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ABSTRACT

Predation by Nile perch is one of the main causes of fish stock depletion

in Lake Victoria. Uncontrolled human exploitation (overfishing) of the

stock leads to loss of fish biodiversity in Lake Victoria. Increasing the

harvesting rates of mature Nile perch can lead to stable stationary states.

However, increasing the predation rates of Nile perch can lead to unstable

ecosystem. Predation, coupled with uncontrolled harvesting have been a

major ecological force in shaping the present day fishing communities

on Lake Victoria, in particular and other lakes at large. The challenges

currently facing Lake Victoria is how to sustain the Nile perch, Nile tilapia

and how to conserve and restore threatened fish species. In this study,

we will apply the Lotka Volterra competition model (1925) for predator

and prey population.

The objective of this study is therefore to develop a predator- prey model

for Nile perch and Nile tilapia based on standard Lotka- Volterra predator

prey model. The methodology involves formulation of a system of ordinary

differential equations where prey ratio is incorporated. in this model. The

finding in this study could be used to predict and explain the effect of

predation by Nile perch on tilapia so that control of Nile perch can result

in conservation and restoration of threatened fish species. The model is

also a contribution of knowledge in mathematical modeling.



Chapter 1

INTRODUCTION

1.1 Introduction

From ancient times, fishing has been a major source of food for humanity

and a provider of employment and economic benefits to those engaged in

( this activity. However, with increased knowledge and the dynamic devel-

opment of fisheries, it was realized that living aquatic resources, although

renewable, are not infinite and need to be properly managed, if their con-

tribution to the nutritional, economic and social well-being of the growing

world's population was to be sustained.

Kenya's fisheries sub-sector is based on three main fish resource bases,

namely: inland fresh-water, coastal marine and aquaculture. Of these,

inland fresh-water fisheries are the most important with Lake Victoria

dominating fish production. The lake alone has contributed 92 percent.

(equivalent to 142000 tones) of an annual mean of 155000 tonnes of fish

landed in Kenya between 1998 and 2005. Besides Lake Victoria, the other

fresh water fish sources are lakes Turkana, Baringo, Naivasha, Jipe and

several dams and rivers spread across the country which collectively pro-
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duce 3 percent of total fish. Marine and aquaculture fisheries constitute
c..-

only about 4 and 1 percent respectively of fish landed in the country.

Three species- Nile perch (Lates niloticus), Dagaa (Rastrineobola argen-

tia) and Tilapia (Oreochromis niloticus) - constituted 52, 33, and 10

percent respectively of the total fish caught in Lake Victoria, with all the

other species contributing just about 5 percent. Abila [1] cited that the

indiginous fish species had been overtaken by .exotic species in fish pro-

duction. Before the introduction of Nile perch and exotic cichlids in the

1950's, the tilapiines: Oreochromis esculentis (Graham) and Oreochromis

variabilis were the most important commercially.

The Lake Victoria fish stock has undergone remarkable changes over the

past 20 years. Signs of over fishing were reported as early as 1970 when

the catch rates of tilapia dropped from 50-100 fish per 50 m long net with

127 mm stretched mesh to less than 5 fish (Ssetongo 1972). As the stocks

of Nile perch increased, fish species diversity decreased rapidly. Many

important food fish species seemed to have disappeared and later even L.

niloticus showed signs of decline.

From the conservation point of view, the decline and virtual extinction

of the cichlid species must be considered as an irreplaceable loss. It is

anticipated that one of the reasons behind. the decline in the fish species

diversity is predation. Other reasons, according to Lande[13] could be

over fishing and environmental changes. The indigenous tilipiines were

eliminated as a result of inter-specific species competition with introduced -

exotic species, mainly O. niloticus.

According to Ogutu[24], Lake Victoria evolved into a fishery dominated

by three species; the two exotic species- Lates niloticus (Nile perch), Ore-
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ochromis niloticus (Nile tilapia), and one native species- \Rastrineobola

argentia(Dagaa) .

The challenge facing us today is the consideration of global change, the

loss of biodiversity, and achieving a sustainable future, elevating the com-

plexities to new levels. It is clearly necessary to develop an ecologically

acceptable strategy for harvesting any renewable resource, be it animals,

fish or plants. Murray [21] observed that one of the basic concepts in the

analysis of harvesting populations is that of Maximum Sustainable Yield

(MSY) with minimum effort.

1.2 Basic concepts and definitions

1.2.1 Stochastic processes:

A stochastic process is a family of random variables, {X (t) : t E T} ,where

t denotes time. That is, at every time t in set T, a random number X(t)

is observed. {X (t) : t E T} is a discrete- time process if set T is finite or

countable[3].

In practice, this generally means T= {0,1,2,3,...}.

Thus a discrete- time process is {X(O), X(l), X(2), X(3), ...}.

{X (t) : t E T} is a continuous- time process if T is not finite or not

countable i.e. if the times form a continuum.

In practice, this generally means T = [0,(0) or T = [0,K] for some

K.A continuous- time process {X(t) : t E T} has a random number X(t)

recorded at every instant time. The state space, S is the set of real values

that X(t) can take. Every X(t) takes a value in R but S will often be a
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smaller set: R For example, if X(t) is the outcome of a coin tossed at

time t, then the state space S= {O,l}.

The state space S is discrete if it is finite or countable. Otherwise it is

continuous. The state space S is the set of states that a stochastic process

can be in Feller[7].

A stochastic process is a variable that evolves over time in a way that is at

least in part random. In most cases, a stochastic variable has both an ex-

pected value term (drift term) and a random term (diffusion term). The

drift coefficient models the dominant action of the system while the dif-

fusion coefficient represents randomness along the dominant curve. Fish

population growth varies in a random manner. This is because various

phenomena which are unpredictable affect it. Such phenomena include

disease, and environmental fluctuations which may harm or destroy the

fisheries. Fish population growth therefore represents a stochastic pro-

cess.

1.2.2 Markov process

A Markov process is a particular type of stochastic process where the

future distribution is dependent only on the current value. The earlier

history of the variable and the way in which the current value emerged

from the past are irrelevant as far as prediction using Markov models are

concerned.
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1.3 Birth-death process

The Birth- death process is a special case of a continuous- time Markov

process where the states represent the current size of a population and

where the transitions are limited to births and deaths. Birth- death pro-

cess have many applications in demography, queuing theory, or in Biology,

for example in the evolution of bacteria.

When a birth occurs, the process goes from state n to state n+ l.

The process is specified by the birth rates P'i}' i = 0, ....00 and death

rates {/Li}, i = 0, ...00.

In birth- death processes, state changes can only happen between neigh-

bours.

_ Size of population:

_ system is in state Ek when it consists of k members

_ changes in a population occur by at most one.

- size increased by one ----+ "Birth"

- size decreased by one ----+ "Death"

Transition probabilities Pij do not change with time.

/Li j = i-1

j = i+ 1

o otherwise

-/Li= death (less one in population size)

-/Lo = (no population ----+ no death)

-Ai= birth (increase one in population)
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• Ai > 0 (birth is allowed)

Queuing Theory Model
• Population = customers in the queuing system

.Death = a customer departure from the system

• Birth = a customer arrival in the system

1.4 Pure birth process

Suppose that a population develops over a short period of time in crowd-

free conditions with no environmental resistance factors, assuming that:

• The organisms do not die.

• They develop without interacting with each other.

• The birth rate A is same for all organisms.

f.lk=O for all k

Ak = A for all k

The system begins at time to with 0 member.

Deterministic Model
Letting N(t) denote population size at time t. Then in subsequent time

interval of length h, the increase in population size due to a single or--

ganism is A x h.(i.e.rate x time). so that increase in size due to all N(t)

organisms is A x h x N(t).

Thus

N(t + h) = N(t) + AhN(t).
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Then on dividing both sides by h gives:

[N(t + h) - N(t)]-;- h = )..N(t)

Letting h approach zero then yields the differential equation

d~;t) = )..N(t).

which integrates to give

N(t) = N(O) exp(Xz)

where N(O) denotes the initial population size at time t = O. This form for

N(t) is known as the Malthusian expression for population development.

Taking logs of both sides gives

In[N(t)] = In[N(O)] + )..t

Stochastic model
The above model is purely deterministic since it assumes that each or-

ganism reproduces on a completely predictable basis at a constant rate.

In reality however, population growth is 'stochastic' (i.e. random).

Suppose that in a short time interval of length h, the probability that .

birth will occur is Xh, Then fop the population to be of size N at time t

and no birth occurs in the subsequent short time interval (t , t + h), or

else it is of size N - 1 at time t and exactly one birth occurs in (t , t +
h). By choosing h sufficiently small, we may ensure that the probability
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of more than one birth occurring is negligible. Since the pr?bability of N
G

increasing to N+1 in (t, t + h) is (Ah) x N. It follows the probability of

no increase in (t, t + h) is 1 - ANh. Similarly, the probability of N - 1

increasing to N in (t, t + h) is A(N - l)h

Thus on denoting

PN(t)= Pr(population is of size N at time t).

we have

PN(t + h) = PN(t)xPr{ no birth in (t, t+h)}+ PN-1(t)X Pr{ one birth

in (t, t + h)}.

i.e. PN(t + h) = PN(t) x (1 - ANh) + PN-1 (t) x A(N - l)h

on dividing both sides by h, we get:

as h approaches zero, this becomes

For N(O), N(O) + 1,...

whose solution is given by the negative biriomial distribution:

(N = no, no + 1, ...)
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1.5 Pure death process

Suppose an environment of an Isolated population is polluted to such

an extent that all future reproduction is prevented and the death rate of

individual members is independent of their age, then a pure death process

will result.

Assuming that:

• Organisms do not give birth.

• They develop completely independently from each other

• The death rate f-l is the same for all individuals and does not change

with time.

• The individuals do not age

f-lk = f-l 2:: 0 for all k

Ak = 0 for all k

The system begins with N members, k= 1,2,3,...N

Deterministic model
Suppose that in a small time interval of length h the decrease in popula-

tion size due to a single organism is f-l x h." Then the decrease in size due

to all N(t) organisms is f-l x h x N(t). Thus

N(t + h) = N(t) - f-lhN(t)

which on paralleling with pure birth argument, becomes:
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with the solution

N(t) = N(O) exp( -p,t).

Taking logarithms gives the linear relationship

In{N(t)} = In{N(O)} - p,t

Stochastic model
Denote q(t) = Pr( a particular organism is alive at time t)

then

q(t + h) = Pr (it is alive at time t and does not die in the subsequent

small time interval h)

= q(t) x (.1- p,h)

On letting h approach zero yields

dq(t) = -p,q(t)
dt

which integrates directly to give

q(t) = exp( -p,t)

hence

p(t) = Pr (the organism is dead by time t )

Thus if the initial population is of size N(O) = no, and if all organisms

behave independently of each other, then N(t) satisfies the conditions for
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the binomial distribution with probabilities

i.e.

PN(t) = ( : ) e-N"'(l - e-"')""-N (N = 0, 1, no)

The mean and variance are given by the results noq(t) and noq(t)p(t)

i.e. m(t) = noe-J.£t and

v( t) = noe~J.£t(l - e-J.£t).
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1.6 Literature Review

A number of scholars have studied predator- prey models.

Lotka[18] modeled deterministic predator- prey relationship using the fol-

lowing differential equations:

dN(t)-- = N(A - vR)dt .

dR(t) = R( -I-" + AN)
dt .

where N(t) represents number of prey at time t, R(t) represents number

of predators at time t, v represents death rate of prey and A represents

birth rate of predator. It is assumed that in absence of predators, prey

increase at rate A, while in absence of prey, ,predators die at rate I-" In a

later paper, he introduced a logistic term -eN2 into the prey model and

came up with the model:

dN- = N(A - eN - vR)
dt

dR- = R(-I-" + AN)
dt

Even with the introduction of the logistic term -eN2 the model did not

improve much since it only strengthened the death term already present.

In his model, he assumed the following:

(i) in the absence of predators, the prey population develops as a lo-

gistic process with intrinsic rate of increase A and carrying capacity
A
c
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(ii) the rate at which prey are eaten is proportional to the product of
"-'the two population sizes.

(iii) the rate at which predators are born is proportional to the product

of the two population sizes and no time lag is involved.

Leslie and Gower [16], retained the Volterra prey equation:

dN- = N (A - eN -r--' vR)
dt

but changed the character of the predator equation to:

dR R·- = R(J-l - A( - ))
dt N

In this model, the net predator growth rate takes account of the rela-

tive sizes of the two populations. The larger ~ becomes, the smaller the

number of prey available to each predator and consequently the resource

available for predator growth declines.

Ogana et al[22] have described aquatic ecosystems as being complex webs

of interactions between many species, and between these species, the

environment and man. Factors limiting fish populations could thus be

physical, based on meteorological elements such as temperature and pre-

cipitation or biological, such as reproduction, predation and competition,

or energetic such as food chain nutrient transfers. The above processes

coupled with many other ecological and environmental factors make it

difficult to accurately asses the impact of anyone of them on marine and
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fresh water fisheries.
"--Concern over predation, harvesting and competition of species in ecology

has stimulated the development of several mathematical models to help

understand and explain the population dynamics of interacting species.

Gaucel et al[9] developed mathematical models to explain invading intro-

duced species in insular heterogeneous environments. In their model, they

emphasize the importance of accurate estimates of the predation rate on

the different age and sex classes as well as on demographic parameters of

prey populations in determining those species that need to be protected.

Gaucel and Pontier[9] used mathematical modeling to explain how preda-

tor food preference can change the destiny of native prey in predator- prey

systems. The predator- prey system behavior when the predator popu-

lation has a strong preference for one of the two age stages of the prey

population was described in the model. They showed how the age struc-

ture in the prey population can modify the dynamics of the population

under study. The preying preference of the alien predator on either juve-

nile or adult stages of the mature prey population, affects the dynamical

behavior of both native and introduced population densities.

Watsala[33] developed a mathematical model to explain the changes in

some fish and invertebrates population in Lake Victoria in relation to

predation by Nile perch and human exploitation. In Watsala's model,

the prey fish species comprised of Haplochromine cichlids (Rastrineobola

argentea, Oreochromis niloticus) and Juvenile Nile perch while the prey

of the invertebrates were Cardina nilotica and Anisopteran nymphs. The

Nile perch population in Watsala's model was divided into five develop-

mental stages which included: eggs(Larvae), young, juvenile, sub-adult
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and adults. The four stages of the Nile perch were graded on the basis of

the length of the Nile perch. The model further assumes the Nile perch to

be a cannibal and cannibalism only affected the juvenile Nile perch stage.

Watsala[33] assumed the prey behavior to be the same in various devel-

opmental stages. The model does not put into consideration the devel-

opmental stages of the prey species. The age of the prey (e.g. the Nile

tilapia) is of great significance as it determines the predation and harvest-

ing impact and response e.g. mature Nile tilapia (Oreochromis niloticus)

has the ability of avoiding predators and fishing nets compared to the

young ones.

Mugisha et al[20] came up with a mathematical model that incorporated

three developmental stages (i.e. young, juvenile and mature) of the Nile

perch and Nile tilapia with the behavior of the prey towards predation

and harvesting being formulated.

In this study, we wish to incorporate the proportion function to modeling

the proportion of Nile perch.
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1.7 Statement of the problem

In this study, we shall to incorporate predator- prey ratio in the Lotka-

Volterra model and develop a predator- prey model that can be used to

predict and explain the effect of predation by Nile perch on tilapia.

We shall also investigate the effect of harvesting of both Nile perch and

tilapia on the population dynamics.

1.8 Objectives of the study

The main objective of this study is to develop a predator- prey model that

incorporates the predator-prey ratio .. To this end the specific objectives

of the study will be to:

(a) Review the existing predator- prey models

(b) Develop a predator- prey model that incorporates the predator- prey

ratio in its formulation

(c) To fit the developed model in (b) to simulated data using parameters

estimated from previous studies on the two species of fish namely,

Nile perch and Nile tilapia.

(d) Discuss the implications of varying the predator- prey ratio on the,

sustainability of the population sizes of the two species of fish.
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1.9 Significance of the study

The importance of fishery resources to the economy of Kenya cannot be

understated. Fish make a significant contribution to the Gross Domestic

Product, provides both direct and indirect employment and supply rela-

tively cheap protein to the population. This role of aquatic products is

still rising, because land for agriculture has been overexploited to a large

extent and no new areas for agriculture can be found because of limitation

of land.

It is hoped that the model could be used to predict and explain the effect

of predation by Nile perch on tilapia. This information is expected to as-

sist interested parties to make informed decisions about management of

fisheries. It is also hoped that it can be extended to similar situations of

over exploitation of other renewable resources with an aim of conservation

and restoration of threatened species.
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Chapter 2

POPULATION MODELS

2.1 Introduction

Here, we consider a model in which the proportion of prey has been

incorporated. This model can be used to set the prey proportion to an

expected ratio to prevent extreme fluctuation that can cause imbalance

in the ecosystem.

Assumptions

The following assumptions are made when constructing the model:

(a) Preference in the predation nature of Nile perch is assumed.

(b) Cannibalism by Nile perch is negligible.

(c) Prey and predator can die naturally.

(d) Because the species are in a vast lake, the system is assumed to be at

a steady state.

We will also use the following notations:

R- density of Tilapia

p: density of Nile perch

R(t)- size of tilapia population at time t.
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P(t)- size of Nile perch population at time t.

N(t) -total number of Tilapia and Nile perch at time t.

The following parameters are used in the model:

A- birth rate of tilapia

A- birth rate of Nile perch

v-death rate of tilapia

Ilr death rate of Nile perch

A.(t) = R(t)
If' N(t)

rh - harvest rate of prey (catchability parameter)

n2- harvest rate of predator (catchability parameter)

2.2 Simple predator- prey model:

The model below is a simple form in which the within species competition

has been ignored:

dR(t) = R(t)(A - vP(t))
dt

(2.1)

dP(t)~ = P(t)( + ll. + AR(t)) (2.2)

The constant v measures the death rate of prey due to being eaten by

predators; the greater the number of predators, the faster the prey popu-

lation will be depleted. The constant A measures the skill of predator in

catching prey; the greater the number of prey, the greater the availability

of predator food resource.
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We combine the equations (2.1) and (2.2) to get:

dR(t)
dP(t)

R(t)(A - lIP(t))
P(t)( - J.L+ >.R(t))

(2.3)

which we can write in the form:

[-(J.LI R(t)) + >']dR(t) = [(AI P(t)) - lI]dP(t) (2.4)

which integrates directly to:

J.LIn R(t) - >.R(t) +A In P(t) - lIP(t) = c (2.5)

where c is a constant. This expression represents a family of closed curves

in which each member of the family correspond to a different value of

the constant. Each curve is determined by the initial position (R(t)(O),

P(t)(O)).

Five such curves are illustrated in figure 2.1 for the process:

dR(t) = R(t)(1.50 - O.lP(t))
dt

(2.6)

dPd(t) = P(t)( -0.25 + O.OlR(t))t .

with start points P(0)=15 and R(O)=l, 5, 10, 15 and 20

(2.7)
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Figure 2.1: Family of closed curves for the Lotka- Volterra process

Dynamics of the system

In the model system, the predators thrive where there are plentiful of prey,

but ultimately outstrip their food supply and decline. As the predator

population is low, the prey population will increase again. These dynam-

ics continue in a cycle of growth and decline.

Population equilibrium

Population equilibrium occurs in the model when neither the population

levels is changing. When both derivatives are equal to o.
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R(t)(A - vP(t)) = 0

-P(t)(/1- )..R(t)) = 0

When solved for R(t) and P(t) the above system of equations yields:

(P(t) = 0, R(t) = 0)

and

(P(t) = ~,R(t) = ~)

Hence, there are two equilibria.

The first solution effectively represents the extinction of both species. If

both populations are at 0, then they willcontinue to be so indefinitely.

The second solution represents a fixed point at which both populations

sustain their current, non-zero numbers, and in the simplified model, so

indefinitely. The levels of population at which this equilibrium is achieved

depend on the chosen values of the parameters A, /1, u, and)".
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2.3 Population model with proport.ion of

prey incorporated

Suppose we wish to incorporate a proportion of prey in the model:

Let

"'( ) = R(t)
'f/ t N(t) (2.8)

Where

N(t) = R(t) + ?(t)

and therefore
?(t)
N(t) = 1- cfy(t)

dcfy(t) = ~ (R(t))
dt dt N(t)

dcfy(t) N(t)~ - R(t)~
-

dt (N(t))2

1 dR(t) R(t) dN(t)
N(t) ~ - (N(t))2 dt

= R(t) [_~ dR(t) __ l_dN(t)]
N(t) R(t) dt N(t) dt

= cfy(t)[R~t) (R(t)(A - vP(t))) - N~t) (,\ - fJ)N(t)]

= cfy(t)[A - v?(t) - (,\ - fJ)] (2.10)

d~~t) = cfy(t)[A - v?(t) - (,\ - fJ)]

===? d~~~) = [A - v?(t) - (,\ - fJ)]dt

(2.9)
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j d~~~) = j[A - vP(t) - (,\ - tt)]dt

In(¢(t)) = [A - (,\ - tt)]t - u j P(t)dt + C

===? ¢( t) = e[A-(,x-J.L)]t-v J P(t)dt . eC

Let

(initial ratio as a result of initial population of both fish type)

¢(t) = Co . e[A-(,x-J.L)]t . «:J P(t)dt

At carrying capacity
AP(t) = -
v

we get:
A.(t) [A-(,x-J.L)]t -vJ!l'I' = Cae .e v

24
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Chapter 3

EMPIRICAL STUDY

In this chapter, we present numerical data in the model. The parameter

values used are estimated from the literature of various research articles

on Lake Victoria as follows:

3.1 Mortality rates

Two forms of mortality rate are considered for this research: fishing mor-

tality caused by harvesting of the species and natural mortality due to

natural causes (diseases, predation, and water pollution). The two forms

combined lead to total mortality(Z) of the .species. In fisheries,

Total mortality(Z)= Fishing mortality (fi) + Natural mortality (p,)

3.1.1 Natural mor-tality

Bassa [4] estimated the total mortality (Z) of Nile perch and Nile tilapia

as 1.65yr-1 and O.74yr-1 respectively. Natural mortality rates p, for the

Nile perch and l/ for the Nile tilapia were calculated and found to be
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a 34yr-1 and a 18 -1 . 1 '. . yr respective y. The life expectancy of the Nile perch

is estimated to be 2 years and 10months. Thus we"11 consider the natural

mortality fL to be 0.35yr-1 which is the reciprocal of life expectancy.

Watsala [33] estimated mortality rates of Nile perch to be ranging from

0.221 for the young ones to 0.57 for the mature species of 7 years and

above.

Dache [6] studied the landing trends, growth and mortality rates of Nile'

tilapia (Orechromis niloticus) to asses the state of its stock in Lake Victo-

ria. Estimated total, natural and fishing mortality rates where O.71yr-1,

O.72yr-1 and O.99yr-1 respectively. Life expectancy of the Nile tilapia is

estimated to be 1 year and 5 months. Fishing mortality of the Nile tilapia

rh is estimated at O.468yr-1.

3.1.2 Fishing mortality

Rabuor et al[27 1 estimated total mortality rates (Z) of Nile perch from

the catch curve analysis of two sets of length frequency data. The es-

timated rates were 0.72yr-1 and 0.94yr-1. For this study, we consider

Z = 0.83yr-1 which is the average of Rabuor's estimates. Thus from

n2 = Z - u, we have n2 = 0.48yr-1.
Getabu [101 analysed length frequency data to study mortality, exploita-

tion rate and recruitment in Nile tilapia ( oreochromis niloticus) in Nyanza

Gulf, Lake Victoria. The estimated fishing mortality ( rh) was 0.468yr-
1

,

Because similar harvesting methods are still being practised on Lake Vic-

toria, we consider nl = 0.468yr-1 for this paper,

Fishing mortality rate nl for tilapia and n2 for Nile perch can be esti-
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mated from the catches in the appendix.
<..-

The birth rates of Nile perch and Nile tilapia are A = 1.0123 and A = 0.910

per year respectively.

3.2 Numerical simulation of the model

The parameters used for simulation are taken from published records.

These will be used to generate curves for the model that we have come

up with. J.l = 0.34yr-1

1/ = 0.18yr-1

A = 0.910yr-1

A = 1.0123yr-1

</;(t) = ~e-(A-Jt)t

</;(0)= 0.5

</;(1)= 0.2827

</;(2)= 0.1599

</;(3)= 0.0904

</;(4) = 0.0511

</;(20)= 0.00000598

When </;(t) is plotted against time, the following curve is obtained:
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Figure 3.1: Mortality of 0.34 used at equilibrium

At t=O, ¢(O) = 0.5 it decreases to 0.0904 at t=3 and continues decreasing

gradually and finally becomes extinct.

Suppose we vary the death rate of predator, say by increasing its harvest-

ing rate. The result would be that we are merely delaying the extinction

time as depicted by the following figure:
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Figure 3.2: Influence of mortality on phi(t)

3.2.1 Predator population constant

When predator population is maintained relatively constant by making

birth rate equal to death rate: From equation (2.10) we have: cjJ(t) =
e[A-(A-/-L))t.e-v[ P(t)dt Assume P(t) = c, i.e.. population of Nile perch is

constant c:

(3.1)

cjJ( t) = e[A-(A-/-L))t .e-vct .ek

Let ek = A

cjJ( t) = Ae[A-(A-/-L)]t .er=
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¢(t) = Ae[A-H/-l-vclt (3.2)

at t= 0

¢(O) = A

assume ¢(O) = ~ initial ratio

A-I-2

(3.3)

To achieve.~ at t= 10 , c will be 2.6863 To achieve ~ at t= 100 , c will

be 2.4836 To achieve ~ at t= 1000 , c will be 2.4634 By maintaining P(t)

at 2.4634:

at t=O, ¢(t) = 0.5

at t=10, ¢(t) = 0.4979

at t=1000, ¢(t) = 0.3312

at t=10000, ¢(t) = 0.00812
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Figure 3.3: Time specific curves with P(t) maintained constant
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Chapter 4

SUMMARY AND

RECOMMEN·DATON

This thesis presents a predator- prey population model where prey pro-

portion has been successfully incorporated.

It is worth noting that the model developed in this study only takes into

account situations where we assume that birth rate of predator equals

death rate. That is, a point where carrying capacity has been reached for

the case of predator.

The value of c considered here is 2.4634. This is taken as P(t). When we

set time interval when ¢(t) = ~ to be 10 years, we obtain curve t=10 in

figure 4.3. If the time interval is 1000 years, we obtain the curve labeled

t=1000. The later maintains a reasonable ratio after a long period of

time.

The value 2.4634 considered is multiplied by 105 and is a measure in met-

ric tonnes.

There are other issues that this study was unable to address due to its

scope. In view of this, the following are recommended for further research:
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(1) Nile Tilapia population depends on several ecological ~nditions like

food supply, prevailing temperature etc. A population model that

takes into account these factors should be considered.

(2) Future models developed should take into consideration variations

in the birth rate and death rate, rather than assuming that all the

rates are the same for all intervals.

(3) Future models should also consider the effect of migration into or

out of the population as this would affect the population of both

predator and prey.
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