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Abstract 

Background:  The gold standard for diagnosing Plasmodium falciparum infection is microscopic examination of 
Giemsa-stained peripheral blood smears. The effectiveness of this procedure for infection surveillance and malaria 
control may be limited by a relatively high parasitaemia detection threshold. Persons with microscopically undetect-
able infections may go untreated, contributing to ongoing transmission to mosquito vectors. The purpose of this 
study was to determine the magnitude and determinants of undiagnosed submicroscopic P. falciparum infections in a 
rural area of western Kenya.

Methods:  A health facility-based survey was conducted, and 367 patients seeking treatment for symptoms consist-
ent with uncomplicated malaria in Homa Bay County were enrolled. The frequency of submicroscopic P. falciparum 
infection was measured by comparing the prevalence of infection based on light microscopic inspection of thick 
blood smears versus real-time polymerase chain reaction (RT-PCR) targeting P. falciparum 18S rRNA gene. Long-lasting 
insecticidal net (LLIN) use, participation in nocturnal outdoor activities, and gender were considered as potential 
determinants of submicroscopic infections.

Results:  Microscopic inspection of blood smears was positive for asexual P. falciparum parasites in 14.7% (54/367) of 
cases. All of these samples were confirmed by RT-PCR. 35.8% (112/313) of blood smear negative cases were positive 
by RT-PCR, i.e., submicroscopic infection, resulting in an overall prevalence by RT-PCR alone of 45.2% compared to 
14.7% for blood smear alone. Females had a higher prevalence of submicroscopic infections (35.6% or 72 out of 202 
individuals, 95% CI 28.9–42.3) compared to males (24.2%, 40 of 165 individuals, 95% CI 17.6–30.8). The risk of submi-
croscopic infections in LLIN users was about half that of non-LLIN users (OR = 0.59). There was no difference in the 
prevalence of submicroscopic infections of study participants who were active in nocturnal outdoor activities versus 
those who were not active (OR = 0.91). Patients who participated in nocturnal outdoor activities and use LLINs while 
indoors had a slightly higher risk of submicroscopic infection than those who did not use LLINs (OR = 1.48).
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Background
Current vector control and parasite surveillance strate-
gies have shown remarkable progress in reducing the 
global malaria burden [1]. In Kenya, malaria-endemic 
areas such as Homa Bay County have ongoing vector 
control intervention that include indoor residual spray-
ing (IRS) and long-lasting insecticidal nets (LLINs) 
[2]. Malaria prevalence has decreased in these in these 
areas, largely as a result of these interventions [3]. There 
is concern, however, that these gains may not be dura-
ble because the exclusive use of microscopy for passive 
case detection of Plasmodium falciparum infection may 
not be sufficiently sensitive to detect submicroscopic 
infections [4]. A high prevalence of undetected submi-
croscopic malaria cases may contribute to a parasite res-
ervoir that is sufficient to sustain ongoing P. falciparum 
transmission in endemic communities [5, 6].

Submicroscopic infections have been observed not only 
in high transmission settings but also in malaria endemic 
areas with seasonal or low transmission [7, 8]. These 
infections also show reduced parasite genetic diversity 
[9], fewer infective Anopheles [10, 11], lower adherence 
to anti-malarials drug regimens [12–14], and increased 
asexual parasite clearance rates [9, 15]. Previous stud-
ies of submicroscopic parasitaemia have primarily been 
concerned with its occurrence in pregnant women [16–
20] and cross-sectional community surveys of asymp-
tomatic individuals [3, 21–24]. However, fewer studies 
have focused on its occurrence as it pertains to malaria 
treatment-seeking behaviour [14, 25, 26]. The objective of 
this study was to determine the prevalence of submicro-
scopic infections among patients seeking malaria treat-
ment at a rural health centre in western Kenya and the 
demographic and behavioural variables associated with 
these infections.

Methods
Study area and design
The study was conducted at the Ngegu health facility 
in Homa Bay County, western Kenya. This facility had 
a catchment population of 6,703 persons in 2020. The 
sampled patient population came from the Kochia loca-
tion, which is divided into smaller administrative units 
referred as sub-locations. Study participants were resi-
dents of Kamenya, Kanam, Kaura, Korayo, Kothidha and 

Kowili sublocations located near the shore of Lake Victo-
ria at a latitude of 34.64190E and 0.38000S with an eleva-
tion of 1143–1330 m above sea level (Fig. 1). The mean 
annual temperature is 22.7  °C. Rainfall is seasonal with 
two major peaks, March to May and October to Decem-
ber [27]. The study area is bordered by the Kimira-Oluch 
irrigation scheme, which has been demonstrated to 
have an impact on malaria transmission [28]. Homa Bay 
County is predominantly malaria-endemic, with approxi-
mately 20% overall P. falciparum infection prevalence 
[29]. The Ministry of Health has been conducting annual 
IRS with Actellic insecticide in the study area from Feb-
ruary to March since 2018.

A health facility-based survey was performed, in which 
367 patients seeking malaria treatment from six sub-
locations were enrolled. Patient information such as 
LLIN ownership and use, occupation, and participation 
in nocturnal outdoor activities was collected. Nocturnal 
outdoor activities included casting fishing nets, setting 
and removing fishing traps, overnight fishing, early pur-
chase of fish by small scale traders, farming, late evening 
trading at open-air markets, and waiting, picking up, and 
dropping off clients from motorcycle taxi riders (“Boda-
boda”). Patient enrolment and data collection periods 
occurred in July and August of 2020, which coincided 
with the peak of P. falciparum transmission. The num-
ber of samples used was determined by the number of 
patients who sought malaria treatment and consented 
or assented to the study. Blood smear microscopy slides 
read at the hospital laboratory were confirmed by expe-
rienced microscopists at the Sub-Saharan Africa Interna-
tional Center of Excellence in Malaria Research (ICEMR) 
laboratory. All the samples were tested for submicro-
scopic infection by RT-PCR at the ICEMR laboratory at 
Tom Mboya University, Homa Bay.

Processing of blood smears
Blood samples used in this study were obtained by 
antecubital venipuncture and immediately pipetted 
on filter paper and glass slides. Experienced hospi-
tal microscopists prepared and read Giemsa-stained 
slides for the presence and density of Plasmodium par-
asites. Slides for microscopic examination for the pres-
ence of Plasmodium parasites in patient blood samples 
were prepared and read by experienced hospital 

Conclusion:  Microscopic inspection of blood smears from persons with malaria symptoms for asexual stage P. 
falciparum should be supplemented by more sensitive diagnostic tests in order to reduce ongoing transmission of P. 
falciparum parasites to local mosquito vectors.
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microscopists. Parasite density was estimated based on 
visualizing microscopic fields consisting of 200 leuco-
cytes with the assumption of a standard value of 8,000 
leucocytes per μL of blood. If no parasite was found 
after examining 200 fields at 100 × magnification, the 
microscopy result was declared negative. All slides 
were subjected to a second microscopy reading for 
quality control.

DNA extraction and Plasmodium falciparum speciation
Genomic DNA was extracted from dried blood spots 
on filter paper following a modification of the Chelex 
resin (Chelex-100) saponin method [30]. Plasmodium 
falciparum species-specific 18S ribosomal RNA prim-
ers and probes were used to confirm the presence of 
parasite DNA [31]. PCR was run in a final volume of 
12  µl containing 2 µL of parasite DNA, 6 µL of Per-
feCTa® qPCR ToughMix™, Low ROX™ Master mix 
(2X), 0.5 µL of the species-specific probe, 0.4 µL of 
the forward species-specific primers (10  µM), 0.4 µL 
of the reverse species-specific primers (10 µM) and 0.1 
µL of double-distilled water. The thermal profile used 
was 50 °C for 2 min, (95 °C for 2 min, 95 °C for 3 s and 
58 °C for 30 s) for 45 cycles.

Patient behavior, LLIN usage and other variables 
associated with submicroscopic infection
To assess the relationship between submicroscopic P. 
falciparum infection and LLIN use and participation in 
nocturnal outdoor activities, health centre study staff 
interviewed and completed a questionnaire for each 
participant. Information on LLIN ownership and usage, 
engagement in nocturnal outdoor activities, and occupa-
tions (i.e., student, non-Student (< 5 Children), farmer, 
trader, fishermen, motorcycle taxi riders, teacher, secu-
rity, construction, unemployed and other) were collected. 
Only participants who acknowledged being outdoors 
from 1800 h–2000 h, 2000 h–2300 h, 2300 h–0400 h, and 
0400  h–0600  h due to occupational requirements were 
considered involved in nocturnal outdoor activities.

Statistical analysis
Patient data were entered into Microsoft Excel v. 2016 
for cleaning and analysis. Descriptive statistics such as 
sum, mean, standard deviation, standard error and 95% 
confidence interval were used to summarize the popula-
tion under study. Before comparison of mean value, data 
normality was confirmed using the Shapiro–Wilk nor-
mality test. To determine LLIN usage across gender, age 
and sub-location residence, multiple mean comparisons 

Fig. 1  The study area map shows study sites (sublocations) in Homa Bay. The circle with the red cross represents Ngegu health facility, where 
patients from the six sublocations seek medical services
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between these variables were performed using the 
Kruskal–Wallis test followed by Dunn’s multiple com-
parison test. Comparisons between blood smear positive 
and submicroscopic (RT-PCR positive, blood smear neg-
ative) groups were performed using Pearson chi-square. 
Binary logistic regression models were used to determine 
the association between microscopic and submicroscopic 
infections and potential determinants such as LLIN use, 
engagement in nocturnal outdoor activities and gender. A 
multivariate analysis was used to determine the relation-
ship between the LLIN use, nocturnal outdoor activities, 
microscopic and submicroscopic infections. Analyses 
were performed in GraphPad Prism v.8.0.1 Software and 
SPSS version 25 for Windows. Data were considered sta-
tistically significant at p < 0.05.

Results
Patient characteristics
Study participant gender, age, LLIN usage, sublocation 
residence and participation in nocturnal outdoor activi-
ties are described in Table  1. More females than males 
participated in the study, and LLIN usage was greater 
among females than males (χ2 = 6.84, df 1, p = 0.009). 
Study participants were predominantly > 15  years (67%), 
while only 5% were < 5 years. LLIN use was significantly 
greater among children < 5  years relative to the 5–15 
and > 15-year groups (Kruskal Wallis H test, H (2) = 19.20, 
p < 0.0001). LLIN use was similar among participant 
sublocation residence as was nocturnal outdoor activity 

behaviour. Two study participants were pregnant. Male 
patients participating in nocturnal outdoor activities 
were 68% (57/84) whereas females were 32% (27/84). 
There was no significant difference in LLIN use between 
participants who engaged in nocturnal outdoor activities 
and used LLIN while indoors versus non-LLIN users who 
participated in nocturnal outdoor activities (χ2 = 2.97, 
df1, p = 0.085).

Prevalence of microscopy detectable and submicroscopic 
P. falciparum infections
Asexual stage malaria parasites were found in 54 (15%) 
of the 367 microscopically-screened blood smears. The 
prevalence of microscopy positive infections in males 
(17%) was slightly higher than that of females (13%). Chil-
dren < 5 years had the lowest infection rate by microscopy 
(11%), while those aged 5–15 had the highest infec-
tion rates (27%), followed by adults (10%). On the basis 
of parasite density, children < 5  years, those age group 
5–15 years, and adults recorded 219, 957 and 330 asexual 
parasites per microlitre of whole blood, respectively. All 
the slide positive results were confirmed for asexual para-
site DNA by RT-PCR.

Thirty-six percent (112/313) of the slide negative 
samples were found to be P. falciparum positive by RT-
PCR and labelled as submicroscopic. These infections 
accounted for 67% (112/166) of confirmed malaria cases. 
Detection of submicroscopic infections (31%) were sig-
nificantly greater than that of microscopic infections 
(15%) (χ2 = 27.81, df 1, P < 0.0001). Female study partici-
pants had 36% (72/202, 95%, CI: 28.9–42.3) more sub-
microscopic infections than males 24% (40/165, 95%, CI: 
17.6–30.8). Female patients had a significant difference 
between microscopic and submicroscopic infections 
(χ2 = 4.39, df 1, p = 0.036), but males did not. Neither of 
two pregnant study participants had microscopy posi-
tive infection; one had a submicroscopic infection. The 
prevalence of submicroscopic infection was highest in 
children < 5  years (42%), followed by adults (30%) and 
children aged 5–15 years (29%). Only one of eight male 
patients < 5  years had submicroscopic infections, com-
pared to seven out of 11 females of the same age.

There were more submicroscopic infections than 
microscopic infections at the sub-location level. Kaura 
had the highest prevalence of P. falciparum (both micro-
scopic and submicroscopic) infections (51.3%), followed 
by Korayo (45.7%), Kanam (44.8%), Kamenya (43.3%), 
Kothidha (39.1%) and Kowili (33.3%). Korayo had the 
highest percentage of submicroscopic infections, 38.9% 
(23/59, 95%, CI: 26.1–51.8), followed by Kamenya (35%, 
21/60, 95%, CI: 22.5–47.4), Kaura (27.9%, 31/111, 95%, 
CI: 19.4–36.4), Kowili (27.78%, 10/36, 95%, CI: 12.4–
43.1), Kanam (26.9%, 21/78, 95%, CI: 16.8–36.9) and 

Table 1  Characteristics of study participants including the usage 
of long-lasting insecticide-treated nets and participation in 
nocturnal outdoor activities

N represents the total number of individuals while n represents the cases. Only 
patients who stated that they were outdoor from 1800 h–2000 h, 2000 h–2300 h, 
2300 h–0400 h, and 0400 h–0600 h were considered to be engaged in nocturnal 
outdoor activities

Parameter N Bed net usage n (%) P-value

Name Level

Gender Female 202 106 (52.48) 0.009

Male 165 64 (38.79)

Age group  < 5 19 18 (94.74)  < 0.0001

5–15 102 42 (41.18)

 ≥ 15 246 110 (44.72)

Sub-location Kamenya 60 29 (48.33) 0.4391

Kanam 78 35 (44.87)

Kaura 111 48 (43.24)

Korayo 59 24 (40.68)

Kothidha 23 12 (52.17)

Kowili 36 22 (61.11)

Nocturnal out-
door activities

Yes 84 32 (38.10) 0.085

No 283 138 (48.76)
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Kothidha (26.1%, 6/23, 95%, CI: 6.67–45.5). The Kruskal–
Wallis H test revealed a significant difference between 
microscopic and submicroscopic infections across all 
sublocations (H(11) = 41.21, p > 0.001). Moreover, Dunn’s 
test pairwise comparison showed a significant difference 
between microscopic and submicroscopic infections in 
Kamenya (p = 0.0320) and Korayo (p = 0.0019).

Relationship between submicroscopic infections, patient 
behaviour and LLIN usage
The odds of females seeking malaria treatment having 
submicroscopic infections was 1.73 higher than males 
(Table 2). Use of LLIN had a significant effect on micro-
scopic and submicroscopic infections (F (2, 362) = 3.029, 
p = 0.05; Wilk’s = 0.984, partial η2 = 0.016) (Additional 
file  1: Table  S1). However, when considered separately, 
the use of LLIN had a significant effect on micro-
scopic infections (F (1, 363) = 4.499, p = 0.035; partial 
η2 = 0.012) but not on submicroscopic infections (Addi-
tional file 1: Table S2). Interestingly, patients using LLINs 
had a significantly higher prevalence of submicroscopic 
infections (36.5%) (χ2 = 5.29, df 1, p = 0.021) than non-
users (25.4%). This implies that the chance of LLIN users 
harbouring submicroscopic infections was about half 
that of non-LLIN users (OR = 0.59). Though not signifi-
cant (χ2 = 0.136, df 1, p = 0.713), more patients involved 
in nocturnal outdoor activities had submicroscopic infec-
tions (32.1%) compared to those restricted indoors dur-
ing night hours (25.3%). Participants who engaged in 
nocturnal outdoor activities were 0.91 times more likely 
to have submicroscopic infections than those who stayed 
indoors (Table  2). This, however, varied when compari-
son was made between patients engaged in nocturnal 
outdoor activities but using LLINs while indoors versus 
non-LLIN users involved in nocturnal outdoor activities. 
Those LLIN users who participated in nocturnal outdoor 

activities were 1.48 times more likely to have submicro-
scopic infections and have high infections (37.5%) than 
non-LLINs users involved in nocturnal outdoor activities 
(28.85%) (χ2 = 0.68, df 1, p = 0.41).

Discussion
In this study age, gender and use of LLINs were factors 
in the occurrence of submicroscopic P. falciparum infec-
tions in patients with malaria symptoms seeking treat-
ment in Homa Bay County’s six sub-locations. The use of 
LLINs and being female was linked to a high prevalence 
of submicroscopic infections. Interestingly, the effect of 
LLIN usage on submicroscopic infection prevalence was 
also observed among users who participated in nocturnal 
outdoor activities. Furthermore, this study was unable to 
establish a conclusively link between the observed micro-
scopic P. falciparum infections and outdoor transmission. 
This is due to the fact that only one LLIN user partici-
pating in nocturnal outdoor activities had microscopic 
infections, compared to nine infected non-LLIN users 
engaged in nocturnal outdoor activities.

The study findings revealed that male patients were 
more likely than females to test positive for microscopic 
infections. This could be attributed to existing social 
behavioural differences, such as more males engaging 
in nocturnal outdoor activities, which kept them out of 
the intervention coverage and low LLIN use when com-
pared to female patients. Low LLIN use and participa-
tion in activities outside of intervention coverage [32–34] 
have been demonstrated to increase exposure to biting 
by infected female Anophelines [25, 35, 36]. As a result, 
this study findings corroborate previous research that 
reported a high prevalence of P. falciparum slide posi-
tivity in males [37, 38]. The high levels of microscopic P. 
falciparum infections and parasite density in the 5–15 
age group were linked to a low number of LLIN use thus 

Table 2  Socioeconomic and behavioural determinants of malaria infections

N represents total number of individuals while n represents the cases. The asterisk (*) represent general effect of nocturnal outdoor activities on microscopic and 
submicroscopic infections while the vertical double asterisk (⁑) represents interaction effects between nocturnal outdoor activities and LLIN usage. Small letter “a” 
refers to reference category

Parameter N Microscopic infections N Submicroscopic infections

Name Level n (%) OR (95%, CI) P-value n (%) OR (95%, CI) P-value

Gender Female 202a 26 (12.87) 0.72 (0.41–1.29) 0.272 202a 72 (35.64) 1.73 (1.10–2.74) 0.019

Male 165 28 (16.97) 165 40 (24.24)

LLIN usage Yes 170 19 (11.18) 1.72 (0.94–3.13) 0.078 170 62 (36.47) 0.59 (0.38–0.93) 0.022

No 197a 35 (17.77) 197a 50 (25.38)

Nocturnal outdoor activities* Yes 84 10 (11.90) 1.36 (0.65–2.84) 0.409 84 27 (32.14) 0.91 (0.54–1.53) 0.713

No 283a 44 (15.55) 283a 85 (30.04)

Nocturnal outdoor activities⁑ LLIN usage 32 1 (3.13) 6.49 (0.78–53.89) 0.083 32a 12 (37.50) 1.48 (0.58–3.77) 0.411

No LLIN usage 52a 9 (17.31) 52 15 (28.85)



Page 6 of 8Ochwedo et al. Malaria Journal          (2021) 20:472 

predisposed to bites from infected malaria vectors [25, 
39, 40]. Children < 5 years were less likely to have micro-
scopic infections because the majority used LLINs. As 
previously reported [41, 42], the low proportion of micro-
scopic infections among this age group, as well as the 
high use of LLINs, was a good indicator of strict paren-
tal care. Patients who participated in nocturnal outdoor 
activities were more likely to have microscopic infections 
than patients who stayed indoors. However, patients who 
engaged in nocturnal outdoor activities and did not use 
LLINs while indoors were at a higher risk. These find-
ings imply that biting by infected Anopheles mosquitoes 
occurs at the transition point from LLINs coverage to 
outdoor or vice versa. With these findings, the study sug-
gests that outdoor malaria transmission is low in the six 
sub-locations. This finding supports previous findings in 
2018 and 2019 by Ondeto et al., (pers. commun.) on an 
increased population of Anopheles arabiensis collected 
outdoors, with blood meal results indicating a feeding 
preference for bovines in the study area.

Despite the microscopic prevalence of 14.7%, there 
were a large number of clinically positive cases that were 
missed because they were submicroscopic infections. The 
high levels of undetected infections may have a signifi-
cant impact on existing malaria intervention strategies, 
potentially resulting in a plateauing of malaria cases in 
the future. The high number of missed cases is attributed 
to declining malaria prevalence, which has resulted in 
the area transitioning to a low malaria transmission zone 
[3]. Additionally, these low transmission zones have been 
reported to be prone to submicroscopic P. falciparum 
infections [8]. The reduced microscopic infections rates 
and increased levels of submicroscopic infections within 
this study site may indicate declining parasite genetics [9], 
host exposure to fewer bites by infected Anophelines [10, 
11], and a faster rate of acquired immunity acquisition 
due to fewer parasite clones [15, 43]. These three under-
lining factors have been previously linked to increased 
levels of submicroscopic P. falciparum infections.

With an odds ratio of 1:8 for detecting submicro-
scopic infection in males versus females, these observa-
tions were slightly higher than previously reported ratio 
of 1:4 in patients from low transmission zones within 
Belaga district of Malaysia [24]. The high levels of submi-
croscopic infections in female patients support findings 
that females have a higher rate of asexual stage parasite 
clearance than males [44]. Although few in numbers, 
children < 5  years had the highest percentage of sub-
microscopic infections than the rest of age groups. The 
high number of adults infected with submicroscopic 
infections is consistence with the findings of a system-
atic review on drivers of these infections, which found 
age to be a significant determinant [45]. These high levels 

of submicroscopic infections in adults could be attrib-
uted to acquired immunity that suppresses parasite load, 
self-prescription, poor adherence to anti-malarial drug 
regimens, and a high prevalence of recently acquired 
infections [12, 13]. Patients living in Kaura sublocation 
had the highest malaria burden of any of the six sub-loca-
tions studied. This sublocation is located along the shores 
of Lake Victoria, which could be a confounding factor in 
the observed periodic prevalence. Sublocations with low 
LLIN use had a higher prevalence of both microscopic 
and submicroscopic infections than those with high 
LLIN use.

In contrast to the previously observed link between 
LLIN use and microscopic infections, patients who used 
LLINs were more likely to have submicroscopic infec-
tions. When the study was narrowed down to establish 
the link between nocturnal outdoor activities, LLIN use, 
and submicroscopic infections, a similar observation was 
made. In general, patients who participated in nocturnal 
outdoor activities had a higher chance of having submi-
croscopic infections than those who stayed indoors. This 
was largely influenced by the high LLIN usage among 
those involved in nocturnal outdoor activities. These 
findings demonstrates that an increase in malaria vector 
interventions may be directly or indirectly related to an 
increase in submicroscopic infections in this study site. 
Perhaps the interventions are limiting human-vector 
contact, lowering both biting and sporozoite inoculation 
rates, implying that low biting rates are a cause of ris-
ing submicroscopic infections [10, 11]. Additionally, the 
influence of LLIN integrity cannot be overlooked as the 
study did not consider this. Reduced LLIN integrity con-
fers partial protection to the host against bites by infected 
malaria vectors [46].

Despite continued IRS, LLIN use, and lower periodic 
malaria prevalence in the six study sublocations, submi-
croscopic infections persisted in this rural area of west-
ern Kenya. As a result, the accumulation of undetected 
and untreated infections may continue to stymie efforts 
to achieve long-term malaria elimination. Further, female 
Anopheles have been successfully infected by submi-
croscopic infections [5, 6]. With rapid diagnostic kits 
clearly playing a significant role in malaria monitoring 
during the COVID-19 era in most countries [47], this 
study suggests supplementing microscopy with ultrasen-
sitive malaria Rapid Diagnostic Tests (or PCR in areas 
where this is feasible) targeting patients with malaria-like 
symptoms.

Conclusion
In the six study sublocations in Homa Bay County, this 
study found a high prevalence of submicroscopic infec-
tions, resulting in a large number of undetected and 
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untreated patients who may serve as a reservoir for con-
tinuing transmission of P. falciparum. This result suggests 
that combined diagnosis using microscopy in conjunc-
tion ultrasensitive Rapid Diagnostic Tests or PCR is 
appropriate in areas with low P. falciparum transmission.

Abbreviations
RT-PCR: Real-time polymerase chain reaction; LLIN: Long-lasting insecticide-
treated net; CI: Confidence interval; OR: Odds ratio; IRS: Indoor residual spray-
ing; DBS: Dried blood spots; DNA: Deoxyribonucleic acid; PCR: Polymerase 
chain reaction.
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