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ABSTRACT

The area of study is on a Benevolent Scheme. Herethe insured

contributes premiums to the insuring company and is compensated in

the event of death of self or his or her dependant(s). The problem

normally experienced by a number of insuring companies is how to

determine the appropriate premium size to be paid by the insured. such

that the company does not incur losses.

In this study statistical models of a one-dependant and an m-

dependant scheme, have been formulated.

Using the formulated models, the expected expenditure and

consequently profits or loses accrued to the insuring company have been

calculated. Consequently the appropriate premium size that will give the

insurer modest profit has been determined.

Properties of Markov chains and Markov states have been applied

in determining the probabilities of transition from one state to another,

in n-steps (years). Steady state transition probabilities have also been

derived. Finally, correlation of the Exponential probability distribution

with the benevolent scheme modelhas been established.
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CHAPTER ONE

1. INTRODUCTION

In this introductory chapter, a brief theory of some of the basic statistical

principles that are needed in the formulation and analysis of the models is given. An

introduction of the binomial, and exponential distribution is also given. The principles of

the hazard model and Markov Chains are highlighted too. It is in this chapter that the

objectives, significance of the study, a review of related literature and a statement of the

problem are given. Here the essence of statistical modelling and the types of models that

can be built are introduced. The basic principles on the mode of operation of the

Benevolent Scheme are also highlighted.

1.1: INTRODUCTION.

1.1.1: StatisticalModelling.

Statistical Modelling is the science of conversion of statements to statistical

formulae to be used in the solution of physical problems. An acceptable model ought to

either validate previous methodologies of modelling or be the foundation to new

advancesin such methodologies.
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Modelling of physical situations is an old phenomenon. The basis of this activity

is the diverse questions that require statistical redress. For example, the government may

wish to know how to resuscitate the economy. Among the many questions they would
\

require answers for are:

i. How much capital should we input to the agricultural sector, which is

the backbone of our economy?

11. What magnitude of revenue do we expect to earn from the input?

111. Is it therefore profitable to fund agriculturalprojects as a priority?

IV. There areother options that could earn the government modest revenue

(tourism being an example). Is it relatively more profitable to invest

more on the tourism industry than in agriculture?

Answers to these questions could best be presented in mathematical equations.

Such equations are Empirical, Deterministic, or Stochastic. Empirical models allow for

collected data to be analysed in order to understand the nature of a given process.

Deterministic models are meant for the qualitative analysis of the processes and are

therefore not based on data. They are hinged on trends and rates of the activities in

question. Stochastic models are applied in case the process being defined is random. The

process given as an example above (on revamping the economy) is best fitted with a

deterministic model.

.Various statistical models have been improvised in an attempt to explain and give

solutions to a wide range of analysable situations. This work is on insurance related

modelling. In particular, we consider the Benevolent Fund. The formulated model is
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Stochastic since the ensuing process is random. TIlls is a discrete-time stochastic process

due to the fact that the events involved are in steps of years.

1.1.2. The Benevolent Scheme.

A number of cooperative societies incorporate the Benevolent Scheme. This is

where members contribute premiums to the cooperative society and are compensated in

the event of death of self or that of any of their dependants. Different levels of

compensation are made in the event of death of a family member. These levels depend on

the individual involved. For instance, a member may pay on monthly basis a premium x.

On the event of his or her death, the dependants are paid a sum of y 1 shillings. IT the

dependant dies, then the contributor is paid Y2 and in case both die, the cooperative

societypaysY3. After one year, the expected spending by the cooperative society is

(1.1)

.where PI is the probability of the contributor surviving,pz is the probability of survival

of the dependant, Ql=l-Pl and Qz=l-pz are the probabilities of not surviving for the

contributor and dependant respectively. The gain by the cooperative society is

(1.2)

From the results obtained using such a model, the average value for X that gives

us modest profit can be estimated by

" G+S
x=--

12PI
(1.3)
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The -givcn ease only considers one-dependant and only one year of existence.

Generally, many families have more than one dependant. Therefore, it is necessary to

model the Scheme to allow for the incorporation of more dependants and extend the

period of sensor to n years. In such a mode! we consider the case ~!here there are m

dependants.

The Maseno University Burial and Benevolent Fund (BBF) was started in 1995

under the Maseno University SACCO. The main aim of introducing the scheme was to

provide a common pool of funds that could assist members instantly on bereavement

without having to wait on l~an applicationprocedures. The amount contributed is banked,

lent out or invested in other income generating activities.

Those eligible for membership are the registered members of the Maseno

University SACCO who have paid KShs. 100 non-refundable Registration fee, and

contribute (from their salaries) a premium of KShs. 200 per month. The amount is the

same for every member whether he/she has one, two, three, four or even five dependants.

The major source of capital for the fund was member monthly subscription fee.

To ensure that there were sufficient funds reserved for payment, the management

introduced a condition that there would be no compensation within the first six months of

contribution.

The fund compensates a member in case of his/her death or that of a parent or

child. In case of an extra wife the member contributes KShs. 150 more. Only up to five

children may be registered as beneficiaries to the scheme. Claims can only be made when

a registered beneficiary dies. There is an age limit after which a child ceases to be
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rccognised as a beneficiary. For a sibling who is 18 years old and above, it is assumed

that he or she is independent of the parents unless still at school or college.

Ever since its inception the scheme has realised tremendous growth in

membership due to the benefits that members have already experienced. The initial

registration was 100 individuals while the target was 300 for viability. This grew to 450

members by the year 2000 only to decline sharply to about 350 due to retrenchment.

1.1.3. Notations and Symbols.

The following are some of the notations and symbols used in this research.

p Premium size (amount per annum).

x Premium size (amount per month).

m~n The expected spending on one contributor with m dependants in

ththe n year.

Pi probability of survival of the ith individual.

probability of death of the ithindividua1.

A power b.

LC·,·,·) The likelihood function of the probability density function f (,.,.).

8L
8p

Partial differential of the likelihood function with respect to p.

The moment generating function of the p.d.fj(x).

Probability of transition from i to j in n steps.
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i=1

m+ln
k=2
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rI,

Probability of first passage of state t through) in the nth step.

Mean recurrence time of state j.

\

Number of children contributor k has in the jfu y~1tr.

The average number of children a contributor has.

Compensation due to the death of the kfu member of the family.

Expected compensation in a k -dependant Scheme.

Expected cumulative profit for an m-dependant model in the n th

year.

Union of Sets.

Normal multiplication of elements.

Tends to.

Implies.

A matrix of sub-matrices.

A simple matrix.

For all.

Member of.
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1.2: BASIC STATISTICAL CONCEPTS.

The, following are the basic concepts used in the research and modelling of the

Benevolent Scheme,

1.2.1: BinomialDistribution.

In a sequence of Bernoulli trials, one is interested in finding the total number of

successes in the n trials and not in the series of successes (or failures). In this case, the

random variable of interest is;

y = Yl + + Yn = L Y'
1<'< 1_l_n

(1.3)

For example, consider a redundant group of n independent units operating in

parallel.The group operates successfully if the number of operating (or functioning) units

is not less than m. Let Yi be one if the ith unit is ~ctioning at some chosen time, and

zero otherwise. Then Y is the number of successfully operating units in the group. Thus,

the group is operating successfully as long as Y ~ m, where m is some positive number,

the threshold number.

Y has a Binomial distribution with parameters nand p, n being the number of

units and p the probability of a unit remaining in operating status. By well known

theoremsof probability theory, for any set of random variables Yi'

( }E L y. = LEy.11< iS n I 1 < i< n { I} (1.4)
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In this particular case,

Er}=np (1.5)

For independent random variables of Y, the variance is expressed as

For identically independently distributed Bernoulli random variables,

var{Y}=npq (1.7)

where q is the probability of failure.

The probability density function of a binomial random variable is given as:

fey) ~ prOb(y~k)~(:}kql-k (1.8)

.This distribution has the moment generating function.

(1.9)

The binomial distribution has. already been introduced. Following is an

explanation of the maximum likelihood estimator of the parameter p. For a random

. variable x that has a binomial distribution, ,

(1.10)
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The likelihood function of this distribution is

n (nJ x. n-x.L(x.,n,p) = n p 1(1- p) I.
I X.

i = 1 1

(1.11)

n
2

-(.~ Xi)'
1=1

>I< (1- p)

here * means multiplication.

We need to find p such that L (x, n, p) is maximised. This is the same as finding p

such that the natural log of the likelihood function 1n.{L (x, n, p)} is maximised.

lnL(x,n,p)= .£ (:.)+(.~ Xi]lnp+( n2 -. £ Xi]ln(l- p). (1.12)
1=1,1 1=1 \ 1=1

At maximum In {L (x, n, p)},

aL(x,n,p) = o.
ap

(1.13)

Now

(1.14)

From which
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(1.15)

Thus we have the maximum likelihoodestimator of p as

" xp=-
n

(1.16)

Hence, that of q is

" X n-:»q=l--=--.
. n n

(1.17)

1.2.2: Exponential Distribution

This distribution is most popular and commonly used in reliability theory and

engineering. Many mathematical researchers prefer using the exponential distribution

because they can obtain a lot of elegant results with it. Although it is principally

.impossible to find a natural process that is exactly described by a mathematical model,

the exponential distribution under certain conditions is best placed than other

distributions.

The distribution is often used to describe the failure process of electronic

equipment. Failure of such equipment occurs mostly because of the appearance of

extreme conditions during their operation. The probability density function of an

. exponentialrandom variable is

J(t) = :ie-At with A,t > 0 (1.18)

Its mean and standard deviation respectivelyare
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E{x} = II A

and

(J = ~var(x) = 11A (1.19)

It has the moment generating function

AA,fx(t)=-
A+t

(1.20)

1.2.3: The Hazard Model.

Excessive work has been canied out in the use of the hazard model in various

areas of study dealing with population dynamics. These kinds of models have advantage

over static models since they account for time. The time dependent variable in the hazard

model is the time spent by the individual under study in the 'healthy' group (alive,

operationalor in good condition).

As explained in Gnedenko (J 995) and Murray (1990), the Hazard models also

incorporate time varying covariates or explanatory random variables that change with

time. These models also produce more efficient out of sample forecasts by utilising much

more data. Hazard models require selection of parametric forms such as the Weibull

distribution, Exponential distribution, Extreme value and Gompertz distribution for

baselineduration dependence.

.The Exponential distribution plays a central role in survival analysis. Though few

systems have exponentially distributed lifetimes, most of the useful survival distributions

are closelyrelated to it,
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As earlier noted, the density function of the exponential random variable T for

survival time t is

J(t) = prob¥ < T < t +dt}1 dt = ~e- t I f.l~fJ,t > O.
fJ

(1.21)

Where f.l is the mean of the distribution. The cumulative density function of the

distribution is

F(t)=l-e-tl fJ. (1.22)

A fundamental concept of survival analysis is that of the hazard function h (I)

with the conditional density function at time t given by survival up to time t being

h(t) = prob{t < T s 1+ dttT > I} = J(I)dtl[l- F(I)]. (1.23)

The Survivor function is defined as

Set) = prob{t < T} = 1-F(!) (1.24)

and

h(/) = J(/)I S(/)

is the hazard function. It can be interpreted as the instantaneous failure rate at time 1. Any

continuous probability distribution can be specified equivalently by its density function,

survivor function or hazard function. For any distribution, the functions mentioned above

are grven as

J(/) = h(/)exp{-H(!)}

S(t) = exp{-H(t),}

and
h(t) = J(t)/ Set) (1.25)

where the function
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t
H(/) = Jh(u)du.

o
(1.26)

is the integrated hazard function. In particular, for a random variable T with the

exponential distribution,

h(/) = ;1.,.
1

H(t) = Jh(u)du.
o
1

= JAdu. = At.
o

(1.27)

hence

8(/) = e-At.

and finally

as earlier stated. From this we deduce that the Exponential distribution has constant

hazard rate.it

Davis (1993) defines the hazard rate as a function satisfying the condition:

prob{T E (s,s+t)IT > s} = h(s)O+0(0) (1.28)

where 0(0) is a function such that

0(8) ~ 0 as 8 ~ O.

h(s)o expresses, to the frrst order, the probability that T occurs 'now' given that it has

. not occurred 'so far'. The memorylessnes property of the distribution of T regardless the

time elapsed s is seen from the equation
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. F(I ) -l(/+s)
prob{T > t+s lT > s} = +s = e = e-At ..12 O.

. F(s) e-As
(1.29)

Thus the probability of survival to time t is not dependent o~the length of the

previous lifetime. The Exponential distribution represents the lifetime distribution of an

item that does not age or wear. Instantaneous failure is the same no matter how long the

item has survived already.

The survivor function, S(t), which is the probability of surviving to at least time I,

is most commonly estimated (for censored data) by the Kaplan-Meier or product limit

estimate,

(1.30)

where ~ is the number of failures occurring at time Ij out of nj surviving to time Ij- This

is a step function with steps at each failure time but not at censored times. As

S(/) = e-H(!), the cumulative hazard rate can be estimated by H(f) = -log[S(f)].

A plot of H(!) or log (H(/)) against 1 or log (I) is often useful in identifying a

suitable parametric model for the survivor times. The following relationships as given in

Gross and Clark (1975) can be used in the identification.

(a) Exponential distribution: H(/) = Ai.

(b) Weibull distribution: log[H (I)] = log1 +r log/.

(c) Gompertz distribution: log[H (I)] = log1 +yt.
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(d) Extreme value (smallest) distribution: log[H(t)] = A(t - y).

In the case of the exponential, Weibull and extreme value distribution, the

proportional hazard model can be fitted to censored data using the n\~thod described by

Aitkin and Clayton (1980), which uses a generalised linear model with Poisson errors.

Other possible models are the gamma and lognormal distributions.

1.2.4: Markov Chain

Definition 1:

Let E1. E2, ••• En be ,n possible outcomes of sequence of trails. The sequence is a

Markov Chain if the probability of the sample space satisfies the equation,

(1.31)

where P is the conditional probability of OCCWTenceof event E, given than event E, has
rs

occurred. a. is the initial probability distribution. Examples of Markov chains are
10

Random walks, Branching processes and urn models. The transition probabilities P arers

arranged in matrix form as below.

p

Pnl Pn2 r;

Pll P12

(1.32)
P21 P22

This is a Markov Chain with n states.
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The first subscript stands for row and the second for column. P is a square matrix

with non-negative elements. If the sum of each row of elements is unity, then such a

matrix (finite or infinite) is called a stochastic matrix. Any stochastic matrix can serve as

a matrix of transition probabilities. This, together with the initial distribution constitutes a

Markov chain.

Example 1:

Let an experiment have two possible outcomes following the two events E1 and

E2. These are the states the experiment can assume. If the experiment remains in state 1

with probability a, then it moves to state 2 with probability 1-a. Conversely, if it is in

state 2 and remains in it with probability f3, then it moves back to state 1 with probability

1- f3. The corresponding stochastic matrix of transition probabilities is given as,

p=( a I-al
1-13 13) (1.33)

A Markov chain is doubly stochastic if each of both the rows and columns of the

matrix of transition probabilities independently sums to one. In example 1, if a = f3 then

P is doubly stochastic.

Transient states.

A state E, is transient if for some (or all) other states Es, Er~Es but EJ~Er. (~

Implies communicability, and /~ denotes incommunicability). Thus P >0 but P =0rs sr

for some fixed f.
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Example 2.'

Let P be a transition probability matrix with state space E={O,1,2}.

(113 113 1I3J
P = I 0 112 112

~° ° 1

(1.34)

Then diagrammatically the states can be represented as

State 0 is transient.

Absorbing states.

A state E, is absorbing if for some (or all) other states in the system, Es~Er but

EJ~Es. Ibis implies that P =0 and P >0 for some fixed r. thus Er~Er and Prr=l. Inrs sr

example 2 above, state 2 is absorbing.

Higher Transition ProbabiJitin.

Let Pj/
n) denote the probability of transition from Ej to Ek in exactly n steps, then

17



we have, .

. (1) _
P k - P k:.I .I

(2) _
P k -;:.P. P k'J ]V vv (1.35)

P (n+l) =;:.P P (n)
jlc jv vk

v

(General recursion formula).

(m) (n)
p.(n+m)=LP. Pvk
}k }vv·

(1.36)

(A special case of the Chapman Kolmogorov identity).

Now let jj/n) stand for the probability that in a process starting :from Ej the first

entry to Ek occurs in the nthstep. We put jj/O) =0 and

(1.37)

r (n) l
Thus Ijk ~ 1. When jjk= 1, then lljk J is a proper probability distribution

(first passage distribution) for Ek. If /n=I, then return to Ej is certain. The mean

recurrence time J.l . is given by
J

00 .(n)
f.i . = L »t:

1 n=l 11
(1.38)

Definition 2.

The state Ej is persistent iftJ=1 and transient iftJ<l. A persistent state Ej is called

null state if its mean recurrence time j.J j = 00 .
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1.3: OBJECTIVES OF THE STUDY.

Our,main objective of this study is to formulate a Statistical Model that can be

used in calculating the spending and profit a cooperative society expects due to the
G

Benevolent Scheme. By use of this model, it is expected that the right premium to be

contributed will be determined. Application of the model to the Maseno University

SACCO is to be made with the aim of forecasting the fmancial status of the cooperative

society,hence improving its services to members.

1.4: SIGNIFICANCE OF THE STUDY.

At the moment, arbitrary premiums are paid to most SACCO societies. This could

result in either losses or abnormal profits to the cooperative society. The results we

envisageto obtain will be usefully in the SACCO to obtain the average premium to be

paid by members of the Benevolent Scheme. This premium size is to be such that the

cooperativesociety earns a modest profit.

1.5: REVIEW OF RELATED LITERATURE.

Many authors have studied statistical modelling of premiums. Cummins and

Chang (1983) studied the rate of return on insurance companies' equity and the premiums

insurancecompanies should charge.

Ferrari (1968) developed a descriptive model, which allows an algebraic

expression for the rate of return of equity as a function of the premiums charged to be

derived. Combining this work with the Capital Asset Pricing Model (CAPM) meant that

an equilibrium value for the return on equity and the corresponding level of premiums
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couldbe found. This model is known as the insurance CAPM. Cooper (1974), Biger and

Kahane (1978), Fairley (1979), Clements (1982) and Hill (1979) also studied the CAPM

model.

Myers and Cohn (J 987) suggested an adaptation of the adjusted present value

method for calculating the price of insurance. They determined the premium by

discountingthe expected cash flows associated with insurance at the appropriate discount

rates.

The National Council on Compensation Insurance ((NCCD (1987» used the

internal rate of return methodology. This involves finding the discount rate such that the

net discount cash flow is zero. The fair premium is' one in which this rate of discount is

equalto the opportunity cost of capital.

Pratt (1964) addressed the problem of the maximum risk premium. This is the

maximumpremium that the insured is willing to pay the insurer. Henri (1991) examined

the insurer-reinsurerinterface in relation to this risk.

Analysis of survival, reliability and failure time data has also been carried out.

Kalbfleisch and Prentice (1980) highlighted the most commonly used statistical

techniques in the analysis of such data to be the Hazard Model. Gross and Clark (1975)

derived the relationships used in the identification of the baseline distribution to use

togetherwith the hazard model.

Aitkin and Clayton (J 980) described the method by which the exponential,

Weibull and extreme value distribution could be fitted to censored data using a

generalisedlinear model with Poisson errors.
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Rather than using a specified form for the hazard function, Cox (1972b)

considered the case when Au(t) (the baseline hazard function) was an unspecified

function of time. To fit such a model, assuming fixed covariates, a, marginal likelihood

was used. More literature on the Cox's proportional hazard model and the other earlier

mentionedmodels can be sought from Kalbfleisch and Prentice (1980).

Feller (1968), Stirzaker (1994) and Grimmet (1992) have a comprehensive

overviewof Markov chains and various probability distributions, which are to be used in

ourformulation, and analysisof the statisticalmodel of the Benevolent Scheme.

1.6: STATElVIENTOF THE PROBLEM.

It is expected that a formulation of a statistical model that is to help in the

calculationof the expected expenditure, gains arid loses a cooperative society incurs due

to the Benevolent Fund will be met. Using the results, an expression for the estimation of

the right premium size to be charged by such a cooperative society is to be derived. In

. line with this, one-dependant and m-dependant models of the Benevolent Scheme are to

be formulatedusing Branching and Markov models.
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CHAPTER TWO.

2. MODEL FORMULATION.

In this chapter, discussed are the methods intended for use in the calculation of

Survival Probabilities and the basis of the one-dependant model of the Benevolent

Scheme. This leads to the formulation of the model. Data from the Maseno University

SACCO is applied to the Model as a case study. Finally, the implications of the results

are read by use of line graphs.

2.1. METHODOLOGY.

In section 1.2, basic probability principles of the binomial distribution were

highlighted.A brief theory on the Hazard Model was also given. These are the tools used

in the formulation of this model.

The Maximum Likelihood Estimator (of p in the binomial distribution) approach

is employed in the calculation of Survival Probabilities of the contributor and dependant.

To find the probability of survival p we consider the death rate or rate of "departure"

from the scheme.

Fundamental probability rules are applied in the calculation of the expected

expenditure in compensation to a beneficiary due to death of a family member of the

22



contributor. This is done for various stages (years a contributor remains a member of the

scheme). .Data from one of the co-operatives that has the scheme is collected and

analyzed using the derived model.

The required data is summarized in the table below. Here hu is the number of

children contributor k has in the ith year.

Year (1) 1998 Year (2) 1999 Year (3) 2000 Year (4) 2001 Year( 5)2002

=« 'L,h
k2

'L,h
k3 L hk4 'L,h

k5

Jan Dec Jan Dee Jan Dee Jan Dee Jan Dee

Xll X12 .X2l X22 X31 X32 Xu -'42 X51 X52

Table 2.1: A table of the data we expect to collect.

2.1.1: Calculation of Survival Probabilities.

In table (2.1), ]Gj represents the number of contributors present in the ithyear and

·thJ month. j=I for the month January.

j=2 for the month December ..

Assuming that the death rate remains constant over n (in this case 5) calendar

years, the probability q1 that the contributor does not survive to the end of the first year is

estimated to.be,

(2.1)
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This is the same for all the five years under consideration.

We know from Sampling Theory that sample mean is an unbiased estimator of

population mean. So is the variance. The use of the estimator q is '--therefore statistically

justified.

Assuming that the first dependant M is the wife or husband of the contributor,

then we can let q] = q2 since death is relatively equally likely in their age bracket. This

is checked from the data we expect to collect. Other dependants (siblings) have their

survival probabilities p3 ... P 4. .. calculated from past records using the following data set.

1999 20022000 20011998

Y.s

Table 2.2: A table of compensation data related to child death.

Yi are numbers of claims in year i of compensation related to child death.

(2.2)

Ni is the average number of contributors in year i. Then assuming that each child has

equal probability of survival, the average number of children the contributor has is,

24



XiI
2: h ki

k = 1 1

XiI

1 n
c = 2:

n i = 1

l

(2.3)

Where hlci. is the number of children contributor k has. The average probability of not

surviving in the case of siblings of the contributor is estimated by,

1{ n ( Yi J}q3 = q4 = = qc + 2 = - .L ---
n 1=1 eNi

(2.4)

Yi is the number of claims in the lh year due to child death, eNi is the average number

of children in the lh year, and the subscript e + 2 is the total number of beneficiaries

that is, the average number children per contributor plus the contributor and spouse.

In chapter one, other methods of determining survival probabilities as the Kaplan

Meier product estimator were enumerated. We compare results of use of the estimator to

those of the Maximum Likelihood Estimator. Incidentally, it is not possible to predict

future survival probabilities using the Kaplan-Meier or product limit estimator. This is

because it requires data up to the end of the time of study. This is mainly why the

Maximum Likelihood Estimator method is applied. It gives us an average estimate to be

used throughout the period of study.

2.1.2: The Flow Chart and Tree Diagram.

The following figures are useful in explaining the transitions involved in the one-

dependant model. Figure (2.1) shows the flow chart of possible events in the transactions

of the Benevolent Scheme.
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No death
FM•..•.

(P1P2)

r
" Mdead F ~

FM .
r

(P1Q2) D2 paid

F dead

~~
(Q1P2) D1 paid

both dead

N•..

Year = year +1

(p1) F

N

end

end

Figure 2.1: A flow chart of events in the one dependant Model.
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The tree diagram below best gives the branching process of the model

FM

FM

Figure 2.2: A tree diagram for the model.
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From figure (2.1) we see that if both F and M survive, the insurer pays no

compensation. The Process proceeds to the second year. If only M dies, amount D2 is

paid to F and the process proceeds to the second year. In theevent'"'of death of F, Mis

paid DJ and the process ends. In case both die, within the first year, DJ+D2 is paid and

the transaction ends here. The branching process proceeds. The tree diagram is an

extension of the flow chart in figure (2.1). It shows the branching process that ensues

during the period of study.

Using figure (2.2),. the one-dependant Branching Probability Model is formulated.

In chapter three, the two and three-dependant models are formulated and applied to data.

A general m-dependant model is also derived.

Markov chains have also been discussed. They are used as tools in the

formulation of Markov model equivalents, to those of the Branching Probabilistic type.

This is done in chapter four. In chapter five a comparison of the two options and an

analysis of the results is made. Possible model equivalents that could fit the Benevolent

scheme model are also suggested.

2.2. ONE-DEPENDANT MODEL

In this section, a discussion of the formulation of the one-dependant Branching

Probability Model and apply it to collected data. This will aid in the study of the trend

and expectations of an insurer with a member who has only one dependant.

2.2.1. Introduction.

In the formulation of this model, the assumptions are as follows:

1 The contributor has only one dependant.
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11 The survival probabilities of the contributor and dependant are

different.

ill Claims are made towards the end of a calendar year.
o

IV Since if both die at the same time the amount paid as compensation

is not equivalent to the sum of separate compensations, we assume

that the probability of both dying at the same time is negligible.

v. Survival probability is independent of age and sex.

There are four possibilities at the end of the year or at the time of observation,

That is, starting with two individuals, the contributor F and spouse M.

1. Both of them survive by the end of the year.

11. Only F survives.

iii. Only M. survives.

iv. None survives.

The following are the figures of compensation we require from cooperatives that

have the Benevolent Scheme.

X: is contribution per year.

Dj, D2, D3 D; +2, which are amounts of compensation for each death.

Here;

D j: is the amount compensated for the death of the contributor F.

D2: is the compensated for the death of the contributor's spouse M.

D3 D; +2: are the amounts compensated for the death of the contributors'

children.

The probabilities assigned to the events ~ ii, iii, and iv are summarized in table (2.3).
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Event probability compensation

i PJP2 0

"-'ii PJq2 D2

iii QJP2 DJ

iv qJ~ DJ+D2

Table 2.3: A table of events, probabilities and respective compensations.

We now show that the total probability is unit.

L prob = P1P2 + P1Q2 + Q1P2 +Q1Q2= Pi (P2 + Q2)+ Ql (P2 + q~

=1.

The observation stops in case either M survives or both do not survive, This is because

the contributor no longer exists, and consequently the transaction. On the other hand,

there is continuity in case the contributor or both survive. In case both survive in the first

year, then in the second year events (i) to (iv) are probable. Meanwhile if only the

contributor survives, then in the second year he may survive again (with probability Pi)

or die (with probability qi). This branching process replicates as in figure (2.2) at each

stageof observation.

Consider the case of detectability in estimation of biological populations. Let the

probability of correct observation be P« and let Y be a random variable representing the
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number of animals present. The total population of the species under observation is Ta.

Theny has a Binomial distributionwith mean

E (Y)=TaPa (2.5)

andvariance

Var (Y)=T aPa(l-pJ. (2.6)

ill the case of calculation of the expected expenditure using the probabilities that

have been modeled, we have the actual payment multiplied by the probability of the

event(for which payment is made) occurring.

2.2.2: Modelling expected claim amount.

Let 14n represent the expected claim amount in the nth year for the one-

dependant model. Let F denote the contributor and M the dependant. Also let the

probabilityof survival ofF be Pl and that ofM be Pl. Then using figure (2.1) and (2.2),

the calculations of expected cooperative expenditure and profit from a single contributor

are made. We are assuming that there is only one dependant, the spouse.

By the end of the first year, using achieved probabilities (table (2.3» and figure

(2.2), the expected claim amount to the insuring company by the contributor is:

141 PJPl (O)+PJql (D1)+qJPl (DJ)+qlql (D1+D1)

= Plql (D1)+qlql (D2)+qJP2 (D1)+qJq2 (DJ)

=qJDJ+q~l' (2.7)
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(2.8)

For the second year, the expected claim amount is calculated in the case of the

contributor or both having survived by the end of the first year. There is no compensation

for the death of the dependant in case the contributor had previously died.

(2.9)

We have introduced the notation cD} \ 2' which represents Q1D1, and essentially is

(2.10)

Generally ,

(2.11)

Similarly, for the third year,

(2.12)

Further we see that
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----....-.------ -- -- r

=p/ (p/ <1>1+ Q2qIDI(1+P2+p/)}

=p/ (p/ <1>1+ QIDI(1- p/)}

=p/ {p/ <1>1+ (1-p/) <1>1\ 2) (2.13)

We can now generalize the expected expenditure on the contributor's family as:

(2.14)

To prove this for n=I and n=4 we have

1~1 =p/-I {p/-I $1+ (1- p/-I) $1\ 2}

=$1 (2.15)

and

144 =PI4-1 {P24-1<1>1+ (1- P24-1) <1>1\ 2)

=p/ {p/ <1>1+ (1-p/) <1>1\ 2) (2.16)

as before.

2.2.3: Calculating Profit

Let 1nn represent the amount of profit the fund gets from one contributor in the

nth year of membership. Annually the contributor is expected to give a premium of size

P to the insuring company. So, in the nfhyear, the contributor is expected to have given a

total of Kshs.

n

P L: pt·
k=l

(2.17)

Assuming that premiums once contributed are kept in a bank account, an interest at rate I

is earned per annum. This incorporated in equation (2.17) gives the amount available due

to the contributor as
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(
I J n kP 1+- LP1.

100 k=l
(2.18)

It is assumed that premiums are paid at the beginning of the year but benefits are

payable at the end of a year. So, at the end of the nth year, claims amounting to

will have been made. It is also important to note that with time, the

deposits decline in value due to rise in the coast of living. We therefore introduce the

factorV as in the equations below. The expected profit 1nn is given as

(2.19)

1
where V=--

l+i
is the discounting factor introduced due to inflation of currency at

rate i per annum.

In the first year, the expected profit is

(2.20)
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and by the end of the fifth year the expected profit is

(2.21)

2.2.4: Testing the Model with Collected Data.

The following data was collected from Maseno University SACCO and used in

the testing of the Model.

Year (1) Year (2) Year (3) Year (4) Year (5)

1998 1999 2000 2001 2002

L:hkl =932 L:hk2 =1230 L:hk3 =1350 L hk4 =1177 L:hk5 =1123

Jan Dec Jan Dec Jan Dec Jan Dee Jan Dee

318 300 420 406 452 424 402 380 391 355

Table 2.4: A table of collected data.

1998 1999 2000 2001 2002

Y1=48 Y2=62 Y3=59 Y4=61 Ys=56

309 413 438 391 373

Table 2.5: A table of the average number of contributors.
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On calculatingusing the suggested equations (2.1), (2.2), (2.3), and (2.4), we find

that qI=q2 = 0.06, Q3=Q4=q5=0.15. Other results are as in table (2.6).

ITEM VALL"E

Dl 20,000

Dz 10,000

D3,D4,Ds, ... 7,000

ql=qz 0.06

Q3=Q4=qS=' .,. 0.15

X/12 200

c 3

Table 2.6: A table of data and calculated results.

Using the Kaplan -Meier or product limit estimator for the survival function

introduced in chapter one, the survival probabilityPI = P2 is as in table (2.7). The results

of this estimator are compared with those of the maximum likelihood estimator. This is

possiblefor the fist five years for which data is available.

Year
(t)

nj-dj over
nj

p1 power
t

nj-dj nj

1 0.9433.943396 0.943396
2

300 318
·0.889815

3 0.839362
.966667 0.91195

4 0.791771

406 420

5

.931707 0.84967

0.746877

Table 2.7: A table of values of survival probability using the Kaplan-Meier and

422 450
380 402 .945274 0.803171
355 .907928 0.729222391

Maximum likelihoodestimators.

36



The parameter St(t) is calculated using the formula

We test the hypothesis;

He: implies that the two methods give similar results while

HI: implies that the two are not the same.

Using SPSS application package, the following are the results:

Pearson's Correlation

Pearson
Correlation

1.000 **.988

Sig. (2-tailed) .002

**.988 1.000Pearson
Correlation

Sig. (2-tailed) ·.002

Table 2.8: Correlation of survivor function vs. survival probability (pearson's

correlation).

** Correlation is significant at the 0.01 level (2-tailed).

From table (2.8) we see that the p value is 0.002 for the two-tailed test. Pearson's

correlation 'coefficient is 0.988.
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r
Spearman's rho Correlation

81(t) **1.000Correlation
Coefficient

Spearman's
rho

1.000

8ig. (2-tailed)

Correlation
Coefficient

**1.000 1.000

8ig. (2-tailed)

Table 2.9: Correlation of survivor function vs. survival probability (Spearman's Rho

Correlation coefficient).

** Co"elation is significant at the .01 level (2-tailed).

Here the p value is negligible and the Spearman's Rho Correlation coefficient is 1.000.

From the results in tables (2.8) and (2.9) above, we conclude that at 0.01 level of

significance, the two methods give the same results. Thus we accept H;

Using Ms-Excel Application Package, the parameters PI power (n-1), Claim

amount, Cumulative Claim amount, Contribution, Cumulative contribution, and Profit

result. These are tabulated in table (2.10). Let the value for inflation rate i be 10%. Then

the discounting factor V is

1
V = 10 = 0.9091

1+-
100

Using this in our expression for expected claim amount we have,

n nL V k 1 .; k = L (0.9091 ) k 1 .; k .

k=l k=l
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Expected discounted cumulative Expected discounted
Year PI power claim claim claim contribution cumulative growth in

n (n) amount amount amount (discounted) contribution profit

1 0.94 1800 1636 1636 2527 , 2527 89]
<..-

2 0.884 1658 1370 3006 2159 4686 1679.811
3 0.831 1529 1149 4155 1845 6531 2376.359
4 0.781 1411 963.5 5119 1577 8108 2989.642
5 0.734 1303 808.9 5927 1347 9456 3528.223
6 0.69 1204 679.6 6607 1151 10607 4000.113
7 0.648 1113 571.4 7178 984 115914412.723
8 0.61 1030 480.8 7659 840.9 124324772.834
9 0.573 954.4 404.8 8064 718.6 13151 5086.604
10 0.539 884.6 341.1 8405 614.1 137655359.586
11 0.506 820.4 287.6 8693 524.7 142895596.758
12 0.476 761.4 242.6 8935 448.4 147385802.563
13 0.447 707 204.8 9140 383.2 151215980.947
14 0.421 656.9 173 9313 327.5 15448&135~.105- ----- ----- ---- ----- ~--------
15 0.395 610.7 146.2 9459 279.8 157286269.019
16 0.372 568.1 123.7 9583 239.1 159676384.502
17 0.349 528.7 104.6 9688 204.4 161726484.235
18 0.328 492.3 88.57 9776 ]74.6 163466570.303
19 0.309 458.7 75.01 9851 149.2 164966644.527
20 0.29 427.5 63.56 9915 127.5 166236708.498
21 0.273 398.6 53.88 9969 109 167326763.601
22 0.256 371.9 45.69 10014 93.13 16825 6811.039
23 0.241 347 38.76 10053 79.58 16905 6851.858
24 0.227 324 32.9 10086 68.01 169736886.966
25 0.213 302.6 27.93 10114 58.12 17031 6917.15
26 0.2 282.7 23.73 10138 49.66 170816943.089
27 0.188 264.2 20.16 10158 42.44 171236965.372
28 0.177 247 17.13 10175 36.27 171596984.508
29 0.166 231 14.56 10189 30.99 171907000.937
30 0.156 216.1 12.39 10202 26.49 172177015.036

Table 2.10: A table of Cumulative claim amount contributions and Profit (one-

dependant model).
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2.3: TREND AS n~ ex)

From the general formula derived earlier (equation (2.14»,

1~n =Pl1l-1 (P21l-1(j)1+(1-P2n-1) (j)1\2)· (2.22)

Sincep, and P2 are fractions, as n -7 ex) we have

PI n-I -70, P2n-I -70

and consequently 1~n -70 {O+ (1- 0) ClJ1 \ 2}'

1~n -70.

which implies that

(2.23)

From the results that were arrived at in section 2.2.4 table (2.10), it is eminent that

the trend above illustrated is justified. As time of stay in the scheme tends to ex) the

expected claim amount tends to zero. This is true because the contributor has a higher

probability of death as time increases. Using SPSS program the data in table (2.10)

above is graphically presented.

The graph in figure (2.3a) illustrates the trend in cumulative claim amount with

increasing period. It is clear that with time the expected claim amount reduces

exponentially to a minimum. If extrapolated there is a time when it becomes zero. This

implies that at some stage, the membership ceases and hence compensation.

In the same grid (figure (2.3a», the trend of growth in premium contribution is

similar to that of compensation claim amount due to the same reason stated above. We

expect contribution to cease at some time due to eminent departure from the scheme.

Lastly, Figure (2.3b) shows the growth in profit levels expected from one

individual under the one-dependant model. It grows exponentially with time. At some

stage, we expect a sudden stop since no profit is earned once a member ceases to

contribute premiums.
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One-dependant Model.
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Figure 2.3a: A graph giving the trend of expected contribution and claim amount for

the one-dependant model.
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Figure 2.3b: A graph giving the trend of cumulative profit for the one-dependant

model.

With the achieved one-dependant model we can now focus on the case of two,

three and consequently the m-dependant case. This is done in the next chapter (chapter

three).
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CHAPTER THREE.

3. m-dependant MODEL.

In this chapter the two-dependant and three-dependant model equations are

derived.This leads us to the derivation of the general case, the m-dependant model. We

also apply the models to collected data and graph the results. Implications of the results

discussedtoo.

3.1: INTRODUCTION.

A similar trend, as was the case in the formulation of the one-dependant model,

.shall be used. It is possible to derive the mtlt order equation only after considering the

trend, not only of the one-dependant equations, but also those of the two and three-

dependantmodels.

Let F and M take the already stated meanings. We introduce another dependant B,

say the first born of the couple F and M. Pl and P2 take their earlier stated meanings. We

includeP3, the probability that B survives. We also let the amount of compensation if B

dies, to be D3. The events of survival, their probabilities and related compensations are

givenin table (3.1).
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EVENT PROBABILITY COMPENSATION
[Survival of) KShs.

FMB P1P2P3 0

FM P1P2q3
\ D3<...-

FB Plq2P3 D2

F P1Q2q3 D2+D3

MB Q1P2P3 Dl

M Q1P2Q3 DJ+D3

B Q1Q2P3 DJ+D2

N \. Q1Q2Q3 Dl+D2+D3

Table 3.1: A table of possible events, their probabilities and compensation amounts

therewith (two-dependant model).

The tree diagram (figure (3.1) at the appendix) shows that there are eight

possibilitiesat the end of the first year. The first four events involve the survival of the

contributor. For this reason, the branching process only extends on at these particular

points. The remaining four options do not extend further because the contributor no

longerexists,hence the end of the transaction.

The survival of either FMB, or FM, or FB, or F implies that at the end of the

second year, there are eight other possibilities for F1vIB,four for FM, four for FB, and

two for F. The process proceeds in a similar manner for as long as we wish to observe.

Note that if all members of a family die, the next of kin are responsible for their burial.

Thus they take the claimed amount.
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It can be shown that the sample space has been exploited by proving that the sum

of all probabilities involved is unit.

The branching process together with the probabilities in table (3.1) are used in the

formulation of the two-dependant model.

3.2: FORMULATING a two-dependant MODEL.

In this section the two-dependant model of the Benevolent Scheme is derived and

applied using collected data in section 2.2.4.

·3.2.1: Derivation of 24n'

Figure (3.1) together with table (3.1) are utilized in the construction of a two-

dependant model for the Benevolent Scheme.

The expected claim amount by the end of the first year is found to be:
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Using equation (2.1) we have,

(3.1)

In the second year, the expected claim amount is:

2~2 "'::PlP2]J3C!>2+ PlP2q3 C!>2\ 3 + Plq2]J3 C!>2\ 2 +PIQ2q3 C!>2\ 2,3

=pdp2P3 C!>2+ P2q3 <1>2\3 + Q2P3 C!>2\ 2 + q2Q3 <1>2\ 23}' (3.2),

In the third year:

j: _222 22 2 2 2
2~3 -PI P2 P3 <1>2+ PI P2 P3Q3 <1>2\ 3 + PI P2QZP3 Q2 <1>2\ 2 + PI P2Q:1q3

:1 :1 :1 2 2
<1>2\ 2,3 + PI P2 q3 <1>2\ 3 + PI P2Q:1Q3 $2 \ 2,3 + PI Q2P3 $2 \ 2,3 +

Q2q3(1 +P2+P3+P2P3) C!>2 \ 2 3}', (3.3)

Similarly we have;

j: _ 3{p 3 3.ih 3 (1 2) .ih 3(1 2)2~4 -PI :1 P3 '-V2 +P:1 Q3 +P3 +P3 '-V2 \3 + Q2P3 +P2+ P2 C!>2\ 2 +

Q2Q3(1+p2+p3+P2P3+ p/+ p/+ p/ p/) <1>2\ 2 3}',
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Using the property

( n-l)( n-l) ( n-l)= 1...,P2 1- P3 r: 1- Pm + 1 (3.4)

where

qi=l-pi \liEN,

we have

_ 3{p 3 3 3(1 3) 3(1 3~244 -PI 2P3 (1)2+P2 -P3, (1)2\3+P3 -P2/ (1)2\2+

(l-p/)(l- p/) (1)2\ 2 3)· (3.5),

We can now generalize this expression to a case of n years as;

j: =p n-l{p n-Ip n-I "'"' +p n-l(1_p "') <I> +p n-I(1_p "') <I> +2~n J 2 3 \,1,12 2 3, 2 \ 3 3 2 2 \ 2

(3.6)

.This general formula can be shown to generate the already derived equations of

the two-dependant model. For example if n = 2, then;

j: 2-I{p 2-1 2-1 "'"' 2-1(1' 2-1)<I> 2-1(1 2-1) <I>2'!'2 =PJ 2 P3 \,I,12+P2 -P3 2\3+P3 -P2 2\2+
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As derived before.

3.2.2: Derivation of tlln.

As was the case with the one-dependant model, the expected profit 2 ITn is given

by;

(3.7)

( I)P 1+-/00 pt-2;'

The trend of 2 ~n is

(3.8)

That is, the expected expenditure tends to zero as time increases. Next the actual picture

of events is given using collected data.

3.2.3: Model Simulation.

Data to be used is already given in tables (2.4), (2.5), and (2.6). Table (3.2) has

the values of expected claim amount, contribution and profit under the two-dependant

Model. These are used in the plotting of graphs that follow. The graphs (figure (3.2a) and

48



(3.2b» illustrate the trends in claim amount, contribution and profit with increasing

period.

Expected discounted cumulatiue Expected discounted
Year pi power claim claim claim contribution cumulative growth in

n (n) amount amount amount (discounted) contribution profit
1 0.94 2850 2591 2591 2527 2527 -64
2 0.884 2497.11 2064 4655 2159 4686 31.45014
3 0.831 2199.09 1652 6307 1845 6531 224.3607
4 0.781 1946.21 1329 7636 1577 8108 47l.8171
5 0.734 1730.57 1075 8711 1347 9456 744.6708
6 0.69 1545.77 872.6 9584 1151 10607 1023.545
7 0.648 1386.59 711.6 10295 984 11591 1295.954
8 0.61 1248.77 582.6 10878 840.9 12432 1554.227
9 0.573 1128.83 478.8 11357 718.6 13151 1794.025
10 0.539 1023.94 394.8 11751 614.1 13765 2013.276
11 0.506 931.743 326.6 12078 524.7 14289 2211.419
12 0.476 850.322 271 12349 448.4 14738 2388.875
13 0.447 778.085 225.4 12574 383.2 15121 2546.667
14 0.421 713.713 188 12762 327.5 15448 2686.167
15 0.395 656.11 157.1 12919 279.8 15728 2808.916
16 0.372 604.36 131.5 13051 239.1 15967 2916.508
17 0.349 557.699 110.4 13161 204.4 16172 3010.508
18 0.328 515.48 _\92.73 13254 174.6 16346 3092.412
19 0.309 477.159 78.03 13332 149.2 16496 3163.612
20 0.29 ~2.274 65.75 13398 127.5 16623 3225.386I-

21 0.273 410.431 55.47 13453 109 - 16732 3278.893
22 0.256 381.292 46.85 13500 93.13 16825 3325.172f---- --
23 0.241 354.568 39.61 13540 79.58 16905 3365.149
24 0.227 330.008 33.51 13573 68.01 16973 3399.646-----.
25 0.213 307.393 28.38 13602 58.12 17031 3429.385
26 o C) 286.535 24.05 13626 49.66 17081 3455.001..•. --

3477.05 -.J27 0.188 267.267 20.39 13646 42.44 17123
__~8 0.177 249.443 17.3 13663 36.27 17159 3496.016 I--- .----

29 0.166 232.932 114.69 13678 30.99 17190 3512.321 !

30 0.156 217.622 12.48 13691 26.49 17217 3526.331--

Table 3.2: A table of data on claim amount, contributions and Profit for the two-

dependant model.
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Two-dependant Model.
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Figure 3.2a: A graph giving the trend of expected contribution and claim amount for

the two-dependant model.

50



Two-dependant Model.
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Figure 3.2b: A graph giving the trend of growth in profit in a two-dependant model.

The graph (figure (3.2a») illustrates the trend of fall in claim amount with period.

. It is clear that with time the expected claim amount reduces exponentially to a minimum.

This i plies that at some stage, the membership ceases and hence compensation. In the

same figure, the trend of decay in premium contribution is similar to that of
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The graph (figure (3.2a» illustrates the trend of fall in claim amount with period.

It is clear that with time the expected claim amount reduces exponentially to a minimum.

This implies that at some stage, the membership ceases and hence compensation. In the

same figure, the trend of decay in premium contribution is ~i!nilar to that of

compensation claim amount due to the same reason already stated. We expect

contribution to cease at some time due to eminent departure from the scheme.

Lastly, Figure (3.2b) shows the growth in accumulated profit levels expected from

one individual under the two-pendant model. The graph starts by a decline, stabilizes and

eventually rises. This implies that we expect some period of loss to the insurer, and after

two years of contribution, he starts experiencing profit. This also dies off exponentially as

was the case in the one-dependant model. At some stage, we expect a sudden stop since

no profit is earned once a member ceases to contribute premiums.

3.3: FORMULATING A Three-Dependant MODEL.

After deriving the one and two-dependant benevolent scheme models, we need

the three-dependant equation in order to get to a more realistic picture of the expected

expenditure and benefits.

3.3.1: Derivation of 34 .
11

It is difficult to draw a tree diagram for this and higher order cases due to the

numerous possibilities involved. In this case, another dependant G is introduced and

assigned P4 as the probability of his/her survival. We may conceptualize G as second
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born of the 'couple F and M. In summary, the ensuing events with their probabilities are

as in table (3.3). D4 is the compensation awarded in the event ofG dying.

EVENT COMPENSATION(Survival of) PROBABILITY
(In the event of death)

F1\1BG P1P2P3P4 0

FMB P1P2P3q4 D4

FMG Pl P2 q3P4 D3

FM Pl P2 q3 q4 D3+D4

FBG PJ q2 P3P4 D2

FB Plq2P3q4 D2+D4

FG
I Pl q2 Q3P4 D2+D3

F I p, q2 q3 q, D2+D3+D4
-- -- -- -- - _. -- - ----- - _.

MBG q] P2P3P4 D]

NIB q] P2P3 q4 D1+D4

MG ql P2 q3P4 Dl+D3

M q1 P2 q3 q4 D1+D3+D4

BG Qlq2P3P4 Dl+D2
I

B qJ q2 P3 q4 Dl+D2+D4

G qJ q2 Q3P4 DJ+D2+D3
N I qJ q2 q3 q4 DJ+D2+D3+D4
-- I

Table 3.3: A table of possible events, 'their probabili ies and compensation amounts

therewith (three-dependant model).
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We observe that there always are 2m+l possibi 'ties, where m is the number of

dependants. By the end of the first year, the expected claim amount is;

3~1 = Pl P2P3P4(O)+ Pl P2 P3 q4(D4) + Pl P2 q3P4(D3)+ Pl P2 q3 q4(D3+D4)+
\

Pl q2 P3 P4(D2) + Pl q2 P3 q4(D2+D4)+ Pl q2 q3 P4(DJ+D3)+

On calculation and simplifying we have,

The sum on the R.H.S. is,

ql(Dl)+q2 (DZ)+q3 (Dj)+q4(D4)= <D3. (3.10)

In the second year, the expected claim amount is found to be,

3~2 = P1P2P3P4<D3 + PIP2P3q4<D3\4 + PI P2q3 P4<D3 \ 3 + Plq2P3P4<D3\2

+PIP2Q3q4<D3\3,4 +PIQ2P3Q4<D3\2,4 +PIQ2Q3P4<D3\2,3 +PIQ2Q3Q4<D3/2,3,4

Factoring out PI we have,

3~ = PI {P2P3P 4<1>3+P2P3Q4<1>3\4 +P2Q3P 4<1>3\3 +Q2P3P 4<1>3\2

+P2q3q4<D3\3,4 +Q2P3Q4<D3\2,4 +Q2Qjl4<D3\2,3 +Q2Q3Q4<D3/2,3,4} (3.11)

In the third year the expected expenditure is,
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'2 2 2
Q2P3 P4 (l + P2)<!>3 \ 2 + Q2Q3P 4 (1+ P2)(l + P3)<!>3 \ 23 +

\ '
<..-

Q2PjQ4(1+ P2)(1+ P4)<I>3\24 + P~q3q4(l+ P3)(1+ P4/)<!>3\23 +, ,

q2q3q4 (1+P2 +P3 + P4 +P2P3 +P2P 4 +P3P 4 +P2P3P 4 '3/2,3,4}

(3.12)

Higher order equations can similarly be derived despite the long calculations

involved. Using the emerging trend, the case of year four gives,

Generalizing this to n years ,
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Using the property in equation (3.4) reduces equation (3.14) to

(3.15)

3.3.2: Derivation of 3IIn •

As was the case with the two-dependant model, the expected profit 3 IT n IS

givenby;

(3.16)

That is, the expected expenditure tends to zero as time increases,

3.2.3: Model Simulation.

We need the values of contribution and compensation in table (2.6) to calculate

the expected claim amount and contribution under the three-dependant Model. The

resultantdata are recorded in table (3.4).
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Expected !Discounted Cumulative Expected I Discounted

Year plpower clai~ I clai~ clam contribution 1 cumulative Growth in

n (n) amount 1 amount amount (discounted) contribution profit

1 0.94 3900 3545 3545 2527 2527 -1018
2 0.884 3335.45 2757 6302 2159 4686<.- -1615.41
3 0.831 2865.88 2153 8455 1845 6531 -1923.49
4 0.781 2473.21 1689 10144 1577 8108 -2035.99
5 0.734 2143.86 1331 11475 1347 9456 -2019.77
6 0.69 1867.20 1054 12529 1151 10607 -1922.35
7 0.648 1634.57 838.9 13368 984 11591 -1777.21
8 0.61 1438.77 671.3 14040 840.9 12432 -1607.58
9 0.573 1273.76 540.2 14580 718.6 13151 -1429.25
10 0.539 1134.44 437.4 15017 614.1 13765 -1252.61
11 0.506 1016.48 356.3 15374 524.7 14289 -1084.17
12 0.476 1916.2801292 15666 448.4 14738 -927.735
13 0.447 15906 383.2 15121 -785.207830.773240.7
14 10.421 757.428 199.5 16106 327.5 15448 -657.22
15 0.395 694.137 166.2 16272 279.8 15728 -543.5751

16 0.372 639.155 139.1 16411 239.1 15967 -443.558
17

I

0.349 591.049 117 116528 204.4 16172 -356.157,
18 0.328 548.641 98.7 16627 174·6 16346 -280.2191
19 0.309 510.970 83.56 16710 149.2 16496 -214.548\
20 0.29 477.251 70.95 16781 127.5 16623 -157.974
21 0.273 446.848 60.4 16842 109 16732 -109.389
22 0.256 419.241 51.51 16893 93.13 16825 -67.7735
23 0.241 394.011 44.01 16937 79.58 16905 -32.202
24 0.227 370.817 37.66 16975 68.01 16973 -1.849621

25 0.213 349.381 32.25 17007 58.12 17031 24.0130
26 0.2 329.479 27.65 17035 49.66 17081 46.0251
27 0.188 ·310.925 23.72 17058 42.44 17123 64.7429
28 0.177 293.570 20.36 17079 36.27 17159 80.6481
29 0.166 277.290 17.49 17096 30.99 17190 I94.1558 I1--- ----- -------- -- -

30 0.156 261.982 15.02 17111 26.49 17217 105.622 I

Table 3.4: A table of Cumulative claim amount and contributions for a three-

dependant modeL
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EXPECTED CONTRI UT!ON COMPARED

WITH COMPENSATION CLAIM AMOUNT

Three-dependant Model.
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Figure 3.3a: A graph giving the trend of expected contribution and claim amount for

the three-dependant model.
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GROWTH IN PROFIT

Three-dependant Model.
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Figure 3.3 b: A graph giving the trend of growth in profit in a three-dependant model.

The graph in figure (3.3a) illustrates the trend of fall in claim amount with period.

It shows that with time the expected claim amount reduces exponentially. Thus at some

stage, the membership ceases and hence compensation. In the same figure, the trend of

decay in premium contribution is at a higher rate than that of compensation claim

amount. We expect contribution to cease at some time due to eminent departure from the

scheme.
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Lastly, Figure (3.2b) shows the growth in accumulated profit levels expected from

one individual under the three-pendant model. The graph starts by a decline for the first

four years, stabilizes and eventually rises. This implies that we expect some period of loss
\

to the insurer, and after twenty-four years of contribution, he starts experiencing profit.

This also dies off exponentially as was the case in the two-dependant model. This implies

that we expect total loss and no profit within twenty-four years of contribution. We

therefore see reason as to why some rectification has to be done by the insurer so as to

counter this anomaly. At some stage, we expect a sudden stop since no profit is earned

once a member ceases to contribute premiums.

3.4. m-dependantMODEL.

Here the expression for a general case of m dependants participating in the

Benevolent Scheme for n years is derived. This is done by use of the emerging trend from

the already formulated one-dependant, two-dependant and three-dependant models.

3.4.1: Modelling m~n

The following formulae have already been derived:

i. (One-dependant model)

ii.

(Two-dependant model)
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';: n -I{ n-l n-l n-lrn n-l n-l(I n-l)rn
iii. 3":7n = PI P2 P3 P4 'V3 +P2 P3 - P 4 'V3\4 +

P'n-lpn-l/'l pn-1 k + pn-lpn-l/, pn-l k +
2 4 ~ - 3 tv 3\3 4 3 ~ - 2 tv 3\2

n-l (1 n-l )1'1 n-l ~ (1 n-l) n-i {,1 n-l \.n
P2 - P3 ~ - P 4 ,tV3\3,4 + - P2 P3 ~ - P4 J'V3\2,4

n-l n-l ( n-l)"" (I n-l)(1 n-l)1-1 n-l ~ }
P4 (1- P3 ) 1- P 2 w3\2,3 + - P4 - P3 \ - P2 f'/3\2,3,4

(Three-dependant model)

Looking at the trend of the equations for the one, two and three dependant models

above, we see that the first term is always

(3.17)

The first term in the first bracket is

{{ n -1 n - 1 n -1} }'P2 P3 ······Pm+1 <Dm (3.18)

This can generally be presented as

{
m+l n-l}TI Pk cD
k = 2 m

(3.19)

The middle terms of the equations being analyzed can also be generalized.

Introducing the notation 'I'm n as the middle term in the equation ~,where, m n

'PI I ='P12 = 'PI 3 =···='P1 =0, " ,n

\{1 2 1 0,
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\f'2,2 = P2(1- P3)<1>2 \3 + P3(1- P2)<1>2 \2'

'-'...............................................................................

n-l n-l n-l n-l n-l n-l%,n =P2 P3 (1- P4 )1)3\ 4 +P2 P4 (1- P3 )1)3\ 3

+P;; Pln-l(l- P;< ~ +Pln-l (1-Pln-l{1- i;-l~4 +(1-Pln-l )Pln-l(1-p;; ~4

n - 1 (1' n - 1 )(1 n - 1)<1>+p4 - P3 - P2, 3 \ 23·, (3.20)

Using the trend, we come up with the general expression as

m-l 34m m+l
'I'mn = L L L··· L L

g=l Ji-2f2=3 fg-1 m-lfg=

m+l
I1P g

k 2 k\ u.r.
1

i=l

n-I

x (3.21)g
m\ U f·

1
i=l

fi <12 <13 < ... ./g-l <./g< ... !m-l wherehis an index taking values 2,3,4 ...

m = 1,2, 3, ... n = 1,2, 3, ...
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(

Next we introduce another symbol r ,with which the last term of eachm,n

expression ~an also be summarized as in equation (3.22).

~

0

m+l n-2 n-2 n-2 m+l . ,
fm,n =( IT qk~ L L ... L (TI PkJ m\2,3~...fIl+l·

k=Z ~al =Oa2 =0 a3 =0 k=Z
(3.22)

The summations can be simplified so that we have equation (3.22) reducing to a

shorter expression as;

(
m+l( )J'r = n I_pn-l <t>

m,n k = 2 'k m\2,3, ...,m+1 (3.23)

Finally, we now invoke equations (3.17), (3.19), (3.21), and (3.23) to get the m-

dependant model as;

~ = Pln-1{mnl Pkn-1<t> +\}' +r} (3.24)
m n k=2 m m,n m,n

Where

m+l
<Pm= Lqk4

k=l
(3.25)
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3.4.2: Derivation of IT .m n

As was the case with the three-dependant model, the expected profit IT lS
m n

given by;

(3.26)

3.4.3: Trend as n7 00.

From the general formula that was derived in section 3.4.1, the first term outside

the brackets pf -170 since Pl is a fraction. Thus the trend is the same for whichever

the number of dependants, m. this can be summarized as follows: The trend of me;n is

n lim fV"\ t:
'VV m =n o

(3.27)

,That is, the expected expenditure tends to zero with increase in time.
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CHAPTER FOUR

4. MARKOV MODEL APPROACH.

In this chapter we use the Markov properties of the survival probabilities to give

an alternative method of getting to the m-dependant model. We start by giving

derivationsof the one-dependant, two-dependant, and three-dependant models. Using the

ensuing trend, we formulate the m-dependant model. For each of these models, we give

the transition probabilities involved, classify the states, calculate the n-step transition

probabilitiesand apply the model in the calculation of expected claim amount and profit.

4.1: One-Dependant MODEL.

Under the introductory chapter (Chapter one) in section 1.2.4, we gave a brief

theory of the Markov chains and basic concepts of a stochastic process. We use the

principlesin this section.

4.1.1: Transition Probabilities Involved.

The events in this system can be illustrated by a matrix of transition probabilities.

There are four states AB, A, B, and N" where AB represents survival of a member

together with the spouse, A represents survival of the member only and B the survival of

the spouse only while N denotes the death of both. We have the matrix of transition

probabilitiesgiven as,
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PIP? PIq? %P? qIqZ

fJ= 0 PI 0 %
0 0 Pz qz

(4.1)

0 0 0 1
"--'

Using the definitions stated under section 2.2, we find that 80 is a stochastic

matrix. However, it is not doubly stochastic.

4.1.2: Classification of States.

Let the events El, E2, E3, and E4 represent the following;

El -7 A and B Survive.

E2 -7 A alone Survives.

E3 -7 B alone Survives.

E4 -7 N (None) Survives.

The state space is {El, E2, E3, E4}. We classify the states using the diagram in

figure 4.1. In this figure, alTOWSrepresent accessibility of states in the Markov chain.

Figure 4.1: A diagram showing accessibility of states.
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From the diagram, state E1 is transient. Once you are out of the state, you can

never revisit it. Indeed, a dead person cannot become alive. E4 is absorbing. You cannot

move out of the state once entered. Once both are dead, the transaction ends. No states,
communicate. No reverse is possible after any of the four probable transitions. The

notable closed sets are {E4}, {El, E2, E3, E4}, {E2, E3, E4}, {E3, E4}, and {E1, E2, E3,

E4}.

4.1.3: n-Step Transition Probabilitles and Steady State.

We now wish to calculate higher transition probabilities of such a Markov matrix.

Considering a case where p 1 = P2 (the probability of survival of the contributor is equal

to that of the dependant), the matrix in equation (4.1) above becomes,

p2 q2 2 p(l- p) , p(l- p) (1- p)2pq pq p

fJ 0 p 0 q 0 p 0 (1- p)= =
0 0 p q 0 0 p (1- p) (4.2)

0 0 0 1 0 0 0 1

. 28J = (4.3)

(1- p2)2
(1- p2)
(1- p2)

1

p4
o
o
o
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p6 p3(1- p3) p3(1- p3) (1- p3)2

iJ3 =
0 p3 0 (1- p3)

l~ 0 p3 (1- p3)
(4.4)

\

0 0 1 G

and

p8 p4(1- p4) p4(1- p4) (1- p4)2

4 0 p4 0 (1- p4)iJ' =
0 0 p4 (1- p4) (4.5)

0 0 0 1

We can now conclude without loss of generality that,

p2n pn(1- pn) pn(l- pn) (1- pn)2

iJn = 0 pn 0- (1- pn)

0 0 pn (1- pn) (4.6)

0 0 0 1

Note that higher transition probability matrices are also Markov. They are also stochastic.

We now revert to our earlier case were PJ is not equal to pz. Equation (4.1) is the

Markov ma~ of interest. The higher transition probabilities are calculated as follows.

PIP2 PIQ.-P~ P2Q.-Pl) (1-Pl)(l-P~1

0 11 0 Q.-Pl)
iJ --

0 0 P2 Q.-P~ (4.7)

0 0 0 1
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In the 'second step, we have the following transition probabilities.

p2p2 p2(l- p2) p2o.- p2) (1- p2)Q._ p2)

~2=
1 2 1 2 2 1 1 2
0 p2 0 2\(1- P )'0 (4.8)

1 1

0 0 p2 (1- p2)

J2 2
0 0 0 1

And in the third step,

p3p3 p3(1- p3) p3 (1- p3) (1- p3 )(1- p3 )
1 2 1 2 2 1 1 2

~3= 0 p3 0 (1- p3) (4.9)
1 1

0 0 p3 (1- p3)
2 2

0 0 0 1

Using the trend taken by equations (4.7), (4.8), and (4.9), we have the general

higher transition probability matrix as,

pnpn pn(1- pn) pn(l- pn) (1-pnX1- pn)
1 2 1 2 2 1 1 2

fJ!:= 0 pn 0 (1- pn) (4.10)
1 1

0 0 pn (1- pn)
2 2

0 0 0 1

Equation (4.10) is the nth-step transition probability matrix.

Another useful tool in reading the physical implications of a Markov matrix is

stationary distribution (or steady state) of the Markov chain. If ~ is the matrix of
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transition probabilities and n the Stationary distribution, then the following identities

hold,

i. np=n
ii. n1=1 (4.11)

Where

Starting with equation (4.2) where PI-'P2 p, and using the above identities, we

have

PlP2 Plq2 QlP2 QlQ2 ITl
[fIlfI2fI3fI4l 0 PI 0 Ql IT2

- (4.12)
0 0 P2 Q2 IT}
0 0 0 1 IT4

Multiplying through we have,

l

This is true because p2 and hence p are strictly not equal to 1. Similarly,

Now using condition ii in equation (4.11) above, we have II4 = 1.Thus, the stationary

distribution is,

r~ 0 0 1
0 0 1IT = l~ (4.13)
0 0 1

0 0 1
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Also from equation (4.6); with the limits as n ~ 00 we have

o

fJn ~ ~
o

o
o
o
o

o 1
o 1
o 1
o 1

(4.14)

This is similar to the result in equation (4.13) above. Equation (4.13) and (4.14)

are stationary distributions (or steady state) transition probability matrices for the matrix

in equation (4.1). In the case of the matrix in equation (4.7), we check the solution of

equation (4.10) as n ~ 00 and find that the steady state transition probabilities are as

given in equation (4.14) above.

4.1.4: Application to calculating 1~n and 1 TIn.

l Given that

Pu P12 P13 P14

fJ P21 P22 P23 P24

=
P31 P32 P33 P34

(4.15)

P41 P42 P43 P44

as was the case with the branching mode1, we require some of the transition probabilities

from the matrix. These is used in the calculation of expected values of compensation.

These are {PIl' P12' P13' PI4 }only, since we had already assumed that we have two

beneficiaries at the start of the process. Thus we have the expected claim amount by the

end of the first year being calculated as

(4.16)
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Substituting PijS with respective probabilities we obtain

(4.17)

,
This is the same result as arrived at in equation (2.7) were we used a tree-diagram.

We now wish to calculate 1~2' To do this, we need the following transition

probabilities.

P (2)_ ill _ Z Z
11 -=PIPZ PIPZ-PIPZ

Pu (2)-P11PU = PIPZ *PlqZ= p]~zqz

P13 (2)=PnP13= PlPz *qlPZ= PlP/q]

P14(2~ P11P14=PlPz *q]qz= PlPzq]qz

And P14 (2) PUP24 = PlqZql

Note that Pij (2) does not imply PiJ. Plj.

(4.18)

Multiplying the probabilities above together with respective compensations we

get the expected claim amount to be

(4.19)

where

We need to come up with a much simpler method of using the Markov matrix

directly rather than going for possible events, one after another. In chapter two and three,

during the formulation of the one-dependant, two-dependant and three-dependant models,

we assumed that all transitions start with the presence of the m dependants together with

the contributor. We therefore only consider using elements of the first row of our

transition probability matrix in the calculation of expected compensation claim amount.
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Further we have been considering the event of survival of the contributor as the

dependants die, until such a time that the contributor also dies. 'This implies that only

elements with the probability (PI) n as a factor is considered. 'This leaves us with the first

half of the elements in the first row. In addition to these facts, we are only to consider the

probability of survival up to right before the first "failure" or death. Thus the factors

under consideration in the calculation of the expected claim amount in the nth year are

those in the (n-J) th step transition probability matrix. 'This means, in order to calculate

t1n-l
1~ n» we need the matrix ".U' . From the matrix, we pick the first row and use the

first half of its elements as demonstrated next.

Case one.

In this case,

(n=l).

=~ 1-1 = ~ 0 = I (the identity matrix).

o
o
1
o

o
o
o
1

1
o

- o
o

o
1
o
o

(4.20)

We already have our factors with which the first two elements of the first row

(first half of the four) are to be multiplied. These are

tDl = q1D1 + q2D2

tDl\2 = q1D1

(When both the contributor and dependant die).

(When only the contributor dies).

Indeed in equation (4.1), the first element meant the survival of both and the second, the

survival of the contributor only. Now, after one step, we are considering their death.
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With this in mind therefore, the expected claim amount is

= <1>1 As was the case in equation (4.111

Case two. (n=2).

Here we use the matrix

ptP2 pt(1- P2) P2(1- PI) (1- PI )(1- P2)

pn-l =gJl= 0 PI 0 (1- PI)
(4.21)

o. 0 P2 (1- P2)
0 0 0 1

From this, the elements of concern are, PI P2 and PI (1- P2)' Multiplying as before,

we have 1~2 being given as

I ~2 = PI P2 <1>1+PI (1-P2) <1>1\2

= PI {P}Dl + q2<D1\2} as was equation (4.19).

Case three. (n=k).

With tremendous confidence we can now generalize the calculation of expected

. k-l
claim amount as follows: We need the matrix of transition probabilities gJ given

as

(4.22)
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As in case one and two, the general formula is found to be

-p k-l{p k-1<t> +q k-1<t>} G-1 2 12 1\2

As was equation (2.20) in Chapter two. 1nn is calculated just as was derived in part

2.2.3 in chapter two and is found to be

We can generally therefore conclude that both methods give similar results. In

this case we only need to show higher transition probabilities of further transition

probability matrices (for the two dependant and if possible, three dependant model). We

can imagine how little we need to do to arrive at 14k than was the case with the use of

the tree diagram!

4.2: Two-dependant MARKOV MODEL.

In the case of two dependants, the state space increases. There are eight possible

. events namely, the event of survival ofF1vffi, FM, FB, F, MB, M, B, and N. These form

the state space. The letters denoting the state space take the same meanings, as was the

case in the branching model.
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4.2.1: Transition Probabilities Involved.

The matrix that represents the required transitions is an eight by eight Markov
\

matrix with each of its rows adding up to one. However, the columns of the transition

probability matrix do not add up to one. Hence we conclude that it is not doubly

stochastic. As was the case with the one dependant model, the matrix is diagonal with all

of its lower diagonal elements being zeros.

The matrix of transition probabilities involved for the two-dependant model is as

in equation (4.23).

PIP2P3 PIPZq3 PlqzP3 PIQ2Q3 QlPZP3 QIPzQ3 QlqzP3 QlqzQ3
0 P1PZ 0 P1Qz 0 llIPz 0 QlQz

0 0 P1P3 PlQ3 0 0 QlP3 QlQ3

0 0 0 PI 0 0 0 Ql

P = 0 0 0 0 P2P3 PzQ3 Q2P3 %%
0 0 0 0 0 Pz 0 %
0 0 0 0 0 0 P3 %
0 0 0 0 0 0 0 1

(4.23)

This matrix can be partitioned to four square non-Markov matrices as in the

equations that follow.

p~[~~] (4.24)

where
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PIP2P3 PIP2q3 PIQ2P3 PIQ2Q3
0 PIP2 0 PIQ2

A=
0 0 PIP3 PIQ3

"-'0 0 0 PI

and can be factorised as

P2P3 P2q3 q2P3 q2q3

0 P2 0 q2
A=PI

0 0 (4.25)
P3 q3

0 0 0 1

Equation (4.25) shows that A is a fraction of a Markov matrix. Next we have B given as,

qlP2P3 qlP2q3 qlCJ2P3 qlq2q3
0 QlP2 0 QlQ2B=
0 0 QlP3 QlQ3
0 0 0 Q}

This can also be represented as

P2P3 P2q3 Q2P3· q2Q3
0 P2 0 q2

B =ql
0 0 (4.26)

P3 q3
0 0 0 1 -

which is another fraction of the same Markov matrix. Similarly D is given as
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P2P3 P2Q3 q2P3 q2Q3
0 P2 0 q2D=
0 0 P3 q3

(4.27)

0 0 0 1 '--'

This is Markov of the same kind as A and B but not a fraction as the previous cases.

Lastly,

o 0
o 0
o 0
o 0

o 0
o 0
o 0
o 0

c (4.28)

gJ can therefore be presented as

qID]
D' (4.29)

4.2.2: Classification of States.

Let the states in their order of presentation in equation (4.23) be labeled as E1, E2,

E3, E4, E5, E6, E7, and E8. Then the state space S=: {E1, E2, E3, E4, E5, E6, E7, E8}.

From equation (4.23) we notice that once you are out of the state, you can never revisit it.

This correctly implies that a dead person cannot become alive. State E1 accesses E1, E2,

E3, E4, E5, E6, E7, and E8. State E2 accesses E2, E4, E6, and E8. State E3 accesses E3,
/'

'E4, E5, E6, E7, and E8. State E4 accesses E4, E5, E6, E7, and E8. State E5 accesses E5,

E6, E7, and E8. State E6 accesses E6, E7, andE8. State E7 accesses E7, and E8, while

State E8 only accesses itself.
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It is' notable that from any state one can access state E8. Thus the state is

absorbing. You cannot move out of the state once entered. Once all the three are dead, the

transaction ends. No states communicate. No reverse is possible after any of the eight,
o

probable transitions. The closed sets are {El, E2, E3, E4, E5, E6, E7, E8}, {E2, E3, E4,

E5, E6, E7, E8}, {E3, E4, E5, E6, E7, E8}, {E4, E5, E6, E7, E8}, {E5, E6, E7, E8}, {E6,

E7, E8}, {E7, E8}, and {E8}. State E1 is transient.

4.2.3: n-Step Transition Probabilities and Steady State.

Higher order transition probability matrices are as follows.

r 3 3
i/13 r, D"u =l 0

(4.30)

(1 - P 12 )v 2
]_

D2

~- P1
3)v3]

D3

(4.31)

(4.32)

I

where D is as given in equation (4.27),

(4.33)
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'2 .2 2 2) (1- pi)p; (1- pi)(1- p;)P2P3 P2 (1- P3
2 0 p? 0 (1- p?)D =

P; 2 (4.34)0 0 (1- P3)
\

0 0 0 1 0

p~(1-pj)

p~
o
o

(1- p~)(l- pj)
(1- p~)

3(1- P3)
1

(4.35)

Involving subscripts that represent the beneficiary's number, i.e.

then we generally have

n n p~(I- p;) (1- p~)p; (1- p~)(l- p;)P2P3

D~3 = 0 p~ 0 (1- p~)

0 0 p; (1- p;) (4.36)

0 0 0 1

As an example, ~ is given by

(4.37)

where
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pgp~ pg(1- p~) (1- pg)p~ (1- pg)(l- p~)

6 0 pg 0 (1- p~)D23 =
0 0 p~ (1- p~)

(4.38)
\

0 0 0 1 0

An explicit expression for g;f:> can be written but will be too large. Hence, we

leave it as the combination of the two equations (4.34) and (4.35). Finally, steady state

transition probabilities for the two-dependant transition probability matrix are given as

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

g;Jn = 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 (4.39)

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

asn~oo

4.2.4: Application to calculating 2;n and 2 TIn.

Proceeding in a similar manner as in section 4.1.4, we show how to calculate

2 ; nand consequently 2 I1n . Since in the quoted section we had explained the use of

. the first half of the first row of the (n-I)" order of transition probability matrix, we only

need to apply this theory in the derivation of 2 ;n' We have,
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&;In-l ~[PI n-I ~23 n-I ~ _ n-I)n n-I]PI 23
D n-I (4.40)

23

where
"-'

p'{lp;-l p'{l 0_p;-l) 0_p'{l)p;-l 0- p'{l)(l-p;-l)

IJ{1- 0 p;l 0 O-p;-l)
3 -

0 0 ~l O-~l) (4.41)

0 0 0 1

The required elements of the matrix (equation (4.40» are multiples of PI n-I .

These are the elements in the first row of the sub-matrix D23n-I given in equation

(4.41). The factors to be multipliedby these required elements of the matrix are

(All the three dead)

(B dead)

(M dead)

and (F dead)

Hence we calculate 2 ~n as

n-l (1 n-l )(1 n-l )<1>PI - P2 - P3 2\2 3',

This, on factorising out pr-l givesus
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Pl1l-1{PZ1l-lp31l-1 .it'...2+ pzn-l(l_ P31l-1).it'.. + =a n-l)
'V 'V2\3 P3 - PZ

This was the case in equation (3.5) of Chapter three. The derivation of 2 TIn is the same

as in section 3.2.2 of the same chapter.

4.3: Three-dependant MARKOV MODEL.

In the Case of 3 dependants, the state space increases. There are sixteen possible

events namely, the event of survival of FMBG, FMB, FMG, FM, FBG, FB, FG, F, :MEG,

:ME, MG, M, BG, B, G and N. These form the state space.

4.3.1: Transition Probabilities Involved.

The matrix that represents the required transitions is sixteen by sixteen Markov

matrix with each of its rows adding up to one. However, the columns of the transition

probability matrix do not. Hence it is not doubly stochastic. As was the case with the two-

dependant model, the matrix is diagonal with all of its lower diagonal elements being

zeros.

The matrix for the three-dependant model Is too large to completely write.

However, we can simplify it as was the case with that of two dependants as shown in the

following equations.

(4.42)

where
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4.3.2: Classification of States.

Let the states in their order of presentation in section 4.3.1 be labelled as El, E2,

E3, E4, E5, E6, E7, E8, E9, EIO, Ell, E12, E13, E14, E15, and E16. Then the state space

S>: {EI, E2, E3, E4, E5, E6, E7, E8, E9, ElO, Ell, E12, E13, E14, E15, E16}.

Here again we notice that once you are out of any state, you can never revisit it.

This, as before, implies that a dead person cannot become alive. State El accesses E1,

E2, E3, E4, E5, E6, E7, E8, E9, EIO, Ell, E12, E13, E14, E15, and E16. State E2

accesses E2, E3, E4, E5, E6, E7, E8, E9, E10, Ell, E12, E13, E14, E15, and E16. State

E3 accesses E3, E4, E5, E6, E7, E8, E9, ElO, Ell, E12, E13, E14, E15, and E16. State

E4 accesses E4, E5, E6, E7, E8, E9, EIO, Ell, E12, E13, E14, E15, and E16. State E5

accesses E5, E6, E7, E8, E9, EIO, El I, E12, EB, E14, E15, and E16. State E6 accesses

E6, E7, E8, E9, EI0, Ell, E12, E13, E14, E15, and E16. State E7 accesses E7, E8, E9,

EIO, Ell, E12, E13, E14, E15, and E16. The trend proceeds as can be noticed. That is,

each member accesses all super-ceding elements while State E16 only accesses itself.

We note that from any state one can access state E16. Thus the state is absorbing.

You cannot move out of the state once entered. Once all the three are dead, the
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transaction ends. No states communicate. No reverse is possible after any of the eight

probable transitions. The closed sets are {E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, Ell,

E12, E13, E14, E15, E16}, {E2, E3, E4, E5, E6, E7, E8, E9, EI0, Ell, E12, E13, E14,
\

"-'E15, E16}, {E3, E4, E5, E6, E7, E8, E9, E10, Ell, E12, E13, E14, E15, E16}, {E4, E5,

E6, E7, E8, E9, EIO, Ell, E12, E13, E14, E15, E16}... {EI5, E16} and {EI6}. State El

is transient as has always been the case.

4.3.3: n-Step Transition Probabilities and Steady State.

Higher order transition probability matrices are as follows.

f.J ~[PI~234 (1- PI )D234 ]
D234

(4.45)

f.J2 ~[p:~;,(1- PI')0;'4 ]
D~34

(4.46)

f.J3 ~[p~~;,(1- P~)o;' ]
D~34

(4.47)

............................................................

f.Jn ~[P;~;34 (1- p; )n;34 ]
D;34 (4.48)

where

o: _[P2D~4 (1- P2)D~4]
234 -

Df4
(4.49)

0

and
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p~p~ p~(1-p~) (1-p~)p~ (1-p~)(l- p~)
0 p~ 0 (1-p~)

D~= 0 0 p~ (1-p~) (4.50)

0 0 0 1

Steady state transition probabilities are found to be zeros for the first fifteen

columns and ones for the last column.

4.3.4: Application to calculating 3';n and 3TIn'

Following the trend explained in section 4.1.4 in order to derive 3 ';n' In this case

the required matrix is

(4.51)

and the first half of the first row of this matrix is pr-l times the elements in the first

row of the sub-matrix D;;l which is given by,

(4.52)

where
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pf;lp;-l p~-l(1-p;-1) (1_[13-1)p;-1 (1-pf;l)(1_p~l)

0 Pr1 0 (1_~1)
Dn-1- prl (1- p~-l) (4.53)34 - 0 0 ,

0 0 0 1 0

The factors to be multiplied by this elements are $3' $3 \ 4' $3 \ 3' $3 \ 2' $3 \ 3 4',

([>3\ 23' $3 \ 2 4 and $3 \ 2 34 respectively.Consequently, 3 ~ is found to be, , , , n

j; n-1 ( n-l n-l n-1n-.. n-l n-l(l n-1lm n-l n-l(l n-l'k
3~n=Pl lP2 P3 P4. '-V3+P2 P3 -P4 }"'''3\4+P2 P4 -P3/*'3\3+

n-l n-l (1 n-l ~ n-l (1 n-lII n-l ~ (1 n-l) n-l (1 n-l ~
P4 P3 ,-P2 r3\2 +P2 -1'3 '\ -P4 r3\3,4 + -P2 P3 -P4 {V3\2,4

n-l (1 n-l II n-l \n (1 n-l )(1 n-l,\/li n-l \.-r.. }
P4 - P3 -\ - P2 )'*'3\2,3 + - P4 - 1'3 J\; - P2 {V3\2,3,4. (4.54)

As was in chapter three.

4.4: m-dependant MARKOV MODEL.

We now get the generalized form of the Markov model for the Benevolent

Scheme. To do this, we use the trend brought out in the one-dependant, two-dependant

and three-dependant models earlier derived.

4.4.1: Transition Probabilities involved.,

It is more appropriate to apply the simplified Markov matrix in this case since, as

. d li h 1 f h . b (2m-!- 1. 2m+1we notice ear er, tee ements 0 t e matnx can e too many times
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elements)for large m. the number of rows, which are equal to the number of columns, are

2m+l and are always divisible by 4. We can therefore partition each of the possible

matrices of transition probabilities to 4 by 4 sub-matrices. This sub-matrices turn out to,
G

be either null (all elements being zeros) or fractions of similar Markov sub-matrices.

Generally,

(4.55)

is the matrix of transition probabilitiesfor the m-dependant markov matrix where

D 23 .. m +1 =

P2P3(~Smtl) 12(l-PJ)CASm+-l)
o 12(~Sm+l)
o 0
o 0

(1-J2)PJ(~Sm+-l)
·0

PJ(~5mtl)
o

(1-J2)(l- p;-l)CAsmtD

0- J2) CAsm+l)
(1- A) (Asmtl)

(UtSmtl)

(4.56)

D 45 .. m + 1 =

P4(1- Ps)<Qs1m+l) 0-P4)PsCI4s7mrD (1-P4)(l- p;1)~7mrl)

p/I1:)7mrD 0 (1-P4)(ll1m+D
o PsCI4s7mt-D (1-Ps)~1 mt-D
o 0 (I4s7mt-D

(4.57)

And lastly,
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PmPmtl Pm(I-Pmtl) pmtl(I-Pm) (1-Pm)(l- Prm-l)
0 Pm 0 (I-Pm)

Dm m+i = 0 0 Pmt-l \ (1-Pmtl),

0 0 0 <: I

(4.58)

As an example, for m=6 we have

(4.59)

where

D23 .. 7 =

P2P3(D45.7) ]2(1-P3)~45.7) (1-]2)P3(D45.7) (1-]2)Q -If 1)~45.7)

o ]2(D45.7) 0 (1-]2)(D45.7)

a a piD45.7) (1-P3)~45.7 )

o 0 0 (D45.7)

(4.60)

and

P6P7 P6(1- P7) P7(1- P6) (1- P6 )(1- P7)

D67 =

0 P6 0 (1-P6)
0 0 P7 (1-P7) (4.61),

0 0 0 1

4.4.2: Classification of States.

Let the states in their order of presentation be labelled as El, E2, ... , and E2m+l.

m+lThen the state space S=: {El, E2, ... , E2 }. Once you are out of any of the states, you
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can never revisit it. This as before implies that a dead person cannot become alive. As

before, each member accesses all super-ceding elements while State E2m+1 only accesses

itself
G

Note that from any state one can access state E2m+l. Thus the s~te is absorbing.

You cannot move out of the state once entered. Once all the three are dead, the

transaction ends. No states communicate. No reverse is possible after any of the z'""

probable transitions. State El is transient as has always been the case.

4.4.3: n-Step Transition Probabilities and Steady State.

Just as was the case in the one two and three-dependant model matrices, higher

transition probability matrices for the general m- dependant model can be found. For

P given as in equation (4.55), we find

and

(1- A
2)(D2,3,,..,il

(D2,3,... ,ntl)2 J
(4.62)

(4.63)

(4.64)
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The .steady state transition probabilities of the m-dependant Markov matrix are

not different from the earlier derived cases of one two and three dependant matrices. The

only difference is the number of elements in the stationary distribution matrix. There are
\

<:..-

2m+1 columns with the z'"1 th column having ones and the rest, zeros.

4.4.4: Application to calculating m~n and miln'

Markov matrices have already been applied the in calculating 1~n: 2 c;n' and

3~n: The following is the general Markov model for the Benevolent Scheme with m-

dependants, in the nth year. As before, we need

(1 n-l)(D )n-l]- PI 2.3•....m+I

. (D )n-l
2,3, ...,m+l

(4.65)

n-l
The required elements are p times the elements of the first row of the sub

matrix (~3' ...P*1)n-l. These are multiplied by factors ranging from CDmto

CDm \ 234...m +L' Essentially we will have 2m such factors coinciding with 2m required

element'! of the matrix in equation (4.65). Writing out the elements and multiplying them

by appropriate factors gives us the equation

(4.66)

This is the same as equation (3.24). Profit is also found to be the same as was in chapter

three, equation (3.25).
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CHAPTER FIVE

5. ANALYSIS

Under this chapter, the results that were met in previous chapters are analyzed. In

this chapter we also estimate the premium size that, on application, gives the insurer

desirable profit. The estimated premium size is applied to a four-dependant Model (four

being the average number of dependants on each contributor of the Maseno University

Burial and Benevolent Fund (BBF». Finally we suggest an estimate distribution to the

Benevolent Scheme Model and derive its parameters.

5.1. GRAPHICAL ANALYSIS

In this section the trends of growth in claim amount and profit are compared. It is

not necessary to compare contribution since they are the same for all models under

consideration. We compare the one-dependent, two-dependant and three-dependant

model, givingour observations and implicationsof emerging trends.

5.1.1. Comparing Claim amount.

Table (5.1) shows values of claim amount for the one, two and three-dependant

models. The values have been extracted from tables (2.10), (3.2) and (3.4) in chapter two

and three.
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YEAR UAIMAMOUNT CLAIM AMOUNT CLAIM
n L-dependant 2-dependant AMOUNT

Model Model 3-dependant
Model

1 1636 2591 3-545
2 1370 2064 2757
3 1149 1652 2153_._--------- -
4 963.5 1329 1689
5 808.9 1075 1331
6 679.6 872.6 1054
7 571.4 711.6 838.9f-- - ----- - - -- --- - ._._- -- - - ---_. ------- .--- '---
8 480.8 582.6 671.3
9 404.8 478.8 540.2
10 341.1 394.8 437.4
11 287.6 326.6 356.3
12 242;6 271 292
13 204.8 225.4 - 240.7
14 173 188 199.5
15 146.2 157.1 166.2
16 123.7 131.5 139.1
17 104.6 110.4 117
18 88.57 92.73 98.7
19 75.01 78.03 83.56
20 63.56 65.75 70.95
21 53.88 55.47 60.4
22 45.69 46.85 51.51
23 38.76 39.61 44.01
24 32.9 33.51 37.66
25 27.93 28.38 32.25
26 23.73 24.05 27.65
27 20.16 20.39 23.72
28 17.13 17.3 20.36
29 14.56 14.69 17.49
30 12.39 12.48 15.02

Table 5.1: A table of values of expected claim amount for one, two and three-

dependant Models.

Using the data in table (5.1), the graphs in figure (5.1) are plotted. From the

graphs we see that claim amount increases with increase in the number of dependants.

The decrease of amounts with time is uniform since all three graphs take similar shape. It
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is expected that the line for the four-dependant case is right over that of the three-

dependant c.ase.

KEY:

Figure 5.1:

COMPARISON OF CLAIM AMOUNTS

One, Two, and Three-dependant models.
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three-dependentnnodeffi.
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5.1.2. Comparing Profits.

YEAR PROFIT PROFIT PROFIT
n l-dependant 2-dependant 3-dependant

Model Model \ Model
<>

1 891 -64 -1018
2 1679.811 31.45014 -1615.41
3 2376.359 224.3607 -1923.49
4 2989.642 471.8171 -2035.99
5 3528.223 744.6708 -2019.77
6 4000.113 1023.545 -1922.35
7 4412.723 1295.954 -1777.21
8 4772.834 1554.227 -1607.58
9 5086.604 1794.025 -1429.25
10 5359".586 2013.276 -1252.61
11 5596.758 2211.419 -1084.17
12 5802.563 2388.875 -927.735
13 5980.947 2546.667 -785.207
14 6135.405 2686.167 -657.22
15 6269.019 2808.916 -543.575
16 6384.502 2916.508 -443.558
17 6484.235 3010.508 -356.157
18 6570.303 3092.412 -280.219
19 6644.527 3163.612 -214.548
20 6708.498 3225.386 -157.974
21 6763.601 3278.893 -109.389
22 6811.039 3325.172 -67.7735
23 6851.858 3365.149 -32.202
24 6886.966 3399.646 -1.84962
25 6917.15 3429.385 24.01308
26 6943.089 3455.001 46.02517
27 6965.372 3477.05 64.74298
28 6984.508 3496.016 80.64814

--" ---- ---------- -------
29 7000.937 ' 3512.321 94.15584
30 7015.036 3526.331 105.6227

Table 5.2: A table of values of cumulative profits for the one, two and three-

dependant schemes.
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COMPARISON OF CUMULATIVE PROFITS

One, Two, and Three-dependant models..
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CP1~ Cumulativeprofit for the one-dependant model.

CP2~ Cumulativeprofit for the two-dependantmodel.

CP3~ Cumulativeprofit for the three-dependant model.

Figure 5.2: A graph representing the trend in cumulative profits for the one, two and

three-dependant models.
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The lines in figure (5.2) elaborate the fact that the more the dependants the higher

the loss than profit the insurer incurs. The average number of dependants a contributor

has is four. One can therefore imagine the kind of loss the insurer is t,epected to undergo

as far as such a contributor with four dependants is concerned.

5.2. ESTIMATIONOF PRE:MIUM SIZE.

With the highlighted problem in section 5.1, we are faced with the task of

estimating the appropriate premium size(s) that corrects abnonnally large profits in the

case of one and two dependants and abnormal loss in the case of three or more

dependants (c.f figure (5.2».

5.2.1. Case of One-dependant

From the graph in the figure (5.2), we have already seen that the insurer makes

profit right from year one of contribution. This exploits the contributor. At this point, the

estimate of premium size that allows for a balance between the two parties (the insurer

and contributor) is considered. To do this chore, we need to know the average amount of

time the contributor is expected to stay in the Scheme. This is found by averaging the

length of time those who have quit the Scheme (without necessarily dying) had stayed on

as contributors.

Let y be the number of years that a contributor is expected to remain as a member

to the Scheme. It is desirable that the insurer starts earning profits at least by half of the

period of stay of the contributor.

Thus at the (~ ryear,
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o

Since we have

I II n = P (1 + I )i V k-l P lk - i V k I ~ k .

100 k=l k=l

Then letting profit be zero as equation (5.1) suggests, the following equations hold.

Hence

P(l +_I_JtVk-lPlk
100 k=l .

=

This implies that the estimate for premium size is

( ;)
L V k

1 ; k

"- k = 1
P (1)

( 1 +
I JUlL V

k - 1 k

100 P 1
k = 1.

"-p is a function of the number of dependants, in this case one. As an example,here

let y ~I O. At year ( ~ ) = 5, we have
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I\.

P(l) =

5

L v k
1 ~ k

k = 1

I

J
5

L v k - 1 k\P 1100 k = 1

____ 5_9_2_7 = 1504 .42
5

1.12 L (0.9091 )k-I (0.94)k
k=1

This amount is the premium size per annum. (Cf. Cumulative Claim amount at year 5 in

table (2.10)). In a month we get the estimate to be KShs. 125.37. Hence we have

P = 1504 .42 shillings per annum and approximately, x = 125 shillings per

month as the estimated premium size. This value is lower than the KShs. 200 per month

currently being paid. Definitely it gives the contributor less burden and ensures

reasonable profit to the insurer.

5.2.2. Case of m-dependants.

We now estimate the premium size desirable for the two-dependant model, three-

dependant model and then generalize the expression to the m-dependant model.

Two-dependant model

As in section 5.2.1 we need P that minimizes 2 n (~).This is found to be

P (2)

5

L V k 2 ~ k
k = 1

I J tl V
k - 1 k

100 PI
(5.4)

99



We realize that the denominator is constant and is 3.939734.

8711
2211 .06 (5.5)3.939734

We have used y ~IO ~ (~) = 5. The estimate of premium size for the two-

dependant model is P = 2211.06 shillings per annum and approximately X = 185

shillings per month. This is still lesser than the KShs. 200 currently paid. With the

estimated amount paid, we expect to see the required balance between the insurer's and

the contributor's benefits.

Three-dependant

In this case we need P that minimizes 3 II n . This is when n ~ ( ~ ) . This

grves the estimated premium size for the three-dependant model as

"-P (3)

5

L
k = I

k - I k
PI

(5.6)

Once again let us assume that y = 10 ~ (~) = 5 as an example. We obtain

_1_14_7_5__ = 2912 .63
3.939734 (5.7)

This gives the estimate of premiwn size for the three-dependant model as

P = 2912.63 shillingsper annum and X = 245 to the upper five shillingsper month.
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This is slightly higher than the KShs. 200 currently paid. We conclude that the amount

paid is best suited for a three-dependant scheme. Unfortunately, the fund has an average

of four dependants. This means that in case a flat rate of contributed amounts has to be
o

set, then the figure should be slightlyhigher than 200. Next is to calculate the estimate of

premium size for the four-dependant model for a more realistic rate.

m-dependant model

We now give a general expression for the estimate of premium size. In this case,

premium size P that minimizes

n = ( ~ ) . Thus we have

nm n is required. This is suggested to be when

( ~ )
LV
k = 1

"P(m)
I 'J(i)-- L V k-l Plk

100 k = 1

(5.8)

per annum. In a month, this is KShs. (x = P 112).

5.2.3. Four-dependant Model (the average case).

It has earlier been shown that the average number of children each contributor has

is three. This together with the first dependant (the mother or father of the children)

makes four dependant').
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First we need the expression for 4 ~ n which we use in the calculation of expected

claim amount. Using the general formula for the m-dependant model (equation (3.24) in

\
chapter three), the expected claim amount under the four-dependant model is found to be,

(5.9)

where

(5.10)

( 5 ( )}r - 11 I_pn-l
4,n - k = 2 'k 4 \ 2,3, ... ~ (5.ll)

and

3 3 4 5
\f'4n= L L L L

, g = 1 it = 2[2 = 313 = 4

n-l

s
4\U/;

i=1

5
n P g

k=2 k\ U I,
1

i=l

(5.12)

This result to

3 (n-l)(1 n-l)2m (1 n-l)3..n )P3 - P3 W 4\3,3 + - P3 '-V 4\3,3,3 +

(n - 1) (1 n- 1 ) , -- 2 (n- 1) ~ 3 P (n-l) (1_ P n-l ) <l>
P3 - P2 \P3 W 4\2 + 3 3 4\2,3+

3(1- p~-l) 2 <l>4\2,3,3 )+(1- p~-l)(1- p~-1)3<l>4\2,3,3,3}.

(5.13)
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To calculate the values of 4 ~n' for n= 1, 2, 3, 4, 5, ... , 30, we use the Ms-Excel

applicationpackage. Table (5.3) shows the resultant values.

Expected Discounted Cumulative Expected Discounted
0

Year plpower claim claim claim contribution .cumulative Growth in

n (n) amount amount amount (discounted) contn"bution profit

1 0.94 4950 4500 4500 2527 2527 -1973
2 0.884 4175.01 3450 7950 2159 4686 -3264.27
3 0.831 3539.73 2660 10610 1845 6531 -4078.63
4 0.781 3017.38 2061 12671 1577 8108 -4562.83
5 0.734 2586.45 1606 14277 1347 9456 -4821.44
6 0.69 2229.61 1259 15536 1151 10607 -4928.59
7 0.648 1932.97 992 16528 984 11591 -4936.58
8 0.61 1685.33 786.3 17314 840.9 12432 -4881.99
9 0.573 1477.65 626.7 17941 718.6 13151 -4790.13
10 0.539 1302.64 502.3 18443 614.1 13765 -4678.34
11 0.506 1154.43 404.7 18848 524.7 14289 -4558.26
12 0.476 1028.24 327.7 19175 448.4 14738 -4437.5
13 0.447 920.25 266.6 19442 383.2 15121 -4320.89
14 0.421 827.3 217.9 19660 327.5 15448 -4211.31
15 0.395 746.87 178.8 19839 279.8 15728 -4110.29
16 0.372 676.87 147.3 19986 239.1 15967 -4018.48
17 0.349 615.64 121.8 20108 204.4 16172 -3935.95
18 0.328 561.77 101.1 20209 174.6 16346 -3862.37
19 0.309 514.15 84.08 20293 149.2 16496 -3797.22
20 0.29 471.83 70.15 20363 127.5 16623 -3739.84
21 0.273 434.04 58.66 20422 109 16732 -3689.52
22 0.256 400.16 49.17 20471 93.13 16825 -3645.56
23 0.241 369.64 41.29 20512 79.58 16905 -3607.27
24 0.227 342.05 34.74 20547 68.01 16973 -3574
25 0.213 317.02 29.27 20576 58.12 17031 -3545.15
26 0.2 294.23 24.69 20601 49.66 17081 -3520.18
27 0.188 273.41 20.86 20622 42.44 17123 -3498.6
28 0.177 254.35 17.64 20639 36.27 17159 -3479.97
29 0.166 236.85 14.94 20654 30.99 17190 -3463.91
30 0.156 220.76 12.66 20667 26.49 17217 -3450.08

Table 5.3. A table of expected claim amount contribution and profit for the four-
dependant model.
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EXPECTED CONTRIBUTION COMPARED WITH

-COMPENSATION CLAIM AMOUNT

Four-dependant Model.
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Figure S.3a. A graph showing the trend in contribution and claim amount for the four-

dependant model.
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Figure 5.3b. A graph givingthe trend of growth in profit for the four-dependant mode1.

The graphs in figure (5.3a) and (5.3b) take the same trend and have similar

explanations as the equivalents of the one, two and three dependant models earlier given.

105



From table (5.3), the required claim amount, from which the estimate of premium size

,.. "-P and hence X is to be calculated, is found to be

5 "-'

L V k 4 ~ k
k = I

'"

( 1 + )~lVP (4) I k - I k

100 PI

Still assuming that y ~ 10 =:0 (~) = 5 as an example, Ibis gives the

estimate as,

14277
--- = 3623 .85
3.939734 (5.14)

So that P = 3623.85 shillings per annum and consequently X = 302 shillings per month.

Rounding up to the upper five shillings we obtain X = 305 shillings.

5.3 APPLICATION OF DERIVED PREMIUM SIZE,

The estimate premiums of sizes were found to be:

A

P(l) = 1505 (For the one-dependant model).

"-P(2)=2211 (For the two-dependant model).

"-P(3) =2913 (For the three-dependant model).

"-P(4) = 3624 (For the four-dependant model).
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5.3.1. One-dependant Model.

Once again we use Ms-Excel application package to calculate the following

values in table (5.4). TIlls is on replacement of the uniform premium sizes with the

estimated value. Graphs of growth in contribution and claim amount, for each of the

models are also plotted.

Expected Discounted cumulative Expected Discounted

Year claim claim claim contribution cumulative Growth in

n amount amount amount (discounted) contribution Profit profit

1 1800 1636 1636 1584 1584 -52.526 -52

2 1658 1370 3006 1353 2937 -16.919 -68.9193

3 1529 1149 4155 1157 4094 8.00755 -60.9118
4 1411 963.5 5119 988.4 5083 24.8887 -36.0231

5 1303 808.9 5927 844.6 5927 35.7652 -0.25777

6 1204 679.6 6607 721.8 6649 42.2078 41.95003-_.- ~.

7 1113 571.4 7178 616.8 7266 45.4227 87.37274
8 1030 480.8 7659 527.1 7793 46.3299 133.7027

9 954.4 404.8 8064 450.4 8243 45.6271 179.3298

10 884.6 341.1 8405 384.9 8628 43.8391 223.169

Table 5.4: Cumulative contribution, claim amount and profit using the estimated

premium size (one-dependant model).

Values in table (5.4) have been used to plot the lines in figure (5.4). In figure

(5.4), the dotted line shows the exponential rate of decay of expected claim amounts
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while the full line represents the trend of decrease in contribution with time. The lines

meet between the second and third year of contribution. This is the time that the rate of

contribution equals that of claims.
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one-dependant model (using estimated premium size).
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5.3.2. Two-dependant model.

I Expected Discounted cumulative Expected Discounted \
GI Year claim claim claim contribution cumulative Growth in

I n amount I amount amount (discounted) contnootion Profit profit

1 2850 2591 2591 2328 2328 -263.131 -263

2 2497.11 2064 4655 1989 4317 -74.5344 -337.534

3 2199.09 1652 6307 1700 6017 47.6496 -289.885f---- -

4 1946.21 1329 7636 1453 7470 123.3231 -166.562

5 1730.57 1075 8711 1241 8711 166.7751 0.213485

6 1545.77 872.6 9584 1061 9772 188.2246 188.4381

7 1386.59 711.6 10295 906.5 10679 194.9435 383.3816

8 1248.77 582.6 10878 774.7 11453 192.075 575.4566

9 1128.83 478.8 11357 662 12115 183.228 758.6846

10 1023.94 394.8 11751 565.7 12681 170.9083 929.5929

Table 5.5: Cumulative contribution, claim amount and profit using the estimated

premium size (Two-dependant model).

Values in table (5.5) have been used to plot graphs in figure (5.5). In figure (5.5),

the dotted line has the same meaning and interpretation as that in figure (5.4). The full

line represents the trend of decrease in contribution with time. These lines also meet

between the second and third year of contribution. This is the time that the rate of

contribution equals that of claims. We note that the two are more dispersed than was the

case in figure (5.4). This implies that the amounts diverge more as the number of

dependants increase.
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ESTIMATED PREMIUM SIZE

Two-dependent Model
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Figure 5.5: A graph showing growth in contribution and claim amount, for the two-

dependant model (using estimated premium size).
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5.3.3. Three -dependantModel.

Expected Discounted cumulative Expected Discounted

Year claim claim claim contribution cumulative Growth in

n amount amount amount (discounted) contrimaion Profit profit

1 3900 3545 3545 3066 3066 -479.073 -479

2 3335 2757 6302 2620 5686 -136.207 -615.207

3 2866 2153 8455 2239 7926 86.04145 -529.166

4 2473 1689 10144 1914 9839 224.2897 -304.876

5 2144 -- ,-1.331__ i1475 1635 11475 __ ~04.030§ -0.84578

6 1867 1054 12529 1397 12872 343.374 342.5282

7 1635 83R9 13368 1194 14066 355.3232 697.8514

8 1439 671.3 14040 1020 15087 349.2353 1047.087

9 1274 540.2 14580 872.1 15959 331.8121 1378.899

10 1134 437.4 15017 745.2 16704 307.8041 1686.703

Table 5.6: Cumulative contribution, claim amount and profit using the estimated

premium size (Three-dependant model).

Values in table (5.6) have been used to plot graphs in figure (5.6). In figure (5.6),

the dotted line has the same meaning and interpretation as that in figure (5.5). The full

line represents the trend of decrease in contribution with time. These lines also meet

between the second and third year of contribution. This is the time that the rate of

contribution equals that of claims. We note that the two are more dispersed than was the

case in figure (5.4) and (5.5). This implies that the amounts diverge more as the number

of dependants increase.
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ESTIMATED PREMIUM SIZE

Three-dependant Model.
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Figure 5.6: A graph showing growth in contribution and claim amount, for the three-

dependant model (using estimated premium size).
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5.3.4. Four-dependant Model

Expected Discounted cumulative Expected Discounted

Year claim claim claim contribution cumulative Growth in

n amount amount amount (discounted) contribution Profit profit

1 4950 4500 4500 3815 3815 -684.856 -685
2 4175.01 3450 7950 3260 7075 -190.205 -875.205
3 3539.73 2660 10610 2786 9861 126.5585 -748.647
4 3017.38 2061 12671 2381 12242 319.8706 -428.776
5 2586.45 1606 14277 2035 14277 428.5148 . -0.26138
6 2229.61 1259 15536 1739 16015 480.0237 479.7623
7 1932.97 992 16528 1486 17501 493.7867 973.549
8 1685.33 786.3 17314 1270 18771 483.3935 1456.943
9 1477.65 626.7 17941 1085 19856 458.2819 1915.224
10 1302.64 502.3 18443 927.2 20783 424.922 2340.146

Table 5.7: Cumulative contribution, claim amount and profit using the estimated

premium size (Four-dependant model).

Values in table (S.7) have been used to plot graphs in figure (S.7). In figure (S.7),

the dotted line has the same meaning and interpretation as that in figure (S.4), (5.5) and

5.6. The full line represents the trend decrease in contribution with time. These lines also

meet between the second and third year of contribution. This is the time that the rate of

contribution equals that of claims. Note that the two are more dispersed than was the case

in figure (5.6). This confmns that the amounts diverge more as the number of dependants

increase.

113



4000.0

U)m 3000.0
~
c

..•...•
C:::J
~ 2000.0
-c

ESTIMATED PREMIUM SIZE

Four-dependant Model.

, ,

~ , , !
1\ I 1 I 1 I 1 I I
I . f I I I I I I I-~-~l--T--r--T--r~-r-~---~-
I \ I I I I I I I I

1 ill I I I 1 I
I 1\ I I I I I I I

I \ 1 I 1 I I I I
_--..1. __ J_ ---L __ .l__ -L- __ L __ ..l..--_----1 l.--_

I \ I 1 I I I I
i r-. i i i i i
I I I'\.' I I ,I I I

1 I 1 -, I I I I I- --,...-- -1- ---r- --T~ - - -t"" -- T- - ----1---,---

I I I I"" I I I I
I I II'\{ I I I I

I I I I"" I I I
I I I I <, -l I I

I , I I I I <, I I-,---,--,--,--,--i---f-' i-- •.
I I I I I I I I "t _

I I I I I I I I I
CLAIM

0.00 CONTR
o 1 2 3 4 5 6' 7 8 9 10

YEAR SINCE MEMBERSHIP

Figure 5.7: A graph showing growth in contribution and claim amount, for the four-

dependant model (using estimated premium size).

114



5.3.5. Observation.

It c<?mesout clearly that the more the dependants, the more disperse the two lines

of each of the four grids. This implies that there will be increased profitto the insurer as a

contributor has more dependants. This is the reverse of the uncorrected situation where

the more the dependants the larger the loss the insurer expects.

In order to precisely have a balance between the contribution and profit expected

by the insurer, the insurer ought to set several levels of premium sizes. This insures that

he achievesboth his goals and those of the investor.

We now study the profit due to the new premium sizes. To do this, we need the

data in table (5.8) and graphs in figure (5.8) and (5.9) in order to justify the new

modification. We suggest the mode of premium contribution that best suits the conditions

assumed (that is, y=10) to be as follows.

x = 125 (For the one-dependant model).

x = 185 (For the two-dependant model).

x = 245 (For the three-dependant model).

X = 305 (For the four-dependant model).

(Amounts are in KShs. To the nearest five shillings)

We can see that the figures are approximately in jumps ofKShs. 60. We therefore

suggest that a member of the Benevolent Scheme contributes 125 shillings per month if

he has only the spouse as the dependant. In addition to that, he ought to give Ksh.60 for

every other dependant (Child) he wishes to register as a beneficiary to the Scheme. This

is definitely non-arbitrary since the values have been clearly derived using our m-

dependant model of the Benevolent Scheme. The profit trends are illustrated next.
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Year Profit Profit Profit Profit
n l-dep. model 2-dep. model 3-dep. model 4-dep. model
1 -52.526 -263.131 -479.073 -684.856
2 -16.919 -74.5344 -136.207 -190.205
3 8.00755 47.6496 86.04145 \ 126.5585
4 24.8887 123.3231 224.2897 319.8706
5 35.7652 166.7751 304.0305 428.5148
6 42.2078 188.2246 343.374 480.0237
7 45.4227 194.9435 355.3232 493.7867
8 46.3299 192.075 349.2353 483.3935
9 45.6271 183.228 331.8121 458.2819
10 43.8391 170.9083 307.8041 424.922

Table 5.S. A table of profit for the estimated premium sizes in the one, two, three,

and four-dependant models.

PROFIT MARGINS (ESTIMATED PREMIUMS)
First four models
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Figure 5.8. A graph showing the new profit margins on using the estimated premium

sizes. Cases are the one, two, three, and four-dependant models.
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Year Cumulative Cumulative Cumulative Cumulative
n Profit Profit Profit Profit

L-dep. model 2-dep. model 3-dep. m ode I 4-dep. model
1 -52 -263 -479 -685
2 -68.9193 -337.534 -615.207 \ -875.205
3 -60.9118 -289.885 -529.166 -748.647
4 -36.0231 -166.562 -304.876 -428.776
5 -0.25777 0.213485 -0.84578 -0.26138
6 41.95003 188.4381 342.5282 479.7623
7 87.37274 383.3816 697.8514 973.549
8 133.7027 575.4566 1047.087 1456.943
9 179.3298 758.6846 1378.899 1915.224
10 223.169 929.5929 1686.703 2340.146

Table 5.9. A table of Cumulative profit for the estimated premium sizes in the one,
two, three, and four-dependant models.

CUMULATIVE PROFIT (ESTIMATED PREMIUMS)
First four models
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Figure 5.9. A graph showing the new cumulative profit (estimated premium sizes).

Cases are the one, two, three, and four-dependant models.
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KEY:

PR017
PR027
PR037
PR047
CP17
CP27
CP37
CP47

Cumulative profit for the one-dependant model.

Cumulative profit for the two-dependant model.
\

Cumulative profit for the three-dependant model.

Cumulative profit for the four-dependant model.

Cumulative profit for the one-dependant model.

Cumulative profit for the two-dependant model.

Cumulative profit for the three-dependant model.

Cumulative profit for the four-dependant model.

5.4. SUGGESTED APPROXIMATE MODEL FOR THE SCHEME

As eminent from our model, we see a trend that can be fitted by a probability

distribution or a model function. For example, the one-dependant model can be fitted

with a CUBIC function as follows.

Year Discounted Discounted Discounted Discounted

n claim amount claim amount claim amount claim amount

l-dep. model 2-dep. model 3-dep. model 4-dep. model

1 1636 2591 3545 4500
2 1370 2064 2757 3450
3 1149 1652 2153 2660
4 963.5 1329 1689 2061
5 808.9 1075 1331 1606
6 679.6 872.6 1054 1259
7 571.4 711.6 838.9 992
8 480.8 582.6 671.3 786.3
9 404.8 478.8 540.2 626.7
10 341.1 394.8 437.4 502.3

Table 5.10. A table of expected claim amount for the first four models.
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Curve estimation

Using SPSS Application package, the regression equations are as follows:

MODEL: MOD_l. (THE CUBIC MODEL)

Independent: YEAR
Dependent Mth Rsq Sigf bO b2 b3

CLAIMl
CLAIM2
CLAIM3
CLAIM4

bl

CUB 1.000 .000 1940.71 -329.93 24.3241 -.7341
CUB 1.000 .000 3205.91 -680.82 61.3786 -2.1465
CUB 1.000 .000 4469.93 -1030.1 97.4510 -3.4863
CUB 1.000 .000 5733.23 -1380.6 135.130 -4.9524

In the graphs that follow, dotted lines represent the
expected amounts while the continuous lines represent the
fitted model.
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Figure 5.1 Oa. A graph of fit with the CUBIC function (one-dependant model).
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Figure 5.10b. A graph of fit with the CUBIC function (2-dep model).
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Figure 5.1 Oc. A graph of fit with the CUBIC function (3-dep model).
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Figure 5.10d. A graph offit with the CUBIC function (4-dep model).

10

Next is to fit the data in table (5.9) with the exponential distribution using the

Minitab and SPSS application Packages as follows.

Exponential distribution.

MODEL: MOD _2 (Exponential distribution) .
Independent: YEAR

Dependent Mth Rsq d. f. F Sigf bO bl

CLAIMI EXP 1. 000 8 273411 .000 1938.53 -.1742

CLAIM2 EXP .999 8 11507.6 .000 3107.32 -.2088

CLAIM3 EXP .999 8 1079lL8 .000 4346.09 -.2327

CLAIM4 EXP .999 8 9557.04 .000 5553.97 -.2437

As an example, the equation for the one dependant model is:

CLAIM1 = 1938.53Aexp (-0. 1743 Ayear)
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ONE-DEPENDANT MODEL
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THREE-DEPENDANT MODEL
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We note that the larger the number of dependants, the lower the correlation

between the two models. However, generally, the two are highly correlated and at 0.01
\

level of significance, the p value is 0.0001. This is much less that 0.0'5. Thus it is clear

that the two models give the same results.

Graphs of the cubic model are more closely correlated to the ones of the

Benevolent Scheme Model than those of the Exponential distribution. This can be

checked from the Square of regression column (Rsq.) in the analysis tables.
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CHAPTER SIX.

6: CONCLUSION

In this chapter, we summarize the results that have been anived at throughout the

whole research. First we compare the Branching probabilistic model with the Markov

model for the Benevolent Scheme. Other results as the estimated premium sizes for
.(

different numbers of dependants will also be recorded. Suggestions for further

•
modifications that can be made to the models are given. Finally, a conclusion in line with

stated objectiveswill be made.

6.1: COMPARISON OF THE TWO METHODS.

The Branching (probabilistic) model for the benevolent scheme has been

developed from first principles in chapters two and three. The calculations involved are

seen to be junky and tedious although they are straightforward. However the markov

model formulated in chapter four has proved to be short and easier to apply despite the

fact that it is more technical.

All in all, it is interesting to note that both models give the same result. That is,

the formula for calculation of expected claim amount, anived at in both cases, is the

same. It is also plausible that both methods predict the same about the future of a member

of the scheme. Essentially, as time n -). 00 the probability of survival and hence the

membership diminishes to zero. In the Markov model, such a phenomenon is caned
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Steady state or the stationary distribution of the of the markov process. In reality, no one

can stay' alive forever. After some time, the contributor is bound to quit due to death,,
dismissal or retirement.

6.2: SUMMARYOF RESULTS.

The following were our objectives of the study that we now wish to claim to have

fulfilled.

1. Formulating a Statistical model that will be used in calculating the claim

amount and profit the insurer expects to earn from the benevolent scheme.

11. Estimate the appropriate premium size to be contributed in order for the

insurer to realize modest profit.

111. Applying the model by use of data from the Maseno University SACCO in

order to forecast the financial status of the cooperative (as an example).

After going through all necessary resources and personal inputs, we came up with

the following.

1. The one dependant model for the benevolent scheme was derived as

The two-dependant model is

j: =p trlfp r'» n-I"'" +p n-l(l_p trl) "'" +2'='n 1 :1 3 W2:1 3 w2 \3

The three-dependant model is
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3~ =If-I {J/fl~1 P71<1>3 +.r:>r1~1(1- p;-1~4 +.r:>rlP71(1-1:;1 'JJ +

n-l n-l (1 n-l \n n-l (1 n-l /} n-l \n . (1 n4~ n-l (1 n-l kP4 P3 -P2 r~2+P2 -P3 \ -P4 j3'l4+ -P2)P3 -P4 flJ3\2,4

pr1(1- ~ltl-P~~3 +(1-P71)(1- ~1~ _.r:>rl~4}

The four-dependant model is

.., (n-l)(1 n-l)2m (I n-I)3rn )

..J P3 - P3 '4! 4\3,3 + - P3 '-V 4\3,3,3 +

(n-I) (1 n-I )'-- 2(n-I) ffi 3p(n-I)(I_ pn-I)<Dp 3 - P 2 \p 3 '4! 4 \ 2 + 3 3 4\2,3 +

and more generally, the m-dependant model: The expected amount to be spent in

compensation to a contributor with m dependants is

Where

(m+l(.. -l)ln
rmn= k~2 I-PIc rm\2,3,...,m+1

127



m'-l
'Pm,n = L

g=l

34m m+l
L L···2: 2:

fi = 2/2 131g =m

m+l
11 P g

k= 2 k\ U f..
1

i= 1 )

and

cD \ b J =m{1q D.{ L (q.n.)~m a, ,... . J J. t=t
J=1 "ilE{a,b, .../}

The expected profit is

These results have been successfully arrived at by both the Branching method and

the Markov approach.

11. Using collected data, the average number of years a contributor is expected to stay

as a member of the scheme (of Maseno University SACCO in this case) was ten

years. This together with the assumption that the insurer ought to start earning

profit midway the stay of the contributor, led to our estimate for premium size

grven as
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P(m)

(~ )
L v
k = 1

k ;:
m '=' k \

I (~J
-10-0 -) f;,v k - 1 k

Pl

Per annum.

ill. From collected data and suggested formulae, we found that Pr-'P2=0.94

(The probability of survival of the contributor and spouse) Pr~P4 ... =0.85

(The probability of survival of the contributor's siblings) and C = 3 is the

average number of children per contributor. The trend as n ~ 00 was

that the claim amount, m ~ n ~' 0 V m where m=I, 2, 3, ... ,30.

The Exponential distribution is found to be the most suitable probability distribution

function that best matches the Benevolent Scheme Model.

In chapter two, the one-dependant model was formulated. Data from the Maseno

University Burial and Benevolent Fund (BBF), which is a sub-sector of the SACCO, was

applied and resultant tables and graphs made. From the results, expected cooperative

claim amount was found to be decreasing with time. It was found that, under the current

system of contribution, and compensation, a contributor with only one dependant (the

spouse) or two dependants, is at a disadvantage in terms of benefits from the scheme.

Under the three-dependant model, the insurer could only expect profit from the

twenty-fourth year, while in the case of four dependants, the insurer could not expect any

profit at all, within the first thirty years of contribution. It is natural that most of the
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members to the scheme could be having more than three dependants. This implies that

the insurer is expected to run out of funds to manage the program if there were no other

source other than member contributions. <:

Using our formula for the estimated premium Size, we got results that were

proved to be better than if current values were charged. We therefore strongly suggest

that the premium size shouJdn't be constant for all family sizes. The estimated premium

size for a contributor with one dependant should be KShs.125. Any additionalbeneficiary

should be accommodated by an increase on the premium size by KShs. 60 for each. With

this implemented, we expect favorable insurer-insured co-existence. That is, the

application of the estimated premium size will lead to improvement of services to

members.

6.3: SUGGESTIONSANDCONCLUSSION.

With the summary in section 6.2, we can claim to have fully succeeded in

satisfying our objectives. However, there are various assumptions that led to our results.

This to some extent could impact negatively on the application of our model. So, more

work can be done to eliminatesome of the assumptions.

We have suggested the various premium sizes to be paid by contributors with

different numbers of dependants. This may complicate the system of contribution and

compensation due to the diverse properties of each contributor. Therefore there is need to

estimate a general premium size for each member regardless the number of dependants.
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We have dealt with a case where a pure death process is involved. New in-births

registrations, departures (not by death) and other irregular occurrences have not been
~

<...-

taken care of. This leaves room for further research and modifications to the model.

TIlls statistical model that we have formulated may not only be applied by the

financial institutions which incorporate the Benevolent Scheme, but also other sectors

under the field of insurance. With some modification, the application can be extended to

engineering where reliability of systems of machines and repair at some cost is required.
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