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ABSTRACT

K

The area of study is on a Benevolent Schcmé. Here the insured
contributes premiums to the insuring company and is compensated in
the event of death of self or his or her dependant(s). The problem
normally experienced by a number of insuring companies is how to
determine the appropriate premium size to be paid by the insured, such
that the company docs.not incur losses.

In this study statistical models of a one-dependant and an m-
dependant scheme, have been formulatqd.

Using the formulated models, the expected expenditure and
consequently profits or loses accrued to the insuring company have been
calculated. Consequently the appropriate premium size that will give the
insurer modest profit has been determined.

Properties of Markov chains and Markov states have been applied
in determining the probabilities of transitiqn from one state to another,
in n-steps (years). Steady state transition probabilities have also been
derived. Finally, correlation of the Exponential probability distribution

With the benevolent scheme model has been established.



CHAPTER ONE

L INTRODUCTION

In this introductory chapter, a brief theory of some of the basic statistical
principies thai are needed in the formulation and analysis of the models is given. An
introduction of the binomial, and exponential distribution is also given. The principles of
the hazard model and Markov Chains are highlighted too. It is in this chapter that the
objectives, significance of the study, a review of related literature and a statement of the
problem are given. Here the essence of statisticai modelling and the types of models that
can be built are introduced. The basic principles 0;1 the mode of operation of the

Benevolent Scheme are also highlighted.
1.1: INTRODUCTION.
1.1.1: Statistical Modelling.

Statistical Modelling is the science of conversion of statements to statistical
formulae to be used in the solution of physical problems. An acceptabie model ought to
‘cither. validate previous methodologies of modelling or be the foundation to new

advances in such methodologies.
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Modclling of physicél situations is an old phenomenon. The basis of this activity
is the diverse questions that require statistical redress. For example, the government may

wish to know how to resuscitate the economy. Among the many questions they would
(

require answers for are:

i How much capital should we input to the agricultural sector, which is

the backbone of our economy?

l. What magnitude of revenue do we expect to earn from the input?
fii. Is it therefore profitable to fund agricultural projects as a priority?
1v. There are other options that could earn the government modest revenue

(tourism being an example). Is it relatively more profitable to invest

more on the tourism indusiry than in agriculture?

Answers to these questions could best be presented in mathematical equations.
Such equations are Empirical, Deterministic, or Stochastic. Empirical models allow for
collected data to be analysed in order to understand the nature of a given process.
Deterministic models are meant for the qualitative analysis of the processes and are
therefore not basecd on data. They arc hinged on trends and rates of the activities in
question. Stochastic models are applied in case the process being defined is random. The
process given as an example above (on revamping the economy) is best fitted with a
deterministic model.

“Various statistical models have been improvised in an attempt to explain and give
vsolutions to a wide range of analysable situations. This work is on insurance related

modelling. In particular, we consider the Benevolent Fund. The formulaied model is




Stochastic since the ensuing process is random. This is a discrete-time stochastic process
due to the fact that the events involved are in steps of years.

1.1.2. Thé Benevolent Scheme.

<

A number of cooperative societies incorporate the Benevolent Scheme. This is
where members contribute premiums to the cooperative society and are compensated in
the event of death of self or that of any of their dependants. Different levels of

compensation are made in the event of death of a family member. These levels depend on

the individual involved. For instance, a member may pay on monthly basis a premium Xx.
On the event of his or her death, the dependants are paid a sum of yj shillings. If the
dependant dies, then the contributor is paid ¥, and in case both die, the cooperative

society pays y3. After one year, the expected spending by the cooperative society is

S=p2q1yrtp19:9:+9192y3 1.1

-where p; is the probability of the contributor surviving, p; is the probability of survival

of the dependant, g;=1-p; and q,=1-p; are the probabilities of not surviving for the
contributor and dependant respectively. The gain by the cooperative society is
G=12p;x-S. | (1.2)

From the results obtained using such a model, the average value for x that gives
us modest profit can be estimated by

G+S
12p,

x=

(1.3)




The -given casc only considers onc-dependant and only onc year of cxistence.
Generally, many families have more than one dependant. Therefore, it is necessary to

model the Scheme to allow for the incorporation of more dependants and extend the
L
period of sensor to n years. In such a mode! we consider the case Where there are m

dependants.

The Maseno University Burial and Benevolent Fund (BBF) was started in 1995
under the Maseno University SACCO. The main aim of infroducing the scheme was to
provide a common pool of funds that could assist members instantly on bereavement
without having to wait on loan application procedures. The amount contributed is banked,
lent out or invested in other income generating activities.

Those eligible for membership are the registered members of the Maseno
University SACCO who have paid KShs. 100 non-refundable Registration fee, and
contribute (from their salarics) a premium of KShs. 200 per month. The amount is the
same for every member whether he/she has one, two, three, four or even five dependants.

The major source of capital for the fund was member monthly subscription fee.
To ensure that there were sufficient funds reserved for payment, the management
introduced a condition that there would be no compensation within the first six months of
contribution.

The fund compensates a member in case of his/her death or that of a parent or
child. In case of an extra wife the member contributes KShs. 150 more. Only up to five
’ childrén may be registered as beneficiaries to the scheme. Claims can only be made when

a registered beneficiary dies. There is an age limit after which a child ceases to be




recognised as a bcncﬁciary; For a sibling who is 18 years old and ;ibovc, it is assumed
that he or she is independent of the parents unless still at school or college.

Ever since its inception the scheme has realised tremendous growth in
membership due to the benefits that members have already _exp(;ﬁenced. The initial

registration was 100 individuals while the target was 300 for viability. This grew to 450

members by the year 2000 only to decline sharply to about 350 due to retrenchment.

1.1.3. Notations and Symbols.

The following are some of the notations and symbols used in this research.

P Premium size (amount per annum).

X * Premium size (amount per month).

- é: " The expected spending oﬁ one contributor with m dependants in
the n™ year.

Di probability of survival of the i™ individual.

q; probabilityv of death of the i"™* individual,

A”b A power b.

L(...) The likelihood function of the probability density function f (.,.,.).

g-l—' Partial differential of the likelihood function with respect to p.
/4

M (1) The moment generating function of the p.d.f f(x).

P Probability of transition from i to J in n steps.
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Pfobability of first passage of state 7 through j in the nth step.
Mean recurrence time of state J.

{
Number of children contributor k has in the = year.

The average number of children a contributor has.

Compensation due to the death of the k™ member of the family.

Expecied compensation in a k -dependant Scheme.

Expected cumulative profit for an m-dependant model in the n™

year.

Union of Sets.

Normal multiplication of elements.

Tends to.

Implies.
A matrix of sub-matrices.
A simple matrix.

For all.

Member of.




12: BASIC STATISTICAL CONCEPTS.

The following are the basic concepts used in the research and modelling of the

Benevolent Scheme. , \

=

1.2.1: Binomial Distribution.

In a sequence of Bernoulli trials, one is interested in finding the total number of
successes in the n trials and not in the series of successes (or failures). In this case, the

random variable of interest is;

=y +en. + Yy = <2 y; (1.3)

For example, consider a redundant group of n independent units operating in

parallel. The group operates successfully if the number of operating (or functioning) units

is not less than m. Let ¥; be one if the i* unit is functioning at some chosen time, and

zero otherwise. Then Y is the number of successfully operating units in the group. Thus,
>the group is operating successfuliy as long as ¥ > m, where m is some positive number,
the threshold number.

Y thas a Binomial distribution with parameters 7 and p, » being the number of
units and p the probability of a unit remaining in operating status. By well known

theorems of probability theory, for any set of random variables yi ,

Ej lz ¥:;t= . I E{yi} (1.4)
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In this particular Casc;
E{ {=np (1.5)

For independent random variables of Y, the variance is expressed as

var{ 5 yi}z 5 Var{yi} (1.6)
1<i<n 1<i<n

For identically independently distributed Bernoulli random variables,

var{l }=npq (L.7)

where ¢ is the probability of failure.

The probability density function of a binomial random variable is given as:
n\ r op-
f(y)=pr0b(y=k)=[kakq" k. (1.8)

' This distribution has the moment generating function.

My()= (q + pé r (1.9)

The binomial distribution has already been infroduced. Following is an
explanation of the maximum likelihood estimator of the parameter p. For a random

 variabie x that has a binomial distribution,

flx)= (Z)pxq"‘ S (1.10)
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The likelihood ﬁmcﬁon of tlus distribution is

n n X. n—x.
Lix;,mp)=T1 | |p 'A-p) 1.

i=1\"i/

- (1.11)

n{n i 1. | =1
=H( )*p *A-p)

i=I\ %1
here * means multiplication.
We need to find p such that L (%, n, p) is maximised. This is the same as finding p

such that the natural log of the likelihood function In {L (x, n, p)} is maximised.

n. n n 5 m
Zie _Z X, [Inp+n -2 X Ind - p). (1.12)

=1\ =1 ,z=1‘

InL(x,n, p)=

Atmaximum In {L (x, n, p)},
(1.13)

Now

(1.14)

" ‘ Frbm Which
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n
\ 3 x L
P\ _i=1' _ % _ s
1-p - n “n-x 1-X%/ (1
/ an— 5 x.} 7
1 ¢
l=1 ‘e
Thus we have the maximum likelihood estimator of p as
" f
pP=— (1.16)
n
Hence, that of q is
é:l—i:?——x (117)
n n

1.2.2: Exponential Distribution

This distribution i8 most popular and 6onun0nly used in reliability theory and
engincering. Many mathematical rescarchers prefer usmg the exponential distribution
because they can obtain a lot of clegant results with it. Although it is principally
‘imposgible to find a natural process that is exactly described by a mathematical model,
the exponential distribution under certain conditioﬁs is best placed tﬁan other
distributions.

The distribution is often used to describe the failure process of electronic
equipment. Failure of such equipment occurs mostly because of the appearance of
exireme conditions during their operation. The probability density function of an

- cxponential random variable is
f(H=2eM with A.t>0 (1.18)

Its mean and standard deviation respectively are

10




Ef}=1/4

and.

0'=,/var(x) =1/4 Y (1.19)

It has the moment generating function

M, ()= %H- (1.20)

1.2.3: The Hazard Model.

Excessive work has i)een carried out in the use of the hazard model in various
arcas of study dealing with population dynamics. These kinds of models have advantage
over static models since they account for time. The time dependent variable in the hazard
model is the time spent by the individual under study in the ‘healthy’ group (alive,
operational or in good condition).

As explained in Gnedenko (1995) and Murray (1990), the Hazard models also
.incorporate time varying covariates or explanatory random variables that change with
time. These models also produce more efficient out of sample forecasts by utilising much
more data. Hazard models require selection of parametric forms such as the Weibull
distribution, Exponential distribution, Extreme Valué and Gompertz distribution for
bascline duration dependence.

-The Exponential distribution plays a central role in survival analysis. Though few
s}stcms have exponentially distributed lifetimes, most of the useful survival distributions

are closely related to it.

11



As carlier noted, the density function of the cxponential random variable T for

survival time { is

f(t)= problg <T <t +dt)/ dt = -l-e"’/“‘;y,t >0. ' (1.21)
7 |

Where 1z is the mean of the distribution. The cumulative density function of the
distribution is
Fiy=1-¢ t'#. (1.22)
A fundamental concept of survival analysis is that of the hazard function / (%)
with the conditional density function at time t given by survival up to time t being
h(t)= problt <T <t+dt/T > = f(dt/[L-F(1)]. 1.23)

The Survivor function is defined as

S(t)= probl{t <T}=1 - () (1.24)

and
h(t) = f(6)/ 5(2)

is the hazard function. It can be interpreted as the instantaneous failure rate at time t. Any
“continuous probability disiribution can be specified equivalently by its density funciion,
survivor function or hazard function. For any distribution, the functions mentioned above
are given as |

J(0) = h(t)yexp{-H (1)}

S(t) = exp{-H(1)}

"and
h(t)= f()/ S | (1.25)

where the function

12
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H(t)= [h(u)du. ' (1.26)
0

A ~is» the intcgrated hazard function. In particular, for a random variable 7" with the
(

<

- exponential distribution,
hit)y=1.
t
H(t) = [h(u)du.
0
t
=[Adu.= At. 1.27)
0
hence )
Sy=e M.
and finally
f(H)=aeM

as earlier stated. From this we deduce that the Exponential distribution has constant
hazard rate A.

Davis (1993) defines the hazard rate as a function satisfying the condition:

prob{T e (s,s+1)/T > st = h(s)0 +0(5) (1.28)

where 0(&) is a function such that
0(0)—>0as0—>0.
 h(s)0 expresses, to the first order, the probability that 7 occurs ‘now’ given that it has

" not occurred ‘so far’. The memorylessnes property of the distribution of T regardless the

time elapsed s is seen from the equation

13




F(t+s)=e—'1(t+sj Yy

=g = 120 1.29
F(s) e~ s 42

prob{T >t+s/T > s} =

Thus the probability of survival to time t is not dependent on_the length of the
previous lifetime. The Exponential distribution represents the lifetime distribution of an
item that does not age or wear. Instantaneous failure is the same no matter how long the
item has survived already.

The survivor function, S(%), which is the probability of surviving to at least time 7,

is most commonly estimated (for censored data) by the Kaplan-Meier or product limit

estimate,

o i (n.—d.
SH=111-L—L|, #t<t<tu. (1.30)
=1 7%

where d} is the number of failures occurring at time £ out of 1; surviving to time #;. This

is a step function with steps at each failure time but not at censored times. As
“arn_ —H() L . Bein 5
S(ty=e , the cumulative hazard rate can be estimated by H(?) = —log[S(#)].

A plot of H (1) or log (ﬁ (¢)) against { or log () is ofien useful in identifying a

suitable parametric model for the survivor times. The following relationships as given in

Gross and Clark (1975) can be used in the identification.

(a) Exponential distribution: F(f) = AL
(b) Weibull distribution: log[H (f)] =log A + ylog{.

(c) Gompertz distribution: log| H (t)] = log A+,

14



(d) Exireme value (smallést) distribution: log[H (¢ N=At-y). |

In the case of the exponential, Weibull and extreme value distribution, the
| proportional hazard model can be fitted to censored data using the method described by
Aitkin and Clayton (1980), which uses a generalised linear model with Poisson errors.

Other possible models are the gamma and lognormal distributions.

1.2.4: Markov Chain

Definition 1:

Let Ey, E,, ...E, be n possible outcomes of sequence of trails. The sequence is a

Markov Chain if the probability of the sample space satisfies the equation,

[( |
probﬂ\E B ] J (1.31)

\}

CF I SR SR LY .
]0 1 J JO .105.]1 119.12 ) Jn—l’Jn
where Prsis the conditional probability of occurrence of event Eg given than event E, has

occurred. aj is the initial probability distribution. Examples of Markov chains are
0

Random walks, Branching processes and urn models. The transition probabilities Prs are

arranged in matrix form as below.

(Pn Pz - pln\
| Pn Pxn - Pan
P = (1.32)
\Pnl Pnz prm}
This is a Markov Chain with n states.

<~

15
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The first subscript stands for row and the sccond for column. P is a squarc matrix
" with non-negative clements. If the sum of cach row of clements is unity, then such a

3 matrix (ﬁniic or infinite) is called a stochastic matrix. Any stochastic matrix can serve as

¢

2 matrix of transition probabilities. This, together with the initial _dism:ﬁution constitutes a
~ Markov chain.

Example 1:

Let an experiment have two possible outcomes following the two events E; and
E,. These are the states the experiment can assume. If the experiment remains in state 1
with probability «, then it moves to state 2 with prpbability 1-a. Conversely, if it is in
state 2 and remains in it with probability £, then it moves back to state 1 with probability

1- . The corresponding stochastic matrix of transition probabilities is given as,

_a -

) -8 B (1.33)

A Markov chain is doubly stochastic if each of both the rows and columns of the
matrix of transition probabilities independently sums to one. In example 1, if o= £ then

P is doubly stochastic.
Transient states.

A state E, is transient if for some 4(0r all) other states E;, E2E, but E/2E,. (=

Implies communicability, and /= denotes incommunicability). Thus Prs >0 but Psr =0

for some fixed r.

16



Example 2. -

Let P be a transition probability matrix with state space E={0,1,2}.

(

<

/3 13 13
P=10 1/2 1/2
0 0 1

- Then diagrammatically the states can be represented as

o

State 0 is transient.

E- Absorbing states.

(1.34)

A state E, is absorbing if for some (or all) other states in the system, E-2E, but

E/>E,. This implies that P =0 and P_>0 for some fixed r. thus EE, and p,=1. In

example 2 above, state 2 is absorbing.

 Higher Transition Probabilities.

Let P, denote the probability of transition from E; to Ey in exactly n steps, then

17




r jka) =P
: p@D_sp p .
we have, Je y dF T (1.35)
) _ -
ij(“ L gpjvpvk (), |
(General recursion formula).
m) (n)
(n+m) _ (
ij = %Pf" By (1.36)

(A special case of the Chapman Kolmogorov identity).

Now let ]}Tk(") stand for the probability that in a process starting from E; the first

entry to Fy occurs in the n®* step. We putﬁk(o) =0 and

© (n)
S & > f & \ (1.37)
n=1"-
l (m] o
Thus fjk <1. When f;=1, then [ fjk is a proper probability distribution
' J

(first passage distribuﬁon) for E.. If f},-=1, then return to E; is certain. The mean

recurrence time pj is given by

o0
H.= 2 nf . (1.38)

Definition 2.

The state E; is persistent if f;=1 and transient if ;,<1. A persistent state E; is called

null state if its mean recurrence time ,uj =00,

~

18




13: OBJECTIVES OF THE STUDY.

Our main objective of this study is to formulate a Statistical Model that can be
used in calculating the spending and profit a cooperative society ci;pects due io the
Benevolent Scheme. By use of this mociel, it is expected that the right promium to be
contributed will be determined. Application of the model to the Maseno University
SACCO is to be made with the aim of forecasting the financial status of the cooperative

society, hence improving its services to members.
1.4: SIGNIFICANCE OF THE STUDY.

At the moment, arbitrary premiums are paid to most SACCO societies. This could
result in either losses or abnormal profits to the cooperative society. The results we
envisage to obtain will be usefully in the SACCO to obtain the average premium to be
paid by members of the Benevolent Scheme. This prémium size is to be such that the

cooperative society earns a modest profit.
- 1.5: REVIEW OF RELATED LITERATURE.

Many authors have studied statistical modelling of premiums. Cummins and

Chang (1983) studied the rate of return on insurance companies’ equity and the premiums
insurance companies should charge.

| Ferrari (1968) developed a descriptive model, which allows an algebraic

- expression for the rate of return of equity as a function of the premimﬁs charged to be

derived. Combining this work with the Capital Asset Pricing Model (CAPM) meant that

~

an equilibrium value for the return on equity and the corresponding level of premiums

19
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4 could be found. This model is known as the insurance CAPM. Coopé.r (1974), Biger and
! Kalme (1978), Fairley (1979), Clements (1982) and Hill (1979) also studied the CAPM
B

¢

Myers and Cohn (1987) suggested an adaptation of the adj‘livstcd present value
method for calculating the price of insurance. They determined the premium by
b discounting the expected cash flows associated with insurance at the appropriate discount
rates.

The National Council on Compensation Insurance ((NCCI) (1987)) used the
intcrnal rate of return mcthodology. This involves finding the discount ratc such that the
net discount cash flow is zero. The fair premium is one in which this rate of discount is
equal to the opportunity cost of capital.

Pratt (1964) addressed the problem of the maximum risk premium. This is the
maximum premium that the insured is willing to pay the insurer. Henri (1991) examined
the insurer-reinsurer interface in relation to this risk.

Analysis of survival, reliability and failure time data has also been carried out.
Kalbfleisch and Prentice (1980) highlighted the most commonly used statistical
technigues in the analysis of such data to be the Hazard Model. Gross and Clark (1975)
derived the relationships used in the identification of the bascline distribution to use
together with the hazard model.

Aitkin and Clayton (1980) described the method by which the exponential,
Weibull and extreme value distribution could be fitted to censored data using a

| generalised linear model with Poisson errors.

20



Rather than using a specified form for the hazard function, Cox (1972b)

' considered the casc when Z,O(t) (the bascline hazard function) was an unspecified

:; Mcﬁon of time. To fit such a model, assuming fixed covariates, agma:rginal likelihood
- was used. More literature on the Cox’s proportional hazard model arrd the other earlier
mentioned models can be sought from Kalbfleisch and Prentice (1980).

Feller (1968), Stirzaker (1994) and Grimmet (1992) have a comprehensive
'. overview of Markov chains and various probability distributions, which are to be used in

| our formulation, and analysis of the statistical model of the Benevolent Scheme.
- L6: STATEMENT OF THE PROBLEM.

It s expected that a formulation of a statistical model that is to help in the
~ calculation of the expected expenditure, gains and loses a cooperative society incurs due
io the Benevolent Fund will be met. Using the results, an expression for the estimation of
the right premium size to be charged by such a cooperative society is to be derived. In
line with this, one-dependant and m-dependant models of the Benevolent Scheme are to

" be formulated using Branching and Markov models.

21




CHAPTER TWO.

L2, MODEL FORMULATION.

In this chapter, discussed are the methods intended for use in the calculation of
Survival Probabilities and the basis of the onc;dependant model of the Benevolent
Scheme. This leads to the formulation of the model. Data from the Maseno University
SACCO is applied to the Model as a case study. Finally, the implications of the results

| are read by usc of line graphs.
2.1. METHODOLOGY.

In section 1.2, basic probability principles of the binomial distribution were
highlighted. A brief theory on the Hazard Model was also given. These are the tools used

in the formulation of this model.

The Maximum Likelihood Estimator (of p in the binomial distribution) approach
is employed in the calculation of Survival Probabilities of the contributor and dependant.
To find the probability of survival p wé consider the death rate or rate of “departure”

from the scheme.
Fundamental probability rules are applied in the calculation of the expected

expenditure in compensation to a beneficiary due to death of a family member of the

22
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contributor. This is done for various stages (years‘ a coniributor remains a member of the
scheme). Data from one of the co-operatives that has the scheme is collected and
analyzed using the derived model. e

The required data is summarized in the table below. Here 7 is the number of

children contributor k has in the ith year.

Year (1) 1998 | Year (2) 1999 | Year (3) 2000 | Year (4) 2001 | Year(5)2002

Zhy Zhyy Zhys Thy, Zhys

Jan Dec Jan Dec Jan Dec Jan Dec | Jan Dec

Xu X1z X X2 X3 X3 Xa X | Xs1 Xs2

~ Table2.1: A table of the data we expect to collect.

2.1.1; Calculation of Survival Probabilities.

In table (2.1), X}, represents the number of contributors present in the. it year and
j" month §1 for the month January.

j=2 for the month December. .
Assuming that the death rate remains constant over » (in this case 5) calendar
years, the probability g, that the contributor does not survive to the end of the first year is

 estimated to be,

1 ' B
ql g Z S N ) (2.1)

23




This is the same for all the five years under consideration.

We know from Sampling Theory that sample mean is an unbiased estimator of

L

population mean. So is the variance. The use of the estimator ¢ is therefore statistically

Justified.

Assuming that the first dependant A is the wife or husband of the contributor,

then we can let ¢; = ¢ since death is relatively equally likely in their age bracket. This
is checked from the data we expect to collect. Other dependants (siblings) have their

survival probabilitics p3... py... calculated from past records using the following data sect.

1998 1999 2000 2001 2002
Y, Y, Y; Y, Ys
N; N, N3 Ny Ns
 Table2.2: A tabic of compensation data related to child death.
Y; are numbers of claims in year i of compensation related to child death.
X, +X. '
N | I ¥
N, _{_—2———} 22)

N; is the average number of contributors in year i. Then assuming that each child has

equal probability of survival, the average number of children the contributor has is,

24
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h Ms

Where /1;; is the number of children contributor k has. The average probability of not

surviving in the case of siblings of the contributor is estimated by,

L2 ¥
q3 =CI4 = ... = q5+2 =;1“ Igl(g]\?—J} (24)

¥; is the number of claims in the ol year due to chiid death, CN, is the average number

of children in the l'”’ year, and the subscript ¢ + 2 is the total number of beneficiaries
that is, the average number children per contributbr plus the contributor and spouse.

In chapter one, other methods of determining éurvival probabilities as the Kaplan
Meier product estimator were enumerated. We compare results of use of the estimator to
‘those of the Maximum Likelihood Estimator. Incidentally, it is not possible to predict
future survival probabilities using the Kaplan-Meier or product limit estimatér. This is
because it requires data up to the end of the time of study. This is mainly why the
Maximum Likelihood Estimator method is applied. It gives us an average estimate to be

used throughout the period of study.
2,.1.2:1 The Flow Chart and Tree Diagram.

The following figures are useful in explaining the transitions involved in the one-
dependant model. Figure (2.1) shows the flow chart of possible events in the transactions

of the Beneyolent Scheme.

25



Year = year +1
No death Y
(P1p2) =yr+2
(p1)
/m
v M dead ¥
FM Y
(p192) D2 paid W
F dead
> M end
(a1p2) D1 paid
both dead
»| N
(9192) (D1 + D2 ) paid end

Figure 2.1: A flow chart of events in the one dependant Model.
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Figure 2.2: A tree diagram for the model.

27



From figure (2.1) we see that if both F and M survive, the insurer pays no

bompensaﬁon. The process proceeds to the second year. If only M dies, amount 1D is

N

paid to F and the process proceeds to the second year. In the even(t—vof death of F, M is
paid D; and the process ends. In case both die, within the first year, D;+D, is paid and
the transaction ends here. The branching process proceeds. The tree diagram is an
extension of the flow chart in figure (2.1). It shows the branching process that ensues
' during the period of study.

Using figure (2.2), .the one-dependant Branching Probability Model is formulated.
In chapter three, the two and three-dependant modéls are formulated and applied to data.
A general m-dependant model is also derived.

Markov chains have also been discussed. They are used as tools in the
 formulation of Markov model equivalents, to those of the Branching Probabilistic type.
This is done in chapter four. In chapter five a comparison of the two options and an
- analysis of the results is made. Possible model equivalents that could fit the Benevolent

scheme model are also suggested.

2.2. ONE-DEPENDANT MODEL

In this section, a discussion of the fonnlﬂaiion of the one-dependant Branching
Probability Model and apply it to collected data. This will aid in the study of the trend
and expectations of an insurer with a mcmber who has only one dependant.

2.2.1. Introduction.

In the formulation of this model, the assumptions are as follows:

i The contributor has only one dependant.
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il The survival probabilities of the contributor and dependant are

different.
il Claims are made towards the end of a calendar year.
v Since if both die at the same time the amount 5aid as compensation

is not equivalent to the sum of separate compensations, we assume
that the probability of both dying at the same time is negligible.
V. Survival probability is independent of age and sex.

There are four possibilities at the end of the year or at the time of observation.

That is, starting with two individuals, the contributor F and spouse M.

i Both of them survive by the end of the year.
. Only F survives.
iii. Only M. survives.

v, None survives.

The following are the figures of compensation we require from cooperatives that
have the Benevolent Scheme.
X i8 contribution per year.

D), Dy Ds ... ... D, 4+, which are amounts of compensation for each death.

D, is the amount compensated for the death of the contributor F.

D5: is the compensated for the death of the contribuior’s spouse M.

Ds ... D, 4. are the amounts compensated for the death of the contributors’
children.

The probabilities assigned to the events i, i, iii, and iv are summarized in table (2.3).
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B Event probability compensation

i ‘ pip: 0 ;
i P19z D, Q
iii q1p: D,

iv 9192 D;+D,

~ Table2.3: A table of events, probabilities and respective compensations.

We now show that the total probability is unit.

2. prob= " pip2+ pig2+ qip2+q142= p1 (P2 + q2)+ q1 (P2 + q2)

= pitq

The observation stops in case either M survives or both do not survive. This is because
the contributor no longer existé, and consequently the transaction. On the other hand,
there is continuity in case the contributor or both survive. In case both survive in the first
year, then in the second year events v(i) to (iv) are probable. Meanwhile if only the
contributor survives, then in the second year he may survive agam (with probability p))
or die (with probability ¢,). This branching process replicates as in figure (2.2) at each
stage of observation.

Consider the case of detectability in estimation of biological populations. Let the

probability of correct observation be p, and let ¥ be a random variable representing the
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.:,number of animals present. The total population of the species under observation is 7.
B 1. . Binomial distribution with mean
E (D)=Tpa . (2.5)
- and variance

Var (Y)=Tp, (I-p,). (2.6)
In the case of calculation of the expected expenditure using the probabilities that
| ‘havc been modeled, we have the actual payment multiplied by the probability of the

- event (for which payment is made) occurring.
2.2.2: Modelling expected claim amount.

Let lén represent the expected claim amount in the n™ year for the one-

dependant model. Let F denote the contributor and M the dependant. Also let the
probability of survival of F be p; and that of M be p, Then using figure (2.1) and (2.2),

the calculations of expecied codperative expenditure and profit from a single contributor
are made. We are assuming that there is only one dependant, the spouse.
By the end of the first year, using achicved probabilities (table (2.3)) and figure

(2.2), the expected claim amount to the insuring company by the contributor is:

161 PPz (0)+p14: (D2)+q1p2 (D1)+q19; (D1+D>)

=p1q: (D2)+q:9: (D3)+q:p: (D)+q19; (D))

= q1Dr+q2D;. ‘ 2.7
Let gD 1+q2D; be denoted by (Dl. Thus we have:
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169 (2.8)

For the second year, the expected claim amount is calculat;d in the case of the
L contributor or both having survived by the end of the first year. There is no compensation

~ for the death of the dependant in case the contributor had previously died.

169 TPw2ipp2(0)1p19:D 2t qip Dt quqs(D i+ D))+ prqa{qiDy}
=pipz O+ p1q:{q: Dy}
=P1iP: O+ 424:Dy)
=P1ip2 © 1t 42 @\ ,} 2.9
. We have introduced the notation @, ,, which represents gD, and essentially is
;- q:D3. ‘ (2.10)
Generally ,
© .\ =Dt q:Dst ...+ @D qr 1Dy}~ ¢5Ds. @1

Similarly, for the third year,

1€3  =PiP: ©+ pipatp19:4: D+ prgapiq: Dy
=pi'ps’ ©+ pi'P:14:Dr+ pr'q:19:D
=pi'tp’ ®;+ q:14:D:1(1+ pr)}

= e 0.7 @+ (1- p) D; f (2.12)
Further we see that

15 4 = P13Pz3 o, + P13P22¢12¢11D1+ P13P2Q2QJD1+ P13¢12¢I1D1
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=pr{p; @ 1T 4:4:D:1(1+ps+ 27

=pr{p; © 1+ a:Di(1- PN}

=pi’fps’ o+ (I-pi) @y ,} . | 2.13)
We can now generalize the expected expenditure on the contributor’s family as:

&, =pip o+ (1-p) @) L ) (2.14)

- To prove this for n=1 and n=4 we have
1‘51 =P11-1 {le-lq)l"' (I‘PZI-I) (Dl\ 2}

=0, ‘ (2.15)
and ,
154 =p1“' 24'I(D1+ (1_p24-1) CDI\Z}

=it + (1-p5) ®y, 3 (2.16)
as before.
: - 22.3: Calculating Profit.
Let | IT, represent the émount of profit the fund gets from one contributor in the
nth year of membership. Annually the contributor is expected to give a premium of size
P to the insuring company. So, in the n™ year, the contributor is’expected to have given a

total of Kshs.

k
PZ Pr- . (2.17)

Assuming that premiums once contributed are kept in a bank account, an interest at rate [

is earned per annum. This incorporated in equation (2.17) gives the amount available due

to the contributor as
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e, S
o R

(2.18)

(1 +T60—]Z .

It is assumed that premiums are paid at the beginning of thel‘Year but benefits are

4 payable at the end of a year. So, at the end of the nth year, claims amounting to

kz lék will have been made. It is also important to note that with time, the
=]

deposits decline in value due to rise in the coast of living. We therefore introduce the

factor V as in the equations below. The expected profit I, is given as

i k-1 _ Ly 1k
(1+1OO)ZV kzle

1
{P[H e )V" pk V"lé’k}.
1

11,

A

k=

~

where V=—~}——
1+i

rate i per annum.

b

il

n

o

yd

P(l -
100

3

V :

In the first year, the expected profit is
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(2.19)

is the discounting factor introduced due to inflation of currency at

(2.20)




‘ - and by the end of the fifth year the expected profit is

(.1 ‘
dpk— \
i, |

5
I =) ™
k=1

V

2.2.4: Testing the Model with Collected Data.

Py é:k

(2.21)

The following data was collected from Maseno University SACCO and used in

the testing of the Model.
Year (1) Year (2) Year (3) Year (4) Year (5)
1998 1999 2000 2001 2002
thl =932 zhk2 =1230 | ¥ hk3 =1350 | » By =1177| % hkS =1123
Jan Dec Jan Dec Jan Dec | Jan | Dec Jan Dec
318 300 420 406 452 424 | 402 | 380 391 | 355
Table 2.4: A table of collected data.
1998 1999 2000 2001 2002
T Y48 Y,=62 Y=59 Y.=61 Y5=56
309 413 438 391 373
Table 2.5: A table of the average number of contributors.
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On calculating using the suggested equations (2.1), (2.2), (2.3), and (2.4), we find
that ¢;=¢q, = 0.06, ¢3;=qg,~=q5s=0.15. Other results are as in table (2.6).

{

ITEM V_ALUE
D, 20,000
D, 10,000
Ds,Da,Ds,... 7,000
41=q2 0.06
$B=Q=qs=. . 0.15
X/12 ' 200
¢ 3
. Table2.6: A table of data and calculated results,

Using the Kaplan —Meier or product limit estimator for the survival function
infroduced in chapter one, the survival probability p; = p» is as in table (2.7). The results
of this estimator are compared with those of the maximum likelihood estimator. This is

possible for the fist five years for which data is available.

Year nj-dj nj nj-dj over Si(t) p1 power

(t) nj t

1 300 318 0.943396 |0.943396 |0.9433

2 406 420 0.966667 |0.91195 10.889815
3 422 450 0.931707 |0.84967 0.839362
4 380 402 0.945274 |0.803171 |0.791771
5 355 391 0.907928 |0.729222  |0.746877

Table 2.7: A table of values of survival probability using the Kaplan-Meier and

Maximum likelihood estimators.
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The parameter S;(t) is calculated using the formula

SA(t)=Il_.[ n—j;c-li R
J=1 % |
We test the hypothesis;
H: S1(t) = p1 against
' $1(6 £ p1.

Hp: implies that the two methods give similar results while

H,: implies that the two are not the same.

Using SPSS application package, the following are the results:

Pearson’s Correlation

Sa(t) P;
Si(t) Pearson 1.000 ** 088
Correlation ,
Sig. (2-tailed) ' .002
P; Pearson ** 088 1.000
Correlation
Sig, (2-tailed) 002

Table 2.8:  Correlation of survivor function vs. survival probability (Pearson’s

correlation).

* Correlation is significant at the 0.01 jevel (2-tailed).

From table (2.8) we see that the p value is 0.002 for the two-tailed test. Pearson’s

correlation coefficient is 0.988.
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Spearman's rho Correlation

Si(f) P

| {
| Spearman's Si(t) Correlation 1.000 ~ **1,000
: rho Coefficient :

Sig. (2-tailed)

Ps Correlation **1.000 1.000
Coefficient
Sig. (2-tailed)

Table 2.9:  Correlation of survivor function vs. survival probability (Spearman’s Rho
Correlation coefficient).

** Correlation is significant at the .01 ievel (2-tailed).

': - Here the p value is negligible and the Spearman’.s Rho Correlation coefficient is 1.000.

From the results in tables (2.8) and (2.9) abov;c, we conclude that at 0.01 level of
significance, the two methods give the same results. Thus we accept H,,.

Using Ms-Excel Application Package, the parameters p; power (n-1), Claim
amount, Cumulative Claim amount, Contribution, Cumulative confribution, and Profit
result. These are tabulated in table (2.10). Let the value for inflation rate i be 710%. Then
the discounting factor V'is

1

100

e
1+

Using this in our expression for expected claim amount we have,

S VEE =D (0.9091)F &,
k=1 k=1
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_ Expected |discounted|cumuiative| Expected | discounted
Year | pipower | claim claim claim |contribution| cumulative | growth in
7 (n) amount | amount | amount |(discounted) contribution| profit
1 0.94, 1800 1636 1636 2527 « 2527 891
2 0.884 1658 1370 3006 2159 94686 1679.811
3 0.831 1529 1149 4155 1845 6531|2376.359
4 0.781 1411 963.5 5119 1577 8108|2989.642
S 0.734 1303] 808.9 9927 1347 9456(3528.223
6 0.69] 1204 679.6 6607 1151 10607|4000.113
4 0.648 1113 571.4 7178 984 11591/14412.723
8 0.61 1030] 480.8 7659 840.9 12432|4772.834
9 0.573| 954.4{ 404.8 8064 718.6 13151/5086.604
10 0.539| 884.6/ 341.1 8405 614.1 13765|5359.586
11 0.506| 820.4] 287.6 8693 524.7 14289|5596.758
12 0.476| 761.4] 242.6 8935 448.4 14738/5802.563
13 0.447 707| 204.8 9140 383.2 15121/5980.947
14 0.421] 656.9 173 9313| 327.5| 15448|6135.405
15 0.395| 610.7| 146.2 9459 279.8 15728(6269.019
16 0.372| 568.1] 123.7 9583] . 239.1 15967|6384.502
17 0.349| 528.7| 104.6 9688 204.4 16172/6484.235
18 0.328| 492.3| 88.57 9776 174.6 16346|6570.303
19 0.309| 458.7| 75.01 9851 149.2 16496|6644.527
20 0.29| 427.5| 63.56 9915 127.5 16623|6708.498
1 0.273] 398.6, 053.88 9969, 109 16732(6763.601
22 0.256| 371.9] 45.69] 10014 93.13 16825/6811.039
23 0.241 347 38.76] 10053 79.58 16905|6851.858
24 0.227 324 32.9/ 10086 68.01 16973|6886.966
25 0.213| 302.6] 27.93| 10114 58.12 17031 6917.15
26 0.2 282.7| 23.73| 10138 49.66 17081|6943.089
27 0.188, 264.2| 20.16| 10158 42.44 17123|6965.372
28 0.177 247 17.13] 10175 36.27 17159/6984.508
29 0.166 231] 14.56] 10189 30.99 17190|7000.937
30 0.156| 216.1] 12.39] 10202 26.49 17217|7015.036
Table 2.10: A table of Cumulative claim amount contributions and Profit (one-

dependant model).
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2.3: TREND AS n> o
From the general formula derived earlier (equation (2.14)),
16, =p oo+ (1-p) @, 2.22)
Since p; and p; are fractions, as # = © we have
pi*t 30, p >0
and consequently 1$, 20 {0+ (1- 0) D\ 5 § 3 which implies that

1$, 20 (2.23)

From the results that were arrived at in section 2.2.4 table (2.10), it is eminent that
the trend above illustrated is justified. As time of stay in the scheme tends to « the
expected claim amount tends to zero. This is truc because the contributor has a higher
probability of death as time increases. Using SPSS program the data in table (2.10)
above is graphically presented.

The graph in figure (2.3a) illustrates the trend in cumulative claim amount with
increasing period. It is clear that with time the .expected claim amoﬁnt reduces
exponentially to a minimum. If extrapolated there is a time when it becomes zero. This
implies that at some stage, the membership ceases and hence compensation.

In the same grid (figure (2.3a)), the trend of growth in premium contribution is
similar to that of compensation claim amount due to the same reason stated above. We
. expect coniribution to cease at some time due to eminent departure from the scheme.

Lastly, Figure (2.3b) shows the growth in profit levels expected from one
individual under the one-dependant model. It grows exponentially with time. At some

stage, we expect a sudden stop since no profit is earned once a member ceases to

contribute premiums.
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GROWTH IN PROFIT
One-dépendant Model.

model.
With the achieved one-dependant model we can now focus on the case of two,

Figure 2.3b: A graph giving the trend of cumulative profit for the one-dependant
three and consequently the m-dependant case. This is done in the next chapter (chapter
42

three).




CHAPTER THREE.

3 m-~dependant MODEL.

In this chapter the two-dependant and three-dependant model equations are

derived. This leads us to the derivation of the general case, the m-dependant model. We
- also apply the models to collected data and graph the results. Implications of the results

discussed too.
3.1: INTRODUCTION.

A similar trend, as was the case in the formulation of the one-dependant model,
shall be used. It is possible to derive the m™ order equation only after considering the

trend, not only of the one-dependant equations, but also those of the two and three-
dependant models.

Let F and M take the already stated meanings. We introduce another dependant B,

say the first born of the couple F and M. p; and p; take their earlier stated meanings. We
include p3, the probability that B survives. We also let the amount of compensation if B

dies, to be D;. The events of survival, their probabilitics and related compensations are

given in table (3.1).
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EVENT PROBABILITY COMPENSATION

~ (Survival of) KShs.
|[FMB PiP2pPs3 0
| FM PiP2q3 o D;
|FB P192P3 | D,
| F P19293 D,+Djy
MB q1P2P3 D
M q1p293 D;+Dy
B q9:192P3 D;+D,
N 919293 D;1+Dy+D3

~ Table3.1: A table of possible events, their probabilities and compensation amounts

therewith (two-dependant model).

The tree diagram (figure (3.1) at the appendix) shows that there are eight
- possibilities at the end of the first year. The first four events involve the survival of the
contributor. For this reason, the branching process only extends on at these particular
points. The remaining four options do not extend further because the contributor no
{ longer exists, hence the end of the transaction.

| The survival of either FMB, or FM, or FB, or F implies that at the end of the
second vear, there are eight other possibilities for FMB, four for FM, four for FB, and
| two for F. The process proceeds in a similar manner for as long as we wish to observe.
; Note that if all members of a family die, the next of kin are responsible for their burial.

Thus they take the claimed amount.
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It can be shown that the sample space has been cxploited by proving that the sum
of all probabilities involved is unit.

2. prob= pipaps + pip2qs + P1qaPs + P1929s + 4iP2ps + qip2qs +

<

q192P3 + 419293
= piP2{Pstqs} + p1g2{pstqs) + qup2ips + 43} + 01q:2{ps + 45}
=pitp: + @2} + @i p2 + @2}
=p;+ q; =1.
The branching process together with the probabilities in table (3.1) are used in the

 formulation of the two-dependant model.
i 3.2: FORMULATING a two-dependant MODEL.

In this section the two-dependant model of the Benevolent Scheme is derived and

- applied using collected data in section 2.2.4.

3.2.1: Derivation of 2§n'

Figure (3.1) together with table (3.1) are utilized in the construction of a two-
dependant model for the Benevolent Scheme.

The expected claim amount by the end of the first year is found to be:

| 24} = pip2P3(0) + pip2qs(Ds) + piqaps(Dy) + pigaq:(DtD3) +

qp2p3(D D) + qip2qs(Di+D3) + q1q:p3(D D) +

q19293(D+D3+D3).
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={qipps + qip293 + 419203 + 419293 D1 + { p1g2ps +
P14293 + @1PpaP3 + 414203 + 419293} D2 + { p1p2qs +
P19293 + P1q293 + qip293 + 419293 D3, _

= L4 =q; (D;) + qz (D) + q3(D3).
¥

- Using equation (2.1) we have,

of =y (3.1)
In the second year, the expected claim amount is:
8y TPWPs Ot Pipas Dy 4t PigaPs Dy 5 P14243 Dy 5
=p1iPaP3 Qo+ P25 @\ 3+ 42P3 Oy 51 4245 (I)2\2’3 ) (3.2)

In the third year:

& pIpDS O+ plpipsts Oy + PIPADTE Oy, o+ PP
®y\pat PIPIGs @y + PIPHNs Py oot PI DS @y pat
PIasps @y 5 3+ P1 G285 Dy 5 3

: = 563~ piipps’ D, + P2 qs(1+ps) @,\5F 405 (1+p3) Dyt
q:q3(1+p+pstpsps) D5\ 2,3}- (3.3)

Similarly we have;

2% =pi {p2 ps’ @, +p2’qs(1+ ps +ps’) D\ 4t g.ps (1+p,+p) @, ,*

q2q3(1+p;+pstpapst p22+ P32+ P. ? P 32) (D2 \2 3} )
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: N 2 2
£ 3 3 3 3 k
P23 Pyt Pya3( X P33+ 25P3( z P3Py 0"

2 2 a4
93 Z X Py P3P 3 3
a;=0a, =0 - ’ -
sing the property
n-2 n-2 n-2 £ I
Gz y] T L e 3 (p21p32 ...... pm,:z-l)

=(1q pg“l)(l- pg"l) ..... (1 —pzi:_ll) (3.4)

- where
- we have

26y =PrPIPS ©,+pi(1-ps) @)+ ps’(1-ps) @y ot

(1-p7)(1-p5) @y, 3} (3.5)

We can now generalize this expression to a case of n years as;

Zgn =p1n-1{p2n-1p3n-1 (D2 +p2n—1(1_p3n-1)' @2\3+p?n-1(1_p2n-1) (DZ \ 2+
_ -1y % Y n-I

‘This general formula can be shown to generate the already derived equations of

' the two-dependant model. For example if n = 2, then ;

252 = P12~1ﬁ722-1p32_1 (DZ +p22-1(1;p32'1) (1)2 \3 +p32-1(1'p22- ) (Dz \ 2+
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-

2l 2.4 '
(1'p2 ) (1'p3 )®2\2,3}

= p1{ps3 D, + P23 Dy \3H 4Ps Py ot 4245 cI)2\2,3}'

1 As derived before. (

¥ i <

- 3.2.2: Derivation of 511,

: As was the case with the one-dependant model, the expected profit 21_1 , 18 given
by,

A k
1, = P(1e g S - S0

k=1
., P(l + ﬁ)
=y Vvt F— &b
- t 7 Pi =25k 3.7
L |

The trend of 2§n is

hmoo 25 (3.8)

That is, the expected expenditure tends to zero as time increases. Next the actual picture

of events is given using collected data.
3.2.3: Model Simulation.

Data to be used is already given in tables (2.4), (2.5), and (2.6). Table (3.2) has
the values of cxpected claim amount, contribuﬁbn and profit under the two-dependant

Model. These are used in the plotting of graphs that follow. The graphs (figure (3.2a) and
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:(3.2b)) illustrate the trends in claim amount, contribution and profit with increasing
- period.

N

<

Expected | discounted | cumulative| FExpected | discounted
Year |p,power | claim claim claim |contribution| cumulative | growth in
n (n) amount | amount amount | (discounted) |contribution| profit
P 094 2850 2591 2591 2527 2527 -64
2 [0.884 |2497.11 |2064 4655 2159 4686 31.45014
3 10.831 |2199.09 |1652 6307 1845 6531 224.3607
4 10.781 |1946.21 |1329 7636 1577 8108 471.8171
S 10734 |1730.57 1075 8711 1347 9456 744.6708
6 069 1545.77 |872.6 9584 1151 10607 1023.545
7 10648 |1386.59 |711.6 110295 984 11591 1295.954
8 061 1248.77 |582.6 10878 840.9 12432 1554.227
9 0573 ]1128.83 478.8 11357 718.6 13151 1794.025
10  10.539 ]1023.94 [394.8 11751 614.1 13765 2013.276
11 [0.506 |931.743 [326.6 12078 524.7 14289 2211.419
12 10476  1850.322 |271 12349 448.4 14738 2388.875
i 13 10447 |778.085 [225.4 12574 383.2 15121 2546.667
[ 14 0421 |713.713 |188 12762 [327.5 15448 2686.167
| 15 |0.395 |656.11 |157.1 12919 279.8 15728 2808.916
16 0.372 1604.36 [131.5 13051 239.1 15967 2916.508
17 10.349 |557.699 |110.4 13161 204.4 16172 3010.508
18 10.328 51548 [92.73 13254 174.6 16346 3092.412
19 0.309 |477.159 [78.03 13332 149.2 16496 3163.612
20 10.29 442.274 |165.75 13398 127.5 16623 3225.386
21 10273 1410.431 |55.47 13453 109 - 16732 3278.893
22 0256  |381.292 146.85 13500 93.13 16825 3325.172 |
23 0241 [354.568 [39.61 13540 79.58 16905 3365.149
24 10.227  1330.008 |33.51 13573 68.01 16973 3399.646
25 10213 |307.393 |28.38 13602 58.12 17031 3429.385
26 02 286.535 |24.05 13626 49.66 17081 3455.001
27 10.188  |267.267 |20.39 13646 42.44 17123 3477.05
28 10,177 249,443 |17.3 13663 36.27 17159 3496.016
29 10.166 232.932 [14.69 13678 30.99 17190 3512.321
30 [0.156 |217.622 ]12.48 13691 26.49 17217 3526.331

I' Table 3.2: A table of data on claim amount, contributions and Profit for the two-

dependant model.
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The graph (figure (3.2a)) illustrates the trend of fall in claim amount with period.

_ It is clear that with time the expected claim amount reduces exponentially to a minimum.

This implies that at some stage, the membership ceases and hence compensation. In the

the trend of decay in premium confribution is similar to that of

samec figurc,
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The graph (figure (3.2a)) illustrates the tr;:nd of fall in claim amount with period.
It is clear that with time the expected claim amount reduces exponentially to a minimum.
Thié 'implics that at some stage, the membership ceases and hence compensation. In the
same figure, the trend of decay in premium contribution is similar to that of
compensation claim amount due to the same reason already stated. We expect
contribution to cease at some time due to eminent departure from the scheme.

Lastly, Figure (3.2b) shows the growth in accumulated profit levels expected from
one individual under the two-pendant model. The graph starts by a decline, stabilizes and
eventually rises. This implies that we expect some period of loss to the insurer, and after
two years of contribution, he starts experiencing profit. This also dies off exponentially as
was the case in the one-dependant model. At some stage, we expect a sudden stop since

no profit is earned once a member ceases to contribute premiums.
3.3: FORMULATING A Three-Dependant MODEL.

After deriving the one and two-dependant benevolent scheme models, we need
the three-dependant equation in order to get to a more realistic picture of the expected

expenditure and benefits.

3.3.1: Derivation of 35’2.

It is difficult to draw a tree diagram for this and higher order cases due to the
numerous possibilities involved. In this case, another dependant G is introduced and

'assigned ps as the probability of his/her survival. We may conceptualize G as second
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i as in table (3.3). D, is the compensation awarded in the event of G dying.

,> born of the couple I and M. In summary, the cnsumg cvents with their probabilitics are

" Table 3.3:

therewith (three-dependant model).
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(Sl?x‘r;%zrff) PROBABILITY C(I(: 2112?2?3:;21)\1
FMBG Pi1D2P3 Py 0
FMB P1P2P3 44 D,
FMG P1P293P4 D,
FM PiDP2q34y Ds+Dy
FBG D192 P3P+ D,
FB P192P394 Dy+Dy
FG P14293 D4 Dy+Dy
F Pid2q34y Dy+Ds+Dy
.~ MBG  ip:psps D,
MB q1 P2 P3 G4 D,;+D,
MG q1 P2 43 P4 Di+D;
M q91P2 93 94 Dy+Ds+D,
BG q1 92 P3 P+ Di+D; |
B 91492 P394 D1+D,+Dy j
G | d1 9293 P4 Dy+Dy+D; ’,I
N lr’ 41 4249344 D;+D;+Ds+Dy ’
A table of possible events, their probabilities and compensation amounts



We oObserve that there always are il possibilities, where m is the number of

dependants. By the end of the first year, the expected claim amount is;
361 =P10203PA(0)+ p1p2P3 Do)+ p1p2qs paDy)+ p1p2q3 q(Ds+Dy+

P1 9203 P4(D2)+ p1 g2 p3s Qe(D2+Dy)+ p1 q2 q3 P4(52‘+D3)+
P1 9293 94(D2+D3+Dy)+ q1 p2 p3s paD1)+ q1 P2 p3 94D +D4)+
q1 P2 43 Po(D1+D3)+ q1 p2 43 Qu(D1+D3+D g+ q1 g2 p3 pAD1+D)+
41 92 p3 4401+ D2+ D g+ q1 G2 93 po(D1+Dp+D3)+

q1 9293 94(D1+D;+D3+Dy)

On calculation and simplifying we have,

351 =q: DY+q: D2)+q3 (D3)+q4Dy) (3.9
The sum on the R.H.S. is,
q1D)+q2 (D2)+q3 (D3)+q4(Dy = (1)3- (3.10)

In the second year, the expected claim amount is found to be,
392 = P\Po P3Py 03+ PPy P30y Q3 4 PPy PyR3\ 3+ Ai0r 3P4 P30 o
0Py 3394 P3\ 34t PPy PR3\ 0 4 T P P4 P30\ 23 T A1 B D303 4
Factoring out p; we have,

36 = pl{p2P3P4®3 tPyP3a4 03,4 T P93Py P3\3792P3P4 P30 5

P10, 03\ 3.4 T304 03\ 0.4 T BP4D3\ 03 +‘1’2‘13‘14‘1’3/2,3,4} G.11)

In the third year the expected expenditure is,
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G=r {p%p%pﬁd)g +P3P3, 0+ P03 4+ PPy (14 P03 3+

2.2
4yP3 P A+ P2)03\ 5 + 45235 (L+ py)I+ p3)Dy 5 5 +

<

1 4yP3a4(L+ PyXL+ Pg)®3 5 4+ Pa3ag(L+ PR+ Pg)P3 03 +

0y, (14 Py + Py Pyt PyPy T PaPy P3P+ PyP3P, J‘D3/2,3,4}
(3.12)
Higher order equations can similarly be derived despite the long calculations

- involved. Using the emerging trend, the case of year four gives,

3/ 333 33| 2 4 2 2 2 4
PP Oy ey T Pyl Oy tapy| T pyl Ry
al=0 a1=0
2 2 2 a a, a
tetdydydy Loy | Z Py P3Py |@3/5340 G-1)
a=0|a,=0| az=0 /23, [
- Generalizing this to n years ,

_.n-1}.n-1_n-1 n—l(D + n-1_n-1 "iz | D

3n=P Py P3 Py D3ty 3 4y J4 [Pt
. a —

1

P d n-1_n-1 152 4
TP, &P, Zops 3.9P7 P 2 01’2 (D3\2+
' 1
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Using the property in equation (3.4) reduc;:s equation (3.14) to
71 -1 -1 n-1 71 -1 -1 1
35,, Pn {Pz 25 PO +p ( wZ )®3\4+P2 Pa (“P';)d)3\3+

o p?l(l—pz }Dm +p5 A-p5 (l—pZ" 1}113\;4 -5 - s
-p5 1(1—19'2’4)[133\23 +1-pj” 'H)(l 1)1133\23,4} (3.15)

3.3.2: Derivation of 11 .
As was the case with the two-dependant model, the expected profit 11  is

given by;

’ I 7 n
I, =P|1 —ZV’” e P,
100 =

Il
w
a
=
|
w
Uy
a

kol V ' (3.16)

r
N

The trend of 36, is
P11 ) B 3 §
That is, the expected expenditure tends to zero as time increases.

3.2.3: Model Simulation.

We need the values of contributioﬁ and compensation in table (2.6) to calculate
the expected claim amount and contribution under the three-dependant Model. The

resultant data are recorded in table (3.4).
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Discounited

Expected Cumulative| Expected | Discounted
Year |plpower| claim claim claim contribution| cumulative | Growth in
iz' (n) amoristt amount amount | (discounted) | contribution profit
1 [0.94 3900 3545 3545 2527 20237 -1018
2 10.884 13335.4512757 6302 2159 4686\)\-, -1615.41
3 |0.831 |2865.88|2153 8455 1845 6531 -1923.49
4 |0.781 (2473.21{1689 10144 15677 8108 -2035.99
5 [0.734 [2143.86|1331 11475 1347 9456 -2019.77
6 (0.69 1867.20|1054 12529 1151 10607 -1922.35
7 10.648 |1634.57|838.9 13368 o84 11591 -1777.21
8 10.61 1438.771671.3 14040 840.9 12432 -1607.58
9 |0.573 |1273.76/|540.2 14580 718.6 13151 -1429.25
10 [0.539 (1134.44/437.4 15017 614.1 13765 -1252.61
11 |0.506 [1016.48/356.3 15374 524.7 14289 -1084.17
12 10.476 916.280 292 15666 448.4 14738 -927.735
13 |0.447 1830.773[240.7 15906 383.2 15121 -785.207
14 10.421 [757.428|199.5 16106 327.5 15448 -657.22
15 [0.395 [694.137|166.2 16272 279.8 15728 -543.575
16 [0.372 1639.155(139.1 16411 239.1 15967 -443.558
17 10.349 [591.049/117 16528  204.4 16172 -356.157
18 |0.328 548.641(98.7 16627 174.6 16346 -280.219
19 |0.309 |510.970|83.56 16710 149.2 16496 -214.548
20 10.29 477.251(70.95 16781 127.5 16623 -157.974
21 0.273 446.84860.4 16842 109 16732 -109.389
22 0.256 1419.241/51.51 16893 93.13 16825 -67.7735
23 10.241 |394.011 44.01 16937 79.58 16905 =32.202 |
24 10.227 |370.817|37.66 16975 68.01 16973 -1.84962
25 10.213 1349.381(32.25 17007 58.12 17031 24.0130
26 |0.2 329.479|27.65 17035 49.66 17081 46.0251
27 0.188 {310.925|23.72 17058 42.44 17123 64.7429
28 0.177 [293.570/20.36 17079 36.27 17159 80.6481
| 29 10.166 |277.290|17.49 17096 30.99 17190 94, 1558;
30 [0.156 1261.982115.02 17111 26.49 17217 105.622
Table 3.4:

A table of Cumulative claim amouni and coniributions for a three-

dependant model.
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The graph in figure (3.3a) illustrates the trend of fall in claim amount with period.
It shows that with time the expected claim amount reduces exponentially. Thus at some
amount. We expect contribution to cease at some time due to eminent departure from the

Figure 3.3b: A graph giving the trend of growth in profit in a three-dependant model.
decay in premium confribution is at a higher rate than that of compensation claim

stage, the membership ceases and hence compensation. In the same figure, the trend of

scheme.
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Lastly, Figure (3’.2b)- shows the growth in ac'cumulatcd profit levels expected from
‘{ one individual under the three-pendant model. The graph starts by a decline for the first
four years, 'stabih'zes and eventually rises. This implies that we expect some period of loss
to the insurer, and after twenty-four years of contribution, he starts ‘;xpgﬁencmg profit.
' This also dies off exponentially as was the case in the two-dependant model. This implies
that we expect total loss and no profit within twenty-four years of contribution. We
therefore see reason as to why some rectification has to be done by the insurer so as to

counter this anomaly. At some stage, we expect a sudden stop since no profit is earned

once a member ceases to contribute premiums.
3.4.  m-dependant MODEL.

Here the expression for a general case of m dependants participating in the
Benevolent Scheme for n years is derived. This is done by use of the emerging trend from

the already formulated one-dependant, two-dependant and three-dependant models.

3.4.1: Modelling mon

The following formulae have already been derived:
i 11 =p™ o™ D+ ( 1-p,™") Dy 5 }  (One-dependant model)
n-i__ n-l

.t — ., I n-1 -1 n-1 n-1
1. 42§n_p1 2 Ps3 (D2+P2 ,(1-1)3 )d)2\3+p3 (I'pZ )(D2\2+

(1-p;)* (1- ps™) S (Two-dependant model)
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n—1_n-

o -1 - 1 | -1_n-1 n-1
i. 36, =p P> Py pi Q3+psps (1—p4 )®3\4 +
Pg_lpf_l(l - Pg—lb3\3 + Pf_lpéﬂc - {’3_1)133\2 +
py (- P;’_l)(l - Pﬁ—l)@3\3,4 +(1- Pg_l)l’g_l(l - PZ_I}D3\2,4

B — p? )(1 -pi! )cb 223 + (l—pZ”’)(l—pé‘"l)(l-p'z’"’)@s\z,s,d

(Three-dependant model)

Looking at the trend of the equations for the one, two and three dependant models

- above, we see that the first term is always

pl’"l. (3.17)
The first term in the first bracket is
n-1_n-1 n-1 ’
{{pz Py e pm+1}<bm} (3.18)
This can generally be presented as
m+1 _ ‘ '
{ I p;; l}d)m (3.19)
k=2

The middle terms of the equations being analyzed can also be generalized.

Introducing the notation ¥, ,, as the middle term in the equation m‘fn’ where

Tig = Ly 5 Ty S =Wy, =0

Vi1 =0

’
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lI"'2,2»=Pz(l"P:;)(D’z\:; +P3(1"P2)(D2\2,

o n=1a _ n-1 n-1,__ n-1
Yon=py "(A-p3" NPy3tpy A-py Ny,

+py ps””l( }Dm +p5 (1~ ”4)(1-1)? I}Fm +(1—1vz""1)p§’4 (l—pZ'"l ko,

A Nt (B N NP (3.20)

Using the trend, we come up with the general expression as

( ( o
m-l 3 4 m m+l || m+] g 1
- X .. ¥ X|Ip H[I—P} ]
g= ji—2f2—3 f 1=m—1f =m | k=2 [\ Uf je=] !
| N =l ]
X @ g g (3.21)
m\ U fz
=1 |

fl <f2 <j§ < ... fg_1 <j;,<... fm_1 whereﬁis an index taking values 2,3,4...

m=1,23, ... n=123,...
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Next we introduce another symbol Fm - with which the last term of each

>

'jexpression can also be summarized as in equation (3.22).

{
.

&

1 (m+1 n-2 n-2 n-2 (m+1 J | ,
= Il q X X X | IIp . (3.22)
F’ i k a; =0a, =0 ay =0\k=2 %) A e

The summations can be simplified so that we have equation (3.22) reducing to a

shorter expression as;

m+1 '
_ -1
Fm,n - (kf_lz(l‘Pz )}Dm\ 23,..m+1 (3.23)

Finally, we now invoke equations (3.17), (3.19), (3.21), and (3.23) to get the m-

 dependant model as;

E ) iy oL
mén =Pl kn2 P Pm +Tm,n +rm,n 025
. m+1
Where D = >a.D | (3.25)
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' 3.4.2: Derivation of , 11 .

As was the case with the three-dependant model, the expected profit mH,, is
' {

- given by; N

ST, = P(l + —{—JZ Vieipl - Z Ve &
100 )& o

kel |4 ' ' (3.26)

3.4.3: Trend as n=> oo,

From the general formula that was derived in section 3.4.1, the first term outside

~ the brackets p{’ ~150 since p1is a fraction. Thus the trend is the same for whichever

the number of dependants, 1. this can be summarized as follows: The trend of m f n is

nmoo m gn = (3.27)

. That is, the expected expenditure tends to zero with increase in time.
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CHAPTER FOUR

4. MARKOV MODEL APPROACH.

In this chapter we use the Markov properties of the survival probabilities to give
an alternative method of getting to the m-dependant model. We start by giving
derivations of the one-dependant, two-dependant, and three-dependant models. Using the
ensuing trend, we fomulaté the m-dependant model. For each of these models, we give
the transition probabilitics involved, classify the states, calculate the n-step transition

probabilitics and apply the model in the calculation of expected claim amount and profit.
4.1: One-Dependani MODEL.

Under the introductory chapter (Chapter one) in section 1.2.4, we gave a brief
theory of the Markov chains and basic concepts of a stochastic process. We use the
principles in this section.

4.1.1: Transition Probabilities Involved.

The events in this system can be illustrated by a matrix of transition probabilities.
There are four states AB, A, B, and N, where AB represents survival of a member
~togcther with the spouse, A represents survival of the member only and B the survival of

the spouse only while N denotes the death of both. We have the matrix of transition

probabilities given as,

65



P, P49, Py 494,

0 )2 0 q,
= 4.1
© 0 0 p g @1

0o 0 0 1 :

<

Using the definitions stated under section 2.2, we find that §2 is a stochastic

- matrix. However, it is not doubly stochastic.
'4.1.2: Classification of States.

Let the events E1, E2, E3, and E4 represent the following;

El > A and B Survive.
E2 ' -> A alone Survives.
E3 ->B alone Survives.
E4 ->N (None) Survives.

The state space is {E1, E2, E3, E4}. We classify the states using the diagram in

figure 4.1. In this figure, arrows represent accessibility of states in the Markov chain.
¢ S

i

Figure 4.1: A diagram showing accessibility of states.
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From the diagram, statc El is transient. Once you are out of the state, you can

‘never revisit it. Indeed, a dead person cannot become alive. E4 is absorbing. You cannot

move out of the state once entered. Once both are dead, the transac%ion ends. No states

communicate. No reverse is possible after any of the four probable transitions. The

notable closed sets are {E4}, {E1, E2, E3, E4}, {E2, E3, E4}, {E3, E4}, and {E1, E2, E3,

- E4}.

4.1.3: n-Step Transition Probabilities and Steady State.

We now wish to calculate higher transition probabilitics of such a Markov matrix.

- Considering a case where p; = p (the probability 6f survival of the contributor is equal

~ to that of the dependant), the matrix in equation (4.1) above becomes,

(v pg pg @) (P* pA-p) pA-p) (-p))
|0 p 0O 4g|_ 10 D 0 (- p)
50 0 0 p ¢ 0 0 p d-p)
o 0o o 1) o o 0 1

(p4 p2a-pbH pPa-ph a-pH?)
2|0 P 0 1-p?)
0 0 P 1-p®
L0 0 0 Lt
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P° pPa-pd pPPa-pd a-pH?)

3 o p 0 1-p)
S 0 P a-p
L 0 0 0 1

and

(P pra-ph pra-ph a-pH?)

4_o  p 0 a-ph
2771 0 p* a-ph

L0 0 0 1

(

We can now conclude without loss of generality that,

( )
pt Pra-pP Pia-phH (1-p?
Son___ 0 p" 0 a-p"
0 0 p" 1-p"

L0 0 0 1

/

£

(4.4)

(4.5)

(4.6)

Note that higher transition probability matrices are also Markov. They are also stochastic.

We now revert to our earlier case were p; is not equal to p,. Equation (4.1) is the

Markov matrix of interest. The higher transition probabilities are calculated as follows.

(plp?, pl(l _pz) p2(l —P 1) (l—p 1)(1—172)\
0 p 0 (-pp
0 0 p2 (l_pz)

\0 O ' O 1 y
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In the &second step, we have the following transition probabilitics.

(
P2P2
1 2

P2

- And in the third step,

(p3p3
1 2

g3 o

pra-p?)y pra-p?) a-pixi-ph))
1 2 T2 17 2

{
p? 0 O—pz)‘-v
1 1
0 p2 (1—p2)
9 2
0 0 1 ;

Pa-p%) Pa-p*) a-PAx-p>)
1 2 2 1 1 2

P 0 a-p3)
1 1
0 P a-p3)

2 2

0 1

0

J

(4.8)

(4.9)

Using the trend taken by equations (4.7), (4.8), and (4.9), we have the general

higher transition probability matrix as,

/
pp"
1 2

o o

Equation (4.10) is the #™-step transition probability matrix.

pPa-p" pta-ph a-pMa-ph)

1

pn

1
0
0

2

2

1

1
a-p"
1
a-p"
2
1

s

(4.10)

Another useful tool in reading the physical implications of a Markov matrix is

stationary distribution (or steady state) of the Markov chain. If @ is the matrix of
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transition probabilities and E the Stationary distx"ibution, then the following identities
" hold.

4 L =TI
i. [11=1 : _ 4.11)
- Where

I1=[IT, I, 11,11, |

Starting with equation (4.2) where p=p>=p, and using the above identities, we

~ have

(P1P2 P92 91 P2 ‘11?2\ (HI\

' 0 P 0 q1 II,
Y0101 = (4.12)

[ 1742423 4] 0 0 .Pz g, H3

Lo 0o o 1) \m,)

- Multiplying through we have,
Hlp = Hl = Hl = 0

This is true because p2 and hence p are strictly not equal to 1. Similarly,
H2 =H3 =0.

- Now using condition ii in equation (4.11) above, we have I1, =1. Thus, the stationary

distribution is,
(0 0 0 1)
1 0 0 0 1
=10 0 0 1 (4.13)
0 0 0 1)
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Also from equation (4.6), with the limits as # — o we have

o

- (4.14)

S O O O
S O O O
S O O O
N

This is similar to the result in equation (4.13) above. Equation (4.13) and (4.14)
are stationary distributions (or steady state) transition probability matrices for the matrix
~ in equation (4.1). In the case of the matrix in equation (4.7), we check the solution of
equation {4.10) as 1 —> co and find that the steady state transition probabilities are as

- given in equation (4.14) above.

4.1.4: Application to calculating 1.{,’ n and | Il ne
" Given that

(Pu P P P14\

@ Pn Pn Prn Pu
| Pu Py Px Py (4.15)

\Pyn1 Pan P Puj

as was the case with the branching model, we require some of the transition probabilities

from the matrix. These is used in the calculation of expected values of compensation.
These are {p“,pn,pn, Dia }only, since we had already assumed that we have two

beneficiaries at the start of the process. Thus we have the expected claim amount by the

end of the first year being calculated as

151 = {£11(0)+ 12 (Dy) + p13(Dy) + p1y (D +Dy)} (4.16)
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~ Substituting pj;s with respective probabilities we obtain

161 = {ql(Dl)+q2(D2)} =D, (4.17)

This is the same result as arrived at in equation (2.7) were we used a treedlagram

We now wish to calculate 152. To do this, we need the following transition

probabilities.
Py (2)=P1Pz *pp: =P12P22
Py, P=P11P1, = pip; *p1q:=pi'p24:
P13 @=PyPis=pp; *qp:= J 20T
| P14 P=P11P1s=pp: *q:19:= p1p2419:
- And P P=PuPu=pigq: .18)
Note that py @ does not imply py. Py

Multiplying the probabilitics above together with respective compensations we

get the expected claim amount to be

152 = Pl{P2(D1 +Q2(D1\2} 4.19)
where
D, =40

We need to come up with a much simpler meihod of using the Markov matrix
directly rather than going for possible events, one after another. In chapter two and three,
during the formulation of the one-dependant, two-dependant and three-dependant models,
we assumed that all transitions start with the presence of the m dependants together with
the contributor. We thercfore only consider using clements of the first row of our

transition probability matrix in the calculation of expected compensation claim amount.



Further we have been considering the event of survival of the contributor as the

dependants die, until such a time that the contributor also dies. This implies that only

elements with the probability (1) " as a factor is considered. This leaves us with the first

<

- half of the elements in the first row. In addition to these facts, we are only to consider the
probability of survival up to right before the first “failure” or death. Thus the factors

under consideration in the calculation of the expected claim amount in the nth year are

those in the (n-1) ™ step transition probability matrix. This means, in order to calculate

n—i
15 »» We need the matrix SO . From the matrix, we pick the first row and use the

first half of its elements as demonstrated next.

Case one. (n=1).
n-1 -1 0
In this case, @ = @ = @ =1 (the identity matrix).
(1 0 0 0)
@ 0 0 1 0 O _
=] = 0 0 1 o0 (4.20)
k O By glerie )

We already have our factors with which the first two elements of the first row
(first half of the four) are to be multiplied. These are

®,=9,D,+4g,D, (When both the contributor and dependant die).
Do =q1D) (When only the contributor dies).
Indeed in equation (4.1), the first element meant the survival of both and the second, the

survival of the contributor only. Now, after one step, we are considering their death.
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- With this in mind thercfore, the expected claim amount is
161 =1 D)+ Dy,)
= (D1 As was the casc in cquation (4.17).

Case two. (n=2).

Here we use the matrix

(ppy pA-py) py(l-p)) (-p))-py))
gon_l=gol= 0 ! 0 d=p) (4.21)
0. 0 Py (I“Pz)
. 0 0 0 1 ),

From this, the clcménts of concemn are, PPy and pl(l - p2). Multiplying as before,
we have 13_;'2 being given as ‘
152 =P1P3 (I)1+P1(1—P2) Dy,

=P1{P2(D1 + ‘12(1)1\2} as was equation (4.19).

Case three. (n=k).

With tremendous confidence we can now generalize the calculation of expected

| k-1
claim amount as follows: We need the matrix of transition probabilitics SO given

as
(AR Yy plao Rl o Fhas )
. n—l 1 2 1 2 2 1 1 2
£ = 0 pFl 0 a-pF 1 (4.22)
1 1
0 0 P a-71
2 2
L0 0 0 i
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“As in case onc and two, the géncral formula is found to be

& ~(pp) @ p 1= p ) Dy,

k

=P1k—1{P2k_1(D1 +92k_1q)1\2} |

As was equation (2.20) in Chapter two. IT n 18 calculated just as was derived in part

2.2.3 in chapter two and is found to be

I n B n
0, = {1+ LS vepr - Svte,.
100 poer

k=1

=
<
*i
o
TN
oot
+
o
ol'"”
NEL
ko
|
.
ko

We can generally therefore conclude that both methods give similar results. In
this case we only need to show higher transition probabilities of further transition

‘probability matrices (for the two dependant and if possible, three dependant model). We

can imagine how little we need to do to arrive at I{,’ Tk than was the case with the use of

the tree diagram!

4.2: Two-dependant MARKOV MODEL.

In the case of two dependants, the state space increases. There are eight possible
| eventsvnamely, the event of survival of FMB, FM, FB, F, MB, M, B, and N. These form
the state space. The letters denoting the state space take the same meanings, as was the

case in the branching model.
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3:2.1: Transifion Probabilities Involved.

Thc' matrix that represents the required transitions is an e1ght by eight Markov
matrix with each of its rows adding up to one. However, the colmt;;s of the transition
probability matrix do not add up to one. Hence we conclude that it is not doubly
stochastic. As was the case with the one dependant model, the matrix is diagonal with all
of its lower diagonal elements being zeros.

The matrix of transition probabilities involved for the two-dependant model is as

in equation (4.23).

(Plp-zpz b PP % ab.ps abhd P 49% 9
0 b, 0 P4, 0 D, 0 99,
0 0 pp B 0 0 4P 9%
0 0 0 P, 0 0 0 g,
SO = O 0 0 0 DD D% P G4
0 0 0 0 0 D, 0 q,
0 0 0 0 0 0 28 4
L 0 0 0 0 0 0 0 o
(4.23)

This matrix can be partitioned to four square non-Markov matrices as in the

equations that follow.

A B
SO = C D (4.29)

where

76




(P1P2P3 bhPx93 Pi9P3 P1Q2‘Y3\

PR R 7 T R
0 0O pps na |
and can be factorised as
(P2P3 P293 492P3 4293 |
0 )28 0 9,
A= |
P 0 0 P g5 (4.25)
. 0 0 0 |

Equation (4.25) shows that A is a fraction of a Markov matrix. Next we have B given as,

(P2P3 D1P293 ©daP3 019295 )
B 0 q\P2 0 919>
0 0 QP Q93

. 0 0 0 9 J

- This can also be represented as

/P2P3 P93 492P3 4243\
0 P2 0 q;
B=q 4.2
0 0 p3 g e
. 0 0 0 1)

which is another fraciion of the same Markov matrix. Similarly D is given as
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(P2P3 P29s 42P3 9293
D= 0 12 0 92
0 0 P3 93
L0 0 0 1)

(4.27)

This is Markov of the same kind as A and B but not a fraction as the previous cases.

Lastly,
(0 0 0 0)
0 0 0 O
C =
0 0 0 0 (4.28)
0 0 0 0
@ can therefore be presented as
D qD
SO =l b D (4.29)

A4.2.2: Classification of States.

- Let the states in their order of presentation in equation (4.23) be labeled as E1, E2,
E3, E4, E5, E6, E7, and E8. Then the state space S=: {E1, E2, E3, E4, E5, E6, E7, E8}.
From equation (4.23) we notice that once you are out of the state, you can never revisit it.
This correctly implies that a dead person cannot become alive. State E1 accesses El, E2,
E3, E4, ES, E6, E7, and E8. State E2 accesses E2, E4, E6, and E8. State E3 accesses E3,
'E4, ES, E6, E7, and E8. State E4 accesses E4, ES, E6, E7, and E8. State ES accesses ES,
E6, E7, and E8. State E6 accesses E6, ﬁ7, and E8. State E7 accesses E7, and E8, 'while

State E8 only accesses itself.
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It is’ notable that from any statc one can access statc E8. Thus the state is
absorbing. You cannot move out of the state once entered. Once all the three are dead, the
transaction ends. No states communicate. No reverse is possible after any of the eight

Q

probable transitions. The closed sets are {E1, E2, E3, E4, E5, E6, E7,QE8}, {E2, E3, E4,

|

ES, E6, E7, E8}, {E3, E4, ES5, E6, E7, E8}, {E4, ES5, E6, E7, E8}, {ES, E6, E7, E8}, {E6,

' E7, E8}, {E7, E8}, and {E8}. State E1 is transient.
4.2.3: n-Step Transition Probabilities and Steady State.

Higher order transition probability matrices are as follows.

SO{I"D (l—pl)D} | 430

0 D

@2 r_p12D2 (1"'P712)D2
=l o e ; (431)

=L 0' D3 - (4.32)
/
on [P0 (- p 0"
- 0 . Dn (4.33)

where D is as given in equation (4.27),
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(p3p} P3Q-p) A-phHp} (-pda-pD))
p2_| O P 0 1-p3)
: 0 0 pi a-ph |4
. 0 0 0 B B )
- (Pp3 p3a-pD a-pDp A-pda-pd))
pio| O P 0 (- p3)
0 0 r; 1-p3) e
. 0 0 0 1 ),

| Involving subscripts that represent the beneficiary’s number, i.c.

Dy, = D",
then we generally have
n n \
(pip; piA-pdy A-phHpl A-phHd-pl)
. 0 28 0 (1-p3)
D23_ _
0 0 s (Q-py |43
L0 0 0 1 )

-

As an example, W is given by

(@6[10161)263\ ___(1 - P16)D263:l

0 D ;33 (4.37)

where
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B - ' \
pSps pSA-p3) A-pHps (A-pHd-pd)

ps, =| O P 0 a-p2)
.38
0 0 2 a-p$ |¢P
L 0 0 0 -

An explicit expression for QG can be written but will be too large. Hence, we

leave it as the combination of the two equations (4.34) and (4.35). Finally, steady state

transition probabilities for the two-dependant transition probability matrix are given as

(4.39)

=S
Il
SO O 0O OO O O
S Do D D
[ S o S - SR - TR v S - RN - Y
ot e e e e ek fed e

(RN o e I o o B = T v A s ]
Lo e R e B oo I = T o B e B e
LT T e B =~ T == R e R = N =)
S O OO0 O O O 0‘

as n—> o

4.2.4: Application to calculating ) £ “ and 7 H,, .
Proceeding in a similar manner as in section 4.1.4, we show how to calculate
25n and consequently 2 Hn. Since in the quoted section we had explained the use of

“the first half of the first row of the (n-1)" order of transition probability matrix, we only

need to apply this theory in the derivation of 2 z,"‘n . We have,

81



i

Pln—lDwn“l (1 - pln_l)DBn_l

-1
pn = 0 1)23""1 (4.40)
where A
(P - - -ED-ED)
1|0 7 0 a-A
D3 0 0 p3n—l a- ng) (4.41)
. 0 0 0 ] )

The required elements of the matrix (equation (4.40)) are multiples of pln_l.

These arc the clements in the first row of the sub-matrix D23n_1 given in equation

(4.41). The factors to be multiplied by these required elements of the matrix are

DO, =q;D;+ gD, + q3D;4 (All the three dead)

D3 =q,0, +g,D, (B dead)
Dy =q,D; + %Ds (M dead)
and Dpp3 =Dy (F dead)

Hence we calculate D) fnas

25y =Pl P P Py Py (A= P g + T (- )RS @ +

Py (= Py - Dy

This, on factorising out p;’ _] gives us
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26, = PR @y p(I ) @ o+ p(A- p)

.k _n.n

i

<

This was the case in equation (3.5) of Chapter three. The derivation of 2 H,, is the same

as in section 3.2.2 of the same chapter.
4.3: Three-dependant MARKOV MODEL.

In the Case of 3 dependants, the state space increases. There are sixteen possible
events namely, the event of survival of FMBG, FMB, FMG, FM, FBG, FB, FG, F, MBG,

MB, MG, M, BG, B, G and N. These form the state space.
4.3.1: Transition Probabilities Invoilved.

The matrix that represents the required transiﬁons is sixteen by sixteen Markov
matrix with‘each of its rows adding up to one. However, the columns of the transition
probability mairix do noi. Hence it is not doubly stochastic. As was the case with the two-
dependant model, the matrix is diagonal with all of itsA lower diagonal eleménts being
zZeros.

The matrix for the three-dependant model is too large to completely write.
However, we can simplify it as was the case with that of two dependants as shown in the

following equations.

DD, (1 - Pl)Dm

- D

234

(4.42)

where
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| PaDsy gy D3y
Doy =

0 Dy, (4.43)
and ) k
/P3P4 P3q4 q3P4 93‘1-4\ i
0 P3 0 43
D=l 0 0 Py 44 a0
. O 0 0 1 )

4.3.2: Classification of States.

Let the states in their order of presentation in section 4.3.1 be labelled as E1, E2,
E3, F4, ES, 6, E7, E8, E9, E10, E11, E12, E13, E14, E15, and E16. Then the state space
S=: {E1, E2, E3, E4, ES, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16}.

Here again we notice that once you are out of any state, you can never revisit it.
This, as before, implies that a dead person cannot become alive. State E1 accesses El,
E2, E3, E4, ES, E6, E7, E8, E9, E10, Ell, E12, E13, E14, E15, and E16. State E2
accesses E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, and E16. State
E3 accesses E3, E4, ES, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, and E16. State
E4 accesses E4, ES, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, and E16. State ES
accesses E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, and E16. State E6 accesses
E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, and E16. State E7 accesses E7, E8, E9,
E10, E11, E12, E13, E14, E15, and E16. The trend proceeds as can be noticed. That is,
‘each member accesses all super-ceding elements while State E16 only accesses itself.

We note that from any state one can accéés state E16. Thus the state is absorbing.

You cannot move out of the state once entered. Once all the three are dead, the
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transaction ends. No stat'es‘commmlicatc. No revcrsc is possible after any of the cight
probable transitions. The closed sets are {E1, E2, E3, E4, ES, E6, E7, E8, E9, E10, E11,
El12, E13, E14, E15, E16}, {E2, E3, E4, ES, E6, E7, E8, E9, E10, EEll, E12, E13, E14,
E15, E16}, {E3, E4, ES, E6, E7, E8, E9, E10, E11, E12, E13, E14, ]ﬁS, E16}, {E4, E5,
E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16}... {E15, E16} and {E16}. State E1

is transient as has always been the case.
4.3.3: n-Step Transition Probabilities and Steady State.

Higher  order  tramsition  probability matrices are as  follows.

DDy, (1 — D )D234

@ = 0 D234 (4.45)
p 2 - —Plz D2234 (1 “Plz)D2234
| o D2, (4.46)
o3 [#iDs (-r)oi
[ima® By | ., S
n [ PiDn (- pi)os,
SO = 0 n (4.48)
234
where_
Dr - paD3y (- p3)D3y
234 — (4.49)

0 pr

and
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( n.n L | 75 )
pip; psd-py) A-pHpri A-pHaA-pp)

10 2 0 -p3)
| o 0 Pi - =
L0 0 0 1 J

Steady state transition probabilities are found to be zeros for the first fifteen

columns and ones for the last column.

4.3.4: Application to calculating 3 ¢ A and 3H -

Foliowing the trend explained in section 4.1.4 in order to derive 3 ¢ i’ In this case

the required matrix is

ey pr-lo w )

and the first half of the first row of this matrix is pl" ! fimes the elements in the first

4.51
34 i

row of the sub-matrix Dé’;‘,} which is given by,

| P D5 =P D
0 Dy

(4.52)

where
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g Y - SRR

oy | O p3n—1 O a~p3n—l)
D34 . 0 0 pz—l (1_ pzrl) (4.53)
L0 0 0 Aisre b

The factors to be multiplied by this elements are (1)3, (I)3\ 4° (1)3 \ 3 (I)3 \72 (1)3 \3.4°

D393 Py g 4 Md D3, 5 3 4 respectively. Consequently, 3 &, is found to be

=l 1 1 1 n-1 1
38, =p] APy Py Py @3+ py Py (l—pf’ }Ds\ﬁpé’“ Py (l-—p’; )®3\3+

Py l(l—p’? 1)@3\2 +05 l(l—psml)(l—pﬁ‘ ‘)stst +0- ey - 2 s

ra-py )(1 -y }Ds\z,s + - PN - 2O - a0l (4.54)

As was in chapter three.
44: m-dependant MARKOV MODEL.

We now get the generalized form of the Markov model for the Benevolent
Scheme. To do this, we use the trend brought out in the one-dependant, two-dependant

and three-dependant models earlier derived.
4.4.1: Transition Probabilities involved..

It is more appropriate to apply the simplified Markov matrix in this case since, as

we noticed earlier, the elements of the matrix can be too many (2™ times 2™
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v .clcmcnts) for large m. the number of rows, which arc cqual to the number of columns, are
2™ and are always divisible by 4. We can therefore partition each of the possible
matrices of ’transiﬁon probabilities to 4 by 4 sub-matrices. This sub-gpauices turn out to
- be either null (all elements being zeros) or fractions of similar M;kov sub-matrices.

Generally,

[H(D;s,..ml) (1‘1%)(1)43,...;7»1)}

- 0 (I)AS,...gml) (i)
is the matrix of transition probabilities for the m-dependant markov matrix where
D 23 .m+1°~
(PP Dis ) 2A-P)Ds ) A=2IPDis ) A=)=B )5 o))
0 Pysmi) 0 A=) Cysmn)
0 0 Pys 1) A=) Oy 1)
. 0 0 0 Dhs i) Y,
(4.56)
D 45 .m+1°~
PP D) PO~ C-POBBhgm) A~p)~F i)
0 Py ) 0 A-p)Os1m1)
0 0 P Dm) A=) Q7 m1)
. 0 0 0 Qzma) y
| (4.57)
And lastly,
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(DBt PP Pt “C=p)0= 1,,.0))

-0 P 0 1=pp)
Dm’m+1 - 0 0 Pmn " (l_pml)
. 0 0 0 = the g
(4.58)

As an example, for m=6 we have

P:[Pl(Dz,s,...y) O—Pl)(Dzj,...;/):I

0 D3 7) (5
where
D 23 .7 =
(p2Dis7) PA-)Dss7) A-p)psDys7) A-p -2 HD;is7)
0 PDys7) 0 - =-p)Dys7) w60
0 0 P(Dys7) (1=p3)Dy57) '
Y 0 0 (Dhsz) )
and
(P6P7 psl—p7) p;(1—ps) O“Ps)ﬂ“Pﬂ\
D 0 Ps 0 -~ (=ps)
i 0 P a-p7) wel
. 0 0 0 1 J

A4.4.2: | Classification of States.

Let the states in their order of presentation be labelled as E1, E2,..., and 2™,

Then the state space S=: {El, E2, ..., E2m+1}. Once you are out of any of the states, you
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can never revisit it. This as before implies that a dead person cannot become alive. As

m+1

before, each member accesses all super-ceding elements while State E2° ~ only accesses

itself. «

<

™1 Thus the state is absorbing.

Note that from any state one can access state E2
You cannot move out of the state once entered. Once all the three are dead, the
m+l

transaction ends. No states communicate. No reverse is possible after any of the 2

probable transitions. State E1 is transient as has always been the case.
4.4.3: n-Step Transition Probabilities and Steady State.

Just as was the case in the one two and three-dependant model matrices, higher

transition probability matrices for the general - dependant model can be found. For

@ given as in equation (4.55), we find

) plz(D2,3,...m+l)2 (l"plz)(ng,...ml)z
P71 o Dys. )’ o

3 Ay ) -2)0, 0
@ ) 0 (Q3,...m+1)3 e

L

and

n pln(Dz,s,...mﬂ)n (1,“1)1”)(02,3,...;:%1)”
- 0 Doy )’ o

90



The ‘steady statc transition probabilitics of the m-dependant Markov matrix are
not different from the earlier derived cases of one two and three dependant matrices. The
only difference is the number of elements in the stationary distribution matrix. There are

S

<

™1 th column having ones and the rest, zeros.

2m+1 columns with the 2

4.4.4: Application to calculating mgn and A1 .
Markov matrices have already been applied the in calculating 15 n 2 é:n’ and

3 5}1' The following is the general Markov model for the Benevolent Scheme with m2-

dependants, in the n'® year. As before, we need

go n—l1 Pln—1 (Dz,s,...,nm)n_1 (]= Plnul)(Dz,s,...,mﬂ)n_l
1o ICTVP I

The required clements are p"‘l times the clements of the first row of the sub

matrix (I)LZS 1)n—1 These are multiplied by factors ranging from @ _to
. I : , N
3 2 m oho 5w : m N

D@\ 234 g4 Eesentially we will have 2" such factors coinciding with 2™ required

elements of the matrix in equation (4.65). Writing out the elements and multiplying them

by appropriate factors gives us the equation

g =ptl mﬁrl n-lg L9 4T (4.66)
m°n = Pi k—2pk m mn' “mn )

This is the same as equation (3.24). Profit is alsd found to be the same as was in chapter

three, equation (3.25).
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CHAPTER FIVE

S. ANALYSIS

Under this chapter, the results that were met in previous chapters are analyzed. In
this chapter we also estimate the premium size that, on application, gives the insurer
desirable profit. The estimated premium size is applied to a four-dependant Model (four
being the average number of dependants on each contributor of the Maseno University
Burial and Benevolent Fund (BBF)). Finally we suggest an estimate distribution to the

Benevolent Scheme Model and derive its parameters.
5.1. GRAPHICAL ANALYSIS

In this section the trends of growth in claim amount and profit are compared. It is
not necessary to compare contribution since they are the same for all models under
consideration. We compare the one-dependent, two-dependant and three-dependant

model, giving our observations and implications of emerging trends.
5.1.1. Comparing Claim amount.

Table (5.1) shows values of claim amount for the one, two and three-dependant
models. The values have been extracted from tables (2.10), (3.2) and (3.4) in chapter two

and three.
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YEAR

CLAIM AMOUNT

CLAIM AMOUNT CLAIM
n 1-dependant 2-dependant AMOUNT
Model Model 3-dependant
Model
1 1636 2591 3545
2 1370 2064 2757
3 1149 1652 2153
4 963.5 1329 1689
5 808.9 1075 1331
6 679.6 872.6 1054
s 7 15714 7116 |838.9
8 480.8 582.6 671.3
9 404.8 478.8 540.2
10 341.1 394.8 437.4
11 287.6 326.6 356.3
12 242.6 271 292
13 204.8 225.4 240.7
14 172 188 199.5
15 146.2 157.1 166.2
16 123.7 131.5 139.1
17 104.6 110.4 117
18 88.57 92.73 98.7
19 75.01 78.03 83.56
20 63.56 65.75 70.95
21 53.88 55.47 60.4
22 45.69 46.85 51.51
23 38.76 39.61 44.01
24 32.9 33.51 37.66
25 27.93 28.38 32,25
26 23.73 24.05 27.65
27 20.16 20.39 23.72
28 17.13 17.3 20.36
29 14.56 14.69 - 17.49
30 12.39 12.48 15.02
Table 5.1: A table of values of expected claim amount for one, two and three-

dependant Models.
Using the data in table (5.1), the graphs in figure (5.1) are plotted. From the
graphs we see that claim amount increases with increase in the number of dependants.

The decrease of amounts with time is uniform since all three graphs take similar shape. It
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One, Two, and Three-dependant models.

A graph representing the trends in claim amount for the one, two and

Claim amount in the three-dependant model.
three-dependent models.

Claim amount in the one-dependant model.

COMPARISON OF CLAIM AMOUNTS
Claim amount in the tWo-dependant model.
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is expected that the line for the four-dependant casc is right over that of the three-

dependant case.

Figure 5.1:
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5.1.2. Comparing Profits.

YEAR PROFIT PROFIT PROFIT
n 1-dependant 2-dependant 3-dependant
Model Model . Model
1 891 -64 -1018
2 1679.811 31.45014 -1615.41
3 2376,359 224.3607 -1923.49
4 2989.642 471.8171 -2035.99
5 3528.223 744.6708 -2019.77
6 4000.113 1023.545 -1922.35
7 4412.723 1295.954 -1777.21
8 4772.834 1554.227 -1607.58
9 5086.604 1794.025 -1429.25
10 5359.586 2013.276 -1252.61
11 5596.758 2211.419 -1084.17
12 5802.563 2388.875 -927.735
13 5980.947 2546.667 -785.207
14 6135.405 2686.167 -657.22
15 6269.019 2808.916 -543.575
16 6384.502 2916.508 -443.558
17 6484.235 3010.508 -356.157
18 6570.303 3092.412 -280.219
19 6644.527 3163.612 -214.548
20 6708.498 3225.386 -157.974
t 21 6763.601 3278.893 -109.389
22 6811.039 3325.172 -67.7735
23 6851.858 3365.149 -32.202
24 6886.966 3399.646 -1.84962
25 6917.15 3429.385 24.01308
26 6943.089 3455.001 46.02517
27 6965.372 3477.05 64.74298
28 | 6984.508 | 3496.016 | 80.64814 |
29 7000.937 { 3512.321 94,15584
30 7015.036 3526.331 105.6227
Table 5.2: A table of values of cumulative profits for the one, two and three-

dependant schemes.
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COMPARISON OF CUMULATIVE PROFITS

L

One, Two, and Three-dependant models.
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Cumulative profit for the one-dependant model.
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CP3—>

Cumulative profit for the two-dependant model.

Cumulative profit for the three-dependant model.

A graph representing the trend in cumulative profits for the one, two and

Figure 5.2:

three-dependant models.
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The lines in figure (5.2) claborate the fact that the more the dependants the higher
the loss than profit the insurer incurs. The average number of dependants a contributor
has is four. One can therefore imagine the kind of loss the insurer is expected to underge

as far as such a contributor with four dependants is concerned.
5.2. ESTIMATION OF PREMIUM SIZE.

With the highlighted problem in section 5.1, we are faced with the task of
estimating the appropriate premium size(s) that corrects abnormally large profits in the
casc of one and two dependants and abnormal loss in the case of three or more

dependants (c.f. figure (5.2)).

5.2.1. Case of One—dependant.

From the graph in the figure (5.2), we have already seen that the insurer makes
profit right from year one of contribution. This exploits the contributor. At this point, the
estimate of premium size that allows for a balance between the two parties (the insurer
and contributor) is considered. To do this chore, we need to know the average amount of
time the contributor is expected to stay in the Scheme. This is found by averaging the
length of time those who have quit the Scheme (without necessarily dying) had stayed on
as contributors.

Let y be the number of years that a coniributor is expected to remain as a member
to the Scheme. It is desirable that the insurer starts earning profits at least by half of the
period of stay of the contributor.

th
Thus at the (%) year,

B



[f) h (5.1)

I .n B n
lH,,:P(H——) Vklplk—ZVkléjk.
100 )45 pamr)

Since we have

Then letting profit be zero as equation (5.1) suggests, the following equations hold.

1 & Vkl k_nd _—
( +100)Z é 15k =0

Hence
n

(1"'_)sz 1P‘l = Z V kl‘fk (5.2)

k=1

This implies that the estimate for premium size is

k=1V klg'k ‘
PA(l) = (1 g )(ZZLJV N k (5.3)
100 iy '

here P is a function of the number of dependants, in this case one. As an example,

lety =10. At year (%) =5, we have
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This amount is the premium size per annum. (Cf. Cumulative Claim amount at year 5 in

table (2.10)). In a month we get the estimate to be KShs. 125.37. Hence we have

A

P =1504 .42 shillings per annum and approximately, X = 125 shillings per
month as the estimated premium size. This value is lower than the KShs. 200 per month
currently being paid. Definitely it gives the contributor less burden and ensures

reasonable profit to the insurer.

5.2.2. Case of m-dependants.
We now cstimate the premium size desirable for the two-dependant model, three-

dependant model and then generalize the expression to the m-dependant model.

Two-dependant model
, 11

As in section 5.2.1 we need P that minimizes [ _X_} . This is found to be

2

P(2) = 5 |
R



o

We realize that the denominator is constant and is 3.939734.

2 these- e
3.939734

= 2211 .06 (5.5)

<

We have used y =10 = (%) = 5. The estimate of premium size for the two-

dependant model is P =2211.06 shillings per annum and approximately % = 185
shillings per month. This is still lesser than the KShs. 200 currently paid. With the
estimated amount paid, we expect to see the required balance between the insurer’s and

the contributor’s benefits.

Three-dependant

In this case we need P that minimizes 3 I1 » . This is when 77 = (%)Thls

gives the estimated premium size for the three-dependant model as

5
> vre,
P (3) = 7 s (5.6)
hgt = v *lpk
( 100 szl 7
Once again let us assume thaty =10 = (§)= 5 as an example. We obtain
11475
= = 2812 .63 '
3.939734 il

This gives the estimate of premium size for the three-dependant model as

P =291263 shillings per annum and ¥ = 245 to the upper five shillings per month.
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This is slightly higher than the KShs. 200 currently paid. We conclude that the amount
paid is best suited for a three-dependant scheme. Unfortunately, the fund has an average
of four dependants. This means that in case a flat rate of conu'ibuted_uamounts has to be

set, then the figure should be slightly higher than 200. Next is to calculate the estimate of

premium size for the four-dependant model for a more realistic rate.
m-dependant model

We now give a general expression for the estimate of premium size. In this case,

premium size P that minimizes m Il »n 18 required. This is suggested to be when

n = (*;‘)."Ihuswehave

P(m) = ?) (5.8)
: I k=1 k
1 + V Py
100 )&,

per annum. In a month, this is KShs. (X = P /12).

5.2.3. Four-dependant Model (the average case).

It has carlier been shown that the average number of children each contributor has
is three. This together with the first dependant (the mother or father of the children)

makes four dependants.
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First we need the expression for 4 ¢ » which we use in the calculation of expected

claim amount. Using the general formula for the m-dependant model (equation (3.24) in

chapter three), the expected claim amount under the four-dependant model is found to be,

1] 2 a-
4§n=p{1 1{ II pZ ch)4+lP4n+F4,n} 5P)

k=2 ’
where
.
D, = g, D, (5.10)
k=1
5 4
22 n—1
. r4,n—[ IT (I—Pk )}1)4\2’3,._.5 (5.11)
k=2
and
( ( yr—1 k
3 3 4 5 5 g ppm]
Y,= 2 pA b3 Z{HP *H[l_pf ] D .
g=1 f1=2f2=3f3=4 k=2 U f i=1 I 4\191];
\ b i=1 ) P
(5.12)
This result to

o o - " ws] =
Pl W PV, + s BRIV A= pI D g+

. o n-1.3
3p" V- p} N D4+ (l— p3 T ) @yass )+
_ e 1=1) A n—1 = |
P VA= pr (P2 @ 4, 38V - pEH 50

31-pi H*o 42,33 )+(1 - py I X- P3_1)3®4\13,3,3 }
(5.13)
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To calculate the values of 4§n’ forn=1, 2, 3,4, 5, ..., 30, we use the Ms-Excel

application package. Table (5.3) shows the resultant values.

Expected |Discounted) Cumulative| FExpected | Discounted

Year |pl1power| claim claim claim contribution | cumulative | Growth in

n n) amount amount amount | (discounted) | contribution profit

1 ]0.94 4950 4500 4500 2527 2527 -1973

2 10.884 |4175.01|3450 7950 2159 4686 -3264.27
3 10.831 [3539.73[2660 10610 1845 6531 -4078.63
4 10.781 [3017.38(2061 12671 1577 8108 -4562.83
S [0.734 |2586.45[1606 14277 1347 9456 -4821.44
6 (0.69 2229.61{1259 15536 1151 10607 -4928.59
7 10.648 |1932.97(992 16528 984 11591 -4936.58
8 10.61 1685.33{786.3 17314 840.9 12432 -4881.99
9 10.573 (1477.65(626.7 17941 718.6 13151 -4790.13
10 [0.539 [1302.64(502.3 18443 614.1 13765 -4678.34

ot
-

0.506 |1154.43404.7 (18848 524.7 14289 -4558.26
0.476 |1028.24|327.7 19175 448.4 14738 -4437.5
0.447 1920.25 |266.6 {19442 [383.2 15121 -4320.89

[y
N

ok
w

14 10.421 |827.3 |217.9 (19660 |327.5 15448 -4211.31
15 10.395 |746.87 [178.8 [19839 [279.8 15728 -4110.29
16 |0.372 [|676.87 [147.3 (19986 |[239.1 15967 -4018.48
17 |0.349 [615.64 (121.8 (20108 |204.4 16172 -3935.95
18 |0.328 |561.77 |101.1 20209 [174.6 16346 -3862.37
19 |0.309 |514.15 [84.08 20293 |149.2 16496 -3797.22
20 |0.29 471.83 {70.15 20363 |127.5 16623 -3739.84
21 10.273 434.04 |58.66 (20422 {109 16732 -3689.52
22 10.256 400.16 [49.17 |20471 |93.13 16825 -3645.56
23 10.241 [369.64 41.29 |20512 [79.58 16905 -3607.27

N
N

0.227 |342.05 |34.74 |20547 [68.01 16973 -3574

25 |0.213 [317.02 [29.27 [20576 [|58.12  |17031  |-3545.15
26 0.2 |294.23 [24.69 [20601 |49.66 [17081 |-3520.18
27 [0.188 [273.41 [20.86 (20622 [42.44  [17123  |-3498.6
28 |0.177 [254.35 [17.64 [20639 [36.27  [|17159  |-3479.97
29 0.166 [236.85 [14.94 [20654 [30.99 [17190 |-3463.91
30

0.156 |220.76 |12.66 |20667 |26.49 17217 -3450.08

Table 5.3. A table of expected claim amount contribution and profit for the four-
dependant model.
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Four-dependant Model.

‘COMPENSATION CLAIM AMOUNT

5006.0

(*sysH) Junowy

EXPECT ED CONTRIBUTION COMPARED WITH

YEAR SINCE MEMBERSHIP

KEY

CA =¥ Claim Amount.

CO => Contribution

A graph showing the trend in contribution and claim amount for the four-

Figure 5.3a.

dependant model.
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GROWTH IN PROFIT

Four-dependant Model.

1140dd Ul YMmolD

YEAR SINCE MEMBERSHIP

Figure 5.3b. A graph giving the trend of growth in profit for the four-dependant model.

The graphs in figure (5.3a) and (5.3b) take the same trend and have similar
explanations as the equivalents of the one, two and three dependant models earlier given.
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From table (5.3), the required claim amount, from which the estimate of premium size

_

P andhence X istobe calculated, is found to be

5
>Vl
ﬁ(4): I - L g
1+ —— 14
100 ;1 P

Still assuming thaty =10 = [%) =5 as an example, this gives the

estimate as,

- = 3623 .85
3.939734

(5.14)

So that P = 3623.85 shillings per annum and consequently X = 302 shillings per month.

Rounding up to the upper five shillings we obtain X =305 shillings.
5.3 APPLICATION OF DERIVED PREMIUM SIZE,

The estimate premiums of sizes were found to be:

P(1)=1505 (For the one-dependant model).
P(2)=2211 (For the two-dependant model).
P(3)=2913 (For the three~dependant mode).
P(4)=3624 (For the four-dependant model).
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5.3.1. One-dependant Model.

Once again we use Ms-Excel application package to »calcu(l'ﬁte the following

values in table (5.4). This is on replacement of the uniform premium sizes with the

estimated value. Graphs of growth in confribution and claim amount, for each of the

models are also plotted.
Expected |Discounted|cumulative| Expected | Discounted
Year | claim claim | claim |contribution| cumulative Growth in

n | amount | amouni | amount |(discounted) ;'ontn'bution Profit profit
1 |1800 |1636  |1636  |1584 1584 -52.526 |-52
2 1658 (1370 3006 1353 2937 -16.919 |-68.9193
3 |1529 |1149 4155 1157 4094 8.00755(-60.9118
4 11411 [963.5 5119 988.4 5083 24.8887 |-36.0231
S5 |1303 [808.9 [5927 844.6 5927 35.7652-0.25777

6 1204 |679.6 6607 721.8 6649 42.2078 141.95003
7 (1113 |571.4 |7178 616.8 7266 45.4227 |87.37274
8 |1030 [480.8 [7659 527.1 7793 46,3299 (133.7027
9 1954.4 [404.8 |8064 450.4 8243 45.6271(179.3298
16 [884.6 (341.1 |8405 384.9 8628 43.8391 |223.169

Table 5.4: Cumulative contribution, claim amount and profit using the estimated

premium size (one-dependant model).

Values in table (5.4) have been used to plot the lines in figure (5.4). In figure

(5.4), the dotted line shows the exponential rate of decay of expected claim amounts
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while the full line represents the trend of decrease in contribution with time. The lines
meet between the second and third year of contribution. This is the time that the rate of

contribution equals that of claims. {

<

ESTIMATED PREMIUM SIZE

One-dependant Model.
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Figure 5.4: A graph showing growth in contribﬁtion, claim amount, and profits for the

one-dependant model (using estimated premium size).
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5.3.2.

Two-dependant model.

Expected |Discounted\csmmlative| Expected | Discounted {
Year | claim claim claim | contribution| cumulative % Growth in
n | amount | amount | amount |(discounted)|contribution| Profit / profit
1 12830 2591 2391 2328 2328 -263.131 |-263
2 12497.11|2064 4655 1989 4317 -74.5344 |-337.534
3 12199.09]1652 6307 1700 6017 47.6496 |-289.885
4 11946.21]1329 7636 14353 7470 123.3231}-166.562
S [1730.57 1075 8711 1241 8711 166.7751]0.213485
6 [1545.771872.6 9584 1061 o772 188.2246(188.4381
7 11386.59|711.6 10295 1906.5 10679 194.9435|383.3816
8 [1248.77|582.6 10878  |774.7 11453 192.075 |575.4566
9 [1128.83|478.8 11357 1662 12115 183.228 [758.6846
10 {1023.941394.8 11751 565.7 12681 170.9083/929.5929
Table 5.5:  Cumulative contribution, claim amount and profit using the estimated

premium size (Two-dependant model).

Values in table (5.5) have been used to plot graphs in figure (5.5). In figure (5.5),

the dotted line has the same meaning and interpretation as that in figure (5.4). The full

line represents the trend of decrease in contribution with time. These lines also meet

between the second and third year of contribution. This is the time that the rate of

4 contribution equals that of claims. We note that the two are more dispersed than was the

case in figure (5.4). This implies that the amounts diverge more as the number of

dependants increase.
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ESTIMATED PREMIUM SIZE

Two-dependent Model
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A graph showing growth in contribution and claim amount, for the two-

Figure 5.5:

dependant model (using estimated premium size).
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5.3.3.

Three -dependant Model.

Expected |Discounted|cumulative| Expected | Discounted
Year | claim claim claim | contribution | cumulative Growth in
n | amount | amount | amount |(discounted)|contribution| Profit profit
1 |3900 3545 3345 3066 3066 -479.073 |-479
2 13335 2757 6302 2620 o686 -136.207 |-615.207
3 [2866 2153 8455 2239 7926 86.04145}-529.166
4 12473 1689 10144 1914 9839 224.2897}-304.876
5 [2144  |1331  [i1475 |1635  |11475  |304.0305/-0.84578
6 |1867 1054 12529 1397 12872 343.374 (342.5282
7 1635 [838.9 13368 1194 14066 355.3232(697.8514
8 11439 671.3 14040 1020 15087 349.2353|1047.087
1274 540.2 14580 872.1 15959 331.8121(1378.899
10 1134 437.4 15017 [745.2 16704 307.8041[1686.703
Table 5.6:  Cumulative contribution, claim amount and profit using the estimated

premium size (Three-dependant model).

Values in table (5.6) have been used to plot graphs in figure (5.6). In figure (5.6),
the dotted line has the same meaning and intcrpretaﬁbn as that in figure (5.5). The full
line represents the trend of decrease in contribution with time. These lines also meet
between the second and third year of contribution. This is the time that the rate of
contribution equals that of claims. We note that the two are more dispersed than was the
case in figure (5.4) and (5.5). This implies that the amounts diverge more as the number

of dependants increase.
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ESTIMATED PREMIUM SIZE

Three-dependant Model.
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Figure 5.6: A graph showing growth in contribution and claim amount, for the three-

dependant model (using estimated premium size).
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Four-dependant Model

53.4.
4
Expected |Discounted|cumulative| Expected | Discounted |
Year | claim claim claim | contribution | cumulative Growth in
n | amount | amount | amount |(discounted)| contribution| Profit profit
1 4950 4500 4500 3819 3815 -684.856 -685
2 14175.01 3450 7950 3260 7075 -190.205| -875.205
3 13539.73 2660 10610 2786 9861|126.558%5| -748.647
4 |3017.38 2061 12671 2381 12242|319.8706( -428.776
S |2586.45 1606 14277 2039 14277/428.5148| -0.26138
6 |2229.61 1259 15536 1739 16015/480.0237| 479.7623
7 11932.97 992 16528 1486 17501)493.7867| 973.549
8 11685.33 786.3 17314 1270 . 18771|483.3935| 1456.943
9 |1477.65 626.7 17941 1085 19856|458.2819| 1915.224
10 |1302.64 502.3 18443 927.2 20783] 424.922| 2340.146
Table 5.7:  Cumulative contribution, claim amount and profit using the estimated

premium size (Four-dependant model).

Values in table (5.7) have i)ccn used to plot graphs in figure (5.7). In figure (5.7),
the dotted line has the same meaning and interpretation as that in figure (5.4), (5.5) and
5.6. The full line represents the trend decrease in contribution with time. These lines also
meet between the second and third year of contribution. This is the time that the rate of
contribution equals that of claims. Note that the two are more dispersed than was the case
in figure (5.6). This confirms that the amounts diverge more as the number of dependants

increase.
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ESTIMATED PREMIUM SIZE

Four-dependant Model.
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A graph showing growth in contribution and claim amount, for the four-

Figure 5.7:

dependant model (using estimated premium size).
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5.3.5. Obs;arv'ation.

It comes out clearly that the more the dependants, the more disperse the two lines
of each of the four grids. This implies that there will be increased profit to the insurer as a
contributor has more dependants. This is the reverse of the uncorrected situation where
the more the dependants the larger the loss the insurer expects.

In order to precisely have a balance between the contribution and profit expected
by the insurer, the insurer ought to set several levels of premium sizes. This insures that

he achieves both hlS goals and those of the investor.

We now study the profit due to the new prcmium sizes. To do this, we need the
data in table (5.8) and graphs in figure (5.8) and (5.9) in order to justify the new
modification. We suggcst the mode of premium contribution that best suits the conditions
assumed (that is, y=10) to be as follows.

x =125 (For the onc-dcpcﬁdant model).
x =185 (For the two-dependant model).
X =245 (For the three-dependant model).

X =308 (For the four-dependant model).

(Amounts are in KShs. To the nearest five shillings)

We can see that the figures are approximately in jumps of KShs. 60. We therefore
suggest that a member of the Benevolent Scheme contributes 125 shillings per month if
he has 6nly the spouse as the dependant. In addition to that, he ought to give Ksh.60 for
every other dependant (Child) he wishes to register as a beneficiary to the Scheme. This
is definitely non-arbitrary since the values havé been clearly derived using our m-

dependant model of the Benevolent Scheme. The profit trends are illustrated next.

115




Year Profit Profit Profit Profit
n 1-dep. model | 2-dep. model | 3-dep. model | 4-dep. model
1 -92.526 -263.131 -479.073 -684.856
2 -16.919 -74.5344 -136.207 -190.205
3 8.00735 47.6496 86.04145 - | 126.5585
= 24.8887 123.3231 224.2897 319.8706
5 30.7652 166.7751 304.0305 428.5148
6 42.2078 188.2246 343.374 480.0237
7 45.4227 194.9435 353.3232 493.7867
8 46.3299 192.075 349.2353 483.3935
S 45.6271 183.228 331.8121 458.2819
10 43.8391 170.9083 307.8041 424.905

Table 5.8. A table of profit for the estimated premium sizes in the one, two, three,
and four-dependant models.

PROFIT MARGINS (ESTIMATED PREMIUMS)

First four models
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Figure 5.8. A graph showing the new profit margins on using the estimated premium

sizes. Cases are the one, two, three, and four-dependant models.

116



Year Cumulative Cumulative Cumulative Cumulative
n Profit Profit Profit Profit
1-dep. model | 2-dep. model | 3-dep. model | 4-dep. model
1 -52 -263 -479 -685
2 -68.9193 -337.534 -6135.207 : -875.205
3 -60.9118 -289.885 -529.166 -748.647
4 -36.0231 -166.562 -304.876 -428.776
5 -0.25777 0.213485 -0.84578 -0.26138
6 41.95003 188.4381 342.5282 479.7623
7 87.37274 383.3816 697.8514 973.549
8 133.7027 575.4566 1047.087 1456.943
9 179.3298 758.6846 1378.899 1915.224
10 223.169 929.5929 1686.703 2340.146
Table 5.9. A table of Cumulative profit for the estimated premium sizes in the one,

CUMULATIVE AMOUNTS (KShs.)

Figure 5.9.

two, three, and four-dependant models.

CUMULATIVE PROFIT (ESTIMATED PREMIUMS)

First four models
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A graph showing the new cumulative profit (estimated premium sizes).

Cases are the one, two, three, and four-dependant models.
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KEY:
PRO1->
PRO2->
PRO3->
PRO4->
CP1->
CP2->
CP3->
CP4->

5.4.

Cumulative profit for the one-dependant model.

Cumulative profit for the two-dependant model.
Cumulative profit for the thme—dependzsﬂt model.

Cumulative profit for the four-dependant model.

Cumulative profit for the one-dependant model.
Cumulative profit for the two-dependant model.
Cumulative profit for the three-dependant model.

Cumulative profit for the four-dependant model.

SUGGESTED APPROXIMATE MODEL FOR THE SCHEME

As eminent from our model, we see a trend that can be fitted by a probability

distribution or a model function. For example, the one-dependant model can be fitted

with a CUBIC function as follows.
Year Discounted Discounted Discounted Discounted
n claim amount claim amount claim amount claim amount
1-dep. model 2-dep. model 3-dep. model 4-dep. model
1 1636 2591 3545 4500
2 1370 2064 SHAS T 3450
3 1149 1652 2153 2660
4 963.5 1329 1689 2061
5 808.9 1075 1331 1606
6 679.6 872.6 1054 1259
7 571.4 711.6 838.9 992
8 480.8 S582.6 671.3 786.3
9 404.8 478 .8 540.2 626.7
10 341.1 394.8 437.4 502.3

Table 5.10. A table of expected claim amount for the first four models.
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Curve estimation

Using SPSS Application package, the regression equations are as follows:

MODEL: MOD 1.

Independent: YEAR

Sigf b0

(THE CUBIC MODEL)

N

<

Dependent Mth Rsg bl b2 b3
CLAIM1 CUB 1.000 .000 1940.71 -329.93 24.3240-.734]
CLAIM2 CUB 1.000 .000 3205.91 -680.82 61.3786 -2.1465
CLAIM3 CUB 1.000 .000 4469.93 -1030.1 97.4510 -3.4863
CLAIMA CUB 1.000 .000 5733.23 -1380.6 “135.1308=179524

In the graphs‘that follow, dotted lines represent the

expected amounts while the continuous lines represent the

fitted model.

2000

CLAIM1

Amount in KShs.

P = = = —— o — — . —— - —

N =

Figure 5.10a. A graph of fit with the CUBIC function (one-dependant model).
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Figure 5.10b. A graph of fit with the CUBIC function (2-dep model).
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Figure 5.10c. A graph of fit with the CUBIC function (3-dep model).
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Claim amount in KShs.

Figure 5.10d. A graph of fit with the CUBIC function (4-dep model).

YEAR

Next is to fit the data in table (5.9) with the exponential distribution using the

Minitab and SPSS application Packages as follows.

Exponential distribution.

MODEL: MOD_ 2 (Exponential distribution) .

Independent: YEAR

Dependent Mth Rsq d.f. F Sigf b0 bl
CLAIM1 EXP 1.000 38 273411 .000 1938.53 -.1742
CLAIM? EXP .999 8 11507.6 .000 3107.32 -.2088
CLAIM3  EXP .999 8 10794.8 .000 4346.09 -.2327
CLAIM4 EXP .999 8 9557.04 .000 5553.97 -.2437

As an example, the equation for the one dependant model is:
CLAIM1 = 1938.53*exp (-0.1743*year)
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YEAR

TWO-DEPENDANT MODEL

CLAIM2

YEAR
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We note that the larger the number of dependants, the lower the correlation
between the two models. However, generally, the two are highly correlated and at 0.01
level of significance, the p value is 0.0001. This is much less that 0565. Thus it is clear
that the two models give the same results. |

Graphs of the cubic model are more closely correlated to the ones of the
Benevolent Scheme Model than those of the Exponential distribution. This can be

checked from the Square of regression column (Rsq.) in the analysis tables.
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CHAPTER SIX.

6: CONCLUSION

In this chapter, we summarize the results that have been arrived at throughout the
whole research. First we compare the Branching probabilistic model with the Markov
model for the Benevolent Scheme. Ot@er results as the estimated premium sizes for
different numbers of dependants will also be recorded. Suggestions for further
modifications that can be made to the models are given. Finally, a conclusion in line with

stated objectives will be made.
6.1: COMPARISON OF THE TWO METHODS.

The Branching (probabilistic) model for the benevolent scheme has been
developed from first principles in chapters two and three. The calculations involved are
seen to be junky and tedious although they are straightforward. However the markov
model formulated in chapter four has proved to be‘ short and easier to apply despite the
fact that it is more technical.

All in all, it is interesting to note/that both models give the same result. That is,
~ the formula for calculation of expected claim amount, arrived at in both cases, is the
same. It is also plausible that both methods predict the same about the future of a member
of the scheme. Essentially, as time # —> oo the probability of survival and hence the

membership diminishes to zero. In the Markov model, such a phenomenon is called
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Steady state or the stationary distribution of the of the markov process. In reality, no one

can stay alive forever. After some time, the contributor is bound to quit due to death,
y Q

dismissal or retirement.

6.2: SUMMARY OF RESULTS.

The following were our objectives of the study that we now wish to claim to have
fulfilled.

i Formulating a Statistical model that will be used in calculating the claim
amount and profit the insurer expects to carn from the benevolent scheme.

ii. Estimate the appropriate premium size to be contributed in order for the
msurer to realize modest profit.

1ii. Applying the model by use of dafa from the Maseno University SACCO in

order to forecast the financial status of the cooperative (as an example).

After going through all necessary resources and personal inputs, we came up with

the following,
i The one dependant model for the benevolent scheme was derived as
&, =i o+ (1-pM) o\ L)
The two-dependant model is

Zétn =P1M{P2HP3"J CD2 +p,(1- ps™) ®2\3+
n-1 3 n-1 3 n-1y g i n-1
ps (I-p; )®2\2+(1 P2 (I- p3 )®2\2’3}-

The three-dependant model is
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=AM A P (1 o (1 Yo
e (l—pff }Dm +p (-p5" (1 -py ‘}Dm -5 (- o
29 1 d ‘Psn_l {1 "P;H )®3\2,3 +(1-py 1)(1 _PQH)(I ‘Pg_l )[Ds\2,3,4}.
The four-dependant model is
el e p3" V@ + pl! B2V (- pr )0 g3+
3P§"—1_) A-piH D5+ - pi )Y’ @ 33,3 )+
_ _ 4 ¥ .
pIVA- pr P2V @ 4,430 VA= pI D g0
3(1-pi 2D 4045 )+(1 -piha-p3ty D333 }

| and more generally, the m-dependant model: The cxpected amount to be spent in

compensation to a contributor with m dependants is

£ =pi mﬁl n=lp 4@ 4T
m°n ~ Pl Pj m “mn mn

k=2

- Where

m+1
rm,n=(kl}2( _p;ct )}Dm\2,3,...,m+l
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4
= e : ; "
g:1f12f2]%f mkzk\Uf e e m\ U f,
L i=1 } i=1 }
and
m+1 ( )
@ z gD, DI 2D
m\ah,... i
Ahediy =1 7 Vie{ab,. ]}
The expected profit is
m, = Pl1+ 5 3 vaiph -3
k:-l k=1
r [ N
L P (1 + o )
% Z vk p ¥ s &L
1 k
o V "
These results have been successfully arrived at by both the Branching method and

the Markov approach.

ii. . Using collected data, the average number of years a contributor is expected to stay

as a member of the scheme (of Maseno University SACCO in this case) was ten
years. This together with the assumption that the insurer ought to start carning

profit midway the stay of the contributor, led to our estimate for premium size

given as
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Per annum.

iti.  From collected data and suggested formulac, we found that p;=p,=0.94
(The probability of survival of the contributor and spouse) p3=p, ... =0.85
(The probability of survival of the contributor’s siblings) and & = 3 is the
average number of children per contributor. The trend as 77 —> 00 was

that the claim amount, ,, £, — 0V m wherem=1, 2, 3, ..., 30.

The Exponential distribution is found to be the rﬁost suitable probability distribution

function that best matches the Benevolent Scheme Model.

In chapter two, the oné-dependant model was formulated. Data from the Maseno
University Burial and Benevolent Fund (BBF), which is a sub-sector of the SACCO, was
applied and resultant tables and graphs made. From the results, expected cooperative
claim afnount was found to be decreasing with time. It was found that, under the current
system of contribution, and compensation, a contributor with only one dependant (the
spouse) or two dependants, is at a disadvantage in terms of benefits from the scheme.

Under the three-dependant model, the insurer could only expect profit from the
twenty-fourth year, while in the case of four dependants, the insurer could n(;t expect any

profit at all, within the first thirty years of contribution. It is natural that most of the
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members to the scheme could be having more than three dependants. This implies that
the insurer is expected to run out of funds to manage the program if there were no other
source other than member contributions. | E'“

Using our formula for the estimated premium size, we got fesults that were
proved to be better than if current values were charged. We therefore strongly suggest
that the premium size shouldn’t be constant for all family sizes. The estimated premium
size for a contributor with one dependant should be KShs.125. Any additional beneficiary
should be accommodated by an increase on the premium size by KShs. 60 for each. With
this implemented, we éxpect favorable insurer-insured co-existence. That is, the

application of the estimated premium size will lead to improvement of services to

members.
6.3: SUGGESTIONS AND CONCLUSSION.

With the summary in section 6.2, we can claim to have fully succeeded in
satisfying our objectives. However, there are various assumptions that led to our results.
This to some extent could impact negatively on the application of our model. So, more
work can be done to eliminate some of the assumptions.

We have suggested the various premium sizes io be paid by coniributors with
different numbers of dependants. This may complicatc the system of contribution and
compensation due to the diverse properties of each contributor. Therefore there is need to

estimate a general premium size for each member regardless the number of dependants.
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We have dealt with a case where a pure death process is involved. New in-births
registratiéns, departures (not by death) and other irregular occurrences have not been
taken care of. This leaves room for further rescarch and modiﬁcation;sbto the model.

This statistical model that we have formulated may not only be applied by the
financial institutions which incorporate the Benevolent Scheme, but also other sectors
under the field of insurance. With some modification, the application can be extended to

engineering where reliability of systems of machines and repair at some cost is required.
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