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ABSTRACT

Despite the rapid development of statistical packages, a lot of climatic data still remain

unanalyzed due to lack of specialized routines in most of the packages, One package has a

climatic menu though with limitation on complex analysis such as generalized linear models.

Others can perform the Generalized Linear Model analysis but do not have a specialized menu

for analyzing climatic data. There is no statistical package currently available which has a

specialized capability to do climatic analysis easily and includes the use of generalized linear

models. This study starts the work of creating a specialized menu in GenStat for analyzing

climatic data by implementing Markov modeling of rainfall data. Four procedures have been

written and corresponding dialogues were created to ease their use. Incorporating a climatic

menu into GenStat package will support researchers in agricultural and many other fields that

need an analysis of climatic data as part of their work ..
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CHAPTER 1: INTRODUCTION

1.1: Background information

Recent developments in statistical software have simplified the entire process of data
"-'manipulation and analysis. This permits the analysis of large and complicated data sets.

Climatic data has been routinely collected in many locations for many years, but a lot of this

data remains unanalyzed. In the past, climatic analysis was often left to specialists due to

complexities of the data, such as the strong within and between year variability. The advances

in the software bring routine analysis of climatic data within reach of non-specialists. This is

important due to the current worldwide interest in climate particularly climate change.. .

Lack of climatic data analysis has made it difficult to understand the difference

between climate change and natural cl imatic variability. Statistical analysis is therefore

important as it aims at "identifying the systematic behavior in the data set and also searching

for periodic variation, a quasi-periodic variation, a trend, persistence or extreme events in the

climate element under analysis" [2]. This will enhance the understanding of whether there is a

climate change or climatic variability within a given time frame.

Although a number of statistical packages have the capability to analyze complex

statistical problems, most of them do not have specialized routines for analyzing cl imatic data.

Instat was introduced in the early 1980s as a simple statistics package to help in the teaching

of statistics. It was later improved by adding more components with particular interest for

processing climatic data [21]. It is the only available package specialized for analyzing

climatic data.

The analysis of climatic data is easier and user friendly in Instat due to its additional

Climatic Menu. Through this menu, most of the climatic analysis can be done e.g. summaries,

analysis of events and Markov modeling of rainfall data, etc. Though Instat has the ability to

analyze climatic data, it does not include the facilities, such as generalized linear models

(GLMs), needed for a full analysis of climatic data. GenStat on the other hand is a powerful

package which can handle complex GLM. It is a general statistics package that offers a wide

range of high-quality statistical techniques and graphics.



GenStat has a flexible working environment where data can be analyzed using a

user-friendly menu-based interface and a powerful command language from which you can

create your own command procedures to perform the analyses. The command language

permits the user to write his/her own programs that can cover situations where the standard
\

analysis does not give them what they require. "So any GenStat analysis can be used in the

construction of a new technique." [15J. Despite the command language, most users are still

reluctant in using it.

It is possible to analyze climatic data using GenStat even though it does not have the

climate menu as in Instat [6]. Currently, the climatic data analysis using GenStat is currently

only possible if you know and understand the direction to take for the solution. This requires

more understanding for users who might want to use the package to analyze their climatic data

[6J. The existing GenStat commands and procedures can be used to construct other

procedures, to simplify their use and make them easily available to most users; in addition, the

procedures can be used to form their corresponding menu and dialogues. A climatic menu can

therefore be added to GenStat package to make it easier for many users to do their work

without having to master the command language.

This study is aimed at starting the implementation of a climatic menu into the

GenStat package which will be able to handle high order Markov Chains to be used in

modeling rainfall. Chapter 2 of this report discusses the analysis of rainfall data using Instat

and Marksim with particular interest on Markov modeling. The extensive use of the GenStat

'command language and its dialogue/menu Interface is discussed in chapter 3. Chapter 4

describes how rainfall data is prepared for fitting in Instat and how the same is implemented

in GenStat using the existing and the newly developed procedures. Markov modeling of

climatic data and how it is implemented in GenStat is then discussed in chapter five. Finally

chapter six discusses how the GenStat procedures are used in a real and large climatic dataset.
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1.2:Basic Concepts

1.2.1: The Generalized Linear Model

The Generalized Linear Model (GLM) was introduced by [14J. It is an extension of

the General Linear Model to include response variables that follow any probability<:...-

distribution in the exponential family e.g. Binomial, Poisson, Multinomial, Gamma, Negative

Binomial etc. It may be used where the response variable neither follows a Normal

distribution nor have homogonous variances [15]. Comparing GLM and Multiple regression

models (a form of general linear model) makes its features seen more clearly [19]. The

expression below can be used to define General linear models:
p

Yi = {JOi +I{JjiXji + Ci (i = 1, ...,nand E(Ci) = 0)
j=l

(I-I)

These set of n equations can be written in the form of a compact model as shown

below.

y = XfJ + f

(1-2)
where

a) Y is a vector of response variable and is a standard linear model meeting the

Gauss-Markov condition and can be expressed as shown in equation 1-3.

Eey) = e = XfJ

(1-3)
b) is the matrix explanatory variable (Covariate),

c) fJ is a vector of unknown parameters (where fJ are estimated by solving the least-

square equations( 1-4) and E is a vector of unobservable of errors corresponding to

the observation.

X'Xp = X'Y

(1-4 )

The approach used by [14] was to describe any given model in terms of its link

function and its variance function. The variance function describes the relationship bet ween
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the mean and the variance of the dependent variable to allow for a proper calculation of the

variance under non-normal conditions while the link function describes the non-linear

relationship between the mean of the dependent variable and the linear right hand side.

GLMs are used for regression modeling for non-normal data. Suppose we generalize

equation (1-3) with a linear predictor based on the mean of the outcome variable, then the

function 9 (/1) will be called the link function.

g(/1) = (j = Xp
(1-5)

The link function can be inverted as shown in equation (1-6)

/1 = g-l (XP)

(1-6)

If Yi is binomially distributed with mean /1 then the link function is logit as derived

by [14] and expressed as:

9(fl) = log [ fl ] = Xp
1-fl

(1-7)

Then 11 can be expressed as:

exp (8)
fl = 1 + exp (8)

(1-8)

1.2.2: Markov Chain

A Markov Chain is a time ordered probabilistic process consisting of a finite number

of states and some known probabilities Pij, where Pij is the probability of moving from state

ito state j [10]. That is, the probability at some point of time T being in a certain state is

conditioned on the states of the previous time, where the number of previous periods is termed

as the order of the Chain. A Markov Chain is useful for analyzing events whose likelihood

depends on what happened last.
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1.2.3: The Markov Chain of first order

In the first-order Markov Chain, the current state is dependent solely on the state of

the immediate previous period and the chance that a process is in state j at time '[ given that it

was in state i at time T - 1 is represented by transitional probability Pij which is expressed as

follows

(1-9)

Pij can be estimated as shown below [16]:

Pij = ,\,c ;
L....j=l qij

t.t = 0, 1,~, 3, ". C

(1-10)

Where qij = historical frequency of transition from state i to state j and

C = the maximum number of states
I !

1.2.4: High Order Markov Chain

A Markov Chain of order it is referred to as high order Markov Chain if it greater

thanl. The probability that on time T will have a particular state depends on the states of the

previous time T - A. For example the Markov Chains of order 2 and 3 satisfy the conditions in

. equation (1-11) and (1-12) respectively.

Piz,ilj .r = Pr(Xr = jlXr-1 = iI, Xr-Z = iz, ... , Xo = io)

= Pr(Xr = jlXr-1 = iI, Xr-Z = iz)

(1-11)

Where Piz.itj.T is the transition probability of state j in time I, given state il in time

T - 1 and state iz in time T - 2

Pi3.iz.itj,r = Pr(Xr = JIXr--1 = i..Xr-Z = i2, ... , Xo = io)

= Pr(Xr = JIXr-1 = iI, Xr--2 = iz, Xr-3 = i3)

( 1-12)
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The equation (1-11) mean that it doesn't matter what stat the day T - 3, T - 4, and so

on if you are referring to order 2.

Modeling a high order Markov Chain leads to a high-dimensional space of

parameters [22]. A higher order Markov Chain say of order 2 with two states will have four
\

parameters, order 3 will have eight parameters order 4 will have sixteen parameters and order

A will have 2" parameters. Increasing the number of states increases the number of parameter

in each order. Such models may not be accurate in situation where there may be no sufficient

data to estimate them. However, the papers [12] and [22] suggest that the high dimension of

parameters can be reduced in such situations.

1.2.5: Modeling Rainfall data using Markov Chain

Since the work by [4] proposed Markov Chain for modeling the sequence of wet and

dry days, it gained popularity in representing daily precipitation occurrence processes [13].

This has been contributed by the flexibility of the Markov Chain model and the ease of

estimating the parameters and obtaining the fitted model without resorting to simulation [19].

The occurrence of a wet state in day 1 is dependent of what state that occurred in the

previous day's 1-1, 1-2, 1-3.... The random variable X, represents the occurrence or non-

occurrence ofrain on day 1such that

[
0 if day r is dry

X; = 1if day r is wet

(1-13)

1.2.6: Fitting a first order Markov Model to rainfall data

The first order model assumes that the probability of rain occurnng on any day

depends only on whether it did or did not rain on the previous day. To fit this model, the

parameter for transition probability PeT is estimated over the year [18]. The Pi,T is the

probability of rain in day r given state i (for i = 0,1 ) in day r - 1. The estimate of Pi,T is

given by rioT [19] which is the proportion of years with state i in their day r - 1 that had rain

in their day r. The ri,T is expressed as shown in equation (1-14).

(1-14)
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where

nil,r is the number of years with rain on day r

niO,r is the number of years with no rain on day r

The random variable nCr takes a binomial distribution with the Probability of success

being PCr and(nil,r + niO,r) is the number of trials. Therefore the model used is

Pi,r = g(Bir)

(1-15)

where g(.) is a logit link function connecting the probabilities PCr to the function

Birwhich is a linear unknown parameters [19]. The model is a generalized linear model since

binomial is a member of the exponential family [14]. PCr is therefore expressed as

exp (Bir)

(1-16)

The work by [19] suggested that Fourier analysis may be used to express 8iT as shown

below:

m

Bir = aiD + i)aik sin(kr') + bikCOS (kr')]
k=l

(1-17)

where t' = 2Trr/366 and m is the number of harmonics

1.3: Statement of the problem

Markov Chain models have been in existence III the past to describe rainfall

occurrence data [18]. Several advances are made in improving the Markov model fitting to

rainfall data for example; the use of higher order Markov Chains [19] and finding a suitable

'. Markov order [1]. However little has been done to make the modeling of rainfall data using

Markov Chains accessible to users of statistical packages.

A powerful statistical package with specialized routine for analyzing climatic data is

needed to handle such models. The introduction of Instat package was meant to simplify the
7



modeling of rainfall data and make it accessible to user though it cannot handle complex

analyses like the Generalized Linear Models.

GenStat is another powerful package with the capability of climatic data analysis [6]

but it doesn't have a climatic menu. Despite its potential and avail~bility of a guide for
<...-

climatic analyses, it is still not easy to use it for climatic analysis due to lack of a specialized

climatic menu.

1.4:Objective of the study

Analysis in GenStat can be done through the command language if it cannot be

achieved through dialogues and menus. It is possible to build the commands into a procedure

that can perform a particular task. These procedures can. then be used to develop special

menus and dialogues. The main objective of this study is to start the implementation of an

extension of the Instat climatic menu into the GenStat package through creating procedures,

then developing them into menus.

The specific objectives are;

• Create a set of procedures in GenStat to support Markov Chain modeling of
rainfall data.

• To add a menu and dialogs for each procedure to facilitate their use.

• Demonstrate the use of these procedures by analyzing daily rainfall data for
Katumani, Kenya.

1.5:Significance of the study

Simplifying daily rainfall data analysis will enable more researchers to be able to do

the analysis and hence include it in their work. Non specialists will have an opportunity to

perform simple climatic analysis on their data without necessarily consulting the data

specialists. This is intended to encourage more researchers to utilize climatic data in their

research. The Markov modeling analysis will incorporate the Generalized Linear Model that is

readily available in GenStat. This new facility will permit the comprehensive analysis of daily

rainfall data to easily produce quality reports.
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Chapter 2: Literature review

The study on the sequence of daily rainfall occurrence was started by [4). They

assumed that the probability of rainfall on any day depended only on whether the previous day

was wet or dry, that is whether rainfall did or did not occur. Given the event on the previous
'-'

day, then, the probability of rainfall is assumed independent of events of further preceding

days. They classified days as wet or dry according to whether there had or had not been

recorded at least O.lmm of precipitation in the 24-hour from 8.00 a.m. to 8.00 a.m. the

following day. They found that the. daily rainfall occurrence for the Tel Aviv data was

successfully fitted with the first-order stationary Markov Chain model. The model parameters

were the two conditional probabilities:

PI = p(Wet day/previous day wet)

(2-1)

Po = p(Wet day/previous day dry)

(2-2)

Given the Markov Chain and estimates of its two basic probabilities, they derived

various properties of rainfall occurrence patterns. These included probabilities of rainfall i

days after a wet or dry day. A wet spell of length k was defined as a sequence of k wet days

preceded and followed by dry days. Dry spells were defined correspondingly. Weather

cycles were defined as combinations of a wet spell and an adjacent dry spell. The distribution

of spell lengths was found to be geometric. They then derived probabilities of a wet spell of

length k and dry spell of length m, probability of a weather cycle of n days and the

probability of exactly s wet days among n following a wet day. For large n , the distribution

of the number of wet days tends to normality. The fit of the model was tested on data of daily

rainfall in Tel Aviv [4] for the 27 rainy seasons 1923/24 - 1949/50. Chi-square tests of

goodness of fit showed no significant deviations from the actual observations on rainfall so

the model was said to hold.

Rainfall usually occurs in seasons of various lengths. They did not have any further

coefficients of periodicity, persistence or any other parameters. The model was not suggested

in terms of actual rainfall occurrence but as a statistical description of the observations. In
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their paper [11], they reported that the first order of the Markov Chain model was found to fit

the observed data in Italy successfully. This model was based on the assumption that there

was a dependency of the daily rainfall occurrence to that of the previous day.

In the analysis of Samaru, Nigeria rainfall [17], he modeled the occurrence of rainfall
\

as a first order Markov Chain. The probability of rainfall was not const~'i1t within each period

of interest instead the probability of rainfall is a function of the time of the year. At the

beginning and end of the season, the probability of rain is greater, if there was rain on the

previous day, than if the previous day was dry. In the middle of the season, the probability of

rain appears to be approximately the same irrespective of the state of the previous day. A

linear logistic model was fitted to the data. However, to estimate the transition probabilities

in the Markov Chain model, lots of data is required hence statistical software to' ease the

analysis.

A climatic Guide [21] described the use of Instat Software to analyze climatic data.

The guide explained step by step how to analyze most of the element of climate. This

simplifies the analysis of climatic data due its existing dialogue and menus specialized for

analyzing climatic data. However there are instances when it is not sufficient. For example,

situation where higher order Markov modeling (of more than order 2) is required, Instat

cannot achieve. Alternative software to Instat is' Marksim which is based on a

stochastic weather generator and uses a third-order Markov process to model daily weather

data [8].

The widely used stochastic model in rainfall modeling is the GLM [3] due to the

stochastic nature of rainfall [13] this has not been achieved in Instat. GenStat software is a

more powerful tool because it can be used to perform the more complex analysis of data

especially the GLM. GenStat climatic Guide [5] describes how GenStat software can be used

to analyze climatic data.
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CHAPTER 3: FITTING MARKOV CHAIN MODELS USING INS TAT

ANDMARKSIM

3.1: Introduction

Markov models are fitted for rainfall data collected from Katu~ani Experimental

Research Station in Kenya (longitude-l °35' S, Longitude-J'Z'Td E, Altitude-1600mm) for the

years 1961-2001 (41 years). The data is already available in the Instat library, and is used to

fit a zero, first and second order Markov models using Instat package. The same data will be

simulated using MarkSim software which also fits a third order Markov model to the data.

The two packages (Instat and MarkSim) are used to establish the appropriate order of the

Markov model of rainfall data for Katumani Experimental Research Station.

11

3.2: Instat.

Instat package has a specialized menu for Markov modeling of rainfall data. Using

the Climatic Menu in Instat, Markov modeling sub menu involves three stages. These are;

data preparation, fitting the model and using the model. Figure 1 below shows the "Climatic

=> Markov Modeling" Menu in Instat.

Stage 1: Data Preparation

Stage 2: Fit the Model

Stage L Use the fitted Model

Figure 1: Markov Modeling Menu

3.2.1: Data preparation

The data preparation stage summarizes the rainfall data into counts and totals for the

model fitting. The Menu "Climatic => Markov Modeling => Counts/Totals" (Figure I) is

used. It is possible to model a zero, first and second order Markov Chains for rainfall

occurrences in Instat. When the zero option is selected in the 'Order for Count' section, it



r

calculates the total number of wet and dry days for each day of the year (two variables only;

dry and wet), first order calculates the number of days with a specific state given the state in

the previous day (four variables i.e. 'ww','wd', 'dw' and 'dd') while second order calculates

number of days with a specific state given the state in the two previous days (eight variables
\

i.e. 'www', 'wwd', 'wdw', 'dww', 'ddw', 'dwd','wdd', 'ddd'). FigureS is a dialog box in

Instat that is used to generate the counts/totals. (We illustrate these stages with a zero order

Markov model)

CountsJnA:o
IX42,X43
'X42
X43
X44

,X45
'X46

'-- ......:..."-'-.~_~ "X47

r rfe~t I'i",chy~~ $:~f<!itelv

'Rr~~wl
Help J Reset I J~~~J: ,

Figure 2: Counts/Totals Dialogue box

The result for count is displayed in the spreadsheet (Figure 3) for order zero. Remember the

result did not display the amount of rainfall since the radio button none for amount was

selected as shown in Figure 2.

5
6 29 1

Figure 3: Counts of rainy days of order zero.

The column X42 is renamed as 'dry' and X43 as 'rain'. They contain the number of

occasions, in the 41 years, that each day is dry or rainy. For example, 8 years out of 41 years

had rainfall on day 5 (5th January), while, only 6 out of 41 years received rainfall on the 1st

dry

2
3
4
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January. From the counts, the chance of rainfall on a particular day can be calculated, for

example using the result in Figure 3, the chance of rain on 1st January. is ~ on 2nd January.~,
41 40

on 3rd January 10 etc. These probabilities are calculated using the Menu "Climate => Markov
41

Modeling => Prepare ". The dialog (Figure 4) has the option of calcula lpg the summary of

rainfall counts and amounts on a daily basis or otherwise.

< IX44

Summary of rainfall counts and amounts-

r Leave on daily basis

r. l~·0.i':!i;i·~;.i~·~to f 5 :3 d~y totals

r. l~.·0.·r.o.·~~·;i.·.~.0§ii"j;j:i.i, r: Plots on!\!

Available data Day numbers into

X42(dry) ", ' .
X43rain I ~ " 'I-Stln1mary of rainfall counts and amounts

C:-. Leave on daily basis

r Summarise

Change the starting month or select part of the year-~----'

r. Wholey,ear (as in the'p,ata file)

Figure 4: Prepare Dialogue Box

The Prepare dialogue box sets up the columns needed to fit the models (Figure 5) and

also produces a graph of the chance ofrain (Graph 1).

shows the figures that are used for fitting the curve.
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Overall chance of rain

0.4-

0.8-

0.6

0.2-

O+----,---,'----"----,---_.----,-~_r~~,~~,,~~~LL-.,L---T,----,,----"--~
o 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Day of the Year

Graph 1: Overall Chance of rain

3.2.2: Fitting the model

The second stage of Markov modeling is fitting the Markov model to the rainfall

data. It uses the model probabilities dialogue which is obtained through, "Markov Modeling

=> Model Probabilities" menu which opens fitting the probabilities dialoge box (Figure 6)

This produces the fitted probabilities, which are given in a column called 'Cr' (Figure 7) and a

curve of the fitted probabilities, Graph 2

r CI r~~~..?~~proba.bilitie~. Second

I r. Zero c First r ( . r Second, : (1+ curves) (~ curves)
L-._ .. ..

Gon'lpie.:.:itybf initial me"gel f3:fjr;'narrnorlics

tlelp ....J

Figure 6: Fitting Probability Dialogue box
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W'$/#4W~~ff${W4'$fflW/.W'.«f'aW~W$afflffl
~ ~ ~v

heet - KATUMANI world

0.213:3521
0.20542-- -0.279560:31

0.1972:312 0.514421 31---------.----- -.... -..--- ----- -..-l. -..
.0.1894324 -0.1340795
0.1 :31:3888

0.174658

Figure 7: Fitted Probabilities of order zero.

Rainfall data is cilic in nature that is the 31 st of december continues to Ist of january

the following year. There sin and cosine functions are used as indicated in table 5 to compute

the fitted values in table 7

Fitted Probability

1-Ei]Key
,-- r

0.9- ". ..... t,,
0.8

l

.. \ -, '

0.7-

0.6-

0.5-

0.4-

0.3

o-L--,---,---,-----;----,-, _-'-,~~, ==:::;::, .:::::=:===::;=:::~~---,--_,,---,---..J
100 125 150 175 200 225 250 275 300 325

Day of the Year

Graph 2: Fitted Probability curve

25 50 75 350

3.2.3: First Order Markov Model for rainfall occurrences

Instat has the ability to fit Markov' Chains for counts of up to order two to rainfall

data. A first order Markov Chain is modeled by using the dialogue box for Count/Totals is

shown below (Figure 8).
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Figure 8: Count/Totals dialogue boxfor order one.

The results for the first order is distplayed in figure 9. Four variable are calculated

these include 'dd', 'dr ', 'rd', 'rr '.

83 " ~_, __ , ,.5;_+-- +- _+_
84 20:----'---

5
6
7 2
8 4
9 8
2j 11! _
.11 1n!oc '}.1 j

41~-------T------
':.!

85

Figure 9: Counts of rainy days of order one.

The probability of rainfall are computed using the prepare dialogue and the results

obtained are give in columns (Figure 10) and a plot is produced (Graph 5)
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Figure 10: Probability of rainy days of order one

The computation of the probabilities given in Figure 10 is done based on 5 days

totals. Date 79 contains the totals for date 77 to date 81 i.e., 27 in rd column is computed by

adding all the rd' s from date 77 to date 81. Hence P_ rd= (rd / _d)= 27/167 =0.161.
First Order and overall chance of rain

P - p_rd

0.9-
P' .w p_rr
I> r

O.S-

0.7-

0.6-

0.5 " "
"

Graph 3: Probability curves for order two

The 'Fitting the probability' dialog box is used as shown in Figure 11 is used to fit

the probabilities of rainfall. It corresponding results is shown in the
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Ccrnple~:ity of initial model r~harmonics

Figu re 11: Fitting probabilities dialogue box for order one

First-order probabilities
I ....r-====--------------~-----------------~

Ir'.--fJd I
0.9.. 1" f IT

0.6

0.8-'

0.7·

0.5-

0.4-

OJ ,~/ ~
0.2-~/ ~"

01··· ~ __ .- ..- - ..- .

,------,--, ,
340 360 380

o ,
o

,
80 120 ·140 180 200 220 240 260 280 300

Date
160 32020 40 60 100

Graph 4: Fitted Probabilities for rainfall of order one

3.2.4: Second Order Markov Model for rainfall occurrences

To prepare data for second order Markov Chain model, then 'second-Order of Count'

radio button is selected from the 'Count and Total from Daily Data' dialogue box. The results

for second order gives 8 columns for counts .namely 'ddd', "ddr, 'drd', "drr, 'rdd, 'rdr';

"rrd', 'rrr' (Figure 12). It is pointed out that out of 41 years, 26 years had a dry day on yd
January given dry on 2nd January given dry on 1st January being (thick lined circle on Figure

18



12). On the other hand, 2 out of 41 years had a rainy day on 7th January given dry on 6th

January given rain on 5th January (dotted circle on Figure 12).

The probability of rainfall are computed using the prepare dialogue and the results

obtained are give in columns 'pJdd', 'pJdr', 'p.rr«. 'P rrr' (Figure 13) and a plot

produced (Graph 5)

0.22580
U_~'-"'-I ~+-....--:0.076923
11--=--+----=+--- -r-r- +:': O.

0.06896552 :
. ~ __ -=-0~06=8~_55_2 ._=_c__ .__ ~=

Figure 13: Probability of rainy days of order two

The results for 2nd order Markov Chain plots two sets of curves; the 1st order and 2nd

order probability curves. The curves in Graph 5 do not have clear distinctions and therefore do

not present the probabilities well.
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Second and first order
l.l--r;======;------

Key
1- F--p_rdd 1
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Graph 5: Probability curves for order two

The fitted model of order two is now obtained by using 'Fitting Probability dialog

box shown in Figure 14. The order of probabilities option to be used at this stage is 'Second (4

curves)' if you want all the curves for rain given the conditions of the two previous days

('rrr', 'rrd', 'rdr ' and 'rdd').

~ " ~, Of!"" "" <" NN" Y ,,,,, u ~

Fitting the probabilities of rain
. You may fit models to either zero order, or first order

or second order data tor the chance of [sin

".ra rder o.f prOb.ab.ilitie:::: : -- - -: - . ~ 1i~' Zero (.... First . r.' ~1~4;econd J r: (~~cond J I
. '\' 1. curvesj .j curves. ,I

........................ ".

Complexity of initial model ~I ....:J harmonicsi.....:.J

Figure 14: Fitting probabilities dialogue box for order two with four curves
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Graph 6 shows the fitted probabilities of order two. There is no clear distinction

betweenLrrr andfJrd.

Second-order Fitted probabilities
------.---------r::::['7::- ...-,.,,-...-..,,-,f"--------'rd--:-dr--'-

r.i---f-rdr
<» p """,t-rrd

F f-rIT
0.9

1.8

1.7

1.6

•• S

1.4
f

./

Graph 6: Fitted Probabilities for rainfall of order two with four curves

When there is no clear distinction between J.rr: and Lrr« Instat has an option to

model them together by the first order probability f_rr. This option can be seen in the dialog

box in Figure 15 as the choice of 'second order with three curves'. This phenomenon is quite

common in rainfall data where a rain event seems to "clear the memory" of what happened

previously. The fitted probabilities are shown in Graph 7.

tielp Ikancel I QK I

'""",",M'W/(""r,w#{//",,_~ "'"( "./.......-...w/"'~ "'''''''''U///.w;WH/P,//N//,,,,,,,,,,,,,mw,,,,,.wU/UMwm,w.w /.'W/(A',w/U.w;WN/hW/,''''''

f,itting the probabilities of rain ~

You ITidY fit models tc either zero order..01 fir:) order
: or second order dala for the chence.ot rain

rOrderofprobabilitie~-' .' . .. , ::-::::::::--1

l·...Z ..,...F' t ·r"..... Second .i":" Second [ I~ era l us . f 4 ) ~., : ,. curves p..r::I~ry.t3~J. !
___ ._-_ .. ._..__ ~__.. __ ~ • . .._..-.. •.. .. ._._...J

Complexity oi initial mod~1 f2"~ harmonics

Figure 15: Fitting probabilities dialogue boxfor order two with three curves
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Second-order probabilities
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Graph 7: Fitted Probabilities for rainfall of order two with three curves

The current version of Instat the Markov command is limited to second-order

Markov Chains, however rainfall data for some sites are better modeled using higher order

Markov Chains.

3.2.5: Modeling rainfall amounts.

Instat can also model rainfall amounts on rainy days. Modeling the amounts involves

the three stages as discussed in Section 3.2: Climatic => Markov Modeling => Counts/Totals

menu is used. In the Count and Total dialogue box we choose zero order for amount as shown

In

Figure 16 (circle in thick line).
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Figure 16: Count and totals dialogue boxfor rainfall amount of order zero

The result after clicking OK button will generate results with three columns; dry,

wet, tr and Ir (Figure 17). The 'tr' column indicates thetotal rainfall amount for the rainy days

minus the total threshold values while the' Ir' column is the sum of logarithms of the rainfall

minus the threshold. The two columns are computed using the equations (3-1) and (3-2)
n

tr; = L (Ar ~ T)y
y=l

(3-1 )
n

lr; =I lneAr - T)y
y=l

(3-2)

Where Ar is the rainfall amount on day T and T is the threshold value and y is the

year number.

35530
19.3970
16.1049
13.0649

....• -;:
-;..j ~ 13.5700

20.4840..... ~ ,.. .

Figu re 17: Total rain amounts of order zero.

The dry and wet columns in the figure above give the number of years in which the

day of the year was dry or rainy. The mean amount of rain is obtained by dividing the total tr
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by the number of rainy days. When fitting the model for amount, Climatic => Markov

Modeling => Model Amounts menu is used and it fits the mean rain per rainy day.
<"v_'" c ~ """<' V«' >4" '1< "" ,,,,.", A "'_

fitting the rainfall amounts .'~

You can fit models to the mean ram per rain
day.

r Order of amounts-'-
I (;" g·~·i,;~r·First
~-~.- ..--~-.
Complexit.\-':ofinitial model 12::j harmorlics

1;ancel
.-:;' '0 >.

,.,C]i.J
Figure 18: Fitting rainfall amountfor order zero
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Graph 8: Fitted mean rainfall amounts for order zero.

The fitted curve is as shown the Graph 8. The current version of Instat can only fit

Markov model up to order 1.
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3.3: MarkSim

3.3.1: Introduction

MarkSim is a computer tool that generates simulated data for crop modeling and risk,
assessment [8]. Rainfall in the MarkSim model is modeled based on th~0third order Markov

Chain in two stages. The first stage is transitional probability to determine whether any

particular day is wet. Since it is a third order Markov Chain, this wet day will depend on

whether there was any rainfall in the previous three days. The second stage of the MarkSim

model determines the amount of rainfall. When using MarkSim, a parameter file is created

and then used to simulate daily climatic data.

MarkSim defines the probability of day i being wet as

P(Wda1aZa3) = qJ-l(b; + a;_ld1 + ai-zdz + ai-3d3}

(3-3)

where:

rl is the inverse normal probability function (probit)

hi is the monthly baseline probit of a wet day following three consecutive dry days

am are binary coefficients of rain (1) or no rain (0) on a day

dm are lag constants

When estimating the mean and the shape parameters of the gamma distribution for

each month, the method of maximum likelihood is used [9]. In the process of generating

rainfall records, the monthly baseline probabilities are interpolated to daily probabilities by

using 12 point Fourier transform.

3.3.2: The Parameter file

The information that is required to create a parameter file is the longitude, latitude

and elevation of the site of interest. The longitude (1.58333 degrees), latitude (37.2333

degrees) and elevation (1600 meters) for Katumani when entered, MarkSim will now create a

parameter file for the simulated data.
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Figure 19 shows the parameter file created from entering the longitude, latitude and

elevation of Katumani into MarkSim.

Files .Edit • l-.. c;

1
1
Row= 214 Col= 332 Record= 89792 Cluster= 139
KATUJ:vlANI Interpolated 1.583 37.233 1600

MONnI /!,.V P BETA RAllIDAYS S.E.
1 4.6 0.669 -1.2 79 0.141 032593
2 SA 0.532 -1.111 0.201 0.30257
3 8.1 0.57l -1 018 0.253 0.29538
4 12.3 OA19 -0672 OA31 0.27587
5 6.3 OA96 -0.955 0.291 0.29761
6 4A 0.654 -1.201 o 168 0.32214
7 50 0.561 -1031 0238 031086
8 4.5 0615 -1.154 o 18~ 0.32291
9 45 0.637 -1.138 o 191 0.31696
10 6.5 0577 -1014 0.255 030324
11 9.6 OA34 -0695 OA18 028395
12 55 0547 -0.987 0274 030664

DI-3 0.7610 0.1980 0.1150 NI= 2 Cluster 139 Phase 08'P
rain 21. 31. 67. 142. 64. 22. 36. 26 25. 55. 114. 50.
temp 18.3 19.0 19.7 19.5 19.0 18.1 17.517417.818.618.317.9
rang 15.015.9 13.7 11.7 11 9 12.8 12.2 12.1 13.813512. i 12A
radn 20.8 20.5 20.1 198205 19.9 18.1 17.7 19.020.2 197 19.9
Output CLX file written: KA TIJ1.,.1ilJ'TI

Figure 19: Parameter File for Katumani

3.3.3: The Baseline Probits and the Lag Parameters

The probability of rain given the state in the three previous days is calculated from

the parameter file using (3-3). The monthly baseline probit values show the probability of rain .

.given that it was dry in the three previous days as cp-l(b1) i.e. when all ~ are O. The baseline

probit value in January was -1.279 (Figure 19: Parameter File for KatumaniFigure 19)

implyingthat in January the P_r/ddd = cp-l (-1.279) or 0.1004.

In a third-order model, eight different rainfall probabilities are considered, "ddd',

. 'ddr', 'drr', 'drd', 'rrr ', 'rrd', 'rdd' and 'rdr ', with r standing for a rainy day and d for a dry

day. MarkSim has a third order model for each month, where the eight different probabilities
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are calculated using the 12 baseline probit (BETA) values and the three lag coefficients (D 1-

3). MarkSim therefore uses just 15 parameters to calculate the 96 (12 times 8) probabilities of

rain. The probability of rain in January given that the three previous days were dry, rainy,

rainy, for example is

P_r/drr = <p-l (-1.279+(0)0.7610+ (1)0.1980 + (1)0.2150) =<p-l ( -0.866)

= 0.1922.

The rest of the probabilities are calculated in a similar way and are listed (

P rlddd P r/ddr P rldrr P rldrd P r/rrr P rlrrd P rlrdd P rlrdr
Jan 0.100 0.144 0.193 0.140 0.458 0.374 0.302 0.381
Feb 0.133 0.185 0.243 0.181 0.525 0.440 0.363 0.446
Mar 0.154 0.211 0.273 0.206 0.562 0.476 0.399 0.483
Apr 0.251 0.324 0.398 0.318 0.692 0.613 0.535 0.619
May 0.170 0.230 0.294 0.225 0.587 0.502 0.423 0.508
Jun 0.115 0.162 0.215 0.158 0.489 0.404 0.330 0.411

Jui 0.151 0.207 0.268 0.202 0.557 0.471 0.394 0.478

AUK 0.124 0.174 0.229 0.170 0.508 0.423 0.347 0.429

Sep 0.128 0.178 0.234 0.174 0.514' 0.429 0.353 0.436

Oct 0.155 0.212 0.274 0.207 0.564 0.478 0.400 0.485

Nov 0.244 0.316 0.389 0.310 0.684 0.604 0.526 0.611
Dee 0.162 0.220 0.283 0.215 0.574 0.489 0.411 0.496

Table 2)

Months 'ddd' 'ddr' 'drr' 'drd' 'rrr' 'rrd' 'rdd' 'rdr' I
Jan ~1.279 -1.064 -0.866 -1.081 -0. \05 -0.32 -0,518 -0.303 .-
Feb -1.1 II -0.896 -0.698 -0.913 0.063 -0.152 -0.35 -0.135
Mar -1.018 -0,803 -0,605 -0,82 0.156 -0.059 -0.257 -0.042
Apr -0.672 -0.457 -0.259 -0.4 74 0.502 0,287 0.089 0.304
May -0.955 -0.74 -0.542 -0.757 0.219 0.004 -0.194 0.021
fun -1.20 I -0.986 -0.788 -1.003 -0.027 -0.242 -0.44 -0.225-
Ju/ -1.031 -0.816 -0.618 -0.833 0.143 -0.072 -0.27 -0.055.

AUK -1.154 -0.939 -0.741 -0.956 0.02 -0.195 -0.393 -0.178--t----;---.

Sep -1.138 -0.923 -0.725 -0.94 0.036 -0.179 -0.377 -0.162

Oct -1.014 -0.799 -0.601 -0.816 0.16 -0.055 -0.253 -0.038
Nov -0.695 -0.48 ·0.282 -0.497 0.479 0.264 0.066 0.281
Dee -0.987 -0.772 -0.574 -0.789 0.187 -0.028 -0.226 -0.011
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Table 1: Probit values for the twelve months

After the probit values have been computed, their corresponding values of

probability are then computed. This can be archived well using MS-Excel.
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P rlddd P rlddr P rldrr P rldrd P rlrrr P r/rrd P rlrdd P rlrdr
Jan 0.100 0.144 0.193 0.140 0.458 0.374 0.302 0.381
Feb 0.133 0.185 0.243 0.181 0.525 0.440 0.363 0.446

Mar 0.154 0.211 0.273 0.206 0.562 0.476 \0.399 0.483
Apr 0.251 0.324 0.398 0.318 0.692 0.613 lr.535 0.619
May 0.170 0.230 0.294 0.225 0.587 0.502 0.423 0.508
Jun 0.115 0.162 0.215 0.158 0.489 0.404 0.330 0.411

Ju/ 0.151 0.207 0.268 0.202 0.557 0.471 0.394 0.478

AUI? 0.124 0.174 0.229 0.170 0.508 0.423 0.347 0.429

Sep 0.128 0.178 0.234 0.174 0.514 0.429 0.353 0.436

Oct 0.155 0.212 0.274 0.207 0.564 0.478 0.400 0.485
·Nov 0.244 0.316 0.389 0.310 0.684 0.604 0.526 0.611
Dec 0.162 0.220 0.283 0.215 0.574 0.489 0.411 0.496

Table 2: Probability values for the twelve months of Katumani Simulated data

The value of the lag coefficient represents the extent of separation of the probit

values which translates to the difference in the rainfall probabilities. For example, a large first

lag coefficient value would represent a large difference between the probability of rain given

the previous day was rainy and the probability of rain given that the previous day was dry. A

small lag coefficient would represent a small separation, of the rainfall probabilities at that

coefficient. A very small third lag coefficient would suggest that a second-order model would

be appropriate.
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Graph 9: The Eight Different Probabilities of Rain across the Year

Graph 9 plots the eight rainfall probabilities over the year. With the large 01 value of

0.5295 there are two distinct groups of probabilities. In the first group the previous day was

rainy and in the second group the previous day was dry. The probability of rain is higher when

the previous day was rainy. The eight curves on the probit scale would be exactly parallel with

the differences in probabilities varying slightly through the year.

Basically, Marksim was designed as computer tool that generates simulated rainfall

data amongst other for crop modeling and risk assessment and to model a third order Markov

Chain for the simulated rainfall data. The assumption of third order models for different sites

is not practical to some sites and therefore Marksim models can only be used well for rainfall

data that require third order Markov Chain model. GenStat capability to model any order. of

Markov Chains is utilized in this work to develop a special routine for doing the same.
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CHAPTER 4: GENSTAT COMMAND INTERFACE

4.1: Introduction

GenStat is a computer program for statistical analysis, with all the facilities of a,
general-purpose statistics package. It has a user friendly interface which makes it easy to use

by selecting option from menus and dialogue box. Apart from being a collection of pre-

programmed commands for selecting from fixed options of available analyses, it has a flexible

command language which enables users to write their own commands and use them in

situations where the available commands cannot solve their problems.

This chapter describes the use of command language of GenStat including the

macros, procedures and how to create the menu and dialogs for the procedures.

4.2: Command language

GenStat's own commands forms a language and is called GenStat Command

Language. It is this command language that is used to create procedures and macros within

GenStat. The commands give you complete control over what is printed from anaiysis.

Whenever a dialogue box is completed, and [OK] button pressed, GenStat itself

produces commands corresponding to the analysis process which are written in the Input Log

and sent to the GenStat Server for processing. The results are sent to the output window once

the Server has processed the commands. If there were any error in the commands, then the

description is sent to the Error Log, as well as to the Output window.

We use a sample data shown in Figure 20 to illustrate the command language.

Figure 20: Sample rainfall data
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To calculate the maximum and rrurumum rainfall per year 'Start=> Summary

Statistics => Summaries of Groups (Variate)' menu is used to obtain the dialogue box selected

as shown in Figure 21. The corresponding command for the analysis is generated in the input

log window shown in Figure 22.

r Display table as percentage of

Set.Margin
r T!,'pe of Surnrnary"····~·~············ ...·-·······-···l

Ii r;T otels 11

r No.ofObs~rvatiohs'} r
I P tAeans E' M.~~:[nCJ. ,I;
I r Va;iances r Qua.t'1tiles. I
~.---
qrwntile F'0ic0nt.3JEJ Point: f" ... . .. '. Murti[Dle'B~r~~qserr~bles'» l

~, "::; \~-!:-;:. ~:'."::.:' ,~

Figure 21: Dialogue/or Summary by Groups

V.feights:

1'r'Et>.r~ ITl:;rgin

TABULATE [PRINT=means, minima, max ima; CLASS IF ICATION=YEAR; lIARGINS=no] RAIN

Figure 22: Command corresponding to Summary by Groups Dialogue.

The GenStat dialogues and menu make use of command without necessarily having

to type them. It. is important to learn beyond GenStat menu and make use of its commands

since there are some facilities that are not available in the menu yet are in command. For

example a simple procedure that calculate day lengths at any latitude and any day of the year

[6] As a command it is called 'daylength', but there is no equivalent menu option. This

. command can be used to calculate the day lengths through the command interface.

An example on how 'daylength' is used is shown in Figure 23
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PRINT
VARIATE
DAYLENGTH
CALCULATE
CALCULATE
PRINT
PRINT

"Examp Le of hon to use procedure DAYLENGTH'
Dayno; I (1...31); DECHIALS=O
[LATITUDE=S2.20S) DAYNUHBER=Dayno; DAYLENGTH=Daylength
Sunset = 12 + Day length I 2 l
Sunrise = 12 - Daylength I 2 0

'Sunr:ise and SWlset times for January at Wellesbourne,UK.'
Dayno,Sunr:ise,Sunset; DECIHALS=2

~i

Figure 23: Example that uses Day length procedure

The user has an option of submitting these commands line by line or a group of lines

or the whole window by using the 'Run=>Submit line', Run=>Submit Selection' and

Run=>Submit window' menus respectively as shown in Figure 24. Once the window has been

submitted, the result is displayed in the output window.

Spread ,Gr~phics. Stats optic

Ctrl+L

ctrl+Shift+K

Ctrl+Shift+fvl

':trlH,j

'=""""W""3~-~'''''''''<r<'''<'''<''--''''''''' ~"!'''< •.•.,_--:....-,.''''' ""-N~_""''''''''''''_«,NN~<'<'''<'''N='''''''-'

III Output ,. . ..
1-"1(,.. 'A'~k" ,",~,..;,' • ~ ~ ~ _' _

Sunrise and S,unset times fOI: January at UJellesbourne, UK

34 PRINT Dayno#Suncise,Sunset; DF.CIMAL5=2

Dayno Sunrise Sunset
1. 00 8.09 15.91
2.00 8.07 15.93
3.00 8.06 15.94
4.00 8.05 15.95
5.00 8.04 15.96
6.00 8.02 15.98
7.00 B.01 15.99
8.00 '/.99 16.01

Submit Line

Submit to Current Line

Submit from Current Line

Submit Selecti·)n

Recycle Window

Submit Clipboard

Ctrl+Shift+w

ctrl+K

Figure 24: Running the commands

Compacting programs in GenStat involves storing statements (commands) made by

users so that they can refer to them later or use them repeatedly. There are two ways of

compacting programs in GenStat namely: Macros and Procedures [15]

Submit File... Ctrl+B

Submit R Script ...

Submit BUGS Script ...

Restart Session

Restart Server

Flush Server

When statements are compacted using Procedure, they must be self-contained, apart

from those explicitly defined as options or parameters of the procedure. That is, all the data

4.3: Compacting programs

4.3.1: Procedures
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structures that they use are accessible only within the procedure. Once you write programs for

complicated tasks, GenStat allows you to keep them for future use. You may also wish to use

procedures written by other people by simply giving the name of the procedure, and

specifying options and parameters as required. ,
When GenStat meets a statement with a name that it does not recognize as one of the

standard GenStat directives, it first checks to see whether you have a procedure of that name

already stored in your program. Then it checks it up in any procedure library that you may

have attached explicitly to your program, taking these in order of their channel numbers. After

locating the required procedure, GenStat reads it in, if necessary, and then executes it.

Information is transferred to and from a procedure only by means of its options and

parameters.

Below is a new procedure (Counts) which counts the number of dry and wet days on a

given Markov Chain order. It also calculates the mean amount of rainfall of rainy days.

PROCEDURE[~esto~e-caseJ 'Counts'
OPTIONNAHE- \

'STATES', "(I: Scalar ,;(ivin,;( the number- of states of' the c he i n l "",
'LIHITS', "(I: Scalar o~ vector giving the values to determine the states)"\
'ORDER' "II: Order of' the Markov Chain) HI,

'CLASS' " I I: Factor over un i c n the data are to be tot.alled) ""
'HIGH' "(I: YES/NO indicating if high orde~, def'ault. is NO) '"
'LABELS', " (I: YES/NO on (oThether t.o labe 1 the tab le3 of results, clefaul t is YES) ,,'
'SPREAD', H (I: YES/NO on urhe t.he r to display the results in s pr e acte he e t s ) "\
'INITIAL'; "(I: Scalar or v ar t a ce - length -ORDER u i t h initial values)"\
MODE-4(P) ,3 (T) ,P; SET-3 (yes) ,no, 3 (yes) ,no; DECLARED-8Iyes); \
PRESENT=8(yes) ;\
DEFAULT-2, I (0.85) , 1, ~, 'NO' , ' YES' , 'NO' , ~; \
TYPE- 'T (' ec a Lar ') , 'T (' scalar' , 'var iate ') r 'T (' scalar' ) , !T ( , factor' ) ,\
3 ('T(' text')), 'T(' scalar', 'va~iate');\
VALUE=«, =, =, ~,2 ( ! T ( , YES' , 'NO' ) ) r ~, "

PARAHETERNAI1E- \
'DATA', "(I: vector from which spell lengths are to be formed"
•COUNTS· I H (0: tables containing the frequencies)" \
'Al10UNTS' r "(0: table cont.aining t he sum of ':he amount.ej t",
•CATEGORIES· I "(0: variate concailling the category of each observation) rr\
'SCQUr.fTS'; "(0: pointer to tables tor frequencie:5)."\
HODE-P; SET-yes,q(no); DECLARED-yes,4(no); \
TYPE- 'T ( , va~ i a ce ' ) ,2 ( 'T ( , tab le' ) ) , 'T ( , var iate' ) , 'T ( , po a n t e r ' ) ;
PRESENT=yes, 4 (no)

Figure 25: Procedure Counts- see 1

The procedure 'counts' in Figure 25 can now be executed through the command

interface by referring to the procedure name. the command that makes use of the procedure

name is as shown in Figure 26 below.
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COUNTS[order=2;states=2;c1ass=DayOfYear; spread=lYES1
;\

high= 1 yes 1; Lahe Ls= 1 yes 1 ; limi t s= I (0.2 r 0 .5) ; \
INITIAL= ! (0 r 0) ] Rain; cat=c; counts=counts; a=amount s

Figure 26: Procedure Counts- see 2

In the command above, the options are defined in the brackets Jl these are; order,

states, class, spread, High, labels, limits. While the parameters are defined outside the

brackets, these are Rain, categories counts, amounts. The rules for using the procedure are

identical. Using a procedure does not require the knowledge of how the program inside

operates, what data structures it contains, nor what directives it uses so long as you specify

the correct options and parameters [15 l.

4.3.2: Macros

A macro is created when GenStat program is placed into a text. Once a macro IS

formed, you can use the macro to execute the program that is built within it by typing a pair of

hash characters ## followed by the macro name. An example of a macro is shown in the

Figure 27

text [VALUES=1 COUNT~~[order=2; states=3; class=D'ayOfYear; spread=YES; high=NO; \
labe ls=yes; 1imi t s= I (0.2,0.5) ; INITIAL= I (0 10) 1 Rain; cat=c: count.s=count s : a=amcunt s 1 1 t r ia l
## trial

Figure 27: Macro

The program shown in Figure 26 can be executed within a macro shown in the Figure

27. First the command is defined within the single quotes (") of the text, then the macro is

executed by running command line ##trial. The two method of compacting programs are

made use of to built more complex commands.

4.4: Creating Menus and Dialogs

GenStat allow its users to create their own menus for existing procedures. Any menu created is

added in the main menu called user .Once the procedure is completed, they are saved with the

extension .gpi, in a GenStat folder called Addln found in C'iProgram files'Genl ZediAddln. The codes

.are then run using Run=>Submit window menu. The procedure is then added in the library using

Tools=>Procedure Library=> Build [6]
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Commands for creating the menu are then created in a new input window. The layout and the

content structure are created using the GenStat resource language basic structure is described below.

DIALOG id, width, height
CAPTION text
PROCEDURE text
BEGIN

... dialogue control (layout and content instruction

END

DIALOG statement defines the id of the dialogue and its size of the dialogue box. CAPTION

statement specifies the title that will appear on the dialogue title. The PROCEDURE statement

specifies the procedure that will be created in the dialogue. The BEGfN-END is a block of statement

that specifies the body structure of the Dialogue box. The file is then saved with extension .grc. [6]

The .grc file is then attached into GenStat. The layout of the commands used for attaching

the.grc file is described below.

[Add InK]
Type = DIALOG
ProgIO = my dialogue id
Menu'Title = name in menu
ResourceFile = dialogue code.grc

The underlined text needs to be changed by the user. The command is also created in a new
input window then saved with extension .gad.

A sample of the dialogue box created in this study is shown in Figure 28. All the commands

and procedures are included in the appendix IIl,[V, V and VI
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DIALOG dialog1, 240, 240
CAPTION "Counts and Totals from Daily Data"
PROCEDURE "COUNTS"
BEGIN

PUSHBUTTON "&Run",IDRUN,20, 220, 45, 15,BS_RUN
PUSHBUTTON "&Reget",IDCLEAR,95,220,45,15,BS_CLEAR
PUSHBUTTON "&Canc::el",IDCANCEL,160,220,45,15,BS_CANCEL
"PUSHBUTTON "&Default",IDDEFAULT,210,180,30,15,BS_DEFAULTS"
LTEXT "·,AvailaJJle Data: ",ITEXT,5,S,55, 10 <...-
LISTBOX IDLIST,5,20,90,120,GY_AVAILABLE
LTEXT "&Data:",ISTATIC,115,5,60,10
EDITTEXT DATA,115,15,80,14,GY_.o.VAIL.o.BLE I DT_TYPVAR I GY PARAM I EC SET
LTEXT "'Class for totals:",ISTATIC,l15,35,,55,10
EDITTEXT CLASS,1l5,45,80,14,GY_.WAIL.O.BLE I DT_TYPf.'.C GlJ OPT EC SET
LTEXT "'Type of Markov:",IST.o.TIC,11S,65,,60,10
COMBOBOX HIGH,175,65,60,40,CB DROPLIST ! GlJ OPT
SLIST HIGH, "Normal", "High"
RLIST HIGH, "NO", "YES"
LTEXT "";Number of State9:",ISTATIC,l15,90,,60,10
EDITTEXT sTATES,215,90,20,ll, GIJ_OPT
LTEXT "&Threshold Va1ue9:",ISTATIC,115,105,,60,10
EDITTEXT LH!ITS,200, 105,35,11, GloJ_OPT
LTEXT ".'Initial l.'&lue:",IST.o.TIC,115,120,,60,10
EDITTEXT INITIAL,200,120,35,ll, GY_OPT
LTEXT "&Markov Chain Order:",ISTATIC,115,135"BO,10
EDITTEXT ORDER,215,135,20,ll, GlJ_OPT
GROUP BOX "Save result in", IDSTATIC, 40, 150, 170, 40
TOGGLEBOX "Amount", a, 55, 165, 40, 14,GloJ_PARAH,"arnount", "NO"
TOGGLEBOX "Counts", count.e, 110, 165,40, 14,GlJ_P.o.RAM,"co unt.av , "NO"
TOGGLEBOX "Class", cet , 155, 165, 40, 14,GY_PARAI-!,"'~","NO"
TOGGLEBOX ;'Display in :3preaclsheet", SPREAD, 100, 200, 90, 14,GY_OPT, "YES",

END J
"-----------

Figure 28: A .grc file for creating Counts and Amount Daily data menu

Addlnl]
Type=DIALOG
Pz o qHr=d La Lo q l
MenuTitle=Counts and Totals from Daily Data
ResourceFile=counts.grc

Figure 29: A .gadfile for attaching dialogue command
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CHAPTER 5: MARKOV MODELING OF CLIMATIC DATA IN

GENSTAT

5.1: Introduction
\

The potentials of GenStat are exploited to provide routines that-can analyze rainfall

data using Markov model and make it accessible to users. The First stage involves preparing

the data for fitting; the second stage involves fitting the Markov model for the rainfall. Four

procedures are written which includes; COUNT, PREPARE, FITTING,

AMOUNTFITT ING. These procedures are all shown in the appendix III, IV, V and VI

The COUNT procedure was written to read the raw data fed by the user and

summarizes it by counting the number of rainy days for each day of the number of the years

the data is given. It also calculates the amount of rain in the rainy days. The result of the

summaries is then tabulated ready for calculation of the probabilities and fitting. The

PREPARE procedure designed to calculates the probability of rain, the FITTING procedure,

fits the probability of rain while AMOUNTFITTING fits the amount of rainfall. This chapter

provides the documentation of what the procedures. that are newly created do.

5.2: COUNT Procedure

COUNT procedure was first written by Roger Stern (unpublished) but in form of

macros. This macro was redesigned to procedure for its use in making the menus. It identifies

the state condition on each day then TABULATE directive is used to summarize the frequency

of each day of the year possessing a specific state over the number of years the data is given.

5.2.1: Options for COUNT Procedure

States - This is a scalar value that defines the number of states, i.e. 2, 3, 4 etc. A state

is determined by the amount of the rainfall below or above a specified threshold. The number

of state equals the number of limits (threshold) values plus one.

Limits - This is a scalar or a variate that is used to determine the limit of a state; the

default value of limit is 0.85. If a day received rainfall amount that is iess than this value

(0.85), then the day is referred to as a dry day, otherwise it will be a wet day.
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Order- It is a scalar value that defines the number of order the Markov model will use

to model the data. The values range from zero onwards

Class - It is a factor with 366 values over which the data is to be summed. It

corresponds the period that you want that you will use to define the annual seasonality.
<>

High - It specifies whether the Markov order is high or normal as explained in section

1.2.4: of this thesis.

Labels -Specifies whether or not the table of the counts will have labels or not (the

default is 'yes')

Spread - It is a string specifying whether or not to display the result of counts and

amount in a spreadsheet (the default is 'yes').

Initial - It is a scalar or variate that assigns initial value to days before the first data of

the data. It is applicable to Markov of order one and above. The initial values are specified to

avoid missing data for days before the first day.

Table - It is a string specifying whether or not to display the result of counts and

amount in a table structure (the default is 'yes').

5.2.2: Parameters for Count Procedure

Data- It is an input vector parameter of rainfall data. The rainfall data is given as one

variate for all the years.

Counts- It is an output table parameter containing the sum of the frequencies

Amounts - It is an output table containing the sum of the amounts

Categories- An output variate parameter containing the category of each observation

Scounts - An output pointer parameter to tables for frequencies

5.2.3: Description of Count Procedure

The COUNTS procedure counts the number of times a day of the year having a

.specific state-condition for the number of years and also calculates the rainfall amounts for

rainy days. Amount of rainfall is defined as the actual amount of rainfall recorded minus the
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threshold value. That is, if the threshold is 0.85mm and in a specific day, it was recorded that

the rainfall was 2mm, then the rainfall amount is 1.15mm.

The frequencies of the days with the same state conditions are organized in a table

using TABULATE directive with columns representing the state condition e.g. dry, wet, dd,

dw, ddd, dww, etc while the rows indicate factor levels for example day number of the year

totaling to 366 days (see a sample in Figure 32 (b)). The amounts of rainfall are also summed

over the rainy days. This is further illustrated in the Figure 30

below. Using the sample data set in Figure 30 (a), the resulted tables that are created

when the COUNT S procedure is run with order I and threshold of 0.85 are shown in Figure 30

(b)

(a) (b)

Figure 30: A sample rainfall data and results of count procedures.

Considering a state condition with wet given wet for day 2, i.e. there are only 2 days

that satisfy this condition. The two days had rainfall recorded as 4mm and 6mm. the rainfall

. amount recorded in the amount table is 8.3 (4mm+6mm-2(0.85mm).

The rainfall amount of a given day of the year with specific state, is calculated using

theequation (3-1) and (3-2).
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The results of the count procedure are given in a table structure with the number of

columns determined by the order of the model.

The table of counts and amounts may be displayed in a spreadsheet by declaring

SPREAD=yes. The initial record for rain can be set using the option of <!NITIAL. The number
o

of values in INITIAL variate must be equal to the ORDER value.

5.3: PREPARE Procedure

The PREPARE procedure converts the input structures (counts and amounts tables)

to variates by making use of VTABLE Procedure [7], this enable manipulation of the result in

each columns of the table.

5.3.1: Options for PREPARE procedure

Plot-Specifies whether or not to plot the results, the default is YES

Spread- Specifies whether or not to display the results in spreadsheets, the default is

YES

5.3.2: Parameter for Prepare procedure

The parameters that are used in the PRE PARE procedure are;

Counts - This is an input table containing the frequencies, it corresponds to the count

table resulting from the COUNT procedure

Amounts - This is an input table containing the amounts of rainfall. It correspond to

the amount table resulted from the COUNT procedure described above.

5.3.3: Description of Prepare Procedure

The PREPARE procedure reads data from the results created in COUNTS procedure;

these are counts and amounts. The input structures are converted into variate then the

probabilities are calculated by applying the fomula below.

r:L] ...
Ak ... .. k 123 Cc [,), = '" ...,

l:i=l filk ..

(5-1)
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Where

C= maximum number of states

Pijk ... = The probability of the present state is i given that the state in the previous day
\

isj and day before yesterday is k and so on up to the number of order'<lf order zero is used

then we refer to Pi, for order one ( Pi) ), for order two ( Pijk ) and so on.

fijk ... - The number of days that posses the condition that the present state is i given

that the state in the previous day is j and day before yesterday is k and so on up to the number

of order

ILl [ijk ...- The total number of days with the previous day having state j and the day

before the having state k regardless of the state in the present day.

The probabilities may be saved, displayed in the spreadsheet when SPREAD=yes or

plotted by the DGRAPH directive when PLOT=yes. The high order Markov can be obtained

when HIGH=yes which is only applicable when ORDER;:::: 2. The order value used in the

COUNTS procedure must be maintained in PREPARE procedure

5.4: FITTING command procedures.

Fitting Procedure converts the counts and amounts table into variate using Vtable

procedure [7]. The variates are then used to fit the probabilities of rain. The result may be

displayed in a graph or saved.

5.4.1: Options for FITTING procedure

Harmonics- It is a scalar to represent the number of harmonic required for the model

fitting, default is 3

Spread- Specifies whether or not to display the results in spreadsheets, the default is

NO
5.4.2: Parameter for FITTING procedure

The parameters that are used in the F'ITTING procedure are;

Counts -Tables containing the frequencies, it correspond to the count table resulted

from the count procedure
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Amounts - This is an input table containing the amounts of rainfall. It correspond to

the amount table resulted from the count procedure described above.

5.4.3: Description of Fitting Procedure

The FITTING parameter is set to read data structure of typy table. (Counts and

amounts tables from COUNTS procedure). The input structures are converted into variate then

fitted. The variates forms the Y values while the dayNo factor is assigned to the X-values

when plotting the fitted parameters.

5.5: AMOUNTFITTING command procedures

AMOUNTFITTING Procedure converts the counts and amounts table into variate

using VTABLE procedure [7]. The variates are then used to fit the amounts of rain. The result

may be displayed in a graph or not.

5.5.1: Options for AMOUNTFITTING procedure

Harmonics- It is a scalar to represent the number of harmonic required for the model

fitting, default is 3

Spread- Specifies whether or not to display the results in spreadsheets, the default is

NO

5.5.2: Parameter for FittingAmount procedure

The parameters that are used in the AMOUNTFITTING procedure are;

Counts -Tables containing the frequencies, it correspond to the count table resulted

from the count procedure

Amounts - This is an input table containing the amounts of rainfall. It correspond to

the amount table resulted from the count procedure described above.

5.5.3: Description of FittingAmount Procedure

The AMOUNT FITTING parameters are set to read data structure of type table. (counts

and amounts tables from COUNTS procedure); The input structures are converted into variate

then fitted. The variates forms the Y values while the dayNo factor is assigned to the X-values

when plotting the fitted amounts.
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CHAPTER 6: RESULTS AND DISCUSSION

6.1: Application of the model to Katumani Data

This chapter discusses how the newly developed procedures are used in all the

aspects of the options specified. The daily rainfall data collected fmm 1961- 2001 at

Katumani Experiments research Station in Kenya is used to test the procedure. The data is

imported from Instat library into GenStat through excel. Alternatively it can be exported to

GenStat from Instat window.

6.2: Description of the data

The data is for rainfall recorded in mm for 41 years, the columns represents the years

while the row represent the day of the year running from i to 366. Part of the screen shot

showing the data set in GenStat is in the Appendix 1. There are 10 leap years and 31 non-leap

years. The maximum of maximum annual rainfall was received in 1963 (186.9 mm) while the

minimum of maximum annual rainfall was received in 1987 (26.7 mm) (see Appendix II).

6.3: Organizing the data

The counts procedure reads only two variates; Rain and a factor column over which

the count is to be done i.e. day of the year, months of the year, weeks of the year etc. In this

text the factor DayOfY ear is used. The data is stalked such that the variate Rain is in one

column for all the days and DayOfYear in one column for all the years. The Spread=>

Manipulate=> Stalk menu is used to achieve this. The 'Stalk Column in Sheet' dialogue box

is filled as shown in Figure 31. The number of columns in this case will be the number of

years (see Appendix I). The stalked data is shown in Figure 32.

The factor column is changed to a variate by just right clicking the year column then

choosing Convert to variate option. This result will now show the level values of the column.

The Spread => Calculate => Fill menu is used to fill the year's values as shown in Figure

33. This is important for the calculation of the DayOjYear. The stalked data with year variate

is shown in Figure 34.
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~, "'''~,¥4 , , Y'_'''''' ,Ub ~ ~ ~~ ~ ~

Stack Columns in Sheet; K4TUMANI.GSH
l{lirnber of Columns to stack together:

Record column source in Factor:

Available Data: Stack Columns:

1: '(1961 :~I
,j 1: '(1962 !~I

~ ~~g~~ ~
, 1:'(1965 ""j~.J 1:'(1966

1:'(1967
1:'(1968
1: '(1969

, 1: '(1970
1: '(1971
1: '(1972
1: '(1973

!'(ear

Repeat Columns:

r Create unique C6Iunin<names"
'~ .: ,.., -:... ..., ",.'

I;; Use names fromFirst stacked column for Factor Labels"d
. . - ';c;. <. -..• <~,t~:- ,_;.~"

I OKJ Cancel' L Clear HiI~lJi
Figure 31: Stalk column dialogue box

Y1961
Y1961
Y1961 0
Y1962 0
Y1962 11.2
Y1962 31.5

o .•..
o
o
o
0'

o
o

Figure 32: Stalked data
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Figure 33: Fill column Year with Numerical Sequence dialogue box

Create two columns, day of the months and month of the year as shown in the Figure

35. The three columns (day, month and year) are used to calculate the date unless data is

entered with date format. Using Spread=i-Calculate=> column, (Figure 36) the date column

1961
StartingValue: 11961 Apply ~~~~

, Ending Value: 12001 1961
1"-' Cancel 1981

Increment: 11'-' 1961

"

366 Help 119
96

61
1Number of Hepeets:

1961C Copy Down existing values over missing 1961
r FiilSele.;:;ted Rows ot1l~l r,FillaBColurnrts ir, Selection 1961. ',', ", 1961

[~If~::cetc,,,,en'IF:;o~,o~.,r. 'E~~~f;;:' '1£ mi
Current ceH to fill from: 11 " , 1961

Figure 34: Year in variate

is calculated (See Figure 37).
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13 Jan 1961 0
_ Ml

Figure 35: Data with day, month and year

2 Jan 1961
3 Jan 1961
4Jan 1961
5Jan 1961 0

6Jan 1961
7 Jan 1961
8Jan 1961
9 Jan 1961 0

10 Jan 1961 °t11 Jan 1961 o ,
12 Jan 1961 0

IDA TE 10 ayO fMonlh;M onlh;Yea.)

I,w Calculate , > IEJ~

r- Available Data

P'Variales

r- Fadors

r Texts

r Scalers

r Mal.ices

r Tables

...
Rain
Y1961
Y1962
Y1963
Y1964
Y1965
Y1966
Y1967

Save R esult In:

r::1 Dispfay In Spreadsheet: INew Data;6

r Print in Outpul

OK I Cancel I Clear I Defauks I Options .. , I Help

Figure 36: Calculate dialogue box for date

~~~~ GSWOOOl % ••• Warning (Code CA 63). Statement 1 on Line 2495
Command: CALCULATE Date=DATE (DayOfHonth; Month;Year)
Error in arguments for DATE function
Invalid day and month number: 29th February is noc present in the year 1961,
which is not a leap year

1961
1961 0
1961 0
1961 0 25/02/61
1961 0 26/02/61
1961 0 27/02/61
1961 2 28/02/61
1961
1961 01/03/61
1961 0 02/03/61
1961 03/03/61
1961 0 04/03/61
1961 0 05/03/61
1961 06/03/61
1961 0 07/03/61

Figure 37: Date column calculated but with afault message
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The date column is calculated though a fault message is shown, which states that

29th Feb of a non-leap year is invalid, hence no date is created on the 29th Feb. To avoid this

fault, the invalid day is eliminated before calculating the dates. To eliminate the invalid data

(29th Feb of a non-leap year), you can just delete the rows which are invalid.

Column for DayOjYear is calculated using MFRACTION (Dat~; 1; 1). This always

gives 1st March as day 61 in the year instead of NDAYINYEAR (Date; 1) which gives lst

March as the 61st day in a leap year, but 60th day in other years.

The data set ready for the analysis is shown in Figure 38. The dayofyear with the 15t

march (o l " day) highlited.

1:'Ddp(iM~m'Aj
1961 15/02/61
1961 16/02/61 47 0
1961 17/02/61 48 0
1961 18/02/61 49 0
1961 19/02/61 50 0
1961 20/02/61 51 0
1961 21/02/61 52 0,
1961 22/02/61 53 0"

1961 23/02/61 54 0
1961 24/02/61 55 0
1961 25/02/61 56 0
1961 26/02/61 57 0
1961 27/02/61 58 0
1961 28/02/61 59 2
1961 01/03/61 m 0
1961 02/03/61 62 0
1961 03/03/61 63 0 ..•.

Figure 38: Data set with 'DayOjYear' and 'Rain' column ready for analysis

6.4: The User Menu

The four climatic menus corresponding to the procedures are created under the user

menu in GenStat. Through this menu the procedures can now be accessed and used (Figure
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39). Choosing User=> Count and Totals from daily Data will open count dialogue box

(Figure 42) which correspond to the COUNT Procedure

Figure 39: User Menu

Class for.totals:

Type of Markov: INormal

Number Qf Stetes: . I
Threshold Velues; I
Initial Value:

Markov Chain Order: r--.
,...Specify the names of the tables-······

lAm"... eo". it Dop"1 in'p''''''h';I
I I r .
I·
I

Run CancelJ

Figure 40: Count and Totals from daily Data dialogue box

The field for 'data' receives the rainfall data and must be set. The 'class for totals'

specifies the factor over which the data for counts will be totaled. This can either be the month

of the year; day of year etc. 'Type of Markov' field specifies the type of Markov Chain to

model, either normal or high. The fields 'number of states', 'threshold value', 'initial value'

and 'Markov Chain order', when left blank will use the defaults values.

6.5:Two- State Markov Chain modeling

In a two- State Markov Chain, the states are dry and wet; the threshold value is only

one marking the boundary of the two states. Using the default value of threshold option

(O.8Smm), any value of rainfall greater than O.85mm is the state of rain while less than or
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equal to 0.85 is the state of dry. This section discusses Markov Chain modeling of order zero

and one.

65.1: Order zero

When modeling a normal two-state zero order Markov Chain, 'I.e. the chance of an

event occurring in day T without considering the event that occurred in the previous day(s),

the User => Count and Totals from daily Data menu is used to obtain the Count and Totals

from daily Data dialogue box and then filled as shown below.

Class for tota,ls:

lyp~ of Markov: '.~

Number of ?t:ates:12

Threshold Values.: I
Initial Vefue; r-

Figure 41: Dialogue box for Counts and totalsfrom Daily Data (Order Zero)

The result gives the count and amounts based on order zero (Figure 42 and Figure

43).

Figure 42: Counts of rainy days (order zero)
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A PRE PARE procedure is then used to calculate the chance of rainfall for order zero.

The User => Prepare menu is used to load the Prepare dialog and the option and parameter

set as shown in figure below.

Probability of rain ~
Available Table:

Amount
Enter'counts Here:

r=
rv Display in Graph

i" . Y

r Display in Spreadsheet

Run .1 Cancel

Figure 44: Dialogue boxfor Probabilityof rain (Order Zero)

The results of probability are displayed on a spreadsheet (Figure 45) and a plot of the

probabilities (Graph 10) is displayed.

IillI6' 6 0.707317 0.292683 1

Figure 45: Probabilities of rainy day form GenStat (order zero)
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The graph indicates that Katumani has two seasons of rainfall, these are long rains

(April-May) and short rains (November). The chance of rain during the short rain period is

higher compared to that of long rain period. The same results were depicted when Instat

software was used (refer to section 3.2.2:). The day number can be grouped into 5-days totals,

week's totals or monthly. To obtain weekly totals, the user will have to create a factor column

of week number and use it instead of the OayOfY ear (Figure 46). The count totaled in 7 days

(weekly) gives a clearer graph (see Graph I I).

50 100 150 200

Da Nurrber
Graph 10: Probabilities of order zero (GenStat)
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2 Jail

., l""

3 Jail
4 Jail
5 Jan

6 Jail
7 Jail
8 Jail
9 Jail 09/01i61

10 Jail 10/01i61

Figure 46: Dataset withy week number created (Order Zero)

0.5

0.4

0.3

0.2

0.1

0.0

Overall Chance ofrain per week

o 20 30 504010

Graph 11: Overall chance of we~kly rainfall of order zero (GenStat)
Week nurrber
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The fitted probability is obtained using User=>Fitting probability of rain menu

which loads 'Fitting Probabilities of rain' dialogue box associated to the FITTING procedure.

The options for the procedure are set as; Harmonics=3(Figure 46)

Filting Probabilities of rain -

AveilebleTeble:
• 0.

Amount
Counts

Enter Counts Here:

lC:o~nts

Number of Hamonics:

j3
r Plot fitted values

\ '

~t~.Plm I Run·1 Cancel I
Figure 47: Dialogue box for fitting Probability of rain (Order Zero)

Clicking run button displays the fitted model on a graph (Graph 11) and the

regression output shown below starting with harmonicof order 2.

Regression analysis
Response variate: w

Binomial totals: tot
Distribution: Binomial

Link function: Logit
Weight variate: tots

Fitted terms: Constant, half_hamonic[l]', half hamonic[2],
half_hamonic[3], half_hamonic[4]

Summary of analysis

Source
mean

Regression 4 1917.8 479.451

deviance
d.f. deviance deviance ratio

approx
chi pr

<.001479.45
Residual 361 542.5 1.503
Total 365 2460.3 6.741
Change -1 -119.4 119.364 119.36 <.001

Summary of analysis offitted probability of rain for U-order with 2Table 3:

The data have a binomial distribution with log it link function. These are the two

aspects required to characterize a generalized linear model (GLM). Instead of sum of squares,

the deviances are obtained when fitting a GLM. The deviance ration in table 3 is given as

479.45 meaning it is regression mean deviance divide by 1 not 1.503. this is so because the

residual for binomial is 1
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Estimates of parameters

estimate s.e. t (*)Parameter t pro antilog of
estimate

Constant -1.9904 0.0336 -59.15 <.001
half_hamonic[l] Sin[l] 0.7023 0.0390 17.99 <.001
half_hamonic[2] cos[l] 1.2007 0.0468 25.65 ~~.001
half_hamonic[3] Sin[2] -1.2589 0.0411 -30.60 <.001
half hamonic[4] cos[2] -0.3816 0.0355 -10:76 <.001

o. l366
2.018
3.323
0.2840
0.6828

Table 4: Estimate of parameters of fitted probability of rain for O-order with 2

Accumulated analysis of deviance

Change mean
deviance

approx
chi pr

d. f.· deviance

+ half hamonic[l] Sin[l] 1 93.386 93.386
+ half_hamonic[2] cos[l] 1 535.478 535.478
+ half_hamonic(3] Sin[2] 1 1169.576 1169.576
+ half hamonic[4] cos[2] 1 119.364 119.364

deviance
ratio
93.39

535.48
1169.58

119.36

<.001
<.001
<.0·01
<.001

Residual 361 542.511 1.503
Total 365 2460.315 6.741
Table 5: Accumulated analysis of deviance of fitted probability of rain for O-order with 2 harmonics

In table 5 above, shows that adding the harmonic of order 2 is significant. When

harmonic of order 3 is added the results below is obtained.

deviance mean
deviance

approx
chi pr

d. f.Change

+ half_hamonic[l] Sin[l] 1 93.386 93.386
+ half_hamonic[2] cos[l] 1 535.478 535.478
+ half_hamonic[3] Sin(2] 1 1169.576 1169.576
+ half_hamonic[4] cos[2] 1 119.364 119.364
+ half_hamonic[5] Sin[3] 1 131.654 131.654
+ half hamonic[6] cos[3] 1 1.028 1.028

deviance
ratio
93.39

535.48
1169.58

119.36
131.65

1. 03

<.001
<.001
<.001
<.001
<.001

0.311
Residual 359 409.829 1.142
Total 365 2460.315 6.741
Table 6: Accumulated analysis of deviance of fitted probability of rain for O-order with 3 harmonics

Fitting the probability of order zero with harmonics of order three is not significant

since cos[3] > 0.05. Therefore harmonic of order two is applied and the fitted plot is now

drawn and shown in Graph 12.
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6.5.2: Order one

Fitted Probabilities (Zero Order)
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Da: Number
Graph 12: Fitted Probabilities of order zero (GenStat)

A two-state Markov Chain of order one is modeled for the chance of a state in a day

given the state condition in the previous day. The dialogue box for counts is filled with the

order option equal to one with the rest of the fields the same as in order zero discussed above.

The results for counts and amounts for order I are displayed in a spreadsheet as shown in

Figure 48. (Note: 0,1,2,3 used as column header of 'counts' table corresponds to the states dd,

dw,wd,ww respectively)

~ r

Figure 48: First order counts and raindall amounts

The number of times it was dry on 2nd January given that on 1st January was also dry

are 29 out of 41. The value 29 is below dd on day 2. On the same row under wd, the 6 means

that the number of times it was wet on 2nd January given that 1st January was also dry are 6
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out of 41. The amount table the columns are only two (wd and ww) which contain the amounts

of rain given the previous state. On days with no rain in the present state their amounts are no

calculated. i.e. on day 13th January, there was no day with rain given that the previous day was

dry hence the corresponding amount is not calculated.

The probabilities of rain given the state in the previous day calculated by PRE PARE

procedure is shown in Figure 49 and the corresponding plot for the probabilities (Graph 13)

2

3 0.121212
4 0.0645161
5

6 0.212121
7 0.137931
8 0.0645161
9 0.1470'59 0.285714

10 0.0882353 0.428571
11 0.0571429 0.666667
12 0.114286 0.166667
13 0

1J. n W1RQ<1 '1<1 n "l"l"l"n"l

Figure 49: Chance of rain given the state in the previous day

The values in the table are probabilities of rain given the state in the previous day.

Forexample, the probability of rain on the 15t January given that it was dry in the previous day

is0.06897
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Probability ofrain of order 1

"l II
I

0.8

When the probabilities are plotted for each day, it is overcrowded and understanding

the distinction of the curves can be hard. As before there are solutions for this to give better

curves by first grouping the days into 5-day totals and then plot the results (Graph 14), or 10

day, weekly and monthly totals or get the fitted probabilities (Graph 15).

0.6

0.4

0.2

0.0

o 50 100 150 200 250 300 350

DayofYear

1== P_ww v dayNo

P _wd v dayNo

Graph 13: Probabilities of rain for order one (GenStatj
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Probability ofrain in Weeks
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Graph 14: Probabilities of rain for order summarized on weekly basis
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6.6: Higher order two- state Markov Chain Modeling

The higher order two-state Markov Chain in this context would mean modeling

Markov Chain of order two and above with reduced number of parameters. We will discuss
\

the results for order 2,3, 4 and 5.

6.6.1: Order Two Normal Markov Model

The Markov Chain of order 2 can be modeled for high or normal types of Markov

Chain. The normal order Markov is obtained when the count dialogue box is filled as shown

below.

Counts an~ 'To~!s,fr.!iJP DailyQata ~ II:)

Month
Year

Data: r=
Class for totals: ro;Of(ear

Type of Markov:' jNormal iJ

Available Data:

Number of States:

Threshold Values: I
InitialValue:

Markov Chain Order: 12
" Specify the names of the tables ..---'-1I Amounts Counts =J r Displeyin Spreadsheet

II r
i _

.. Run] Cancel I
Figure 50: Dialogue box for Count (Normal Markov Chain of Order Two)

The fitted probabilities for order two are plotted in Graph 16. There is a clear

distinction between the curves when it is dry on the previous day and when it is wet in the

previous day during the rainy seasons. This is not the case in the dry seasons where there is no

clear distinction between the curves.
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Graph 16: Fitted Probabilities of rain for order two (Normal Markov)

6.6.2: Order Two High Markov Model

Considering a high Markov Chain model for order 2, the www and wwd curves are

combined to ww. The dialogue box for counts used to obtain a high Markov Chain of order 2

is filled as shown in Figure 51
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Da OtYear '. .
Month
Year

Clilss for totals: j DayO fYear

Type oflylarkov:' !High 3
Number of States:

Threshold Values: 1

lnitial Value: r~'-'-'
Markov Chain Order: J2-'~'~'

rSpeCifY the names of the tables-~ .

Amounts Counts I 'r Display in Spreadsheet

11
m

• II Amount ICounts ....

Run ] Reset Cancel .. 1

Figure 51:. Dialogue box for Count (High orderMarkov Chain of Order Two)

The results for counts are displayed in a table format called count while the amounts

table is displayed in the amounts table.

o 5 J 24

2 6 6 24 9.9

1 5 5 24 3.4

9 2 3 2 5 2 27'"'-_""""- .•.•,
Figure 52: Counts and amounts for 2nd -high

The corresponding variate for table is shown in the figure below. The variate table is

obtained when you choose 'Spreadsheet' option in the Probability of rain dialogue box. The

column headers for counts correspond to the column headers in Figure 53.

6 2 26

1 5 2 27
o 5 5 27
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., I?I ~J .. ~', ~
Figu re 53: Counts for 2n -high order Markov Chain (variate structure)

The probability of rain for each day calculated from the counts is also displayed in

the spreadsheet when the Probability of rain dialogue box is executed (see fig 51).

4 0.0689655 0 0.5i
Figure 54: Probability of rain for 2nd -high order Markov Chain.

The probability of rain in January 1st given that it was dry in the last two days is

0.06896, while the probability that it rained on January I st given that it rained in the previous

day is 0.3636. The last column in table 54 (P_ ww) is used in place of having P_ www and

P_wwd, which are almost the same when fitted. The fitted probability model is shown in the

Graph 17.

D 0.0689655 0.363636 : .•..
2 0.185185 0.14:28'57 0.333333
3 0.103443 0.25 0.15 '
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Fitted Prd:Elllities ci creEr 2 (HigrDrder)
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The fitted probability of rain is high above the probability of dry given rain and that

of the probability of wet given two drys in the previous.
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Graph 17: Fitted Probabilities of order two-High Order (GenStat)

6.6.3: Normal and High Markov models for order three and four

The fitted normal and high Markov Chain model for order three are shown in the

Graph 18. The fitted model indicates that there is no distinction between the groups of curves

when the previous day was dry.
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Graph 18: Fitted Probabilities of normal Markov Chain of order three.
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Fitted Probabilities oforder 3 (High Makorv rmde1)
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Graph 19: Fitted Probabilities of high Markov Chain of order three.

All the curves in Graph 19 are distinct to each other during the rainy seasons. Using

higher orders breaks the distinctions as shown for order 4 (Graph 20) and order 5 (Graph 21)
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Graph 20: Fitted Probabilities of high Markov Chain of order four.

6.6.4: Order five

Order five for a normal Markov will result in so many parameters (64) which might

not be significant in Markov modeling. A high order Markov will reduce this number to 10

parameters only. The result obtained for Katumani data is as shown below.
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Figure 55: Counts ofrainy daysfor High Markov Chain of order 5

17.4 ...
41.4 15.5 '" '" 31.1 28.6'·'
6.6 0.7 '" . 12.7 0.4 80.7 1

11.0 '" '" '" '" 67.8
6.5 '" 7.2 '" '1'1.5 61.8 ~

Figure 56: Amount ofrainfallfor High Markov Chain of order 5

The number of times that January 1st received rainfall given that the 5 previous days

were dry was 2 out of 40 with amount being 4.8mm. The probabilities in Table 57 are

calculated with 'HIGH' Markov property

" 0.142857
'" 11 1 (;.I-:o.(;.h7 n 7~

Figure 57: Probability of rain for High Markov Chain of order 5

The probability of rain given five previous days dry is 0.1333.
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Graph 21: Fitted Probabilities of high Markov Chain of order five.

In graph 19, the chance of rain given rain is distinct and high from the other models

while the probability of rain given longer dry spell is very low compared to other Chains. The

fitted model for rain given that the previous day being dry, has a lot of interactions during' dry

seasons implying that there is less variations in the number of wet days given dry and less

interaction during the wet seasons implying that there is high variation the number of wet

days given dry in the previous day. In a nutshell, during the wet season, there seems to be a
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clear difference between the numbers of wet days in a month depending on whether it was wet

or dry the previous day.

6.7: Markov Chain with Initial data

When the initial data is missing, the first day count will be missing if the model

requires the condition of the previous state. The initial values are set to give a memory of the

previous day before the first day the data starts. The number of values of initial must be equal

to the Markov order. A two-state Markov of order one and two is used to demonstrate this.

6.7.1: Order one

In a 1st order Markov Chain, only one initial value is needed. The dialogue box for

count is filled as shown below.

tiS pecify the names ofI·tlie't.3WsI<":i"i·.i ~m6unt~ GO,unfs
i r-'-~'~"""'-
IIAmount '!Counts

Figure 58: Counts dialogue box with initial value set of a r order Markov Chain

There is a difference in result on 15t January for a first order Markov Chain with

'initial value' set and 'initial value' not set. The total counts is more (41) in Figure 59 when

initial value is set than the total counts (40) in Figure 59 when the initial is not set.

Month
Year
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6.7.2: Order Two

When a Markov Chain is of order two it will require two initial values. When the

initial values are more than one, they are set in a variate structure. i.e. instead of 0,0 we use

!(O,O) . The dialogue box for this is filled as shown in Figure 60 below.

os OtYear ~,-.
Month
Year

Class for totals: IDayOtYear

Type of Markov: IN ormal :::J
> > t:"~'>':;' :)/'", ..,;:,. >

~ThreshcildVdlues:1 t"-----

'Iriitiill \jI'alue: I!(O,O)

Markov Chain Order: I~
rSpecify the names of the tables --,

I'A..mo.unts . Counts .. '1 I r Display in Spreadsheet

llAmo;nl IC,"ol' .

I Rlln 1 Reset Cancel

Figure 60: Counts dialogue box with initial value set oj a 2n order Markov Chain

The results for this dialogue are shown in Figure 61

mri iHI
7.7 3.2 " ~

6 31.1 3.2 25.3~'
3 0.4 14.2 9.4 ',
2 " 14.9 12.6 '
4 11.5 16.5 11.3,

24 2 1 2 7 0 2 3 6.5 '" '11.7 10.6
Figure 61: Counts and amount table oj2nd order Markov Chain with initial given

6.8: Three-state Markov Chain Modeling

In certain occasions one may want to group the rain fall data into three states i.e. rain,

trace and wet or even more number of states. The model has the capability of modeling
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Markov Chains with more than two states. A three state Markov model will have two

threshold values which determine the boundaries of each state. This section describes a zero

order and a one order state Markov model. To obtain a zero order Markov model the dialogue

box for counts can be filled as shown in the Figure 62 below.

Da .OfYear '

Markov Chain Oider:

Reset

,Specify the names of the tables --~l
' i Amounts Counts ' F.!IV Display in Spreadsheet

11·6.mo~nt ICounts I!
i

Figure 62: Counts dialogue zero order 3-state Markov Chain
I, Run, J Cancel J
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6.9: Modeling Rainfall Amount

When fitting rainfall amount, The User=>Fitting amount is used, and the dialogue

box for fitting amounts is as shown in the Figure 63 below.

Available Table: Enter Amounts Here:

IAmount

Enter Counts Here:

r=
Number of Hamonics:

13

Amoura
Counts

f7 Plot The fitted values

Cancel .1Run L
Figure 63: Dialogue box for fitting Amount

6.9.1: Modeling rainfall Amount of order zero

The model for rainfall amount of order zero is fitted in graph shown in graph 22

Overall Mean Rainfall per day in mm
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6

4

o 150 2SO 30050 100 200

Day Nurrber

1 __ fmvdayNo I

Graph 22: Fitted Mean rainfall of order zero (GenStat)
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The result in Graph 22 indicates that the overall mean rainfall in the long season is

higher than in the short season. The mean annual rainfall, result (Graph 26) is realistic based

on the conditions that Katumani experienced during the period when the data was collected.

6.9.2: Modeling rainfall Amount of order one

When the Markov model of order one for rainfall amount is fitted starting with

harmonic of order 2 followed by harmonic of order 3, the result is shown in the Graph 23

below.
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Graph 23: Fitted Mean rainfall of order one with harmonic of order 2

Estimates of parameters
Response variate: w_d

Parameter estimate s.e. t (325) t pro
Constant 1.8291 0.0472 38.79 <.001
half hamonic[l) Sin (1) 0.3452' 0.0601 5.74 <.001
-ha l.f hamonic(2) Cos[l] 0.5191 0.0662 7.85 <.001
half hamonic[3] Sin[2] -0.1965 0.0601 -3.27 0.001
half hamonic[4] Cos[2] -0.2273 0.0608 -3.74 <.001

Table 7: Estimate of parameter for rainfall amount model (w given d) with 2 harmonics
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Response variate: w w

Parameter estimate s.e. t (256) t pr.
constant 2.1022 0.0805 26.13 <.001
half hamonic [1] Sin [1] 0.1678 0.0818 2.05 0.041
half hamonic[2] Cos[l] 0.478 0.105 4.54 <.001
half hamonic [3] Sin[2] -0.1301 0.0787 -1.65 0.099
half hamonic[4] Cos[2] -0.2827 0.0674 -4.19 <.,001

Table 8: Estimate of parameter for rainfall amount model (w given w) with 2 harmonics

14,-----------------------------------------~I
Fitted Rainafall Armunt oforedr 1with 3 harrionics
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Graph 24: Fitted Mean rainfall of order one with harmonic of order 3
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R desponse varta e: w
Parameter estimate s.e. t(323) t pr. estimate
Constant 1.8267 0.0469 38.91 <.001 6.214
half hamonic[l] Sin[lJ 0.3939 0.0639 6.17 <.001 1.483
half hamonic[2] Cos[lJ 0.5287 0.0689 7.67 <.001 1.697
half hamonic[3] Sin[2J -0.2301 0.0615 -3.74 <.001 0.7944 <....

half hamonic[ 4] Cos[2J -0.2121 0.0648 -3.27 0.001 0.8089
half hamonic[5] Sin[3J 0.0748 0.0597 1.25 0.211 1.078
half hamonic[6] Cos[3J -0.1121 0.0609 -1.84 0.067 0.8940
Table 9: Estimate of parameter for rainfall amount model (w given d) with 3 harmonics

Response variate: ww
Parameter estimate s.e. t(254) t pr. estimate
Constant 1.9994 0.0842 23.75 <.001 7.385
half harnonic] l] Sin[lJ 0.254 0.102 2.48 ·0.014 1.289
half hamonic[2] Cos[lJ 0.717 0.129 5.58 <.001 2.049
half hamonic[3] Sin[2J -0.2933 0.0942 -3.11 0.002 0.7458
half hamonic[4] Cos[2J -0.4191 0.0946 -4.43 <.001 0.6576
half hamonic[5] Sin [3J 0.2311 0.0700 3.30- 0.001 1.260
half hamonic[61 Cos[3J 0.0390 0.0757 0.51 0.607 1.040
Table 10: Estimate of parameter for rainfall amount model (w given w) with 3 harmonics

Table 7 and Table 8 indicates that the harmonic of order 2 is significant while that of

order 3 is not significant (Table 9 and Table 10)
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6.9.3: Modeling High Markov model of order two for Rainfall Amount

Graph 25 shows fitted mean rainfall amount of high Markov Chain model of order 2
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Graph 25: Fitted Mean rainfall of High Markov of order two

Order two normal Markov fits better than order highs for Katumani data.
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Graph 26: Fitted Mean rainfall of order zero (GenStat)

During 1961-1963 Kenya received the highest rainfall called uhuru Y. The lowest

rainfall was received in 1980 -1983 when the greatest drought was experienced. The second

peak was during El-Nifio rains in 1998.

r Uhuru means Independence (The heavy rains were experience during the period of Kenyan independence.)
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CHAPTER 7: CONCLUSION AND FURTHER WORK
A comprehensive analysis of rainfall data is a fundamental component In the

planning phase of agricultural research since rainfall is the key element in the tropical regions

amongst other climatic constrains. The step taken in developing the cl~atic routine is

therefore meant to help users make full use of their rainfall data. It will support agricultural

research and many other fields that need an analysis of rainfall data as part of their work.

The successful implementation of the four menus encourages the potential statistical

programmers that it is possible to have a full menu for climatic data analysis. This study has

just jumpstarted the process by tackling one of the most challenging statistical techniques,

"Markov Chain Modeling". I strongly believe it is possible to implement the rest of the work

involved in climatic analysis into GenStat. The challenges met and knowledge gained in this

work highly motivates me to achieve the dream of full climatic menu as further work beyond

this study

The analyses in GenStat are now more flexible compared to what can be achieved by

the current version of Instat. Using the menus in GenStat, it is now possible to model Markov

Chain of higher order.

This work has simplified the modeling of rainfall data using GenStat since through

the menus, the routines can now be accessed very easily and any other statisticians who are

not programmers can still make use of. [n addition, the analysis done through these routines

can .now be relied on since the portray the true distribution of rainfall data. The result from

this analysis can therefore be used in publication.

The area of immediate address include modeling climatic events, crop performance

index analysis, summaries of climatic data, time series analysis, and temperature analysis etc.

For a full utilization of the package in handling climatic data, it is important to look forward

to implementing all these aspects of climatic analysis .

. The journey is not ending at GenStat only; we are looking forward to collaborate

with other researchers who are interested in the same field e.g. of implementing the same in

other powerful statistical software e.g. R.
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