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ABSTRACT

The study of numerical ranges and spectra has been of great interest to

many mathematicians in the past decades. In this study, we have contin-

ued to look at the numerical ranges and spectra of operators .on a Hilbert

space. The properties of numerical range, for example, convexity and

closedness are well known as proved in the classic Toeplitz - Hausdorff

Theorem. In this study, we investigate the relationship between the spec-

trum and the numerical range of an operator, in particular, when the

operator is normal. We have established that for a bounded linear oper-

ator on a Hilbert space, the spectrum is contained in the closure of its

numerical range. For a normal operator, we have also established that

the numerical radius and the spectral radius coincides with the norm of

the operator. These results are actually a contribution to the field of

numerical ranges and spectra. For us to achieve these, it was paramount

that we had a deep understanding of the theory of operators, especially

on Hilbert spaces, General Topology, Functional Analysis and Abstract

Algebra. This was achieved by reading the available and relevant litera-

ture, solving the existing problems and understanding examples in these

areas. Further, we also had consultative meetings with the supervisors. In

addition, we explored internet Information and further references through

the use of research papers in this field. Lastly we could not avoid consul-

tations with other mathematicians who have carried research in this field

of study.
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Chapter 1

BASIC CONCEPTS

1.1 Introduction

The study of numerical ranges was first carried out and presented orig-

inally by Toeplitz in 1918. He proved that the boundary of numerical

range for an operator on a Hilbert space is convex [20J. Later, Hausdorff

proved that W(T) was simply connected. The work of these two scholars

later gave rise to the classic Toeplitz- Hausdorff theorem [16}. The sub-

ject aroused a lot of curiosity, and a number of mathematicians have done

research in this area over the years. Agure [2J later gave an alternative

proof to this theorem (Toeplitz- Hausdorff theorem).

This study is primarily concerned with the numerical range and the spec-

trum of normal operators on Hilbert space.

The first chapter is composed of basic concepts which we intend to use in

subsequent chapters. We also present terminologies and symbols.

In chapter two we discuss properties of the numerical range and examples

on how to calculate the numerical range.

In chapter three, we look at the relationship between the spectrum and
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the closure of its numerical range and further discuss n'q!mal operators

and the properties of algebraic numerical range. Finally, we give the

conclusion and recommendations of our work in chapter four.

First, we need to define certain concepts before we start using them.

Definition 1.1.1. Subspace.

Given a vector space X over a field K, a subset W of X is called a

subs pace if W is a vector space over K and under the operations already

defined on X.

Definition 1.1.2. Algebra.

Let X be a vector space with a field K, an algebra is a vector space X to-

gether with a bilinear map X x X : X defined by (a, b) ----+ ab \:I, a, b E

X such that a(bc) = (ab)c \:I, a, b, c E X.

Definition 1.1.3. Norm.

Let X be a vector space over K. A function II, II : X ----+ R is called

a norm if it satisfies the following properties; \:I, a, b e. X and \:I, .\ E K

(i) lIall 2: 0,

(ii) lIall = ° iff a = 0,

(iii) pall = 1.\lIlall,
(iv) lIa + bll :::; lIall + IIbll·

Definition 1.1.4. Metric space.

Let X be a nonvoid set and p : X x X ----+ jR+U{o} be a non-negative

function satisfying the properties

(i) p(x, y) = p(y, x), \:Ix, y E X,

(ii) p(x, y) = ° if and only if x =y,
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(iii) p(x, z) :=:; p(x, y) + p(y, z), V x, y and z E X. <..-

Then the ordered pair (X, p) is called a metric space.

Definition 1.1.5. Banach space.

A Banach space is a normed space which is a complete metric space.

Definition 1.1.6. Inner product.

Let X be a vector space over K (the field of real or complex numbers.)

A mapping denoted by (.,.) defined on X x X into the underlying field

is called an inner product of any two elements x and y of X if the

following conditions are satisfied:

(i) (x, x) 2 0, V, x E X and (x, x) = 0 if and only if x = 0,

(ii) For any x, x' and y of X, (x + x', y) = (x, y) + (x', y),

(iii) (ax, y) = a(x, y) where a belongs to the underlying field,

(iv) (x, y) = (y, x).

Definition 1.1.7. Inner product space.

Let X be a vector space over K and (., .) be a mapping, (., .) : X X X ----7

K. Then the pair (X, ,., .J) is called an inner product space over K.

Definition 1.1.8. Hilbert space.

A Hilbert space is a complete inner product space i.e a Banach space

whose norm is generated by an inner product.

Definition 1.1.9. Involution.

Let A be an algebra. A mapping from A --t A defined by x I--? x* V, x, x* E

A is called an involution on A if it satisfies the following four conditions;

v x, yEA and A a scalar,

(i) (x + y)* = x* + y* ,

(ii) (AX)* = >'x*,



(iii) (xy) * = y* x* ,

(iv) x** = x.

Definition 1.1.10. *-algebra.

An algebra A with an involution i.e. x ~ x* is called a *-algebra.

Definition 1.1.11. Banach *-algebra.

A Banach *-algebra is a normed algebra A with involution which is

complete and has the property that Ilxll = Ilx*ll. In this case, we define

a normed algebra as follows: i.e. the algebra A is a normed algebra if

for each element x E A there is an associated real number Ilxll, the norm

of x satisfying the axioms of the norm. Thus, V x, YEA,

(i) IIxll ~ 0 and Ilxll = 0 if and only if x = 0,

(ii) Ilaxll = lalllxll,
(iii) Ilx + YII ::; Ilxll + lIyII,
(iv) IIxYil ::; IIxlillYli.

Definition 1.1.12. C*-algebra.

A Banach *-algebra A with the property IIx*xll = IIxll2, V x E A is called

a C*-algebra.

Definition 1.1.13. Basis.

A basis S for a vector space X is a nonempty set of linearly independent

vectors that span X.

Definition 1.1.14. Orthonormal basis.

Let (X, (., .)) be an inner product space. Then, V, x, Y E X, x and Y are

said to be orthonormal if (x, y) = ° and IIxil = IIyII = 1. An orthonormal

set of all vectors of the form x and y which form a basis is called an

orthonormal basis.
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Definition 1.1.15. Operator. "-'

An operator is a mapping of a vector space X onto itself or to another

vector space.

Definition 1.1.16. Linear Operator.

Let X and Y be vector spaces. Then a function T : X --+ Y is called a

linear operator if and only if, V Xl, X2 E X and V A, J.L E K, T(AXI +
f.lX2) = AT(xd + f.lT(X2)'

Definition 1.1.17. Bounded linear Operator.

Let X and Y be normed linear spaces: A linear operator T : X --+ Y is

called a bounded linear operator if and only if there exists a constant

M > 0 such that, IITxl1 ~ Mllxll, V X E X.

Definition 1.1.18. Adjoint of T.

If T E B(H, K), where H, K are Hilbert" spaces, then the unique linear

operator T* E B(K, H) satisfying (Tx, y) = (x, T*y), V, x E Hand y E

K is called the Adjoint of T.

Definition 1.1.19. Self - adjoint operator. A bounded operator

T E B( H) is said to be self- adjoint if T = T*. Thus T is Hermitian and

D(T) = H if and only if T is self - adjoint.

Definition 1.1.20. Normal operator,

A bounded linear operator T on a Hilbert space H is said to be a normal

operator if it commutes with its adjoint, that is TT* = T*T.

Definition 1.1.21. Unitary operator.

A unitary operator is a bounded linear operator U on a Hilbert space

satisfying: U*U = UU* = I, where I is the identity operator.

This property implies the following:
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(i) U preserves inner product on the Hilbert space, so\hat for all vec-

tors x and y in the Hilbert space H, (Ux, Uy) = (x, y).

Proof.

(Ux, Uy) (x, U*Uy)

(x,Iy)

(x, y).

o

(ii) U is a surjective isometry (distance preserving map) i.e

IIU(x - y)1I = IIx - ylI·

Proof.

IIU(x - y)1I2 (U(x - y), U(x - y))

((x - y), U*U(x - y))

((x - y), I(x - y))

= ((x - y), (x - y))

lI(x- y)1I2

=} IIU(x - y)1I II(x - y)lI·

o
Definition 1.1.22. Compact operator.

If H is a Hilbert space, then an operator T E B(H) is a finite rank
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operator if the dimension of the range of T is finite 'and a compact

operator if for every bounded sequence (xn) E H, the sequence (Txn)

contains a convergent subsequence.

Definition 1.1.23. Functional.

A functional is a mapping of a vector space into a field of scalars

K (JR or C).

Definition 1.1.24. Linear functional.

f : X ~ C is a linear functional on X if f is a linear operator, that

is, a linear functional is a complex-valued linear operator.

Definition 1.1.25. Bounded linear functional.

A linear functional f is called a bounded linear functional if and only

if there exists a constant N > ° such that, If(x)1 :s Nllxll, Vx EX.

Definition 1.1.26. Positive linear functional.

A positive linear functional is a linear functional on a Banach algebra

A with an involution that satisfies the condition

f(xx*) :::::0, V, x E A.

Definition 1.1.27. State.

Let A be an algebra with involution. Then the linear functional f is

called a state on A if f is positive and Ilfll = f(e) = 1, where e is an

identity element in A .

Definition 1.1.28. Eigenvalue.

Let H be a Hilbert space and T : H ~ H a linear operator. For any

T E B(H) a number A E C is called the eigenvalue of T if there is
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a non-zero x E H such that T x = AX, the vector x is' then called an

eigenvector for T corresponding to the eigenvalue A.

Definition 1.1.29. Convex set.

Let X be a linear space. A subset M of the linear space X is convex if

V, x, y E M, and for any positive real number t satisfying 0 < t < 1, we

have tx + (1 - t)y E M.

Definition 1.1.30. Convex hull.

If M is a subset of a linear space X, then a convex hull of M, represented

by conv(M) is the smallest convex subset of X containing M, that is the

intersection of all the convex subsets of X that contain M.

Definition 1.1.31. Numerical range of T.

Let H be a Hilbert space and T : H ~ H be a linear operator. For any

T E B(H), the numerical range is the set defined as

W(T) = {(Tx,x) : x E H, Ilxll = I}.

Note: The numerical range W(T) has the following properties:

(i) W(T) is non-empty.

(ii) W(T) is unitarily invariant.

That is, W(U*TU) = W(T), U is unitary operator on H.

(iii) W(T) lies in the closed disc of radius IITII centered at the origin.

(iv) W(T) contains all the eigenvalues of T that is, A E W(T).

(v) W(T*) = p: A E W(T)}.
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(vi) W(I) = {I}, I is the identity of B(H).

(vii) If a, (3 are complex numbers, and T a bounded linear operator on

H, then W(aT + (3I) = aW(T) + (3.

(viii) If H is finite dimensional then W(T) is compact.

(ix) W(T) is a convex set (the Toeplitz-Hausdorff Theorem).

Definition 1.1.32. Spectrum of T.

For any T E B(H),

<7(T) = {A E <C: AI - T is not invertible in B(H)}

is called the spectrum of T.

Definition 1.1.33. Spectral radius.

Let H be a Hilbert space and T : H --t H be a linear operator. The

number

'Y(T) = sup{1 A I: A EdT)}

is called the spectral radius of T.

Definition 1.1.34. Numerical radius.

Let H be a Hilbert space and T : H --t H be a linear operator. The

number

w(T) = sup[] A I: A E W(T)}

is called the numerical radius of T.
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1.2 Literature review

For a normal operator T on a Hilbert space H, the numerical range W(T)

has a definition which was originally introduced for finite dimensional

spaces by Toeplitz [20] in 1918. He proved that, the boundary of nu-

merical range aw (T) for an operator on a Hilbert space is convex [20].

Later, Hausdorff proved that the set W (T) is simply connected. The

work of these two scholars later gave rise to the classic Toeplitz- Haus-

dorff theorem [16]. The subject aroused a lot of curiosity, and a number

of mathematicians have done research in this area over the years.

Agure [1] introduced a strong Toeplitz - Hausdorff property for the op-

erator T E B(H) and established the necessary and sufficient condition

for the set W(T) to be convex. In [2] he went on to give an alternative

proof to the classical Toeplitz - Hausdorff theorem. Stampfli [19] later

introduced the sets Wo(T) and W.,(T) , the maximum numerical range

and the 6-numerical range respectively, given by

and

W.,(T) = closure{ (Tx, x): x E H, Ilxll = 1, IITxl1 ~ 6}.

When H is finite dimensional, Wo(T) corresponds to the numerical

range produced by the maximal vectors (vectors x such thatllxll = 1and

IITxl1 = IITID·

In [19] he proved the convexity for Wo(T). In [2], Agure showed that
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W,,(T) for any T E B(H) is convex. '"'

For an algebra A and TEA, we can define the algebraic numerical range

V(T) for an operator T as V(T) = {f(T) : f E E(A)} where E(A) is the

set of states on A.

Agure in [1] introduced the algebra o-numerical range which he defined

as Vo(T) = {f(T) : f(1) = Ilfll = 1, f(T*T) 2': 02} and showed that

W,,(T) = Vo(T) for all T E B(H).

Therefore, the purpose of our study was to further investigate the set

W (T) for a normal operator T and find out if there is a relationship

between numerical range and the spectrum cy(T).

1.3 Statement of the problem

Let B(H) be the set of all bounded linear operators on a Hilbert space H.

For any T E B(H), the sets W(T) and cy(T) denote the numerical range

and the spectrum of T respectively. In this study, we investigate the

relationship between the spectrum cy(T) and the numerical rangeW(T),

specifically when T is normal. We further investigate certain properties

of normal operators and the algebra numerical range.

1.4 Objective of the study

The main purpose of this study is to investigate the relationship between

numerical range and the spectrum of T, in particular when T is normal.
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1.5 Research methodology.

In order to make a significant progress in this work, it was essential

to have a deep understanding of the theory of operators, especially on

Hilbert Spaces, and Functional Analysis. This was achieved by reading

the available and relevant literature, solving the existing problems and

understanding examples in these areas.

There was also need to have consultative meetings with the supervisors.

Information from the internet became useful. Consultation with other

mathematicians who have done research in this field was of great help.
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Chapter 2

NUMERICAL RANGES

2.1 Introduction

In this chapter, we shall be interested in bounded linear operators on a

complex Hilbert space H. Here, we see that, the numerical range W(T)

of any operator T E B(H) such that T : H ---+ H is the subset of the

complex numbers C given by

W(T) = {(Tx,x) : x E H, Ilxll = 1}.

This is often called the field of values.

We shall now look at some properties of this set and give their proofs and

further consider some examples.

2.2 Properties of numerical range

The set W(T) has several interesting properties for T E B(H).
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~
(i) W(aI + f3T) = a + f3W(T) for a, f3 E <C and T E BfH).

Proof

W(aI + f3T) = {((aI + f3T)x, x) : x E H, /lxll = I}

{(alx,x) + (f3Tx,x): x E H, Ilxll = I}

{a(Ix,x) + f3(Tx,x) : x E H, Ilxll = I}

= {a(x,x) + f3(Tx,x) : x E H, Ilxll = I}

= {allxl12 + !3(Tx, x) : X E H, Ilxll = I}

a + f3{(Tx,x) : x E H, Ilx/i = I}

a + f3W(T).

o
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(ii) W(T*) = p:: A E W(T)} .

Proof.

W(T*) {(T*x,x): x E H, Ilxll = I}

= {(x,Tx):.7: E H, Jlxll = I}

{(Tx,x) : X.E H, Ilxll = I}
= r~:A E W(T)}.

o

(iii) W(U*TU) = W(T), for any unitary U.

Proof.

W(U*TU) {(U*TUx,x) : x E H, Ilxll = I}

= {(TUx, U**x) : x E H, Ilxll = I}

{(TUx,Ux): x E H, IIxll = I}

= {(Ty,y): y E H, lIylI = IIUxll = IIxll = I} (Ux = y)

W(T).

o

(iv) W(T) lies in a closed disc of radius IITII centered at origin.
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Proof. Let). E W(T) then, :3 x E H with IIxll = 1 such that

1).1 I(Tx,x)1

< IITxllllxll

< IITllllxl12

= IITII·

Thus W(T) ~ N(O,IITII) which is a closed disc centered at the

origin with radius IITII. This completes the proof. o

(v) W(T) contains all eigenvalues of T.

Proof. Let Tx = ).x with Ilxll· = 1 then for all x,

(Tx, x) = ().x, x)

= ).(x, x)

).IIxll2

)..

=> ). E W(T). o

(vi) W(I) = {I}.
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Proof.

W(I) {(Ix,x) : x E H, Ilxll = I}

{(x,x) : x E H, Ilxll = I}

{llxl12
: x E H, IIxll = I}

{I}.

o

(vii) W(T) is convex.

This property of numerical range forms the backbone of our study.

The convexity of W (T) has been proved in more than one way by a

number of scholars for example, Agure [2] and Toeplitz [20] among

others. In this study, we shall provide an alternative proof to this

property which is much simpler and more direct.

But we shall first prove the following two basic Lemmas which

clearly presents the structure of the numerical range for a 2-dimensional

Hilbert space, and at the same time shall be used in our proof. The

first Lemma is the following;

Lemma 2.2.1. Let T be a linear operator on a 2-dimensional Hilbert

space f2. If the matrix of T which 'is a 2 X 2 matrix has distinct

eigenvalues .\1 and .\2 and the corresponding eigenvectors Xl and

X2, so normalized such that Ilxll = IIYII = 1, then W(T) is a closed

elliptic disc with foci at .\1 and.\2.

If"l = I(xl,X2)I and 8 = j1=12 then the minor axis is "11.\1 - .\21/6

and the major axis is 1.\1 - .\21/8.

If T has only one eigenvalue .\, then W (T) is the circular disc with
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center at A, and radius ~ liT - Alii·

Proof. Since £2 has unit disc {x : Ilxll = I} as a compact set and

the function x ~ (Tx, x) is continuous, it follows that W(T) is a

compact set.

Suppose T has only one eigenvalue A.

In this case T, = T - AI has the property that CJ(T1) = {O}, and

also Tf = 0 for the characteristic polynomial of the matrix T is

p(t) = oit. - A)2, for non-zero ex E C. Hence a(T - A1)2 = 0, i.e

Tf = o. If Tl = 0, we have W(T1) = {O}, and thus W(T) = {A}.

This clearly is a circle with center A and radius O. If T, =1= 0, then

there exists an orthonormal basis {el, e2} of £2 such that Tl el = ae2,

This implies that W(T1) is a closed circular disc with centre A and

di - ~ - IITIll _ IIT-AIIIra IUS - 2 - 2 - 2 .

Now if T has distinct eigenvalues Al and A2, the operator

has eigenvalues 0 and 1.

Let {el' e2} be an orthonormal basis for £2 such that and we choose

this such that

where u = (cos<p)el + (sin <p)e2 and sp is the angle between u and
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\
el, that is, cos <p = I(el' u) I, 0 ::; <p ::; ~. Now since TfU = u, we have

Now take any x = ael + be2, Ilxll = 1 with lal2 + Ibl2 = l.

Then

(TIX, x) = iib + Ibl2 = Ibl2 + lallbleiW cot ip,

If w varies with lal, Ibl fixed and lal2 + Ibl2 = 1, then the scalars

(TIX, x) trace a circle with center at (t, 0) with radius [t(l-t)J! cot ip

where t = Ibl2 and W(T1) is the union of all the circles.

The envelope of this family of circles is obtained by the equation

which can be simplified to

This is an ellipse with foci at (0,0) and (1,0) and with eccentricity

sin ip. The center of this ellipse is the point (~, 0) and its major and

19



minor axes of lengths csc cp and cot .p respectively. : <...- o

The next Lemma is famously known as the ellipse Lemma which

demonstrates when foci of an ellipse coincides with the eigenvalues.

Lemma 2.2.2. (Ellipse lemma) Let T be an operator on a two-

dimensional Hilbert space. Then W(T) is an ellipse whose foci are

the eigenvalues of T.

Proof We can choose T such that

with Al and A2 as the eigenvalues of T.

Now if Al = A2 = A, we have

Therefore,

liT - Alii =' sup{lla(x2, 0)11: IXll2 + Ixzl2 = I}

= lal·

20



Hence the radius is ~Ial. Therefore the numerical r~ge

W(T) = {z : Izl < I~I}.

It thus follows that W (T) is a circle with center at }. and radius J;l.

Now if Al I- A2 and a = 0 we have

T = [}.1 0]
o }.2

Therefore taking the inner product (Tx, x) we get

So

Now letting t = IXlI2, we therefore write the above equation as

follows (Tx, x) = tAl + (1 - t)A2 since IXl12 + IX212= 1

So W(T) is the set of convex combinations of Al and A2 and is the

segment joining them.

If Al I- A2 and a I- 0 we choose A such that it lies between Al and

21



A2. We therefore have

A+A [~ a 1T- 1 21= 2
2 0 A2-AI

2

In this case we let z = re-i8 AI-A2 = re-i8 and A2-AI = -re-i8, , 2 2 .

So

Here we see that W(T') is an ellipse with center at (0,0) and the

minor axis [c], and foci at (r,O) and (-r, 0).

Thus, the W(T) is an ellipse with foci at AI, A2 and the major axis

has an inclination of e with the real axis. o

We refer the reader to [16] for details on the above two Lemmas.

We now proceed to prove the property (vii) above.

Proof. Let a and b be distinct points in W(T) then there exists

x, y E H such that

a = (Tx, x), b = (Ty, y), Ilxll = Ilyll = 1.

Now let M be the subspace [{x,y}] spanned by x and y. Hence M

is a closed linear subspace of H of dimension 2 over <C.

Assume to the contrary that {x, y} is linearly dependent over C, so

that x = ay for some ex, E C with lal = 1. We then have (Tx, x) =

(Tay, ay)

(Tx,x) = (Tay,ay) = laI2(Ty,y) = (Ty,y).
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Thus a = b which is a contradiction. Hence {x, y} ~ust be linearly

independent over C.

Let E be the orthogonal projector on H onto M. Take z E M with

Ilzll = 1 we have Ez = z thus TEz = Tz

Now Tz need not be in M. However, ETz E M. Consequently

ETEz= ETz

Thus

(ETEz,z) = (ETz,z) = (Tz,Ez) = (Tz,z).

Now (Tz, z) E W(T) and we thus obtain W(ETE) E W(T).

Thus from Lemma 2.2.1 and 2.2.2, since W(ETE) is an ellipse (or

circular) disc it follows that W(T) is convex. 0

2.3 Examples

The following examples, give elaborate illustrations on how to calculate

the field of values that we refer to as numerical range of any given operator

T on a finite dimensional Hilbert space H. We note that examples 2.3.1

and 2.3.3 can also be found in [16J. Recall that the numerical range W(T)

of an operator T is the subset of the complex numbers C.

Example 2.3.1. In ([:2 let T be the operator defined by the matrix

Take x E ([:2, X = (f, g), IIxl12 = 1112+ Igl2 = 1 with Ilxll = 1.
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and

Taking absolute values on both sides we have

So W(T) c {z : [z] ::; ~} , a circle of radius ~ centered at (0,0).

Alternatively, given the operator T defined by the matrix

we then have the characteristic polynomial given by

T _ ),,1 = [ 0 - ).. 1 ]
o 0 -)..

and hence finding the characteristic equation we see that )..2 = o.
Therefore, )..= 0 is the eigenvalue. Since for the norm we have ~ IITII and

therefore normalizing the vector x we see that II( II~II) II = 1.

Now we have T(f, g) = (g, 0). That is
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This implies that IIT(f,g)11 = II(g, 0)11'20 Ilgli.

From the definition of an operator norm,

liT II sup{IIT(f,g)ll: 11(f,g) II= I}

sup{IIT(f,g)ll: Jf2 + g2 = I}

sup{llgll : f2 +l = I}

1.

Therefore, ~IITII = ~(1) = ~.

Therefore, W(T) is a circle of radius ~ centered at zero.

Example 2.3.2. Let T be the unilateral shift on £2 of square summa

sequences. For any x E £2, X = (Xl, X2, X3, ... ) , with Ilxll = 1 and

00

L IXil2 < 00,

i=l

the unilateral right shift operator T: £2 ~ £2 is given by



Now

(Tx, x)

o

)

Now, (IXII - IXzl)Z 2 0 which by the arithmetic - geometric mean

inequality implies that IXliz + IXzlz '2 2lxlllxzl.
Similarly, Ixzlz + IX31z2 21xzllx31.
Also IX31z+ IX41z 2 21x31lx41, and so on. Therefore adding all the terms

on the left and similarly on the right of the above equations, we obtain

IXliz + 21xzlz + 21x3lz + ··.2 21xlllxzl + 21xzllx31 + ...
We thus have

I(Tx,x)1 < IXIXzl+lxzX31+ ...

IXlllx21 + IX211x31+ .
IXlllx21 + IX211x31+ .
12(21xlllx21 + 21x211x31+ ... ).
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1[2 2 12 ]I(Tx, x)1 2 IXII + 21x21 + 21x3 + .

~[(IXI12 + IX212 + IX312 + ) + (IX212 + IX312 + ...)]

= ~[l + (IX212 + IX312 + ...)]
1 2 12[1+(1-lxII)

~[2 -IXI12]
2

If IXII i- 0 we see that I(Tx,x)1 < 1. For if IXII = 0 and x contains a

finite number of nonzero entries, we have I (Tx, x) I < 1 if we consider a

minimum natural number n such that Xn i- O.

Therefore, W (T) is an open disc of radius < 1.

Example 2.3.3. Let the transformation T: ((;2 ~ ((;2 be represented by

T= [: b ], r E lR, b E c,
-T

so that

[
r-.\ b ]T -,\1 = T>.=

o -r -.\

and -(r - .\)(r +.\) = 0

=? r2 - .\2 = 0

Therefore r = ±.\.

When r = .\ and given that (T - .\I)x = 0, we have
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Therefore this implies X2 = 0 and the eigenvectors are of the form (Xl, 0)

and eigenvalues are (1,0).

When A = -r, we have

Thus x~ = -~;2,so the eigenvectors are of the form (x~, x~).

Therefore (-~;2,x~) = x~ ( ;: ' 1). Now let x~ = 1, the eigenvector is (;:' 1)

and the eigenvalues ~( -b, 2r).

2.4 Further results on numerical range

The first result in this section is the following,

Theorem 2.4.1. T E B(H) is self-adjoint if and only if W(T) is real.

Proof. If T is self-adjoint, we have for all X E H,

(Tx, x) (x, Tx)

(Tx, x)

and hence W(T) is real.

Conversely, if (Tx, x) is real for all i E H, we have (Tx, x) - (x, Tx) = 0,
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and so ((T - T*)x, x) = O. 0

Thus the operator T - T* has only {O} in its numerical range. So this

must be a null operator. Therefore, T - T* = 0 and T = T*. 0

The next result which is the last in this chapter can also be found in [16]

but the proof presented is quite simple and more direct.

Theorem 2.4.2. Let T be self-adjoint and W(T) is equal to the teal

interval [m, M]. Then IITII = sup {1m!,IMI}·

Proof T is self-adjoint and we can define m and M respectively as

m = inf {(Tx,x) : IIxil = I},

and

M = sup {(Tx, x) : IIxil = I}.

Therefore when we take the norm of T, we get

IITII = sup {(Tx,x) : IIxil = I}

which is the result and this gives IITII = sup {Iml, 1M!} . o
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Chapter 3

SPECTRA

3.1· Introduction

In this chapter, we discuss the spectrum for a bounded linear operator T c
B(H), denoted by O'(T) and give exhaustively its properties. We further

explore properties of normal operators and show their relationship with

the spectrum. We then establish the relationship between the spectrum

and the closure of numerical range. Finally, we extend our study to

include some basic properties of the algebra numerical range.

For the definition of the spectrum, see definition 1.1.32.

The spectrum can be separated into three disjoint component sets, namely,

(i) The point spectrum which consists of the eigenvalues of T and

is defined by

PO'(T) = {>-. f= C : ),,1 - T is not 1 - 1 }.

Alternatively, if ),1 - T could be one-to-one but still not be bounded
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below, such A is called approximate point spectrum lY:app(T).

(ii)The residual spectrum which is a set defined by

Ra(T) = {A E C : AI - T is 1 - 1 but, R(AI-T) is not dense} .

(iii) The continuous spectrum fa(T) which is a set given by

fa(T) = {A E C : AI - Tis 1 -1, R(AI-T) is dense,

(AI - T) -1 is not continuous on R(AI - T)

So a(T) = Pa(T) U Ra(T) U fa(T).

3.2 Properties of the spectrum.

We shall now give the properties of the spectrum in the following remark.

Remark 3.2.1. If T E B(H) , it is known that

(i) a(T) is nonvoid.

(ii) a(T) is closed in (C, d). (Where (C, d) is metric space with metric d).

(iii) a(T) ~ N(O,IITII). (Where N(O, liT,,) is closed neighbourhood of °
with radius IITII).

(iv) The spectral radius, "'((T) = infnEN IITnll~ = limn--->ooIITnll~, Vn E·

N.

Details on remark 3.2.1 can be found in any Functional Analysis book

but for this study, we refer to [14].
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The next two Propositions characterizes the non-emptiness of the spec-

trum and the boundedness of the spectral radius, and for details we refer

to [3].

Proposition 3.2.2. Let H be a real Hilbert space and T E B(H) be

self-adjoint. Then CJ(T) i= 0.

Proof For a self-adjoint T, IITII = sup{I(Tx,x)l: x E Hand Ilxll ='1},

Then there is a sequence of unit vectors (xn) of elements of H such that

the first case, it follows that

II(IITlll - T)xn112 IITI1211xnl12
- 211TII(Txn' xn) + IITxnll2

< IITI12- 211TII(Txn, xn) + IITI12---t 0 as n ---t 00,

Similarly, in the second case, 11(IITlll+ T)xn112 ---t 0 as n ---t 00.

Consequently, IITII E CJ(T) in the first case and -IITII E CJ(T) in the

second case. Thus, CJ(T) i= 0. 0

Proposition 3.2.3. For any operator T E B(H), ,(T) :s: IITII.

Proof By Remark 3.2.1(iv), we have

,(T) inf{IITnll~ : n EN}
1

lim {IITnll;;:}
n---->oo

< IITII·

Therefore ,(T) :s: IITII

Thus CJ(T) ~ N(O, IITI!)· 0
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We now proceed to give certain results on the spectra 'and the numer-

ical range.

Theorem 3.2.4. Equivalent norm. For any operator T E B(H),

w(T) :::; IITII < 2w(T) ..

Proof. If A = (Tx, x) with IIxil = 1, we have by Schwartz inequality

IAI :::; I(Tx,x)1

< IITx II IIxII

< IITllllxll2

IITII·

Clearly w(T) ::; IITII. To prove the other inequality, we use polarization

identity

4(Tx, y) = (T(x+y), (x+y))-(T(x-y), (x-y))+i(T(x+iy), (x+iy))-i(T(x-iy), (x-iy)).

Hence by direct computation we get

41(Tx, y)1 < w(T) {lix + Yll2 + IIx - Yll2 + IIx + iYll2 + IIx - iYll2}

4w(T)[IIxll2 + IIYll2].

Now choosing IIxil = IIyII = 1, we have 4(Tx, y) :::; 4w(T)(2), and so

4(Tx, y) < 8w(T). This implies that

IITII < 2w(T).
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o

For details on the above result, see [16].

Theorem 3.2.4 implies that T = 0 whenever w(T) = O. But we notice

that this result is not valid in a real Hilbert space, as the example below

shows.

Example 3.2.5. Let H = lR x lR and T the operator represented by the

matrix

= [0 -1 1T ..
1 0

For x = (Xl, X2), Ilxll = 1, we have

and therefore Tx = (-X2' xd and (Tx, x) = O. However, IITII = 1.

Now, we look at extreme cases of the inequality in Theorem 3.2.4. We

recall that the spectral radius is given by I'(T) = sup {IAI, A E cr(T)} and

the point spectrum by Pcr(T) = {A E cr(T), Tx = AX for some x E H}.

Theorem 3.2.6. /fw(T) = IITII, thewy(T) = IITII.

Proof Let w(T) = IITII = 1. Then there is a sequence of unit vectors (xn)
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such that (Txn, xn) ---+ A E W(T), IAI = 1. That is G

= A(Xn,Xn)

= Allxnll2

= A.

From the inequality

we have IITxnll ---+ 1. Hence,

Hence A E (Japp(T) and ,(T) = 1. o

Theorem 3.2.7. If A E W(T), IAI = IITII, then A E P(J(T).

Proof. Let A = (Tx, x), IIxll = 1. Then

IITII = IAI = I(Tx,x)1 < IITxll ::; IITII·

So I(Tx,x)1 = IITxllllxll. Thus Tx = fJ,X for some fJ, E <C.However, A =

(Tx, x) = (fJ,X, x) = fJ, and hence Tx = Ax. 0

The above theorem 3.2.7 can be found in [16]. We now proceed to

give our main results in this study in the next section.
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3.3 Main results on the spectrum. and nu-

merical range.

Our aim in this section is to show that the CT(T) is included in the W(T).

It is sufficient to look at the boundary of the spectrum. We first give the

following theorem.

Theorem 3.3.1. Theorem.

The boundary of the spectrum {)CT(T) is contained in the approximate point

spectrum CTapp(T). That is {)CT(T) ~ CTapp(T). (Where o denotes the bound-
ary.) .

Proof. We first prove a result. If Tn is a sequence of bounded invertible

operators on H and Tn ----* T in norm. That is limn---->ooIITn - TII = 0,

where T E B(H) is not invertible, then 0 E CTapp(T).

Indeed to see this, since T is not invertible, T - OJ is not invertible,

so 0 EdT). But CT(T) = CTapp(T)U r(T). Therefore, this implies that

o E CTapp(T) OT 0 E f(T). If we already have 0 E (Japp(T), the proof is

over. Otherwise RT is not dense in H. Hence there is a nonzero x E H

such that x 1- RT.

since T~s are invertible and hence bijections so Xn = II~~~:IIis uniquely

determined and Xn =1= O. That is, T;;lxn =1= O. Hence,

Now;
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(Since x E Rf) therefore, Tnxn E R;f, v ».« N. <..,.

Now,

But Tn E RT obviously, 'linE N. That is Tnxn 1.. RT and TXn E RT.

Therefore, Tnxn 1.. Txn, 'linE N, since, by pythagorean theorem,

Ilx ± iYll2 = IIxII2 + IIYll2 for x 1.. y and IIx - Yll2 = (x - y,x - y) =

IIxll2 + IIYll2 - (x, y) - (y, x). Therefore, IIx - Yll2 = IIxll2 + IIYll2 since

(x, y) = 0 for x 1.. y.

Now it follows that

But since, IITnxn - Txnll2 ~ 0, we have

IITn - TII ~ 0, implying IITxn II ~ 0, as n ~ 00

That is,

II(T - OI)xnll ~ °
That is,

Let A E 8C7(T), (Note that C7(T) is closed) then we can choose a sequence

(An) of points of p(T) such'that
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That is,

IAn - AI ~ 0 as n ~ 00.

Now,

II(T - AnI) - (T - AI)II II(A-An)!11

IAn - AIIIIII
IAn-AI ~o as n~oo

But (T - AnI) is invertible since A E peT) and (T - AI) is not invertible.

Therefore 0 E (Tapp(T - AI) (by the result proved) that is, there exists a

sequence Yn E H such that IIYnll = 1 and II(T - AI)Ynll ~ 0 as n ~

00. That is, A E (Tapp(T). Therefore,

o

Now, we proceed to establish the relationship between the spectrum

and the numerical range in the following theorem which is a known result

but with reference to the work of Bachman and Narici [4], we give a new

approach to its proof;

Theorem 3.3.2. Theorem.

Let H be a complex Hilbert space, B(H) a set of bounded linear operators

on H. Let T E B(H), then (T'(T) s:::: WeT) and IITI/ E WeT) if and only if

IITII E (Tapp(T).
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Proof. If A rt W(T), then d = dist(A, W(T)) > 0, (wh~re dist is the

distance function derived from the modulus in C) then AI -: T has an

inverse and II (AI - T)-ll1 < ~.So by definition of distance d, we have

d:S; I(Tx, x) - AI, V x E H IIxli = 1.

This implies that,

and using the Cauchy-Schwarz inequality, we see that

II(T - AI)xll ~ dllxll·

Now, since (T - AI) is bounded from below, (T - AI)-l exists on R(T->'I)

and is bounded; moreover

Hence, there are only two possibilities, that is, A E p(T) or A E R(J(T)

Suppose A E R(J(T). Since,

{R(T_,>,I)}J.

ker(T* - >..I) (Nullspace)

If A E R(J(T) , then {R(T_>.I)}J. -::J {O}, that is, ker(T* - >"I) -::J {O},
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and hence X is an eigenvalue of T* .

If x E H, /lx/l = 1 and is such that T*x = Xx, then

Tx = AX for x i= 0

(Tx, x) (x, T*x)

(x, ~x)

A(X,X)

Allxl12

A

which implies that A E W(T), a contradiction. Hence, if A fj. W(T), then

A fj. (J'(T); this shows that

(J'(T) ~ W(T).

So from II(T-AI)-lyll 2: d-11Iyll, we have II(T-AI)-lll ~ «:', Now on the

other hand, P(J'(T) c W(T) and (J'app(T) c W(T) such that IAI = IITII.
To see this, if A E P(J'(T), then there exists x E H such that Ilxll = 1 and

Tx = AX. Then,

(Tx, x) = (Ax, x)

A(X,X)

Allxl12

A
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Thus A E W(T). <..-

Now since (Japp(T) C (J(T) and (J(T) C W(T), we have (Japp(T) C W(T).

Alternatively, A E W(T) implies that there exists a sequence (xn) of unit

vectors in H such that

lim II(AI - T)xnll = O.
n-->oo

Since for such Xn

IA- (Txn,xn)1 I((AI -T)xn,xn)1

< II(AI - T)xnllllxnli

< II(AI - T)xnll -+ 0 as n -+ 00

Thus

A = lim (Txn' xn).
n->oo

Therefore, it follows that A E W(T).

Since IAI = IITII = w(T) = SUp{IAI

implies that IITII E W(T).

A E (J(T)}. So IITII E (Japp(T)

o

Example 3.3.3. Consider the Hilbert space ([2 of dimension two over ([

and take the orthonormal basis {el' e2} where el = (1,0) and e2 = (0,1).

Define T : ([2 --t ([2 linearly through Tel = e2 and Te2 = O. Thus

matrix of T with respect to the given orthonormal basis is

o is the only eigenvalue of T, thus '(J(T) = P(J(T) = {O} , since ([2 is finite
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Tx ..[::]
[ :, ]

Oel + zle2

zle2

= (O,ZI).

Consequently,

(Tx,x) ((0, Zl), (Zl' Z2))

[0 z, 1 [ :: ]

Iflz11=O ;or 1,thenA=O.
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We find the maximum value of ). as IZll varies over th~slosed interval

[0,1]. We can use the technique of calculus or the following procedure

Since 1).1~ 0, we note that maximum value of 1).1is ~ and occurs when

IZll= ~. Hence

Also w(T) = ~as is seen from the set just above.

Alternatively, we may also observe that

For Zl = Z2 = ~, we obtain w(T) ~ (~)2 = ~. Hence w(T) = ~.
Note that

IITII sup{IITxll: x E Hand [z] = 1} for x = (Zl, Z2)

sup{II(O,Zl)1I : X=(Zl,Z2) and IIxll=l}=l.

Thus w(T) = ~IITII for this operator.

3.4 Normal operators.

In this section, we consider a normal operator and investigate the rela-

tionship between its spectrum and numerical range. We actually establish

43



this using the spectral and the numerical radii. We first look at basic ex-'--

amples of normal operators.

3.4.1 Examples of normal operators

Example 3.4.1. All self-adjoint operators are normal.

Proof. If T is self-adjoint, then T = T*. Then for all x E H,

(T*Tx, T*Tx)

(TTx,TTx)

(TT*x, TT*x)

IITT*xI12
TT*.'=? T*T

o

Example 3.4.2. All unitary operators are normal.

Proof. The proof of this follows from the definition 1.1.21 of a unitary

operator, 0

3.4.2 Further properties of normal operators and

spectrum

For normal operators T E B(H), we show the following results:

Theorem 3.4.3. Let T E B(H) be normal, then T* is also normal.
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Proof If T is normal it implies that

T*T TT*

T*T** T**T*

(TT*)* = (T*T)*.

Thus TT* = T*T. Which implies that T* normal. o

Theorem 3.4.4. If T E B(H) is normal, then the spectral radius 1(T)

equals IITII. That is 1(T) = IITII.

Proof For all T E B(H),

IIT*TII sup{IIT*Txll: x E H, IIxll = I}

< sup{IITI121IxI12: 'x E H, IIxll:S I}

IIT112,

To establish the reverse inequality, we have

IITxl1
2 = (Tx, Tx)

(T*Tx, x)

= I(T*Tx, ,7:) I (since T*T ::::0)

< IIT*Txllllxll,

< IIT*TllllxIl2,

Thus IITxl1 :S JIIT*Tllllxll Vx E H. That is IITII :S JIIT*TII, implying

that IITI12 :S IIT*TII, which is the reverse inequality. Therefore, IIT211=
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IITI12.By induction we obtain that for self-adjoint T,

Now, let T be normal, since ry(T) ::; IITII always hold, we only have to

prove that ry(T) 2: IITII. Since ry(T) = ry(T*), we have

=

ry(Th(T)

lim {IIT2n
1111 (T*)2n 1121 }

n-->oo

lim Wr2n(T*)2n 112;'
n-->oo

lim II(TT*)2n 112h
n-->oo

=

So this implies that ry(T) = IITII. o

Theorem 3.4.5. Let T E B(H) be normal, then T is normal if and only

if IITxli = IIT*xll, V x E H.

Proof. We first assume that T is normal. Then,

IITxll2 (Tx, Tx)

(x, T*Tx)

(x, TT*x)

(T*x, T*x)

IIT*xll2

==? IITx II = IIT*xll·
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Conversely, we assume that T*T = TT*, \:j x E H and move that T is

normal.

Now,

(Tx, Tx)

IITxl12

IIT*xIl2

tt:«, T*x)

(TT*x,'x)

==} T*T = TT* =} T is normal.

o

We recall that normal operators, those T for which T*T = TT*, may

be regarded as a generalization of self-adjoint operators T in which T*

need not be exactly T but commutes with T.

Now we state and prove the following theorem,

Theorem 3.4.6. 1fT is normal, then IITnl1 = IITlln, n = 1,2, ... More-

over, ,(T) = w(T) = IITII.

Proof For any x E H,

IITxll2 (T*Tx, x)

< IIT*Txll

Hence IITII2 < IIT211.
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Conversely,

IITTII

< IITIlIiTIl
< IITII2.

Therefore, since IIT211 :S IITII2 and IITII2 :S IIT211 we conclude that IIT211.=
IITII2. Now, for any x E Hand n E N, we have

(T*Tnx, T·Tnx)

(TT*(Tnx), Tnx)

Since T is normal, we have T*T = TT*. Therefore,

(3.4.1)
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Now,

(Tnx, Tnx)

trt=«, Tn-Ix)

< IIT*TnxIIIITn-Ixll

< IITn+IxIIIITn-Ixll
< IITn+lIIIITn~lllllxI12.

Taking sup on both sides with Ilxll = Iwe obtain,

Suppose IITkll = IITllk for 1 ~ k ~ n, then we show that it is true for

k = n + 1. Therefore,

IITI12n = (1ITlln)2
IITnl12 (by induction)

< IITn+lIIIITn-111
= IITn+lIIIITlln-1 (by induction)

Therefore, IITI12n~ IITn+1II IITlIn-l. (3.4.2)

49



(

Now dividing equation 3.4.2 both sides by IITlln-1, we get-.

IITII2n(IITlln-1 )-1 < IITn+1 II
IITII2nllTII1-n < IITn+1ll

IITII2n+l-n < IIrn+lll

IITlln+1 < IIrn+lll·

That is, IITlln+l < IITn+l II

On the other hand,

IIrn+1
11 II~II

n+1 times

< ii1'IIIITilIITII···IITil
, #

Vn+1, times

IITlln+l.

So that,

From equations (3.4.3) and (3.4.4), we get IITn+l II = IITlln+1.
Thus, IITnil = IITlln, V n and for T normal. Moreover,

lim IIt= II*
n---->oo

lim (IITln~
n---->oo

Hence ,,(T) IITII·

(3.4.3)

(3.4.4)

Now by theorem 3.2.6, we conclude that ,,(T) = w(T) = IITII. 0
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3.5 Algebra numerical range.

Definition 3.5.1. Let A be a complex normed algebra with unit. Denote

by E(A) the set of states on A. The algebra numerical range of an element

TEA is defined by

V(T) = {J(T) : f E E(A)}. (3.5.1 )

It is well-known that V(T), is a compact convex subset of the complex

plane. See [5].

3.5.1 Properties of algebra numerical range.

We note that from now on, B(H) is considered as an algebra of bounded

linear operators on a Hilbert space H as opposed to the previous con-

siderations as a set. Algebra numerical range V(T) has the following

properties:

Theorem 3.5.2. For all T, S E B(H)

(i) V(T) is non-empty compact convex subset of scalars.

(ii) V(AI +/-LT) = A+/-LV(T) for I is the identity in B(H) and A, /-LE K.

(iii) V(T + S) = V(T) + V(S).

(iv) IAI ~ IITII, for all A E V(T).

Proof.
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~
(i) Let T : H -----t H, then for all T E B(H), we show that <the set

V(T) = {J(T) : f(1) = 1 = Ilfll} is convex.

Let '\1, .\2 E V(T). We seek to show that a.\l + (1 - a).\2 E V(T) for

O<a:::;l.
Now this implies that, there exists functionals (Pt, ¢2 E E(B(H)) such

that

and

define ¢ by ¢(T) = a¢l(T) + (1 - a)¢2(T).

Then for 0 < a ::;1 and !31, !32 E K,

o/({31T1 + (3zTz) CXo/l({31T1+ (3zTz) + (1 - cx)¢z({31T1 + (32TZ)

= a¢1(f31T1)+ a¢1(!32T2) + (1 - a)¢2(!31T1) + (1 - CX)¢2({32T2)

a!31¢1(T1) + a(32¢1(T2) + (1 - a)(31¢2(T1) + (1 - a)(32¢2(T2)

(31{a¢1(T1) + (1- a)¢2(T1)} + (32 {a¢l (T2) + (1- a)¢2(T2)}

¢((31T1 + (32T2) (31¢(T1) + (32¢(T2).

Hence ¢ is linear.

Next, we show that II¢II = L

Since, ¢(1) = a¢l(1) + (1 - a)¢2(I) = 1.
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Now, it follows that, 1 = 11>(1)1 :S 111>1111111= 111>11.

11>(T)I la1>l(T) + (1 - a)1>2(T)1

< od1>l(T)1 + (1- a)I1>2(T)1

.< all1>ll1llTII + (1 - a)II1>2111ITII

< a11T11 + (1 - a)IITII

= IITII·

Thus, 111>11:S 1, 111>11~ 1 so 111>11= 1. W~ note that the norm of 1> is given

by

111>11= sup{I1>(T)I : IITII :S 1}.

It follows that 1>(T) E V(T). Hence V(T) is convex.

For compactness and non-emptiness of V(T), we refer to H. M. Sadia [17J.

(ii) For all >., J.LE K,

V(>'1 + J.LT) = {f(>'1 + J.LT): f E E(B(H))}

{Af(I) + J.Lf(T) : f E E(B(H))}

{A + J.Lf(T) : f E E(B(H))}

x + J.LV(T).

(iii)

V(T + S) {f(T + S) : f E E(B(H))}

{J(T) : f E E(B(H))} + {J(S) : f E E(B(H))}

V(T) + V(S):
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\

(iv)IAI ::; IITII, for all A E V(T). If A E V(T), then A ~ f(T) for all

f E E(A)}. Then

IAI = If(T)1 < IIfllllTl1 = IITII since Ilfll = 1.

Hence, IAI ::; IITII, for all A E V(T). o
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Chapter 4

SUMMARY AND

RECOMMENDATION

In this last chapter, we draw conclusions and make recommendations

based on our objective of study and the results obtained.

4.1 Summary

In the conclusion of our research, we would like to give a summary of our

study. In chapter one, we discussed the background information, basic

concepts, definitions, notations and symbols that pertains to this study.

Chapter two, dealt with numerical ranges and discussed exhaustively its

properties, for instance convexity, closedness among others. We further

considered some results on the numerical range.

In chapter three, we defined the spectrum of a bounded linear operator

on Hilbert space and gave its properties. We further established that,

the spectrum of a bounded linear operator is contained in the closure of

its numerical range. Moreover, we looked at normal operators and its
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examples where we established its relationship with the ~2-ectrum.

Lastly in the same chapter, we included some basic properties of algebra

numerical range.

4.2 Recommendation.

From this study, we recommend that the relationship between the spectra

and numerical ranges can still be investigated for other operators such

as hyponormal operators, subnormal, quasinormal, paranormal operators

among other large classes of normal operators. Further, the relationship

between algebra numerical ranges and the spectra can also be explored.

Much attention can be directed towards these mentioned areas.
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