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ABSTRACT

Summing multipliers is an important class of operators in the geometric theory of

general Banach spaces. They are particularly useful in the study of the structure of

the classical spaces. The work done by Grothendieck and Pietsch provides a good

basis for the study of this class of operators. The topic of this study is (p, q)-

summing multipliers. These are sequences of bounded linear operators mapping

weakly p-summable sequences into strongly q-summable sequences. This study is

concerned with using the concepts of absolute and p-summing multipliers to

characterize the space of all (p, q)-summing multipliers. In particular we show that

the space of all (p, q)-summing multipliers is complete. This is accomplished

through a detailed study of the concepts of the summing operators and absolute

and p-summing multipliers.
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CHAPTER!

INTRODUCTION

Summing multipliers is an important class of operators in the geometric theory of

general Banach spaces. They are particularly useful in the study of the structure of

the classical spaces. The work done by Grothendieck and Pietsch provides a good

basis for the study of this class of operators.

In this study we present concepts and results that are used in our work in chapter

two. Some acquaintance with linear algebra and basic concepts of functional

analysis is assumed. In chapter three we present a discussion on summmg

operators and summing multipliers. This chapter also contains our proposition on

the (p,q)-summing multipliers with a critical analysis of the same. Chapter four is

a summary outlining our contribution.

1.1 LITERATURE REVIEW

Up to the late 1960's, the available knowledge in the area of vector lattices of

linear operators between Banach lattices was still fragmentary and incoherent.

This knowledge was therefore of little importance to the mainstream of operator

theory.

The roots of the theory of p-summing operators lie in the work undertaken by

Alexandre Grothendieck from the 1950s. However, it was only in 1967 that

Albrecht Pietsch clearly isolated this class of operators and established many of
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their fundamental theorems. Actually the classes of l-summing and 2-summing

operators were studied before in Grothendieck's Resume [8]. Whereas he was in

possession of the l-summing norm in the first case, the norm, which he attributed

to the 2-summing operators, is only equivalent to 2-summing norm. This came to

light through Pietsch's Domination theorem. Indeed the depth of Pietsch's

contribution comes in large part from his isolation of the simple finitary defining

inequality governing an operator's inclusion in the class of p-summing operators

[12].,Within a year, Pietsch's work gained recognition as was evident by the

appearance of seminal paper by Joram Lindenstrauss and Aleksander Pelczynski

[10].

Fourie [6] introduced the concept of absolutely summing multiplier of a Banach

space as follows. A sequence (uj) E B(X) is called an absolutely summing

multiplier of X if (Ujx) is absolutely summable in X whenever (x) is weakly

absolutely summable in X; hence, in notation (UjX)E llx) for all (XJE It(X).

Aywa [1] has shown that if X is an infinite dimensional Banach space, then the

space of all absolutely summing multipliers on X, In, (X), is an lp-space.

1.2 STATEMENT OF THE PROBLEM

From the overview, it is clear that a lot of work has been done on summmg

operators. Diestel, Jarchow and Tonge [3] have studied Absolutely Summing

Operators. Fourie and Aywa [7] have done work on Absolutely p-summing
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multipliers and their applications. In this study we look at many of the meaningful

generalizations of the concepts of p-summing multipliers and apply them to

characterize (p,q)-summing multipliers. In particular we attempt to show that the

space of all (p,q)-summing multipliers is complete.

1.3 OBJECTIVES OF THE STUDY

The purpose of this study is to accomplish the following:

(i) Study the concepts of p-summing multipliers and apply these

generalizations to characterize (p,q)-summing multipliers.

(ii) Investigate whether the space of all (p,q)-summing multipliers IS a

Banach space under the operator norm of the (p,q)-summing multiplier

norm.

1.4 SIGNIFICANCE OF THE STUDY

It is hoped that with the accomplishment of the above objectives, more avenues

will be paved for other mathematicians to pursue further the study of (p,q)-

summing multipliers from where we would have stopped.
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CHAPTER 2

BASIC CONCEPTS

In this chapter we present definitions and concepts that are used in our work in

chapter three. These concepts are found in most functional analysis texts, however

where a particular approach is preferred, the source is indicated. Concepts of

convergence of sequences including Cauchy sequences and convergence of

sequences in a Banach space are presented in section 2.1. In section 2.2 we give

examples of some of the sequence spaces that are used in our work. In section 2.3

we present the concepts of summability of sequences. The idea of the space of

bounded linear operators, which is shown to be Banach, is the content of section

2.4. The concept of the dual of lp spaces is presented in section 2.5.

2.1 CONVERGENCE OF SEQUENCES

2.1.1 Definition: Convergence of a sequence
A sequence (x.) in a normed space X is said to converge or to be convergent if

there is an x E X such that

limllxn - xii = o.
II-H/J

x is called the limit of (x.) and we write

lim z, = X
n-->oo
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2.1.2 Definition: Cauchy sequence
A sequence (x.) in a normed space X is said to be Cauchy (or fundamental) if for

every s > 0, there is an N=N (£) such that

for every m, n >N

The space X is said to be complete if every Cauchy sequence in X converges in X

A complete normed space is called a Banach space.

Consider any normed space X and define a metric on it by d (x, y) = IIx - YII for all

x, Y E X We shall denote the norm topology of X by r (X) which is to say that

r (X) is a class of all open sets of X as given by the metric d i.e. G E r (X) implies

that for all a E G there exists an r > 0 such that

S (a, rj=ix e X: d (a,x) <r} c G.

We say that a sequence (x,) in a normed space X is strongly convergent to an

element x if and only if x, ---)x as n ---)GO in the normed topology r (X). That is to

say that

limllxll - xii = O.
lI~OO

This is the convergence defined above (definition 2.1.1) and in this case we say

that x is a strong limit of the sequence (x.). Strong convergence can also be written

as X
ll

-+ x as n ---) GO.
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2.1.3 Definition
Let X be a normed space. Then the set of all bounded linear functionals on X

constitutes a normed space with the norm defined by

II "11- {Ix"(x~ . }x -sup ¥.XEX,X:f:.O

"x"" = sup~x"(x~: x E x,lIxll = I}

which is called the dual space of X and is denoted by X*.

For a given nonned space X, we introduce a new topology called weak topology

onX determined by X*. For any a EX and functionals x;,x;, ...,x: EX"

and e> 0, define the following subset of X;

U(a,x;,x;, ...,x:,c)= {x EX: suplx:(x-a~ < c}.
l,;k';1/

Note that a EU(a,x; ,x;, ...,x:,c) so that in some sense U is a neighbourhood of a.

We refer to U as a weak neighbourhood of a.

Let G be a nonempty subset of X. Then we say that G is weakly open if and only if

for every a E G, there exist x;,x;, ...,x: E X" and s > 0 such that

U(a,x;,x;, ...,x:,c) c G.

By (J' (X; X) we denote the class of all weakly open sets together with the empty

set. Then (J' (X; X) is a topology on X and we call it the weak topology on X

determined by X*. Weak convergence is defined in terms of linear functionals on X

as follows.
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2.1.4 Definition: Weak convergence
A sequence (x,J in a normed space X is said to be weakly convergent if there is an

* *X E X such that for every x EX,

lirnx*(xJ = x*(x).
n~<X)

This is written

w

The element x is called the weak limit of (x,J and we say that (x,J converges

weakly to x.

*Weak convergence means convergence of the sequence of numbers an = x (x,J for

* *every x EX.

2.1.5 Definition
A directed set A is a partially ordered set having the property that for every pair a,

and j3 in A there exists rE A such that r ~ a and r ~ jJ. A net is a function a --f Aa

on a directed set. If the Aa all lie in a topological space X, then the net is said to

converge to A in X if for each neighbourhood U of A there exists au in A such that

Aa is in U for a ~ au. Two topologies on a space X coincide if they have the same

convergent nets.

2.1.6 Definition
A net {fa teA in a Banach space X is said to be a Cauchy net if for every e > 0,

there exists a; in A such that aI, a2 ~ o.; implies that IIta, - ia211 < c.
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2.1.7 Proposition
In a Banach space each Cauchy net is convergent.

Proof
Let {JJaEA be a Cauchy net in the Banach space X Choose a, such that a ~ a,

implies Ilia - la, II < 1. Also choose {ak }:;l in A and all +I 2 all such that a 2 an+1

implies

Ilia - la,,+, II < ~1 .n+

The sequence Va" t. is clearly Cauchy and, since Xis complete, there exists fin X

such that limll-7oo fa" = f .

It is clear that limaEA fa = I since given £ >0, we can choose n such that l/n < £ / 2

and Ilia" - III < 7i . Then for a 2 all we have

Ilia - III ::;Ilia - L; II+ Ilfa" - III < y,; + 7i < E .

o

2.1.8 Definition
Let {JJaEA be a set of vectors in the Banach space X and let P ={Fe A: F finite}.

If we define FJ 5' F2 for FJc: F2, then P is a directed set. For each F in P let

gF =" I; .If the net {gF}F F converges to some g in X" then the sum" laL..aEF E L..aEA

is said to converge and we write g= " laL..aEA

8



2.1.9 Proposition
If Va tEA is a set of vectors in the Banach space X such that IaEAlifaIIconverges

in R. then" fa converges in X
~aEA

Proof
It suffices to show, in the notation of definition 2.1.8, that the net {gF }FEF is

Cauchy. Since IaeAllfal1converges, for E > 0, there exists Fa in Psuch that F'z Fa

implies

I Ilfa11-I Ilfa II< E .

Thus for F1, F2 2 Fa we have

IlgFI - gF211 = Ifa - If a
o.e F, o.EF2

= Ifo. - Ifa
«er, \F2 aEF2 \FI

~ Illfo.ll+ Illfall
o.eFI \F2 aeF2 \FJ

Therefore, {gF }FeF is Cauchy and Io.eAfa converges by definition 2.1.8.
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2.2 SEQUENCE SPACES

2.2.1 Sequence space i:
This is the set of all bounded sequences of complex numbers; that IS, every

element of fIX) is a complex sequence

briefly x = (x)

such that for allj=l, 2, ..., we have

where Cx is a real number, which may depend on x, but does not depend on j. This

space is a Banach space i.e. complete normed space[9] with the norm defined by

JJxJJoo = sup Ix j I < 00
JEN

2.2.2 Sequence space c
The space c consists of all convergent sequences x = (x) of complex numbers with

the norm induced from the space fw Where the limit is zero, we denote the space

by Co and call it the null convergent sequence space. This space being a closed

subspace of the complete normed space fro" is also complete.

2.2.3 Sequence space t,
Let pel be a fixed real number. By definition each element in the space fp is a

sequence x=(x)=(x], X2" .... ) of numbers such that

(p ~ 1,fixed)

and the norm is defined by
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This sequence space is also a complete nonned space[9]. In the case p = 2, we

have the famous Hilbert sequence space which is also a complete nonned space

under the norm defined by

The above norm certainly satisfies the parallelogram equality as seen below

00 { 2 2}= L x j + Y j I + Ix j - Y j I
j=!

= 2 ( ~, Ixj I' + ~, Iy j I' J

= 2 ~Ix II~+ Ily II~).
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2.3ABSOLUTE SUMMABILITY

A sequence (x.) in a normed space is absolutely summable if Lllxnll < 00 and is
n

unconditionally summable if LXo-(n) converges, regardless of the permutation o of
n

the indices. It is conventional to say that the series LXn is absolutely convergent
n

if the sequence (x.] IS absolutely summable. Similarly the senes LXn IS
n

unconditionally convergent if the sequence (xn) is unconditionally summable.

2.3.1 Theorem
A sequence (xn) in a Banach space is unconditionally summable if and only if it is sign

summable, that is, 4z&nXn converges for all signs &n= II.

Theproof of this theorem is found in [3].

2.3.2 Vector Valued Sequences
Now we introduce the concept of vector valued sequences. We shall work with the

index 1~p < 00 and a Banach space X. The vector sequence (xn) in X is strongly p-

summable (alternatively, a strong lp-sequence) if the corresponding scalar

sequence ~IxnII) is in lp. We denote by

the set of all such sequences in X. This IS a vector space under pointwise

operations, and a natural norm is given by
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lp (X) is a Banach space [3]. Strong p-summability makes reference to the strong

(or norm) topology on X.

The vector sequence (x,J in X is weakly p-summable (alternatively, a weak lp-

sequence) if the scalar sequences ((x', xn)) are in lp for every x * EX*. We denote by

I; (X)

the set of all such sequences in X. This is also a vector space under pointwise

operations.

2.3.3 Lemma

is a norm on 1;(X).

2.3.4 Theorem
1;(X) is a complete normed space.

Proof
We begin by showing that it is a normed space. For any x, y E 1;(X) and any scalar

awe have that
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:::::> (x', XII) = 0 for all X * E Bx*, 'V n

:::::> X = 0

Let x = O. Then (x' ,XII) = 0 for all x * E Bx*, 'V n and clearly Ilxll= 0

:.llxll; = 0 ¢:>x=o

N3.Ilaxll:~ Ila(xJ; ~ II(axJ;~ /~. {[~I(x' ,ax')( n

~/~.{[ ~Ia(x',xin

~/~. {[ ~lal'l(x' ,xi n

~Iai/~. {[ ~I(x',x,.)(n

=Ialllxll:

N4·llx+ yll> 11(x.)+(Y,JI; ~ II(x"+ y,JI; =/~. {[ II(x',x" + y,in

~ /~. {[~I(x',x,,)+(x·,y,,)(n

,; /~. {[~I(x',x,ir +[~I(x·,y,,)(r} by Minkowski inequality
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Next we show that l;(X) is complete.

Take a Cauchy sequence x(k) = (X~k) t in l;(X). Thus given e > 0, there is a natural

number N such that for k, r ~ N we have

p

L:1(x' ,X~k)) - (x' ,x~r))1 ~ s"
n

(1)

* *for each x EBX*. Thus for each x EBX* and every n, we have

1(' (k)\ (. (r)\1x 'Xn ;- x 'Xn ; < s .

This tells us that the sequence ((X',X~k))) is Cauchy in C, and so fixing n and letting

k ---f co the sequence ((X',X~k))) converges to ((x',xn)) for every x* EBx*. Thus we

have x = (XIJ as the weak limit of (X(k))k. We are then to show that x El;(X).

Letting r -j co and for k ~ N the inequality (1) implies

*for every x EBx*.

Thus letting) ---+ 00 we get

15
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This implies that x - x(k) belong to Z;(X). Given (X~k))" E Z;(X) then

k ~N. Since s > Owas arbitrary, (X~k))" converges to x = (x.) in the norm IHI;. Thus

1;(X) is a Banach space. o

Forp = 00, if (xrJ is a bounded sequence in the Banach space X, then

SupllXn II= *sup supl( x * ,xn )1·
n x EB * n

X

In other words the spaces Zoo(X) and i:(X) are identical and II(xn ~Ioo = II(xn ~I:.

Henceforth we shall refer to them simply as

and use II(xn ~Ioo for the norm.

We write

c;(X)

for the closed subspace of Zoo(X) consisting of all sequences (x.) in X with

limn-too (X * ,Xn) = 0 for all x * EX*. This in turn has as a closed subspace the

collection

16



Co (X)

of all sequences (x.) in X with limn~oo Ilxn II = o. The members of c; (X) and

Co (X) are called respectively the weak null sequences and the strong null

sequences in the Banach space X.

In the following theorem we see that when l sp < 00, we have 1;(X) = lp (X) if

and only if X is finite dimensional.

2.3.5 Weak Dvoretzky-Rogers Theorem
Let 1.5'p < 00. Every infinite dimensional Banach space X contains a weakly

p-summable sequence, which fails to be strongly p-summable.

Proof
Ifnot, idx would be p-summing. But idx = (idx/, so idx would be compact, which

is only possible if X is finite dimensional.

o

Thus lp (X) is a vector (linear) subspace of 1;(X) with the inclusion being strict

unless X is finite dimensional. We also have natural isometric isomorphism

1;(X) ~ B (lp, X) (1< P .5' 00) and It (X) ~ B (co, X) by associating to each

operator u the sequence (x) c: X given by the image of the canonical basis

Xj = u (e). In this sense, the space K (co, X) of compact operators corresponds with

the sequence (x) such that the series Ix) converges unconditionally.

17



2.4 NORMED SPACE OF OPERATORS

2.4.1Definition: Bounded linear operator
Let X and Y be normed spaces and u: D(u) ~ Y a linear operator, where

D(u) eX The operator u is said to be bounded if there is a real number c such

thatfor all x E D(u),

Iluxll~ cllxll· (2)

In (2) the norm on the left is that on Y, and the norm on the right is that on X. This

formula shows that a bounded linear operator maps bounded sets in D(u) onto

bounded sets in Y.

From (2) we have

IluxllW~c (x4J)

and this shows that the least c for which the above inequality holds is the

supremum of the expression on the left taken over D(u) - {OJ. This quantity is

denoted by Ilull;thus

_ {lluxll. }Ilull- sup W· X E D(u),x *- 0 . (3)

Ilullis called the norm of the operator u.

2.4.2 Theorem
An alternativeformula for Ilullis

Ilull= sup~luxll:x E D(u ),llxll= I}.
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Proof

We write Ilxll ~ a and set y ~ C},where x * o. Then IIYII ~ ";" ~ 1, and since u is

linear, (3) gives

llull = Sup{ ~ lluxll : x E D(u), x * 0}

= sup~luYII: Y E D(u),IIYII = I}

Writing x for y in the last expression we have

Ilull = sup~luxll: x E D(u),l[x[[ = I}
o

Given any two normed spaces X and Y (both real or complex), we consider the set

B (X, Y)

consisting of all bounded linear operators from X into Y, that is, each such

operator is defined on all of X and its range lies in Y. From the proof that Ilull

satisfies the four axioms of a norm, it follows that B (X, Y) is a normed space

which we state in the following theorem.

2.4.3 Theorem
The vector space B (X, Y) of all bounded linear operators from a normed space X

into a normed space Y is itself a normed space with norm defined by
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= sup~Iuxll: x E D(u), Ilxll= I} .

Proof
For any u, VE B (X J) and UE R, we have that

N1.llull = sup~luxll: x E D(u),llxll = I} ~ 0

N2. Let Ilull = 0, then sup~luxll: x E D(u),llxll = l}= 0 for all x;;=O

=> Iluxll= 0 for all x ;;= 0

:::::?U = 0

Let U = O. Then clearly Ilull = 0

:.llull = 0 if and only if u = O.

N3.llaull = sup~l(au)xll: x E D(u),llxll = I}

= sup~lauxll: x E D(u),llxll = I}

= lal sup~luxll: x E D(~),llxll = I}

=Iailiull
N4. Ilu+ vii = sup~l(u+ v)xll : x E D(u) U D(v), Ilxll= I}

= sup~lux+ vxll: x E D(u)u D(v),llxll = I}

~ sup~luxll: x E D(u),llxll = l}+sup~lvxll: x E D(v),llxll = I}

= IIuII+ IIvII

20
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The following theorem shows us the condition under which the space B (X, 1)

becomes a Banach space. It is worth noting that the condition does not involve X;

that is X mayor may not be complete.

2.4.3 Theorem: Completeness of B (X, lJ
If Y is a Banach space then B (X, 1) is a Banach space.

Proof
We consider an arbitrary Cauchy sequence (u.) in B (X, 1) and show that (u.)

converges to an operator u E B (X, 1). Since (u,J is Cauchy, for every 5> 0 there is

anN such that

IIUIl-umll < s (rn, n >N).

For all x EX and m, n > N we thus obtain

(4)

Now for any fixed x and & we may choose 5= 0: so that c:Jxll < &. Then from (4)

we have Ilullx - un/xii < & and see that (unX) is Cauchy in Y. Since Y is complete,

(U,~) converges, say, UnX ~ y. Clearly, the limit y E Y depends on the choice of

X E X. This defines an operator u: X ~ Y, where y = ux. The operator u is linear

smce

Urn u; (ax + fo) = Urn (aunX + jJ u.z) = alim UnX + jJ Urn u-z.

We prove that u is bounded and u; ~ u, that is Ilull - ull-+ O.
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Since (4) holds for every m > Nand UnX ---f ux, we may let m ---f co. Using the

continuity of the norm, we thus obtain from (4) for every n > N and all x EX

IIu"x - uxll = Ilu"x - I~l~ umxll = limllu"x - umxll ~ ~Ixll· (5)

This shows that (u; - u) with n > N is a bounded linear operator. Since u; is

bounded, U = u; - (u; - u) is bounded, that is U E B (X, J:). Furthermore, if in (5) we

take the supremum over all x of norm 1, we obtain

Ilu" -ull ~ 5 (n >N)

Hence

Ilu" -ull ~ o. o

2.5 THE DUAL OF lp SPACES

Since a linear functional on X maps X into R or C (the scalar field of X), and since

R or C taken with the usual metric is complete, we see that X· is B (X, J:) with the

complete space Y = R or C. Thus the dual space X· of a normed space X is a

Banach space (whether or not X is). Below are examples of some of the spaces that

appear in our work and how their dual spaces look like. We recall that an

isomorphism of a normed space X onto a normed space X is a bijective linear

operator u: X ---f X , which preserves the norm, that is, for all x EX,

Iluxll= Ilxll
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X then is called isomorphic with X and from an abstract point of view, X and X

are identical, that is, they differ at most by the nature of their points but are similar

as far as their structure (in this case, the norm) is concerned.

1. Space 11: The dual of I] is ZcX)

Proof
A Schauder basis for I] is (ei), where ek = (t\J has 1 in the kth place and zeros

otherwise. Then every x E I] has a unique representation

We consider any x * E (1]/, where (1]/ is the usual dual space of I]. Since x * is

linear and bounded,

0Ci

x*(x) = 2:>krk
k=l

(6)

where the numbers rk = x*(eJ are uniquely determined by x*. Also Ilekll = 1 and

=> SUplrk I ~ Ilx *11
k

(7)

Hence (rJ E l.;

On the other hand, for every b = (jJJ E lro we can obtain a corresponding bounded

linear functional y * on I]. In fact, we may define y * on I] by

0Ci

/(x) = Lxkflk
k=l

where x = (xJ E I]. Theny * is linear and boundedness follows from
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1y'(X~ = :Lxkflk ~ :LIXkflkl ~ suplflJI:Llxkl = IIxlisuplflJI
J J

We finally show that the norm of x * is the norm on the space Ico From (6) we have

Taking supremum over all x of norm 1, we see that

IIX *11 ~ sup Ir J I·
J

From this and (7)

IIX *11= sup Ir J I
J

which is the norm on l.; Hence this formula can be written Ilx*11 = IIeIL), where

c = (r) E L; It shows that the bijective linear mapping of Z; onto lro defined by

x * H e = (r J ) is an isomorphism.

o

2. Space lp: The dual spaee of lp is lq; here 1< P < co and q is the conjugate of p,

h . 1 1 1t at lS - + -,-= .
p q

Proof
A Schaud~r basis of lp is (ei), where ek = (4) as in the above example. Every x E lp

has a unique representation,
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We consider any x* E I;, where I; is the dual space of lp. Since x * is linear and

bounded,

cc

x*(x) = IXkYk
k=1

(8).

Let q be the conjugate of p and consider Xn = (xil!)) with

M if k <n and Yk ;cO
Yk

x(n) - (9)k -
0 if k > n or Yk = 0

By substituting this into (8) we obtain

00 n

x*(xJ = Ixln)Yk = IIYkl
q

•

k=1 k=1

We also have, using (9) and (q - 1)p = q

x" (xJ,; !Ix" 1111x" II~ Ilx"Ii( I Ixl" lj'r
~ Ilx"II(IIr.I('-')'r

Together
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Dividing by the last factor and using 1-~ = ~, we get
p q

Since n is arbitrary, letting n ----fOO, we obtain

(10).

Hence (yJ E lq.

Conversely, for any b = (jJJ E lq we can get a corresponding bounded linear

functional y * on lp. In fact, we may define y * on lp by setting

OCJ

y*(x) = LXkf1k
k~l

where x = (xJ E lp. Then y * is linear and boundedness follows from

Iy'(x~ = Lx.fl. ,;(Llx.I'}"( Llfl.!' r
= Ilxll(L Ifl. I'r

Holder's inequality

Hence y' E Z;.

We finally prove that the norm of x * is the norm on the space lq. From (8) and

Holder inequality we have
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hence by taking supremum over all x of norm 1 we obtain

Ilx'll<; (Ihl'r
From this and (10) we see that the equality sign must hold, that is,

Ilx'II~( Ihl'r (11).

This can be written Ilxll = IICllq, where c = (y) E lq and J1 =x * (ei). The mapping of I;

onto lq defined by x' ~ cllxll = IICllq is linear and bijective and from (11) we see that

it is norm preserving, so that it is an isomorphism.

o
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CHAPTER 3

DISCUSSION AND RESULTS

This chapter contains two sections, the first, section 3.1, is a presentation of the concept

of summing operators from which the concept of summing multipliers was abstracted. In

section 3.2 we present the concepts of absolutely and p-summing multipliers. Using the

definition of (p,q)-summing multipliers and the ideas developed from the concepts of

summing operators and absolutely and p-summing multipliers, we show that the space of

all (p,q)-summing multipliers is a Banach space.

3.1 SUMMING OPERATORS

3.1.1 Definition: Absolutely summing operator
Let X and Y be Banach spaces. An operator u EB (XJ) is absolutely summing iffor every

unconditionally convergent series Ix) in X it holds that Iuxj is absolutely convergent

in Y

As was stated earlier, the root of the study of this class of operators is traced to the work

undertaken by Grothendieck. His theorem is a consequence of a matrix inequality called

Grothendieck's inequality.

3.1.2 Grothendieck's Inequality
There is a universal constant kG for which, given any Hilbert space H, any

n EN, any n x n scalar matrix (a.) and any vectors xi, "',Xm YJ''',Yn in BH, we have
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The possible kG-currently unknown-is generally called Grothendieck's constant; it

depends on the chosen scalar field. The above inequality is called Grothendieck's

inequality.

3.1.2 Grothendieck's Theorem [3]
Every continuous linear operator u: 1}----J.12is absolutely summing.

Proof
We assume that Ilull<1 and restrict ourselves to real scalars. Let (x.) be an unconditionally

summable sequence in I}) then 1:'ntinXn converges for any sequence of signs tin, and we

have

where v is the operator from lco=I;to I} i.e. v: lco----J.l}.

We need to show that Illuxnll < 00. First we reduce to finite dimensions so that we can
n 2

apply Grothendieck's inequality.

Let mEN and t5 > 0 be given. Choose n :C m, and vectors y}, ... ,Ym in It c 11 so that

IIXi - Yill ~ %i for 1 :5'i sm. If n happens to be strictly greater than m, set Ym+}= ... =Yn=O

as well. For each i, write Yi
nI aUe)for the expansion of Yi with respect to the unit

j=l

coordinate vectors III I;. This gives us a matrix a =(auJ for use III Grothendieck's

inequality .
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Assuming absolute summability in 12 we have

for appropriate Z1, ... .z; E Bl~. This is well suited for insertion into the left hand side of

Grothendiek's inequality.

Now going to unconditional summability in 1/ which is interpreted as sign summability,

we have that given C1, ... ,cn=Il,

This is well suited for insertion into the right hand side of Grothendieck's inequality.

Thus in terms of Xi'S
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Letting 6 ~ 0, we get

I Ilux" II ~ kG ·11uII· sup I GiXi < 00
n o;=±l

for any choice of (xJ in Ij•

o

This formulation of Grothendieck's theorem and the meaning of kG were given by

Pietsch and Lindenstrauss and Pelczynski, by changing from the original tensor norms

context to the Pietsch's operator ideals setting. This particular proof of the

Grothendieck's theorem is taken from [8].

3.1.4 Definition: p-summing Operator
Suppose that 1s p < 00 and that u: X ~ Y is a linear operator between Banach spaces.

We say that u is p-summing if there is a constant c;?: 0 such that regardless of the natural

number n and regardless of the choice of xi, ... .x; in Xwe have

(1)

The least c for which the inequality (1) holds is denoted by

ffp (u).

We shall write
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for the set of all p-summing operators from X to Y. TIp (X, 1) is a linear subspace of

B (X, 1), the space of all bounded linear operators from X into Y, and that ffp (u) defines a

norm on TIp (X, 1) with

Ilull s ffp (u)

for all u E TIp (X, 1). It has been shown [3] that TIp (X, 1) is a Banach space.

3.1.5 Theorem
Il, (X, 1) is.a Banach space under the normffp.

Proof
Let (u.) be a ffp-Cauchy sequence in Tl, (X, 1). Since 11-11:::; n).) , (u.) is Cauchy in B (X, 1)

and so converges to some u E B (X, Y) in the uniform norm. u gives rise to the operator

defined, and this implies that (uJ is a Cauchy sequence in (1;(X),lp(Y)). This is a

Banach space since Ip(Y) is complete, and so (uJ converges. Its limit is a map with

values in lpw(y) and so must be U. Thus u is p-summing and Iim zr (u - uJ = O. Hence
n-Ht) p

n, (X, 1) is complete. o

3.1.6 Definition: (p, q)-summing operators
Given 1~p ~ q < 00, the space TIp,q (X, Y) of (p,q)-summing operators is formed by those

operators that map sequences in 1;(X) into sequences in lq (1). In other words if there

exists a constant c such that
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for any finite family of vectors Xj in X

The least of such c is the (p, q)-summing norm of u. It is denoted ffp.q (u).

Note: (p, p)-summing is just the same as p-summing.

3.2 SUMMING MULTIPLIERS

Let X and Y be two real or complex Banach spaces and E (X) and F (Y) be two Banach

spaces whose elements are defined by sequences of vectors in X and Y.

3.2.1 Definition: Multiplier sequence
A sequence of operators (u) E B (X, Y) is called a multiplier sequence from E (X) to F (Y)

if there exists a constant c> 0 such that

for all finite families Xl, ... .x; in X

Notes:

(1) The set of all multiplier sequences is denoted by (E (X), F (Y)). In this study, we

consider the case of classical sequence spaces E (X) = Z;(x) and F (Y) = lq (Y).

(2) If u E IIp.q (X, Y) then the constant sequence Uj = U for all j E N, belonging to
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(3) If we set Uj = UAj then (u) EV;(X),Iq(Y)) for all (AJE Ip' where ~+ ;, = 1 if and

only if U E IIp,q (X, J).

These facts suggest the use of notation In (X,Y) when considering the sequence (u) in
p.q

3.2.2 Definition: Absolutely summing multiplier
A sequence (u) E B (X) is called absolutely summing multiplier of X if (ujX) is absolutely

summable in X whenever (x) is weakly absolutely summable in X,' hence (ujX) E II (X) for

all (x) E It(X).

The space of all absolutely summing multipliers of X is denoted by In, (X) . It is a vector

subspace of Iw (B(X)). The space In, (X) is a complete normed space with respect to the

operator norm

As we saw in chapter 2, IJw(X)= IJ (X) if and only if X has finite dimension, so that

In (X) =l ; (B (X)).,

Using the Dvoretzky-Rogers theorem, it is proved in [7] that for any infinite dimensional

Banach space X we have
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3.2.3 Theorem: Dvoretzky-Roger theorem
Let X be an infinite dimensional Banach space. Then no matter how we choose (A,J E 12

there is always an unconditional summable sequence (xJ in X with IIx" II = IAn I for all n.

The proof of this theorem uses the following lemma

3.2.4 Lemma
Let X be a Zn-dimentional Banach space. There exists n vectors Xl, ... .x; E Bs, each of

norm ~ ~, such that regardless of the scalars AI, ... ,An we have

The proof of this lemma is found in [3].

Proof of the Dvoretzky-Rogers Theorem.
Fix (A,J E 12 and choose positive integers nI < n2 < ..., such that, for each kEN,

Since X is infinite dimensional, we apply the above lemma and find a sequence of vectors

(yJ in Bx, each of norm ~ ~, such that for every scalar sequence (an) and any k we have

A·y,
no matter how we select nk ~ N ~ ni; I. We set Xj = II~jand note that regardless of the

sign £n=.:ti and regardless ofnk ~N ~nk+l we have
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It follows that the partial sums of (linXtJ are Cauchy. Hence (x.) is sign summable, and so

unconditionally summable. The setting of Xj above ensures that IIxn II = IAIII for all n.

o

3.2.5 Theorem
Let X be an infinite dimensional Banach space, then

Proof
00

Let (a.) E 11.Since each (xJ E iiv(X) is norm bounded in X, it follows that IllallxlIll < 00.
11=1

Conversely, let (aJ E in) (X). For (fJJ E 12 there is by the Dvoretzky-Rogers theorem a

00

follows that I laJ1; I < 00. Since (fJJ E 12 was arbitrary, then (aj) E (i2)* = i2
i=1

o
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3.2.6 Definition: p-summing multiplier
Let l~ p < 00. A sequence (u): X~Y of operators is called a p-summing multiplier if

00

L:I[ujxillP < 00 in Yfor all sequences (X)E I;(X). Put
j=)

On the vector space In (X, r),we define a norm
p

which is well defined because for each (u) E In (X, r), this is the operator norm of the
p

bounded linear operator.

3.2.7 Definition: (p, q)-summing multiplier
A sequence (u) jEN of operators in B (X J) is a (p, q)-summing multiplier, in short

(u) E In (X, Y.), if there exists a constant c> 0 such that, for any finite collection of
p.q

vectors xi, ""xn in X it holds that

The least c for which the above inequality holds is the Cp,q)-summing norm of (u) and is

denoted by TCp, q (u). The space of all Cp,ql-summing operators is denoted by Inp,q (X,Y).
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3.2.8 Proposition
Let X and Y be Banach spaces and 1~p .s q < co. (inp,q (X,Y),lzp,q (u)) is a Banach space.

Proof
From the definition of a (p, q)-summing multiplier we have that

where

Il{xJI = sup{(t,I(x',xj )1'r:x· E Ex.} is norm in I;(X) and the least c for which

the above inequality holds is called the (p,q)-summing norm of (u)and is denoted by

1zp,lu).Thus we define

We now show that 1zp,q(u) defines a norm on In (X,Y). Given (ic), (v) E In (X,Y) andp,q p,q

a ERwehave

Let (u) = O. Then 1zp,q(u) = 0

:::}1zp,q(u) = 0 if and only if (u) = 0
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N3. ffp,q(au) = sUP~I((auJxJ: (XJE 1;(X),II(Xj~1 = I}

= sup~l(aujXj~l:(XJE 1;(X),II(Xj~1 = I}

= sup~la(ujxj~l: (XJE 1;(x),II(Xj~1 = I}

= sup~alll(ujXj~l:(XJE 1;(x),II(Xj~1= I}

= lal sUP~I(UjXj~l: (XJE 1;(x),II(xJ = I}

= lal ffp,q (u)

N4. ffp,q (Uj + v) = sup~I((Uj +vJxJ: (XJE 1;(X),II(Xj~1 = I}

= sup~I(UjXj +VjXj~l: (XJE 1;(x),II(Xj~1= I}

= sUP~I(ujXj)+ (vjXj ~I: (xj) E 1;(X),II(xj ~I= I}

~ sup~I(UjXj~l: (XJE 1;(x),II(Xj~1 = I} + sup~I(VjxJ: (XJE 1;(x),II(Xj~1 = I}

= ffp,q (u) + ffp,q(v).

Next we show that In (X,Y) is a complete normed space. We take a Cauchy sequence
e.«

(U(n)) in lnp,q (X,Y), where (inJ) = (u)nl). Therefore given e> 0 there is a natural number N

such that for m, n > N we have

Jrp,q(u)nl-U)lIIl) = sUP~I(uyll_U)ml~jll: (XJE 1;(x),II(Xj~1 = 1)

= sup~I(U)lIlxj _u)mlx)ll: (XJE 1;(X),II(Xj~1 = 1) < e (2)

Therefore for every j and for m, n > N, we have
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for every} and for m, n > N.

Thus (U)lIlxJ is Cauchy in 1q(Y). Given 1q(Y) is complete, (U)"lxJ converges in it, and so

fixing) and letting n ---+ 00 we have that (U)"lxj) ---+ (ujXj) E 1q(Y)

Letting n ---+ 00 in (2) and for n > N, we have

This implies that (u)"l -uJ E In (X,Y) and that (u)"l) converges to (u). But
p.q

u . =u(nl_(inl_u.) E In (X,Y).
} } } } e-«

Hence

(u) E In (X,Y)
p.q

and thus In (X,Y) is Banach.
p.q

o
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CHAPTER 4

CONCLUSION

The concept of Banach spaces is basic to the study functional analysis, hence the

significance of identifying that a given space is Banach.

In this research, we have shown that the space of all Cp, q)-summing multipliers,

In (X,Y), between Banach spaces X and Y, is itself a Banach space under the
p,q

operator norm denoted

It is worth noting that the context of our work has been a finite family of vectors

Xl, ""xn in X. This is in keeping with the Grothendieck theorem and the work

already done in summing operators.
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