1	87.067	1306.000
*	4	*	2	69.067	1036.000
*	4	*	3	54.533	818.000
*	5	*	1	78.933	1184.000
*	5	*	2	71.333	1070.000
*	5	*	3	55.933	839.000
*	*			101 722	1506 000
*	*	1	1	101.733	1526.000
*	*	1	2	85.667	1285.000
*	*	1 2	3	68.800	1032.000
*	*	2	1 2	88.933 75.733	1334.000 1136.000
*	*		2 3		
*	*	2		60.600	909.000
*	*	3 3	1	88.867	1333.000
*	*	3	2	68.267	1024.000
	*		3	56.467	847.000
*		4	1	74.067	1111.000
	*	4	2	59.200	888.000
*	*	4	3	46.600	699.000
*	*	5	1	65.200	978.000
*	*	5	2	57.733	866.000
*	*	5	3	45.133	677.000

*	1	1	1	103.667	311.000
*	1	1	2	77.667	233.000
*	1	1	3	61.333	184.000
*	1	2	1	90.333	271.000
*	1	2	2	72.333	217.000
*	1	2	3	59.667	179.000
*	1	3	1	84.333	253.000
*	1	3	2	77.667	233.000
*	1	3	3	52.333	157.000
*	1	4	1	76.333	229.000
*	1	4	2	62.333	187.000
*	1	4	3	49.667	149.000
*	1	5	1	77.667	233.000
*	1	5	2	64.667	194.000
*	1	5	3	43.333	130.000
*	2	1	1	104.667	314.000
*	2	1	2	93.667	281.000
*	2	1	3	72.667	218.000
*	2	2	1	98.000	294.000
*	2	2	2	70.333	211.000
*	2	2	3	62.000	186.000
*	2	3	1	94.000	282.000
*	2	3	2	63.333	190.000
*	2	3	3	56.333	169.000
*	2	4	1	95.667	287.000
*	2	4	2	71.000	213.000
*	2	4	3	42.000	126.000
*	2	5	1	78.667	236.000
*	2	5	2	63.667	191.000
*	2	5	3	59.333	178.000
*	3	1	1	92.667	278.000
*	3	1	2	70.667	212.000
*	3	1	3	54.333	163.000
*	3	2	1	71.333	214.000
*	3	2	2	64.333	193.000
*	3	2	3	48.333	145.000
*	3	3	1	77.667	233.000
*	3	3	2	54.667	164.000
*	3	3	3	54.000	162.000
*	3	4	1	64.667	194.000

					Squares			
K	-				Sum of			Ξ.
		A N	A L	YSIS	OF VARI	ANCE	ΤΑΒΙΕ	
	*	5		3	35.667		107.000	
		5						
	*			1				
	*		4					
	*	-		2			175.000	
	*			1	74.333		223.000	
	*			3	62.333		187.000	
	*			2	73.000		219.000	
	*		3	1	84.333		253.000	
	*	5	2	3	65.667		197.000	
	*	5	2	2	85.667		257.000	
	*	5	2	1	75.000		225.000	
	*	5	1	3	75.000		225.000	
	*	5	1	2	82.333		247.000	
	*	5	1	1	100.333		301.000	
	*	4	5	3	27.333		82.000	
	*	4	5	2	31.333		94.000	
	*	4	5	1	54.667		164.000	
	*	4	4	3	40.000		120.000	
	*	4	4	2	51.333		154.000	
	*	4	4	1	59.333		178.000	
	*	4	3	3	57.333		172.000	
	*	4	3	2	72.667		218.000	
	*	4	3	1	104.000		312.000	
	*	4	2	3	67.333		202.000	
	*	4	2	2	86.000		258.000	
	*	4	1 2	1	110.000		330.000	
	*	4	1	3	80.667		242.000	
	*	4	1	2	104.000		312.000	
	*	4	1	1	107.333		322.000	
	*	3	5	3	60.000		180.000	
	*	3	5	2	71.667		215.000	
	*	3 3	4 5	3 1	60.333 54.333		181.000 163.000	
					60 333			

3083.467 770.867 1.3180 0.2659 2 Factor A 4 4 25185.467 6296.367 10.7655 0.0000 4 Factor B 6 AB 701.928 16 11230.844 1.2002 0.2743 29911.280 14955.640 25.5712 0.0000 2 8 Factor C 10 AC 8 2294.053 286.757 0.4903 12 BC 8 1078.720 134.840 0.2305 14 ABC 32 5749.502 179.672 0.3072 -15 Error 86559.760 148 584.863 _____ 224 191652.000 Total _____ Coefficient of Variation: 34.78% s_ for means group 1: 2.7925 Number of Observations: 75 У s_ for means group 2: 3.6051 Number of Observations: 45 V s for means group 4: 3.6051 Number of Observations: 45 y s_ for means group 6: 8.0613 Number of Observations: 9 У s_ for means group 8: 2.7925 Number of Observations: 75 У s for means group 10: 6.2443 Number of Observations: 15 У s_ for means group 12: 6.2443 Number of Observations: 15 У s_ for means group 14: 13.9626 Number of Observations: 3 V

Variable 10: Taster B

Grand	Mea	an =	19.24	17	Grand	Sum	1 = 4330.482	2 Total Count = 225
			Т А	ΒL	E O	F	MEANS	
1	4	2	3				10	Total
1	*	*	*			19	.725	1479.349
2	*	*	*			19	0.034	1427.573
3	*	*	*			18	8.981	1423.560
*	1	*	*			20	.156	907.000
*	2	*	*			19	.206	864.270
*	3	*	*			18	8.400	828.000
*	4	*	*			19	0.061	857.725
							71	

*	5	*	*	19.411	873.487
*	*	1	*	20.110	904.950
*	*	2	*	19.623	883.045
*	*	3	*	19.303	868.623
*	*	4	*	18.844	848.000
*	*	5	*	18.353	825.863
*	1	1	*	21.000	189.000
*	1	2	*	20.889	188.000
*	1	3	*	19.889	179.000
*	1	4	*	19.778	178.000
*	1	5	*	19.222	173.000
*	2	1	*	20.106	180.950
*	2	2	*	19.258	173.320
*	2	3	*	19.111	172.000
*	2	4	*	18.889	170.000
*	2	5	*	18.667	168.000
*	3	1	*	19.222	173.000
*	3	2	*	18.889	170.000
*	3	3	*	18.778	169.000
*	3	4	*	17.778	160.000
*	3	5	*	17.333	156.000
*	4	1	*	19.778	178.000
*	4	2	*	19.303	173.725
*	4	3	*	19.111	172.000
*	4	4	*	19.000	171.000
*	4	5	*	18.111	163.000
*	5	1	*	20.444	184.000
*	5	2	*	19.778	178.000
*	5	3	*	19.625	176.623
*	5	4	*	18.778	169.000
*	5	5	*	18.429	165.863
*	*	*	1	20.350	1526.230
*	*	*	2	19.260	1444.480
*	*	*	3	18.130	1359.772
*		*	1	21.333	320.000
*	1	*	2	20.000	300.000
*	1	*	3	19.133	287.000
	-		0		

*	2	*	1	20.215	303.230	
*	2	*	2	19.232	288.480	
*	2	*	3	18.171	272.560	
*	3	*	1	19.533	293.000	
*	3	*	2	18.333	275.000	
*	3	*	3	17.333	260.000	
*	4	*	1	19.933	299.000	
*	4	*	2	19.333	290.000	
*	4	*	3	17.915	268.725	
*	5	*	1	20.733	311.000	
*	5	*	2	19.400	291.000	
*	5	*	3	18.099	271.487	
*	*	1	1	21.394	320.910	
*	*	1	2	19.899	298.480	
*	*	1	3	19.037	285.560	
*	*	2	1	20.955	314.320	
*	*	2	2	19.600	294.000	
*	*	2	3	18.315	274.725	
*	*	3	1	20.400	306.000	
*	*	3	2	19.533	293.000	
*	*	3	3	17.975	269.623	
*	*	4	1	19.733	296.000	
*	*	4	2	18.867	283.000	
*	*	4	3	17.933	269.000	
*	*	5	1	19.267	289.000	
*	*	5	2	18.400	276.000	
*	*	5	3	17.391	260.863	
						•
*	1	1	1	22.667	68.000	
*	1	1	2	20.667	62.000	
*	1	1	3	19.667	59.000	
*	1	2	1	22.333	67.000	
*	1	2	2	20.667	62.000	
*	1	2	3	19.667	59.000	
*	1	3	1	21.333	64.000	
*	1	3	2	20.000	60.000	
*	1	3	3	18.333	55.000	
*	1	4	1	20.333	61.000	
*	1	4	2	19.333	58.000	
*	1	4	3	19.667	59.000	

*	1	5	1	20.000	60.000
*	1	5	2	19.333	58.000
*	1	5	3	18.333	55.000
*	2	1	1	21.637	64.910
*	2	1	2	20.160	60.480
*	2	1	3	18.520	55.560
*	2	2	1	20.773	62.320
*	2	2	2	19.000	57.000
*	2	2	3	18.000	54.000
*	2	3	1	19.667	59.000
*	2	3	2	19.333	58.000
*	2	3	3	18.333	55.000
*	2	4	1	19.667	59.000
*	2	4	2	18.667	56.000
*	2	4	3	18.333	55.000
*	2	5	1	19.333	58.000
*	2	5	2	19.000	57.000
*	2	5	3	17.667	53.000
*	3	1	1	20.333	61.000
*	3	1	2	18.667	56.000
*	3	1	3	18.667	56.000
*	3	2	1	20.000	60.000
*	3	2	2	19.000	57.000
*	3	2	3	17.667	53.000
*	3	3	1	19.667	59.000
*	3	3	2	18.667	56.000
*	3	3	3	18.000	54.000
*	3	4	1	19.000	57.000
*	3	4	2	18.333	55.000
*	3	4	3	16.000	48.000
*	3	5	1	18.667	56.000
*	3	5	2	17.000	51.000
*	3	5	3	16.333	49.000
*	4	1	1	20.667	62.000
*	4	1	2	20.000	60.000
*	4	1	3	18.667	56.000
*	4	2	1	20.333	61.000
*	4	2	2	19.667	59.000
*	4	2	3	17.908	53.725
*	4	3	1	20.333	61.000
*	4	3	2	19.667	59.000

s_ f						342	Numbe	r of Observa	tions: 75
						: 6.04%			
					60				
							1.352		
14	ABC			32	2	0.078	0.627	0.4642	
12	BC			8		6.244	0.780	0.5774	
10	AC			8		4.145	0.518	0.3834	
					18	4.742	92.371	68.3408	0.0000
	AB						0.544		
	Factor							15.4113	
	Factor							13.3686	
1	Replic	atic	on	2		 5.818	12.909	9.5509	0.0001
Valu	ie S	Sourd	ce	Free	edom	Squares	Square	Value	Prob
K				Degree			Mean		
		A N						E TABL	E
	*	5	5	3		17.2		51.863	
	*	5	5	2		18.0		56.000	
	*	5	5	1		19.3		58.000	
	*	5	4	3		17.3		52.000	
	*	5	4	2		18.0		56.000	
	*	5	4	1		20.3		61.000	
	*	5	з З	∠ 3		17.8		60.000 53.623	
	*	э 5	3 3	1 2		21.0 20.0			
	*	5 5	2 3	3 1		18.3		55.000 63.000	
	*	5	2	2		19.6		59.000	
	*	5	2	1		21.3		64.000	
	*	5	1	3		19.0		59.000	
	*	5	1	2		20.0		60.000	
	*	5	1	1		21.0		65.000	
	*	4	5	3		17.3		52.000	
	*	4	5	2		18.0		54.000	
	*	4	5	1		19.0		57.000	
	*	4	4	3		18.3	333	55.000	
	*	4	4	2		19.3	333	58.000	
	*	4	4	1		19.3	333	58.000	
	*	4	3	3		17.3	333	52.000	

У s for means group 2: 0.1733 Number of Observations: 45 У s for means group 4: 0.1733 Number of Observations: 45 У s_ for means group 6: 0.3875 Number of Observations: 9 y s for means group 8: 0.1342 Number of Observations: 75 У s for means group 10: 0.3002 Number of Observations: 15 У s for means group 12: 0.3002 Number of Observations: 15 У s for means group 14: 0.6712 Number of Observations: 3 y

Variable 11: Yield

Grand Mean = 3978.889 Grand Sum = 895250.000 Total Count = 225 TABLE OF MEANS 1 4 2 3 11 Total _____ 1 * * * 3989.333 299200.000 2 * * * 3981.093 298582.000 3 * * * 3966.240 297468.000 _____ * 1 * * 4355.644 196004.000 2 * * * 154241.000 3427.578 3 * * 4531.867 203934.000 * 4 * * 4449.400 200223.000 * 5 * * 3129.956 140848.000 _____ _____ * 1 * 2731.622 122923.000 * * 2 * 3794.956 170773.000 * * 3 * 4372.044 196742.000 * 4507.200 * * 4 * 202824.000 * 5 * * 4488.622 201988.000 _____ * 1 1 * 3278.778 29509.000 * 1 2 * 4192.111 37729.000 1 3 * 4834.556 * 43511.000 1 4 * 4875.444 43879.000 * 1 5 * 4597.333 41376.000 * 2 1 * 20909.000 2323.222

*	2	2	*	3334.778	30013.000
*	2	3	*	3903.222	35129.000
*	2	4	*	3808.778	34279.000
*	2	5	*	3767.889	33911.000
*	3	1	*	3438.444	30946.000
*	3	2	*	4438.000	39942.000
*	3	3	*	4965.000	44685.000
*	3	4	*	4803.333	43230.000
*	3	5	*	5014.556	45131.000
*	4	1	*	2936.111	26425.000
*	4	2	*	4215.667	37941.000
*	4	3	*	4604.444	41440.000
*	4	4	*	5275.889	47483.000
*	4	5	*	5214.889	46934.000
*	5	1	*	1681.556	15134.000
*	5	2	*	2794.222	25148.000
*	5	3	*	3553.000	31977.000
*	5	4	*	3772.556	33953.000
*	5	5	*	3848.444	34636.000
*	*	*	1	3900.733	292555.000
	*		_	3942.027	295652.000
*	*	*	3	4093.907	307043.000
				·	
*		*		4443.333	
*	_	*	_	4316.733	
*	1	*	3	4306.867	64603.000
*	2	*	1	3217.133	48257.000
*	2	*	_	3199.267	47989.000
*	2	*	Ũ	3866.333	57995.000
*	3	*	1		64232.000
*	3	*	_	4621.733	69326.000
*	3	*	3	4691.733	70376.000
*	4	*	1	4572.533	68588.000
*	4	*	_	4395.333	65930.000
*	4	*	3		65705.000
*	5	*		2988.533	
*	Ũ	*		3177.067	
*	5	*	3	3224.267	48364.000
*	*	1	1	2786.667	

	*	*	1	2	2659.400	39891.000
	*	*	1	3	2748.800	41232.000
	*	*	2	1	3673.867	55108.000
	*	*	2	2	3789.733	56846.000
	*	*	2	3	3921.267	58819.000
	*	*	3	1	4298.400	64476.000
	*	*	3	2	4372.400	65586.000
	*	*	3	3	4445.333	66680.000
	*	*	4	1	4328.867	64933.000
	*	*	4	2	4476.867	67153.000
	*	*	4	3	4715.867	70738.000
	*	*	5	1	4415.867	66238.000
	*	*	5	2	4411.733	66176.000
	*	*	5	3	4638.267	69574.000
-						
	*	1	1	1	3751.333	11254.000
	*	1	1	2	3101.333	9304.000
	*	1	1	3	2983.667	8951.000
	*	1	2	1	4098.000	12294.000
	*	1	2	2	4110.000	12330.000
	*	1	2	3	4368.333	13105.000
	*	1	3	1	4759.000	14277.000
	*	1	3	2	4875.000	14625.000
	*	1	3	3	4869.667	14609.000
	*	1	4	1	4831.333	14494.000
	*	1	4	2	4908.333	14725.000
	*	1	4	3	4886.667	14660.000
	*	1	5	1	4777.000	14331.000
	*	1	5	2	4589.000	13767.000
	*	1	5	3	4426.000	13278.000
	*	2	1	1	2194.000	6582.000
	*	2	1	2	2259.333	6778.000
	*	2	1	3	2516.333	7549.000
	*	2	2	1	3005.667	9017.000
	*	2	2	2	2994.000	8982.000
	*	2	2	3	4004.667	12014.000
	*	2	3	1	3646.000	10938.000
	*	2	3	2	3531.667	10595.000
	*	2	3	3	4532.000	13596.000
	*	2	4	1	3518.667	10556.000
	*	2	4	2	3815.333	11446.000

*	2	4	3	4092.333	12277.000
*	2	5	1	3721.333	11164.000
*	2	5	2	3396.000	10188.000
*	2	5	3	4186.333	12559.000
*	3	1	1	3343.667	10031.000
*	3	1	2	3212.000	9636.000
*	3	1	3	3759.667	11279.000
*	3	2	1	4377.000	13131.000
*	3	2	2	4662.667	13988.000
*	3	2	3	4274.333	12823.000
*	3	3	1	4616.000	13848.000
*	3	3	2	5150.333	15451.000
*	3	3	3	5128.667	15386.000
*	3	4	1	4357.000	13071.000
*	3	4	2	4884.000	14652.000
*	3	4	3	5169.000	15507.000
*	3	5	1	4717.000	14151.000
*	3	5	2	5199.667	15599.000
*	3	5	3	5127.000	15381.000
*	4	1	1	3019.667	9059.000
*	4	1	2	3021.000	9063.000
*	4	1	3	2767.667	8303.000
*	4	2	1	4060.000	12180.000
*	4	2	2	4325.333	12976.000
*	4	2	3	4261.667	12785.000
*	4	3	1	5011.000	15033.000
*	4	3	2	4527.000	13581.000
*	4	3	3	4275.333	12826.000
*	4	4	1	5403.000	16209.000
*	4	4	2	5093.333	15280.000
*	4	4	3	5331.333	15994.000
*	4	5	1	5369.000	16107.000
*	4	5	2	5010.000	15030.000
*	4	5	3	5265.667	15797.000
*	5	1	1	1624.667	4874.000
*	5	1	2	1703.333	5110.000
*	5	1	3	1716.667	5150.000
*	5	2	1	2828.667	8486.000
*	5	2	2	2856.667	8570.000
*	5	2	3	2697.333	8092.000
*	5	3	1	3460.000	10380.000

	*	5	3	2	775	8 000		11334.000	
			3		342				
		-	4					10603.000	
	*		4					11050.000	
			4					12300.000	
			5					10485.000	
			5		386	4.000		11592.000	
	*	5	5	3	418	6.333		12559.000	
A N A	LY	S I	S	O F	VARIAN	СЕ	ТАВ	LE	
K			Degr	ees	of Sum of	Me	an	F	
								Value	
					20545.529				
2 Fac	ctor i	A		4	76218373.022	190545	93.256	181.3876	0.0000
4 Fac	ctor 1	В		4	102735792.044	256839	48.011	244.4948	0.0000
6 AI	3			16	6299837.600	3937	39.850	3.7482	0.0000
8 Fac	ctor (С		2	1552215.262	7761	07.631	7.3880	0.0009
								6.1934	
					845438.649				
14 AH								1.4545	
-15 Ei					15547260.471				
					213313868.222				
					ariation: 8.15				
s fo	r mea	ns (group	1:	37.4253	Num	ber of	Observations:	75
_ У									
s fo	r mea	ns (group	2:	48.3159	Num	ber of	Observations:	45
y y									
-	r meai	ns (group	4:	48.3159	Num	ber of	Observations:	45
— У									
	r mea	ns (group	6:	108.0376	Num	ber of	Observations:	9
_ У			5 1						
	r meai	ns	aroup	8:	37.4253	Num	ber of	Observations:	75
уу			<u> </u>			1.011			
	r meai	ns	aroup	10	: 83.6855	Num	her of	Observations:	15
з <u> </u>				10		I V UIII			
	r mear	ns	aroun	12	: 83.6855	Num	her of	Observations:	15
_			9- Oup	<u> </u>		IN UIII			± 0
y s for	r maai	ne	arour	1 /	• 187 1266	Mum	her of	Observations:	З
_	Lined		9roup	т .4		in alli			5
У									

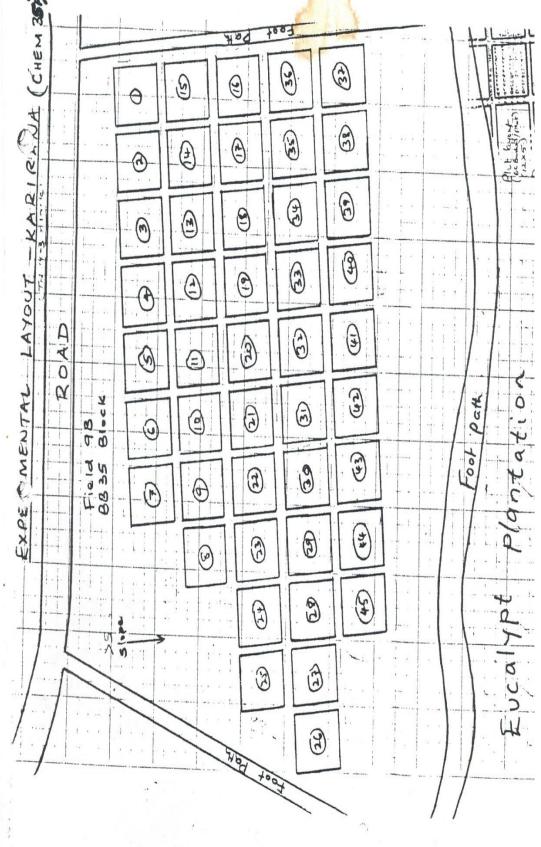
Variable 12: TC (R)

anc	i mea			Grand Sum = 1181.970 BLE OF MEANS	rotal Count = 2
1	4		3	12	Total
1	*	*	*	4.984	373.820
2	*	*	*	5.454	409.020
3	*	*	*	5.322	399.130
*	1	*	*	5.301	238.540
*	2	*	*	5.328	239.780
*	3	*	*	5.877	264.470
*	4	*	*	4.733	212.980
*	5	*	*	5.027	226.200
*	*	1	*	5.509	247.910
*	*	2	*	5.366	241.470
*	*	3	*	5.280	237.580
*	*	4	*	5.156	232.040
*	*	5	*	4.955	222.970
*	1	1	*	5.508	49.570
*	1	2	*	5.480	49.320
*	1	3	*	5.422	48.800
*	1	4	*	5.121	46.090
*	1	5	*	4.973	44.760
*	2	1	*	5.483	49.350
*	2	2	*	5.429	48.860
*	2	3	*	5.409	48.680
*	2	4	*	5.288	47.590
*	2	5	*	5.033	45.300
*	3	1	*	6.113	55.020
*	3	2	*	6.021	54.190
*	3	3	*	5.788	52.090
*	3	4	*	5.792	52.130
*	3	5	*	5.671	51.040
*	4	1	*	4.948	44.530
*	4	2	*	4.861	43.750
*	4	3	*	4.807	43.260
*	4	4	*	4.724	42.520

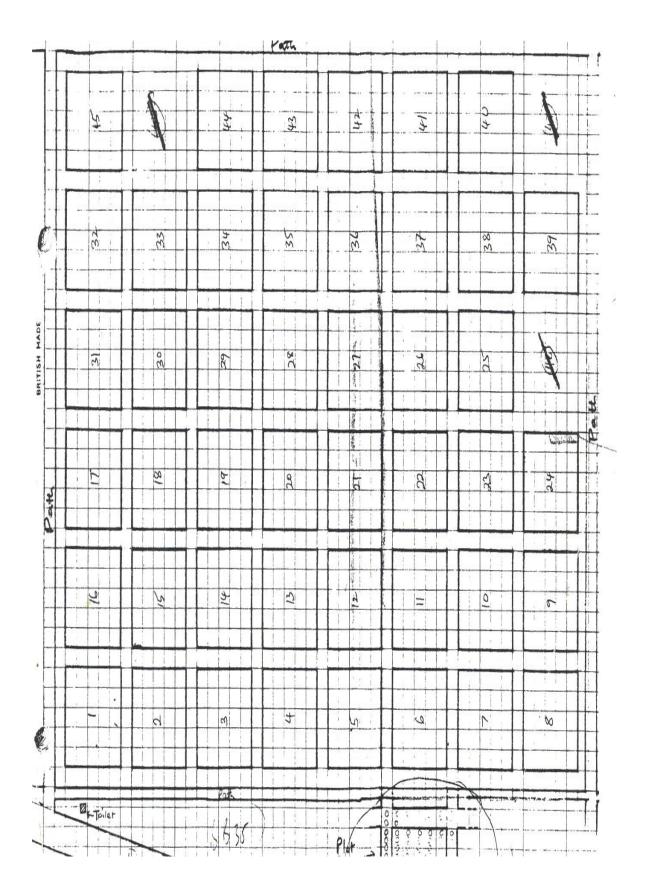
*	4	5	*	4.324	38.920
*	5	1	*	5.493	49.440
*	5	2	*	5.039	45.350
*	5	3	*	4.972	44.750
*	5	4	*	4.857	43.710
*	5	5	*	4.772	42.950
				····	12.300
*	*	*	1	4.909	368.210
*	*	*	2	5.262	394.680
*	*	*	3	5.588	419.080
*	1	*	1	5.041	75.620
*	1	*	2	5.313	79.690
*	1	*	3	5.549	83.230
*	2	*	1	4.927	73.900
*	2	*	2	5.399	80.980
*	2	*	3	5.660	84.900
*	3	*	1	5.657	84.850
*	3	*	2	5.787	86.810
*	3	*	3	6.187	92.810
*	4	*	1	4.285	64.270
*	4	*	2	4.773	71.600
*	4	*	3	5.141	77.110
*	5	*	1	4.638	69.570
*	5	*	2	5.040	75.600
*	5	*	3	5.402	81.030
*	*	1	1	5.113	76.690
*	*	1	2	5.477	82.150
*	*	1	3	5.938	89.070
*	*	2	1	5.019	75.280
*	*	2	2	5.347	80.210
*	*	2	3	5.732	85.980
*	*	3	1	4.999	74.980
*	*	3	2	5.263	78.950
*	*	3	3	5.577	83.650
*	*	4	1	4.841	72.620
*	*	4	2	5.183	77.750
*	*	4	3	5.445	81.670
*	*	5	1	4.576	68.640
*	*	5	2	5.041	75.620

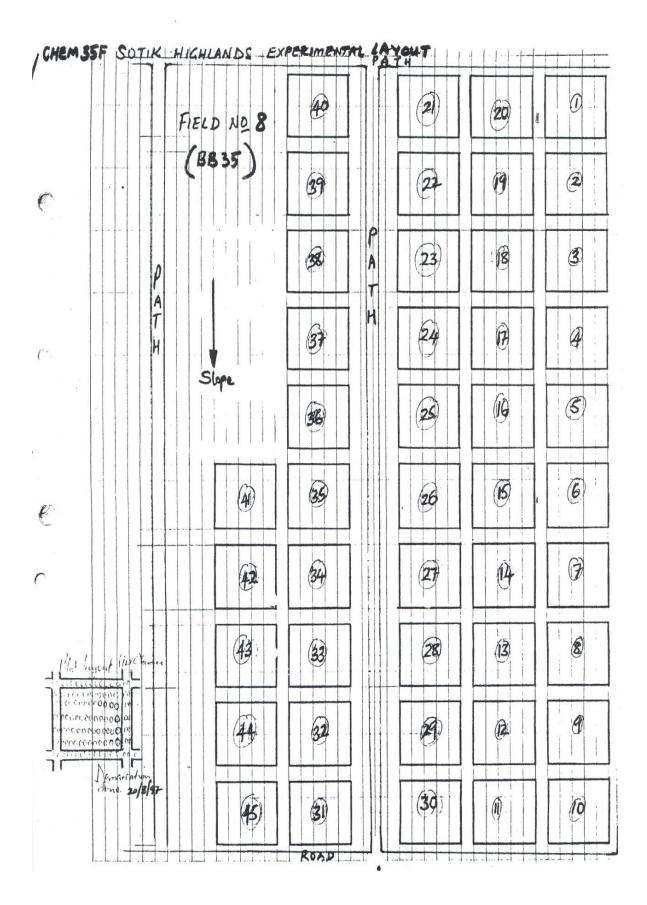
*	*	5	3	5.247	78.710
*	1	1	1	5.143	15.430
*	1	1	2	5.533	16.600
*	1	1	3	5.847	17.540
*	1	2	1	5.230	15.690
*	1	2	2	5.493	16.480
*	1	2	3	5.717	17.150
*	1	3	1	5.210	15.630
*	1	3	2	5.523	16.570
*	1	3	3	5.533	16.600
*	1	4	1	4.883	14.650
*	1	4	2	5.020	15.060
*	1	4	3	5.460	16.380
*	1	5	1	4.740	14.220
*	1	5	2	4.993	14.980
*	1	5	3	5.187	15.560
*	2	1	1	5.137	15.410
*	2	1	2	5.463	16.390
*	2	1	3	5.850	17.550
*	2	2	1	4.987	14.960
*	2	2	2	5.470	16.410
*	2	2	3	5.830	17.490
*	2	3	1	5.083	15.250
*	2	3	2	5.403	16.210
*	2	3	3	5.740	17.220
*	2	4	1	5.040	15.120
*	2	4	2	5.320	15.960
*	2	4	3	5.503	16.510
*	2	5	1	4.387	13.160
*	2	5	2	5.337	16.010
*	2	5	3	5.377	16.130
*	3	1	1	5.863	17.590
*	3	1	2	6.013	18.040
*	3	1	3	6.463	19.390
*	3	2	1	5.843	17.530
*	3	2	2	5.930	17.790
*	3	2	3	6.290	18.870
*	3	3	1	5.543	16.630
*	3	3	2	5.653	16.960
*	3	3	3	6.167	18.500

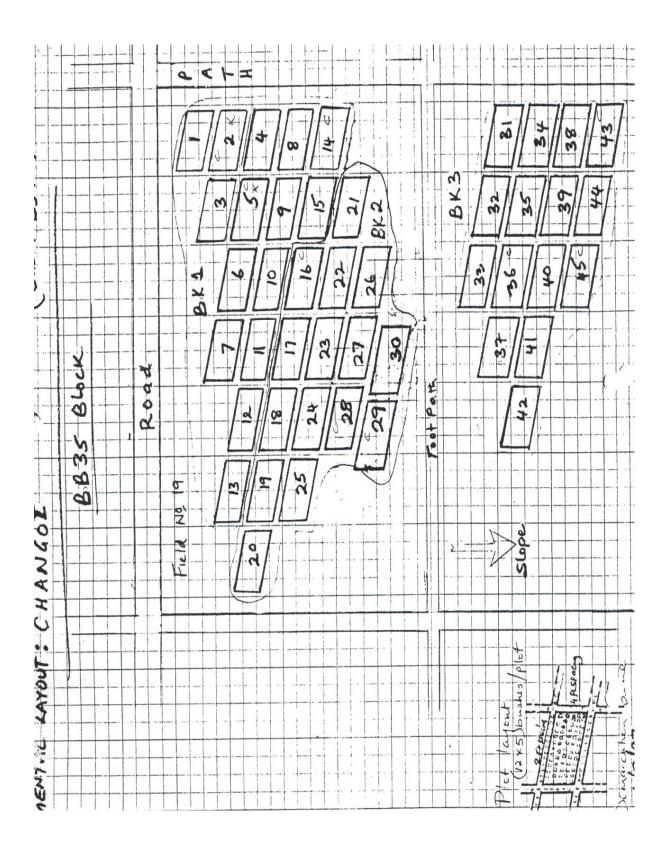
	*	3	4	1	5	.487	16.460	
	*	3	4	2	5	.857	17.570	
	*	3	4	3	6	.033	18.100	
	*	3	5	1	5	.547	16.640	
	*	3	5	2	5	.483	16.450	
	*	3	5	3	5	.983	17.950	
	*	4	1	1	4	.270	12.810	
	*	4	1	2	4	.907	14.720	
	*	4	1	3	5	.667	17.000	
	*	4	2	1	4	.327	12.980	
	*	4	2	2	4	.857	14.570	
	*	4	2	3	5	.400	16.200	
	*	4	3	1	4	.497	13.490	
	*	4	3	2	4	.707	14.120	
	*	4	3	3	5	.217	15.650	
	*	4	4	1	4	.367	13.100	
	*	4	4	2	4	.897	14.690	
	*	4	4	3	4	.910	14.730	
	*	4	5	1	3	.963	11.890	
	*	4	5	2	4	.500	13.500	
	*	4	5	3	4	.510	13.530	
	*	5	1	1	5	.150	15.450	
	*	5	1	2	5	.467	16.400	
	*	5	1	3	5	.863	17.590	
	*	5	2	1	4	.707	14.120	
	*	5	2	2	4	.987	14.960	
	*	5	2	3	5	.423	16.270	
	*	5	3	1	4	.660	13.980	
	*	5	3	2	5	.030	15.090	
	*	5	3	3	5	.227	15.680	
	*	5	4	1	4	.430	13.290	
	*	5	4	2	4	.823	14.470	
	*	5	4	3	5	.317	15.950	
	*	5	5	1	4	.243	12.730	
	*	5	5	2	4	.893	14.680	
	*	5	5	3	5	.180	15.540	
_								
ANA	LΥ	S I	S	OF V	JARIAN	CE TA	ABLE	
K			Deg	grees o:	f Sum of	Mean	F	
Value	Soi	irce	F	reedom	Squares	Square	Value	Prob


1 Replication	2	8.789	4.394	31.5277	0.0000
2 Factor A	4	32.366	8.091	58.0534	0.0000
4 Factor B	4	7.977	1.994	14.3075	0.0000
6 AB	16	1.403	0.088	0.6290	
8 Factor C	2	17.261	8.631	61.9216	0.0000
10 AC	8	1.024	0.128	0.9184	
12 BC	8	0.502	0.063	0.4499	
14 ABC	32	1.817	0.057	0.4075	
-15 Error	148	20.628	0.139		
Total	224	91.766			
Coefficien	t of Varia	tion: 7.11%			
s_ for means gr	oup 1:	0.0431	Number	of Observatio	ons: 75
У					
s_ for means gr	oup 2:	0.0557	Number	of Observatio	ons: 45
У					
s_ for means gr	oup 4:	0.0557	Number	of Observatio	ons: 45
У					
s_ for means gr	oup 6:	0.1244	Number	of Observatio	ons: 9
У					
s_ for means gr	oup 8:	0.0431	Number	of Observatio	ons: 75
У					
s_ for means gr	oup 10:	0.0964	Number	of Observatio	ons: 15
У					
s_ for means gr	oup 12:	0.0964	Number	of Observatio	ons: 15
У					
s_ for means gr	oup 14:	0.2155	Number	of Observatio	ons: 3
У					

7.2: Appendix 2 Assigned treatments to plots


PLOT NO.	TREATMENT	PLOT NO.	TREATMENT
1	N ₃₀₀ Pf ₇	23	N ₁₅₀ Pf ₁₄
2	$N_{300} Pf_{21}$	24	$N_{300} Pf_{7}$
3	$N_{150}Pf_{21}$	25	N ₃₀₀ Pf ₂₁
4	$N_{225} Pf_{14}$	26	N_{150} Pf $_7$
5	$N_0 Pf_7$	27	N ₇₅ Pf ₇
6	$N_{75} Pf_{14}$	28	$N_0 P f_7$
7	$N_{225} Pf_{21}$	29	N_0Pf_{14}
8	$N_{300} Pf_{14}$	30	$N_{75} Pf_{21}$
9	$N_{150} Pf_{7}$	31	$N_{225} Pf_{14}$
10	$N_{300}Pf_{21}$	32	N ₇₅ Pf ₁₄
11	N_{225} Pf $_7$	33	N 225 Pf 21
12	$N_{150} Pf_{14}$	34	N 150 Pf 21
13	$N_{75} Pf_{21}$	35	$N_{225} Pf_{7}$
14	N_0Pf_{14}	36	$N_0 \ Pf_{\ 21}$
15	$N_{75}Pf_{7}$	37	$N_{150} Pf_{14}$
16	$N_0Pf_{\ 21}$	38	$N_{300} Pf_{14}$
17	N ₇₅ Pf ₁₄	39	$N_{300} Pf_{7}$
18	$N_{150} Pf_{21}$	40	N_{75} Pf $_7$
19	N ₂₂₅ Pf ₁₄	41	$N_{300}Pf_{21}$
20	N ₂₂₅ Pf ₂₁	42	$N_{150} Pf_{7}$
21	$N_{225}Pf_7$	43	$N_0 Pf_7$
22	N ₃₀₀ Pf 14	44	$N_{75} Pf_{21}$
		45	N_0Pf_{14}


Plot treatment allocation on randomisation (for all the 5 locations)


7.3: Appendix 3 Experimental layout

	KIP	KEBE	CMAGUR	A) TEA (ESTATE :	EXPERI	MENTAL	LA7007 :	chem ss;
	Field M		BB 35 840	NOND	5/1				1
	!	2	3	6	17	18	19	20	
e	2	5	4	25	27	23	22	2	
20	5(npc	7	8	9	ż	27	28	29	
		12	11	10	30	31	æ	33	
			· · · · · · · · · · ·		55 F ()				
		13		15	37	38	⁻ 35	34	-
					38	39	40	41	
14000000000000000000000000000000000000					45	1414	42	42	2
1									A second second

7.4: Appendix 4: Publications

Owuor, P.O.; Kamau, D.M.; Jondiko E.O. (2009). Responses of clonal tea to location of production and plucking intervals. *Food Chemistry*, **115**, 290-296.

Owuor, P.O.; Kamau, D.M.; Jondiko, E.O. (2010). Responses of clonal tea to location of production and Nitrogenous fertiliser rates. *Journal of Food Agriculture and Environment*, **8**(2), 682-690.