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ABSTRACT

Calculating norms of matrices when the entries are not constants is the

first problem tackled in this thesis. We have considered the space of ma-

trices with entries from the algebra of bounded linear operators and have

managed to approximate norm in this space. The basic idea has been to

identify this space with the space of bounded operators from H" (where

'H" is the orthogonal sum of n-copies of 7-{)to 'H'" and calculating the

norm of an operator on H", This forms the content of chapter two. The

notion of completely bounded operators is a fairly new and developing

area in Mathematics. It started its life in the early 1980's following Stine-

spring's and Arveson's work on completely positive operators. It later

gave rise to operator spaces, a new branch in operator algebra. Progress

in this new area of Mathematics has been rapid and it is difficult to say

which results motivated others. We have investigated the norm of com-

pletely bounded operators and have shown that they form an increasing

sequence. The idea was to apply Hilbert-Schmidt norm to the definition

of these operators. We have also given examples of these operators for

illustration, something which is missing in the available literature. We

have also investigated operator spaces, especially their algebraic tensor

product. Specific interest has been in the matricial tensor product.
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Chapter 1

Introduction

Norms of matrices are induced from the vector norms,(see [17]). Cal-

culating these norms is not easy especially when the matrix entries are

not constants. In our study, we have considered the space Mm,n(B(1{))

where the entries are bounded linear operators. We have managed to ap-

proximate the norms from this space. ThIs was possible since the space

Mm,n (B(1{)) has been identified with the space of bounded operators from

'H" to 'H": All of these are covered in chapter two. Chapter one basically

covers the basic concepts that are vital in the understanding of this thesis.

The motivation of the study of operator spaces ties up with the no-

tion of quantisation. In fact, this notion started its life with the 'matrix

mechanics' of Heisenberg (see [7]). Influenced by this work of Heisen-

berg, Von Neumann suggested that one should seek quantised analogues

of Mathematics, in the sense of replacing functions by operators. Mur-

ray and Von Neumann put this into practice by producing the operator

(quantisedj version of integration. This gave birth to the whole field of

operator algebras. Similarly, one can seek for the notion of 'quantisation

of Banach spaces' which turns out to be operator spaces. On the other
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hand, the study of operator spaces is related to the study of complete
\

boundedness of operators or mappings (i.e. morphisms between operator

spaces) which was found to be useful in the study of operator algebras

long before the operator space theory was axiomatised, (see [9]).

As noted in the above, operator spaces basically means spaces of bounded

operators on some Hilbert spaces.

The theory of completely bounded maps is the basis for operator space

theory. It emerged in the early 1980's through the works Of Haagerup,

Wittstock and Paulsen, who proved independently, a fundamental fac-

torisation and extension theorem for completely bounded maps, (see [9]).

This factorisation theorem is a generalisation of an earlier important work

by Stinespring and Arveson (see [1]),who proved a factorisationjextension

theorem for completely positive maps. Completely bounded operators de-

veloped from 1980 onwards with the basic linear results complete by 1984.

Progress was rapid and it is difficult to explain which results motivated

others. In our study, we have investigated the norms of these operators,

given some examples of completely bounded operators and finally, we

have investigated the tensor norm of operator spaces. All of these form

the content of chapter three.

1.1 Literature review

Let 1-{ be a Hi~bert space, B(1-{) be the algebra of bounded linear operators

and Mm,n(B(1-{)) be the space of tti x n matrices with entries from B(1-{).

When speaking about the norm of a matrix T E Mm,n(B(1-{)), we will

always mean its norm as an operator from 'H" to 'H'"; (see [7]). Let
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Mm,n(B(1{)) be the algebra of m x n matrix of operators acting on n-,
dimensional complex Hilbert space 'H" and if T E B(1{n,"um), then the

norm of this operator is given by

IITII = sup{IIThll : n « tc-, Ilhll = I}.

The following theorem provides formulae that can be used to calculate

the three commonly used matrix norms

Theorem 1.1.1. If the elements of an n x n metria: A are aij, then

ii}IIAlloo = max{2:7=1Iaijl: 1:::; i :::;n} the co-norm.

iii} IIAlb = )2:7=12:7=1 laijl2 the Frobenius or Hilbert-Schmidt norm

Proof See [17] for the proof of this theorem. o

The notion of completely bounded maps first appeared in the early

1980's following Stinespring's pioneering work and Arveson's fundamental

results on completely positive maps, (see [1]). Stinespring showed that

completely positive maps have a representation of the form 'if2[¢(A2)] =
V*'ifl(Al)V, where 'if1 and 'if2 are representations of the algebras AI, A2,

¢ is completely positive operator and V is a bounded operator.

Theorem 1.1.2. (Stinespring's representation theorem). Let A

be a unital C* -algebra and let ¢ : A --t B(1{) be completely positive map,.
then there exists a Hilbert space K, a bounded operator V: 1{ --t K and a

unital *-homomorphism, 'if : A --t B(K) such that ¢(a) = V*'if(a)V, for

every G, E A.
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For the proof see [14].

"-Arveson showed that, if S <:;;; A is an operator system and ¢ : S --t B(1t)

is completely positive, then, there exists a completely positive map 'ljJ :

A --t B(1t) that extends ¢ such that 'ljJ(a) = ¢(a) for every a E S.

Theorem 1.1.3. (Arveson's Extension Theorem) Let S <:;;; A be an

operator sustem and let ¢ : S --t B(1t) be completely positive, then there

exists a completely positiue map 'ljJ: A --t B(1t) that extends ¢, such. that

'ljJ(a) = ¢(a) for every a E s.

For the proof see [14].

This result by Arveson yielded another result due to Wittstock, who

worked on operator spaces instead of operator systems and showed that if

M <:;;; A is an operator space and ¢ :M --t B(1t) is completely bounded,

then there exists a completely bounded-map 'ljJ: A --t B(1t) that extends

¢ and satisfies 111/)llcb = 11¢llcb.

Theorem 1.1.4. (Wittstock's Extension Theorem.) Let M <:;;; A

be an operator space and let ¢ :M --t B(1t) be completely bounded, then

there exists a completely bounded map 1/) : A --t B(1t) that exietuls ¢ and

saiisjies I 1'ljJ1ICb = 11¢llcb.

For the proof see [14].

Wittstock and Paulsen proved that the span of the completely positive

maps from a C*-algebra into an injective C* -algebra is identical with

the set of completely bounded maps. Hadwin showed that a bounded

unital homomorphism from a C*-algebra into L(1t) (algebra of linear

operators on a Hilbert space) is similar to a *-homomorphism if and
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only if the homomorphism belongs to the span of the completely positive
\

maps. Together, these two results by Wittstock and Paulsen and Hadwin,

prove that a bounded unital homomorphism from a C* -algebra into L(H)

is similar to a *-homomorphism if and only if it is completely bounded.

Recently, Paulsen [[14],chapter 10] proved that a bounded linear operator

on a Hilbert space is similar to a contraction if and only if it is completely

polynomially bounded.

Haagerup, Paulsen and Wittstock proved independently the fundamental

factorisation theorem for completely bounded operators, (see [9]).

Theorem 1.1.5. [Furuiameniol Factorisaiion/Extensioti theorem.) Con-

sider a completely bounded map ¢ : B(H) => E --t F c B(K). Then there

is a Hilbert space il, a representation

7r : B(H) --t B(il) and operators V1 : K --t il, V2 : tc --t K sucli that

11V11111V211 = 11¢llcb and

\Ix E E (1.1.0.1)

Conversely, if (i.i. 0.1) holds then ¢ is completely bounded and

II ¢II cb < 11V11111V211· Moreover, ¢ admits a completely bounded extension

J: B(H) --t B(K) ,91J.chthat IIJllcb = II¢II·

See [14] for the proof of this theorem.

We shall continue with the analysis of these completely bounded maps

as has been done by Paulsen, Wittstock and other Mathematicians. In

our case, we have investigated their norms especially the norm of the'

multiplicity maps, given examples of completely bounded operators and

finally, have investigated the algebraic tensor product of operator spaces.
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1.2 Statement of the problem

Let H be a complex Hilbert space. Consider the space B(H) of all

bounded linear operators on H. Then clearly, B(H) is a C*-algebra.

Let Mm,n(B(H)) be the space of tti x n matrices with entries in B(H). Let

also 'H" = HEEl ... EElH (n copies) and 'H'" = HEEl ... EElH (rn copies) be the

orthogonal sum of n, tri copies of H respectively and B(Hn, Hm) be the

space of all bounded linear operators from H" to H": Then, we shall cal-

culate norms on Mm,n(B(H)) using the fact that the space Mm,n(B(H))

have been identified with B(Hn, Hm). We shall also investigate norms of

the multiplicity maps and the algebraic tensor product of operator spaces

with respect to the matrix tensor norms.

6



1.3 Mathematical background

In this section we give definitions of some of the terms that are very

fundamental in understanding this study. We have also shown that B(1i)

is indeed a C*-algebra. Finally, we have given a brief account of the

Gelfand- Naimar k-Segal construction.

1.3.1 Vector spaces

5such a way that

Definition 1.3.1. Free vector space- Given any nonempty set X, let

K be a field. Fx is a vector space over K with X as basis and

Fx = {l=~=1r(ri : Xi E X, r, E K},

where the operations are as expected -i.e. combine like terms using the

rules

TX + sx = (7' + s).1:

T(SX) = (T!~)x.

The vector space Fx is called the free vector space, (see[13]).

Definition 1.3.2. Tensor product- Let U and V be vector spaces over

K, and let I be the subspace of the free vector space Fuxv generated by

• all vectors of the form

T(U, v) + siu', v) - (ru + SUi, v) and

T(U, v) + s(u, Vi) - (u, TV + sv') for all r, s E K, U, u' E U and v, Vi E V.

The quotient space Fuxv / I is called the tensor product of U and V and
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is denoted by U ® V. An element of U ® V has the form

n

L 1'i( iu, Vi) + I.
i=l

It is customary to denote the coset (11"v) + I by 11,® u hence any element

of U ® V has the form
n

L11,i ®Vi,
i=l

where 1'(11,® v) + 8(11,' ® v) = (1'11,+ 811) ® v and

1'(11, ® v) + 8(11, ® v') = 11.® (7'1) + 8V').

Definition 1.3.3. Operator /Functional- Functionals are mappings

from vector space X to the field of scalars lK, while operators are map-

pings from one vector space X to another vector space Y or to the same

vector space X.

Definition 1.3.4. Linear Operator- Let X and Y be vector spaces

over the same field lK. An operator T : X ---> Y is a linear map if

The vector space of linear operators from X to Y is denoted by

£(X, Y).

Definition 1.3.5. Norm- A real valued function 11.11 : V ---> JR.,where

V is a vector space over the field lK is called a norm if it satisfies the

following conditions:

(i)lIxll 2: 0, \j:r E V;
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(ii) Ilxll = 0 if and only if :1; = 0, \:j x E V;

(iii) Ilexll = lelll.TII, \:j.T E V, e E K;

(iv) II.T+ yll ::::;Ilxll + Ilyll, \:j x, y E V.

Definition 1.3.6. Bounded operator- A linear operator T E £(X, Y)

is bounded if there is a constant N > 0 such that

IIT.TII::::;Nllxll, \:j.T EX.

We shall write B(X, Y) for the set of bounded linear operators from X

to Y.

Definition 1.3.7. Operator Norm- Let B(X, Y) be the set of bounded

linear operators from X to Y. Let t E B(X, Y) then the norm of T is

defined 3..<;

IITII = sup{IITxll
xEX

Ilxll = I}.

Definition 1.3.8. Inner product- Let X be a vector space over C. An

inner product is a map (., .1 : X x X -t C satisfying, for .T,y, Z E X and

scalars a E C,

i) (x, YI = (y, xI,

ii) (.T,.TI 2: 0, with (.T,.TI = 0 ~ x = 0,

iii) (.T+ y, zl = (x, zl + (y, zl,

iv) (a.T, YI = a(x, y).
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The pair (X, (, )) is called an inner product space or pre-I\ilbert space.

Definition 1.3.9. Hilbert space- A complex Hilbert space H is a vector

space over C with an inner product such that H is complete in the metric

d(x,y) = Ilx-YII = (x_y,.,£_y)1/2.

1.3.2 Algebra

Definition 1.3.10. Algebra- An algebra A over ][{is a vector space A

over ][{that also has a multiplication defined on it making A into a ring

such that for a E ][( and a, b E A,

a(ab) = (aa)b = a(ab).

Example 1.3.11. Let H be a Hilbert space, B(H) the set of all bounded

linear operators on the Hilbert space H. Then B(H) is an algebra when

multiplication is defined pointwise.

Example 1.3.12. If S is a set, £oo(S) the set of all bounded complex-

valued functions on the set S is an algebra where the operations are defined

as follows:

(1+ g) (.'£) = f(·i) + g(x)

(1g)(.'£) = f(x)g(x)

(Af)(.'£) = Af(x)

\Ix E S,
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Definition 1.3.13. Sub-algebra- A sub-algebra of an algrbra A is a

vector space M such that for all 1)" 1),' E M we have W/E M. <...0

Definition 1.3.14. Unital Algebra- If an algebra A admits a unit 1

such that QJ = 10. = 0., Yo.E A, then we say that A is a unital algebra,

otherwise it is non-unital.

Definition 1.3.15. Involution- If A is an algebra, an involution is a

map Q, f-t Q,* of A into itself such that 'II 0., b E A, and a. E C the

following conditions hold:

(i) (0.+ b)* = 0.* + b*;

(ii) (a.o.)* = aQ,*;

(iii) (o.b)* = b*o.*;

(iv) (0.*)* = 0..

An algebra A with an involution 0. f-t 0.* is called a *-algebra or an

involutive algebra.

Definition 1.3.16. Banach algebra- A Banach algebra is an algebra

A over K that has a norm 11.11 relative to which A is a Banach space and

such that for all 0., b in A,

II00bli :S 11001111bll·

A Banach *-algebra is a Banach algebra A with involution satisfying

the property 110.11 = 110.*11, Yo.E A.
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Definition 1.3.17. Spectrum of an operator- If A is a Banach algebra,
with identity and a, E A, the spectrum of 0" denoted by dfa,), is defined

by

a(o,) = {A ElK: a, - A is not invertible}.

Definition 1.3.18. Spectral radius- If A is a Banach algebra with

identity and a, E A, the spectral radius of 0" 1'(0,), is defined by

1'(0,) = sup{IAI : A E a(o,)}.

Definition 1.3.19. Algebra norm- Let A be an algebra. An algebra

norm on A is a map 11.11: A -t lR+ such that (A, 11.11)is a normed space

and , further:

II00bli~ 1100111·lbll0" bE A

The normed algebra (A, 11.11)is a Bana~h algebra if 11.11is a complete

norm i.e. if every Cauchy sequence converges.

Definition 1.3.20. Abelian algebra- An algebra A which is commu-

tative, that is ab = ba Va" b E A is referred to as an Abelian algebra. If

the product is non-commutative, it is known as a non-Abelian algebra.

Example 1.3.21. Let C(D) be the Banach space of all complex con-

tinuous functions on a non-empty compact Hausdorff space D, with the

supremum norm. Define multiplication in the usual way:

(fg)(x) = f(x)g(x) xED.

This makes C(D) into a commutative or Abelian Banach algebra, where

the constant function 1 is the unit element.
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Definition 1.3.22. Adjoint of an operator- If T E B(H, K), where

Hand K are Hilbert spaces, then the linear operator T* E B(K, H)

satisfying (Tx, y) = (.r, T*y) V.r E Hand y E K is called the adjoint of

T.

Definition 1.3.23. C*-algebra- A I3anach *-algebra A such that

Ilaa*11= IlaW VaEA

is called a C*-algebra.

Example 1.3.24. The algebra of all bounded linear operators B(H) on

a Hilbert space H is a C*-algebra with the usual adjoint operation as

involution. To show this, we note first that this follows from the well

known identity

IIT*TII sup I(T*T.r,.r)1
Ilill=l
sup I(T.r, T.r) I

Ilxll=l

IITI12.

B(H) is a vector space over C. In fact it is an algebra if multiplication

is defined pointwise (see [2]) i.e. for S, T E B(H) where S, T : H --t H

then

STx = S(Tx) 'liS, T E B(H) and z E H.

Since B(H) is complete and 'liTE B(H),

IITII = sup{IIT.rll

13



is a norm on it. This norm is submultiplicative i.e.

IIST:rll IIS(Tx)11
< IISIIIIT·r,11
< IISIIIITIIII·r,II· (1.3.2.1 )

and satisfies the C*-condition

IITI12 = IIT*TII and hence the assertion follows.

Definition 1.3.25. Self-adjoint operator- A bounded operator T E

B(7-i.) is said to be self-adjoint if T* = T.

Definition 1.3.26. Unitary operator- A unitary operator is a bounded

linear operator U on a Hilbert space H satisfying U·U = UU* = I, where

U* is the adjoint of U and I is the identity' operator.

1.3.3 Positive linear functional

Definition 1.3.27. positive linear functional- A positive linear func-

tional is a linear functional on a Banach *-algebra A with involution such

that f(o,o,*) ~ O. \fo, E A.

Definition 1.3.28. State- Let A be an involutive algebra. Then the

linear functional f is called a state on A if f is positive and IIfll =
f(e) = 1 where e is a unit element in A.

Theorem 1.3.29. If f is 0, positive linear functional on a C* -algebra AJ

then it is bounded.
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Proof. If f is not bounded, then the sUPaESf(a) = 00 where S is the set,
of all positive elements of A of norm not greater than one: -Hence , there

is a sequence (an) C S such that

2n S; f(an) for all n E N.

Set a = L~=oan/2n , so a E A+

Now 1 S; f(an/2n) and therefore

N-l N-l

N S; L f(an/2n) = f(L a~/2n) S; f(a)
n=O n=O

Hence f(a) is an upper bound for the set N , which is impossible. This

shows that f is bounded. o

This proof was obtained from [13].

Proposition 1.3.30. Every positive linear functional f on a Banach =.

algebra A has the following properties :

i) f(·'E*) = f(·'E),

ii) If(·'Ey*)12 S; f(·'E·'E*)f(yy*),

iii) If(·'E)12 S; f(l)f(x.'E*) or If(x)j2 S; Ilfllf(x.'E*) since Ilfll = f(I).

Proof. See [3] for the proof. o

1.3.4 Representations of C*-algebras.

In this section, we shall develop the basic properties of representations of

C*-algebras. This will culminate in a proof of the fundamental theorem of
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Gelfand and Naimark that every C*-algebra is isomorphic to a C*-algebra
\

of operators.

Definition 1.3.31. *-homomorphism- Suppose A and Bare C*-algebras.

A mapping 7r : A -7 B is said to be a C*-homomorphism or simply a *-

homomorphism, if for any a, (3 E <C and a, b E A, the following conditions

are satisfied

(a) 7r(aa + (3b) = a7r(a) + (37r(b).

(d) 7r maps a unit in A to a unit in B.

Definition 1.3.32. Representation- A representation of a C*-algebra

A is a pair (1i,7r) where 'H.is a Hilbert space and 7r : A -7 B(1i) is a

*-homomorphism. We say (1i,7r) is faithful if 7r is injective. If A is non-

zero, we define its universal representation to be the direct sum of all the

representations (1if,7rf) where f ranges over S(A)

Definition 1.3.33. *-representation- A *-representation of a C*-algebra

A on a Hilbert space H is a mapping 7r : A -7 B(1i) such that

i) 7r is a ring homomorphism which carries involution on A into invo-

lution on operators.

ii) tt is non-degenerate i.e. the space of vectors 7r(a)x is dense as a'

ranges through A and x ranges through 'H.
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For a representation tt of a C*-algebra A on a Hilbert space H, an
l

element x is called a cyclic vector if the set of vectors {7r(a}:r; : a E A} is

norm dense in 'H, in which case tt is called a cyclic representation.

Definition 1.3.34. Ideal- A subset I of a commutative complex algebra

A is said to be an ideal if

• I is a subspace of A (in the vector sense) and

•. 7:y and y.7: are in I whenever .7: E A and y E I.

Associated to any positive linear functional is a positive semi-definite

sesquilinear form on A given by

(a, b) = j(b*a).

that is (., .) is linear in the first variable and conjugate linear in the sec-

ond.

The key to representing a C*-algebra on a Hilbert space is to build rep-

resentations from states. This important procedure is called the GNS

construction named after Gelfand, Naimark and Segal, (see [12, 11]).

Theorem 1.3.35. If f is a state of a C*-algebra A, there is a cyclic

representation ttf of A on a Hilbert space H j, and a unit cyclic vector x f

j01' 7rf' such that f = Wx f 0 ttf that is

\j aEA.

Wxf is a positive linear functional on B (1i).

17



Proof. Let N = {a E A : f(o,*o,) = O}. Then
\

N is a closed left ideal of A. That is: If a E Nand DcE A then by

proposition (l.3.30), we have

If(b*o,)12 :::;f(b*b)f(o,*o,) = 0, but f(b*o,) ~ 0

so f(b*o,) = O.

Upon replacing b by b*bo" it follows that

f((b*bo,)*o,) = f((bo,)*bo,) = 0 by definition (1.3.27). So ba EN whenever

a E Nand b E A. Hence N is a left ideal of A.

To show that N is closed, let (xn) eN such that .Tn ~ x.

Since f is positive linear functional, it. is bounded by theorem (1.3.29)

and therefore continuous. Hence f(.T~.Tn) ~ f(.T*X)

but (.Tn) eN, Vn E N.

=> f(X~.Tn) -t 0, so f(.T*X) = 0 implying that .T E N and hence N is

closed. Now, define a positive definite inner product on A/N by

(x+N,y+N) = f(y*x).

This is well defined because if

f((y* + N;)(.T + Nd)

f(y*.T + (y + N2)* N, + N;.T)

f(Y*·T) + f((y + N2)* N1) + f(N;.T)

f(Y*·T) + f((y + N2)* N1) + f(·TNn

f(y*.T) + 0 + 0

f(Y*·T.)

18



7rf(ab)(c +N) obc-s N

7rf(a)(bc + N)

7rf(a)7rf(b)(c + N), (1.3.4.2)

(b+N, 7rf(a)*(c +N)) = (7rf(a)(b +N), c + N) (ab + N, c + N)

j(c*ab)

j((a*c)*b)

(b+ N, a*c +N)

= (b+N,7rf(a*)c+N).

(1.3.4.3)

From (1.3.4.1), (1.3.4.2) , (1.3.4.3) and since AIN is everywhere dense in

'Hf' it follows that

Thus 7rf is a *-homomorphism of A into B(1if). Accordingly, 7rf is a

representation of A on 'Hf with x f the vector I +N in AI N.

Now 7rf(a)xf = 7rf (a) (I +N) = a+N Va E A. Hence 7rf(A).'Ef is the

everywhere-dense subset AI N of 'Hf' and .'E f is a cyclic vector for ttf.

Moreover,

Va,E A;
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o

For more details see [11, 13,21] .

Theorem 1.3.36. (Gelfand-Naimark) If A is a C*-algebra, then it has a

faithful representation. Specifically, its uniuersal representation is faithful.

Proof. For the proof of this theorem, see [13]. o

The Gelfand-Naimark theorem (1.3.37) is one of those results that

are used all the time and in this thesis it has been used in the proof of

theorem (2.2.4)

Theorem 1.3.37. (Gelfand-Naimark) A C*-algebra A is isomorphic to

an algebra of bounded operators in a Hilbert space.

Proof. See [19] for the proof of this theorem. o

•
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Chapter 2

Calculating Norm on

Mm,n(B(H))

In this chapter, we shall first identify the space Mm,n(B(1{)) of m x n

matrices with entries from B (1{) with B (1{n , 1{m), the space of bounded

linear operators from 'H" to 'H"' and then use this identification to deter-

mine the norm of any element [Ti,j] E Mm,n(B(1{)).

Given a Hilbert space 1{, and operators, Ti,j E B(1{),1 ::; i ::;m, 1 ::;

j ::; n, we identify the tri x n matrix of operators, [Ii,j] with an operator

from 1{(n) = 1{ EB... EB1{ (n copies) to 1{(m) = 1{ EB... EB1{ (m copies)

by regarding vectors in these spaces &<J columns and performing usual

matrix multiplication. This endows Mm,n(B(1{)) with a norm and this

collection of norms on B(1{) are often referred to as the matrix norms

on B(1{), (see [14, 15]). When speaking about the norm of a matrix

[Ii,j] E Mm,n(B(1{)), we will always mean its norm as an operator from

H" to 'H'", That is, Mm,n(B(1{)) will be the space of m x n matrix of op-.

erators acting on an n-dimensional complex Hilbert space 'H" to 'H": We

note that when tri = n, then Mm,n(B(1{)) = Mn,n(B(1{)) and B(1{n, 1{m)

22



is B('}-{n). If T E B('}-{n, '}-{m), then the norm of T is given by

IITII = sup{IIThll : hE '}-{n; Ilhll = I}.
\

In this section, we prove some important matrix inequalities which we

shall use later in the sequel.

Proposition 2.1.1. Let Mn(B('}-{)) be an n x n matrix with entries from
B('}-{). Let [Ii,j] E Mn(B('}-{)), then we have that

n n

IITi,j11:S II[Ii,j]11 :S L L IIIi,jll
i=l j=l

(2.1.0.1)

Proof I3y the matrix I-norm, we have

n

II[Ii,j]11= max L IIIi,jll 2: IITi,jll; j = 1, ... , n.
J i=l

This implies that

(2.1.0.2)

Also, we have
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is B(1{n). If T E B(1{n, 1{m), then the norm of T is given by
\

IITII = sup{IIThll : hE 'H"; Ilhll = I}.

2.1 Matrix inequalities

In this section, we prove some important matrix inequalities which we

shall use later in the sequel.

Proposition 2.1.1. Let Mn(B(1{)) be an ti x ri matrix with entries from

B(1{). Let [IU E Mn(B(1{)), then we have that

n n

IITi,jll:::; II[Ii,j]II:::; 2:2:IITi,j1l
i=l j=l

(2.1.0.1)

Proof. l3y the matrix l-norrn, we have

n

II[Tdll = max 2: IITi,jll 2': IITdl; j = 1, ... .n.
J i=l

This implies that

(2.1.0.2)

Also, we have

n n n
II[Tdll = 1~3fn 2: II'Ii,jll < 2: 2: IIIi,jll·

_J - i=l j=l i=l
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Implying that
n n

II[Ti,j]ll:::;LLIITdl.
j=l i=l

(2.1.0.3)

Hence, from (2.1.0.2) and (2.1.0.3) we obtain

n n

IITdl :::;II[Ti,j]11:::;LL IITi,jll, (i,j = 1, ... ,71.)
i=l j=l

o

Although these inequalities do not determine the matrix norms, they

provide important constraints on their properties. In particular, any two

such norms must be equivalent on Mn(B(H)) and a sequence say T(k)

(k EN) in Mn(B(H)) converges if and only if the entries T(k)i,j converges.

It is also apparent from these inequalities that B(H) is complete if and

only if each of the normed spaces Mn(B(H)) is complete.

2.2 Identification of Mm,n(B(1t)) with

If we can identify the space Mn(B(H)) with B(Hn) then we can do the

same to Mm,n(B(H)) with B(Hn, Hm), after which we can equate norm

on Mm,n(B(1{)) to norm on B(1{n, 1{m). This norm is defined by letting

the space Mn(B(H)) act on a Hilbert space H", We shall denote a typical

element of Mn(B(H)) by ['Ii,j].

In fact the space Mn(B(H)) is an involutive algebra if we define multipli-
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cation as

n

['Ii,k],[Sk,j] = (2: 'Ii,kSk,j) for any ['Ii,j], [Si,j] E Mn(B(1{)),
k=l

and define involution 3..<;

It is not obvious that the *-algebra Mm,n(B(1{)) is a C*-algebra with

this identification. We shall prove in Proposition (2.2.2) that indeed

Mm,n(B(1{)) is a C*-algebra.

Now, let H" denote the direct sum of ri copies of 1{. Then we shall de-

fine an inner product on u: by, 'V h, f E tc: where h ~ ( : ) and

and also a norm by:

So H" is a normed space. In fact it is a Hilbert space.
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\

Proposition 2.2.1. Let Mn(B(1-l)) and B(1-ln) be *-algebra.;'~Then there

exists a linear mapping 7r : Mn(B(1-l)) ---t B(1-ln) such that 7r is a *-

isomorphism.

Proof. Let 7r : Mn(B(1-l)) ---t B(1-ln) be a mapping between these two

*-algebras. If [Ti,j] E Mn(B(1-l)), we define 7r([1i,j]) E B(1-ln) by setting

(
hI 1for all : E 'H",

hn

From the above development, the map tt is just the ordinary matrix

multiplication. We need to show that this map 7r : Mn(B(1-l)) ---t B(1-ln)

is a *-isomorphism, whence it would follow that Mn(B(1-l)) == B(1-ln).

To do this, it suffices to show that tt is a *-homomorphism and is

bijective.
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= (2:

n

;=l (aT1,j :.+ {3S1,j) (hj) 1
7r(a[Td + {3[Si,j]) (h)

2:j=l (aTn,j + {3Sn,j) (hj)

(

L~"I (aT',j(hj) + (3S',j(hj)) 1
2:j=l (aTn,j(hj) + {3Sn,j(hj)) .

(

L~"I aT1,j(hj) + L~"I (3Sl,j (hj) 1
2:j=l aTn,j(hj) + 2:j=l {3Sn,j(hj)

= a ( 2:;=1 T1,j(h
j
) 1+ {3( 2:;=1 Sl,j(h

j
) 1

2:;=1 Tn,j(hj) 2:;=1 Sn,j(hj)
mr([Ti,j])(h) + {37r([Si,j]) (h)

(a7r([Td) + {37r([Si,j])) (h)

Thus 7r is linear.

Next, we show that 7r((Si,k) (Tk,j)) = 7r((Si,k))7r((Tk,j)). Let [Rd = [Si,k][Tk,j].

Then

27



(2.2.0.4)

Also
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From (2.2.0.4) and (2.2.0.5) it follows that 7r([Si,k][7i,k]) = 7r([Si,k])7r([Tk,j]).
\.

Hence tt is a homomorphism.

Then

(2.2.0.6)
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Also

i=l j=l

n

= L (Ti,jhj,M

i,j=l

From (2.2.0.6) and (2.2.0.7) and since 1{ is a complex Hilbert space,

it follows that

Thus 'if is a *-homomorphism.

It now remains to show that 'if is bijective.
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Let

(2.2.0.8)

be a map defined by

Ek(h) = vector that has h for its k-th entry and is 0 elsewhere

Now, suppose 7r([Ti,j]) = 0, then

k={l, ... ,n}

This implies that T;,kh = 0 for all h E 1{ and for all i, k = {I, ... ,n}.

Hence [T;,j] = O. Therefore, 7r is injective. We next show that tt is onto.

To do this , we define a map

(2.2.0.9)

We shall first show that, this map sends a vector in H" to its j-th com-

l h::l l·ponent. Note that from (2.2.0.8), L~=lEkhk =

hn

l hl 1To show that 2.2.0.9 is the required map, let b « 1{, : E H",

hn
Then by the definition of adjoints,
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(

hI 1 \that sends h" to hj as required. We then proceed t.o show that tt

is onto. To prove this, it is enough to show that 7r([1i,j]) = T for any

T E B(1{n).

(
hI 1 (11 1To show this, let Ti,j = E;*T s; : , .. E u:

hn I;
Then

n

= L" (1i,jhj, j;)
i,j=1

n

L (Ei*TEjhj, j;)
i,j=1

n

L (TEjhj' Edi)
i,j=1

(t,TEjhj,t,Ed.)
(T (t,Ejh}t,Ed.)

(T((:l}(n)
(2.2.0.10)
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r:

Thus, from (2.2.0.10), and since H is a complex Hilbert space, it fol-
\

lows that 7r([Ti,j]) = T. Hence 7r is onto and therefore is a *'-<isomorphism.

o

Moreover, this tt is a representation of Mn(B(H)) on the Hilbert space

H", We call tt the canonical *-isomorphism of Mn(B(H)) onto B(Hn).

Therefore, we can identify Mm,n(B(H)) with B(Hn, Hm). This identifica-

tion gives us a norm that makes the *-algebra Mmn(B(H)) a C*-algebra, .

as evident in the following proposition.

Proposition 2.2.2. Let 7r : Mm,n(B(H)) --t B(Hn, Hm) be a *-isomorphism.

Then the norm defined by

(2.2.0.11)

makes the *-algebra Mm,n(B(H)) a C*-algebra.

Proof It is clear that II[li,j]II = 117r([li,j])II is a norm. In fact it is sub-

multiplicative. It now remains to show that equation (2.2.0.11), satisfies

II[li,j]* [li,j]II = 117r([Td*[Ti,j])II
117r([li,j]*)7r([Td) II

< 117r([Ti,j]*) II117r([Ti,j]) II

< 117r1111[li,j]* 11117r1111[Td II
< II [Ti,j] * II II [Ti,j] II

II[TdI12 since II[Tdll = II[li,jj*11
because Mm,n(B(H)) is a *-algebra.
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Hence

'--' (2.2.0.12)

On the other hand,

o < II [7i,j] 112 11?T([Ti,j]) 112

(?T([Ti,j])h, ?T([7i,j])h) for h E H" and of unit length.

(?T([Ti,j]) *?T([Ti,j]) h, h)

(?T([Ti,j]* [7i,j])h, h)

= I (?T([Td*[7i,j])h, h)1

< 11?T([7i,j]*[7i,j])hllllhll by C.I3.S inequality.

< 11?T([7i,j]*[7i,j])llllhI12

< II?TIIII [7i,j]*[Ti,j]llllhI12

< 11[7i,j]*[7i,j]ll·

Hence

(2.2.0.13)

From (2.2.0.12) and (2.2.0.13), it follows that II [7i,j]*[7i,j] II = 11[7i,j]112

implying (2.2.0.11) satisfies the C*-condition, and therefore Mm,n(B(H))

is a C*-algebra. 0

The norm defined above is unique. I3efore showing this, we shall

require the following result.

Proposition 2.2.3. If 11.11is a complete C*-norm on a *-algebra A, then.

it is given by the expression
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Iiall = T(a*a)~, Va E A, (2.2.0.14)

uihere T(a) is the spectral radius of a. Hence a C*-norrn on a *-algebm is

unique if it exists.

Proof. See [22, 13J for the proof. o
Theorem 2.2.4. If B('H) is a C*-algebm, then there is a unique norm

on Mn(B('H)) making it a C*-algebra.

Proof Mn(B('H)) being a C*-algebra has been shown in Proposition

(2.2.2). It now remains to show that the C*- norm defined in Propo-

sition (2.2.2) is unique. The uniqueness of this C*-norm follows from

expression of equation (2.2.0.14). For, if 11.111 and 11.112 are norms on the

*-algebra Mn(B('H)) making it a C*-algebra, then

and

which implies that II[Ii,j Jill = II[Ii,j lib i.e. the two norms are equal. 0

2.3 Norm on Mm,n(B(H))

There is a natural way to regard an element of Mm,n(B('H)) as a linear

map on 'H", by using the usual rules for matrix products (see [7]).
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We shall check if this element of Mm,n(B(1-()), is a bounded linear

operator on H"; i.e. if:3 c E R: II[Tdhll :S cllhll·
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n

+ ... + LTm,jhj

j=l

2n

"'T1 ·h·Z:: ,J J
j=l

2

m n

= L L~,jhj

i=l j=l

2

< LL 11~,jhjI12
i=l j=l

by triangle inequality.
m n

m n

< LLII~,jI121IhjI12
i=l j=l

< ~ (t,II'Ii,;II') t,llhjll'

= ct,IIhj II'where c = ~ (t,11T;,j II')

Putting r:,7=1 IIhjl12 = 1 and then taking the square root on both sides

and the assertion follows.

we obtain
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=? II[Ti,l] II ::; J'E:~l l:7=11I'1i,j112 . Since [Ii,l] was picked arbitrarily,

we have that the norm of [Ii,j] E Mm,n(B(1t)) can be approximated by

II[Tdll::; (l:::l l:7=11ITi,jI12).
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Chapter 3

Operator Spaces and

Completely Bounded

Operators

3.1 Completely bounded operators.

This chapter contains the formal definition of operator spaces, complete

boundedness for linear operators between C*-algebras, the main repre-

sentation theory for completely bounded operators, Wittstock's decom-

position theorem for c.b. operators, algebraic tensor product of operator

spaces and a discussion of other basic related results.

Definition 3.1.1. Let 'H be a Hilbert space, B(1-f.) a set of bounded lin-

ear operators on 'H and let M s: B(1-f.) be a subspace. Let Mn,m(B(1-f.))

be a ti x m matrix algebra with entries from B(1-f.). Then the inclu-

sion, Mn,m(M) s: Mn,m(B(1-f.)) endows this vector space with a col-

lection of matrix norms and we call M together with this collection
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of matrix norms on Aln,m(M) an operator space. When rn = n, then

Alternatively, an operator space is a closed subspace of B(1i).

The study of operator spaces is related to the study of completely

bounded operators (i.e. the morphisms between operator spaces).

Definition 3.1.2. Given a C*-algebra A, an operator space M ~ A, and

a linear map <P : M ~ B(1i), we define a linear operator <Pn : Mn(M) ~

for [aij] E Mn(M). We call <Pcompletely bounded, if 11<pllcb= sUPnENII<Pnll,

is finite

The space of completely bounded operators from A to B with this

norm is denoted by CB(A,B). We shall show that 11.llcbis a norm on

CB(A,B).

Proposition 3.1.3. 11.llcbis a norm on the linear space CB(A,B).

Proof. Clearly 11<pllcbis non-negative and is zero if and only if <Pn is zero

for every n E N.

Now, let A E C, then

IIA<Pllcb sup IIA<Pnll
n

su p IAI·II<PnIIn
IAIsup II<PnII

n
IAI·II<pllcb
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Let 'l/J,¢ be completely bounded linear operators, then it's clear that 'l/J+¢
\

is also completely bounded. Therefore

11'l/J+ ¢llcb sup II'l/Jn+ ¢nll
n

< sup{II'l/Jnll + II¢nll}
n

< sup II'l/JnlI + sup II¢nll
n n

II'l/JIICb+ 11¢llcb

Thus 11¢llcb= sUPn II¢nll. is indeed a norm. o

Proposition 3.1.4. Let M, M* be operator spaces in the C*-algebra A

such that M* = {a* : a EM}. Let B(1-i.) be another C*-algebra such

that ¢ : M ---+ B(1-i.) is a linear map. Then the map ¢* : M* ---+ B(1-i.)

defined by

¢*(a) = ¢(a*)* .

is also linear map and II¢nll = II¢~II.

Proof. Let M and M* be operator spaces. Let also o; fJ E C and a, b E

M, then by definition, orz + fJb E M so that (cr.a + fJb)* E M*.

Now

¢*(cr.a + fJb) ¢((cr.a + fJb)*)*

¢(aa* + fjb*)*

[a¢(a*) + fj¢(b*)]* since ¢ is linear

a¢(a*)* + fj¢(b*)*

cr.¢*(a) + fJ¢*(b)
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Hence ¢* is a linear map.

With these linear maps: ¢ : M --+ B(7i), ¢* : M* --+ B(7i), we can

define their corresponding linear maps:

via ¢~([ai,j]) = [¢*(ai,j)] = [¢(ai,j)*]* for all i,j = 1, ... .n.

For the case when n = 2, we have

[¢((ai,j)*)]*

[¢(aj,i)]*

[
¢(ai,l) ¢(a;,~) 1 *

¢(ar,2) ¢(a;,2)

[
¢(ar~) ¢(ar~) 1
¢(a2~1) ¢(a2~2)

[
¢(al,l) ¢(al,2) 1
¢(a2,1) ¢(a2,2)

¢2([ai,j])
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From the above calculation, we have, for any n E N that

¢~([ad) = [¢*(ai,j)] [¢(ai,j)*]*

= [¢(aj,i)]*

[¢(at;)]

[¢(ai,j)]

<Pn ([ ai,j])

Hence 11¢~([ai,j])11= II¢n([ad)11 < II¢nllll[ai,j]11
Thus 11¢~([ad)11 ::; II¢nll·ll[ai,j]II·
Taking the supremum norm on both sides with II[ai,j]11 = 1, one thus

obtains II¢~II ::; II¢nll
Similarly

II¢n([ai,j])11 = 11¢~([ai,j])11::; 11¢~II·II[adll
Thus II¢n([ai,j])11 ::; 11¢~II·II[ai,j]ll·
Again taking the supremum norm on both sides with II[adll = 1, one

thus obtains II¢nll ::; II¢~II· Hence II¢nll = II¢~II· Therefore

11¢llcb= sup II¢nll = sup II¢~II = 11¢*llcb.
n n

o

Proposition 3.1.5. Given a C*-algebra A, an operator space M ~ A,

and a linear map, ¢ : M ~ B(H), The normsll¢nllnEN form, an increasing

sequence
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and

Il<I>nll ::; 71,11<1>11·

Proof. We shall first prove the first inequality. Notice that when n = 1,

then by the definition of <l>n' <1>1coincides with <I>and hence 11<1>11= 11<1>111·
Now let's consider cases when n = 2,3.

Let [ai,j] E M2(M) i, j = 1,2, then for

<1>2: M2(M) -7 M2(B(H)), we have

and

2 2
= LL 1I<I>(ai,j) 112

i=1 j=1
by Hilbert-Schmidt norm

1I<I>(al,I)112 + 1I<I>(al,2)112 + 1I<I>(a2,1)112 + II <I>(a2,2) 112

> 1I<I>(al,I)112 = 1I<I>(al,I)11 = 1I<I>I(al,dll

Thus 11<1>211= sUP[ai,i)EM2(M) 1I<I>2([ai,j])11 ~ sup 1I<I>I(al,I)11 = 11<1>111·Hence

11<1>211~ 11<1>111·
For n = 3, we have
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( ( all
a1,2

al,3 ) )
( ¢(al,Il ¢(a1,2) ¢(a!3l )

¢3 a2:1 a2,2 a23 ¢( a2,1) ¢(a2,2) ¢(a2,3)

a3,1 a3,2 Q'3:3 ¢(a3,1) ¢(a3,2) ¢(a3,3)

So

(

¢(a1,l) ¢(a1,2)

¢(a2,1) ¢(a2,2)

¢(a3,1) ¢(a3,2)

3 3
L L 11¢(ai,j)112
i=l j=l

(11¢(a1,1)112 + 11¢(a1,2)112 + 11¢(a1,3)112 + 11¢(a2,1)112 +
11¢(a2,~)112 + 11¢(a2,3)112 + 11¢(a3,l)112 + 11¢(a3,2)112 +
II¢( a3,3) 112)1/2

> 11¢(a1,dI12 + 11¢(a1,2)112 + 11¢(a2,l)112 + 11¢(a2,2)112

2 2
L L 11¢(ai,j)112
i=l j=1

Thus 11¢311 = sUP[ai,ilEM~(M) 11¢3([ai,j])11 2:: sUP[ai,i]EAh(M) 11¢2([ad)11 =

11¢211· Hence 11¢311 2:: 11¢211·

Therefore in general, let's consider
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defined by ¢n+1([ai,j]) = [¢(ai,j)] for all i,j = 1, ... , n + f"..J3y the above

calculations we have

II¢n+1 ([ad) II
n+1 n+1
L L 1I¢(ai,j)112
i=l j=l

n n

i=l j=l

Taking supremum on both sides we thus obtain lI¢n+111 2: lI¢nll.
The completely bounded norm of ¢ is given by

1I¢lIcb = sup lI¢nll·
n .

=? 1I¢lIcb 2: lI¢nll Vn E N.

Thus II¢II ::; 1I¢211::; ... ::; lI¢nll ::; ... ::; 1I¢lIcb
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II¢n ([o,i,j]) II II [¢( o,i,j) III
n n "-'

= L L 11¢(o,i,j) 112
i=l j=l

n n

< L L 11¢11211(o,i,j)112
i=l j=l

n n

II¢II L L II(o,i,j)112
i=l j=l

To show that II¢nll ::; nll¢ll, let Il00i,jll ::; 1 V i,j, then

= 11¢11(110,1,1112+ ... + 110,1,n112+ 110,2,1112+ ... + 110,2,nW + ... -+-

Ilo,n,1112 + ... + Ilo,n,nW)1/2
< 11¢IIJ(n + n + n + n + ... + n) i.e. add n n-times since Il00i,jll ::; 1

11¢11Fn2

nll¢11

Thus II¢nll ::; nll¢ll·

3.2 Representation of completely bounded

D

operators.

Each C*-algebraA has an isometric *-representation in the algebra B(H)

of all bounded linear operators on H, where H is a Hilbert space (see

[4]). This representation also identifies Mn(A) with a subalgebra of

Mn(B(H)) = B(H(n)). In discussing completely bounded linear oper-
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ators from a C*-algebra A into another, initially it will be assumed that,
the range algebra is B (H). This leads to the Haagerup-Paulsen- Wittstock

representation theorem for a completely bounded operator into B(H), (see

[14]).

Theorem 3.2.1. (Representation theorem). Let A be a unital C*-

algebra, ¢ : A -t B(H) completely bounded. Then there exists a Hilbert

space K, a unital *-homomorphism tt : A -t B(K) and bounded linear

operators VI, V2 : H -t K with IIVlII.11V211 = 11¢llch such that for all a E.A.

¢(a) = Vt7r(a,)V2.

Moreover, if 11¢llcb = 1 then VI and V2 may be taken to be isometries.

Proof For the proof of this theorem, see ([14], theorem 8.4. ) D

Definition 3.2.2. Let A, B be C*-algeb~as and ¢ : A -t B be a lin-

ear map, then ¢ is called a positive map provided that it maps positive

elements of A to positive elements of B.

Definition 3.2.3. Let A and B be C*-algebra..<;,Mn(A) and Mn(B) be

n x n matrices with entries in A and B respectively. For each linear map

¢ :A -t B, we define a linear map ¢n : Mn(A) -t Mn(B) by

If ¢n is positive, then ¢ is said to be n-positive. If ¢ is n-positive for all

n, then ¢ is said to be completely positive.

Definition 3.2.4. If A is a unital C*-algebra, then a subspace S ~ A

with I E Sand S* = S is called an operator system.
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Completely positive maps are all completely bounded but it is worth

noting here that not all positive maps are completely positive and not all

bounded maps are completely bounded (see [9]).

Proposition 3.2.5. Let S ~ A be an operator system, let B be a C*-

algebra, and ¢ : S -. B be completely positive. Then ¢ is completely

bounded and II¢(I)II = II¢II = 11¢llcb

Proof. By theorem (3.2.1) ¢ is a completely bounded operator. It now

remains to show that 11¢llcb.= II¢II. = II¢(I)II. Clearly, we have that

II¢(I)II :s: II¢II :s: 11¢llcb,so it is sufficient to show that 11¢llcb :s: II¢(I)II·
Let A = [ai,i] E Mn(S) with IIAII :s: 1. Let In be the unit of Mn(S). Since

(
In A)
A* In'

is positive, we have that

is positive, since S is an operator system.

Thus we have

II¢n(A)W = II¢n(A)¢n(A *)11 :s: II¢n(In)¢n(In) II :s: II¢n(In)II·II¢n(In)11 =

II¢n(In)W = 11¢(I)112

Since S is an operator system, and A E S we have

Taking square root on both sides we obtain
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11¢llcb = SUPn II¢n(A)11 :::; II¢(I)II which completes the proof

An alternative proof can be obtained from [14]. o

Define Re¢ = ~[¢ + ¢*] and Jm¢ = t[¢ - ¢*] so that Red»; Tmd: are

self-adjoint.

Completely bounded operators can be decomposed into at most four

completely positive maps, (see [9]). The following decomposition theorem

is by Wittstock:

Theorem 3.2.6. Let A be a unital C*-algebra, ¢ : A --t B(1i) completely

bounded. Then there exists a completely positive map 7J; : A --t B(1i) such

that 117J;llcb :::; 11¢llcb and that 7J;± Red», 7J;± Tmd. are completely positive.

Consequently, every completely bounded operator is a linear combination

of at most four completely positive maps.

Proof. We shall use the Haagerup- Paulsen- Wittstock representation the-

orem (3.2.1). Write ¢(a) = ~*7r(a)V2 for all a E A with

Define 7/)(0,) = ~[Vt7r(a)Vi + V2*7r(a,)V2], then 7/) is completely positive

according to ([21],theorem 3.6) and I l'lfil Icb = I 17J;(I) I I since A is unital.

Therefore

117J;(I)11 = 117J;llcb:::; 11¢llcb.

Notice that
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¢*(a,) = (V';.*7r(a,)V2)*

V;*7r( c) (V';.*)*

V2*7r(a,)V1

and the real and imaginary parts of ¢ are given as:

Red. = H¢+ ¢*)
Imd. = t(¢ - ¢*).

So

Re¢( a,) = HV';.*7r( c) 112+ Y;*7r( a,)~)

Now,

2['lj;(a,) + Re¢(a,)] vt7r(a,)~ + V2*7r(a,)V2+ vt7r(a,)V2 + V2*7r(a,)Vl

vt7r(a,)~ + V2*7r(a,)~ + vt7r(a,)V2 + V2*7r(a,)V2

(V';.*+ Vn7r(a,)V1 + (vt + Y;*)7r(a,)V2

(V';.*+ V;*)7r(a,)(Vl + 112)

(~ + V2)*7r(a,)(~ + 112)

This shows that 2['lj;(a,) + Re¢(a,)] is completely positive.

Similarly, 2[~)(a,) - Re¢(a,)] = (Vl - V2)*7r(a,)(V1 - 112) which is also com-
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- - --- --------- ---

2[7j;(a) + Im¢(a)] Vt7f(a)VI + V;*7f(a)V2 + i[V;*7f(a)VI - v;.*7f(a)V2]

Vt7f(a)Vi + iV2*7f(a)VI + V;*7f(a)V2 - iVr'7f(a)112

(Vr' + iV;*)7f( a) Vi - i(Vr' + iV2)7f( a) 112

(vt + iV;*) [7f(a) Vi - i7f(a)V2]

= (Vr' + iV;*)7f(a) (VI - iV2)'

(VI - iV2)*7f(a) (VI - iV2)

This again shows that 2[7j;(a) + Im¢(a)] is completely positive. Similarly,

2[7j;(a) - Im¢(a)] = (Vi + iV2)*7f(a) (VI + iV2). It therefore follows that

7j;(a) + Re¢(a) , 7j;(a) - Re¢(a), 7j;(a) + Im¢(a) and 7j;(a) - Im¢(a) are

all completely positive. So

'lj)(a) + Re¢(a) - (7j;(a) - Re¢(a)) +

i[(7j;(a) + Im¢(a)) - (7j;(a) - Im¢(a))] = 'lj)(a) + Re¢(a) -7j;(a) + Re¢(a)) +

i[7j;(a) + Im¢(a)) -7j;(a) + Im¢(a)]

= 2Re¢(a + 2ilm¢(a))

= 2[Re¢(a) + ilm¢(a)]

2¢(a)

Hence

1 .¢ = "2[7j; + Re¢ - (7j; - Rf.¢) + z(7j; + Irnd: - (7j; - Im¢))].
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Taking

1J,1 2-1('ljJ + Re¢),

1i2 T1(1jJ - Re¢),

1J,3 T1(1jJ + Im¢) and

1J,4 T1('ljJ - Im¢},

we have

where 1J,1, 1J,2, 1J,3 and 1J,4 are all completely positive maps.

An alternative proof can be obtained from [9, 14]. o

Lemma 3.2.7. Let A and B be unital C*calgebras, and let 7r: A ~ B be

a *-homomorphism with 7r(IA) = lB. Then tt is completely positive and

completely bounded and that 117r11= II7rnll = 117rllcb = 1.

Proof. If 7r is a *-homomorphism with 7r(IA) = IB, then 7r maps invertible

elements in A into invertible elements in B. So

O"(7r(a)) ~ O"(a) for any a E A.

53



It follows that

117f(a)112 117f(a)*7f(a)11
117f(a:a)11
T(7f(a*a))

< T(a:a)

Ila*all = IlaW

where T(a*a) denotes the spectral radius of or a.

Thus 117f11:S 1 which implies that 7f is bounded and moreover 7f is con-

tractive.

If a is a positive element of A, then there exists an x E A such that

a = x* x. Therefore

This shows that 7f is positive.

Define ttn by

Since 7f is positive, 7f(ai,j) 2::0 \f i,j. Hence

[7f(ai,j)] 2::0 implying that ,

7fn([ad) = [7f(ai,j)] 2::0 for every ti E N. This shows that 7fn is positive
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for every n E N. Hence 1f is completely positive. 0

In 1fn([ad) = [1f(ai,j)], take [ai,j] = In, the n x n identity matrix.

But

1fn([In]) d~ 1f([In]),

thus II1fn([In])11 = 111f([In])11 = II[In]11 = 1.

Hence II1fnll = 1 for every n E N.

Therefore ttn is bounded for all n 2: 1.

So

111fllcb = sup II1fnH = 1 = 111f11.
n

This shows that 1f is completely bounded and

o

Corollary 3.2.8. Let A, Band C be C*-p,lgebras and let <p : A --t Band

'l/J : B --t C be completely positive maps. Then 'l/J 0 <p is completely positive.

Proof. Given that <p and 'l/J are completely positive, it suffices to show

that ('Ij; 0 <P)n = 'lj;n 0 <pn for every n E N, whence it would follow that 'Ij; 0 <p

is completely positive.

[<p 0 'Ij;(ai,j)]

[<p.'Ij;( ai,j)]

[<P.'l/Jn([ad)]
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[<p(bn)]

<Pn([bn])

<pn· VJn ([ ai,j])

<Pn 0 VJn([ad)

o

The same proof holds when <P and 7jJ are completely bounded.

3.3 Examples of completely bounded oper-

ators.

The following examples are given purposely for illustration.

i) Let A and B be C*-algebra..').Let 7f : A ~ B be a *-homomorphism,

then 7f is completely positive and completely contractive, see [9,

19]. Each map 7fn : Mn(A) ~ Mn(B) is a *-homomorphism. *

homomorphism is both positive and contractive. Thus

sUPn II7fnll ::::; 1 . Hence 117fllcb = sUPn II7fnll ::::; I::::} tt is a completely

bounded operator.

ii) Let A and B be as in the example above. Fix x, yEA where x and

yare diagonal elements.
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Define .p : A - A by

i.p(a) = xay Va E A.

If [ad E Mn(A) then

Ili.pn([ai,jDI I = 11·'r[ai,j]yll =

Xl,1 0 0

( :i:~ :~:J
Yl,l 0 0

0 0

0 0
...

0 0 ·'Em;n 0 0 Yn,m

:S Ilxllll [adllllyll ::::} IIi.pnll :S 11·'rllllyll·
Hence sup., IIi.pnll :S Ilxllllyll for all n E N.

Thus i.p is completely bounded and 11'Pllcb:S11·'rllllyll·

iii) Let 'Hl and 'H2 be Hilbert spaces, Vi : 'Hl - 'H2 i = 1,2 be bounded

operators, and let 'if : A - B('H2) be a *-homomorphism. Define a

map sp : A - B('Hl) by

We show that i.p is completely bounded and that
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I(CPn(a)~, 1])1 I(V2* ® In7f(a)Vt ® In~,1])1

I (7f(a)VI ® In~, V2 ® In1]) I
< 117f(a)VI ® In~1111V2 ® In1]11 by C.I3.S inequality.

< 117f(a)IIIIVt ® Inllll~1111V2 ® Inllll1]11
< 117fIIII(a)IIIIVIIIII~IIIIV2IIII1]11
< II(a)IIIIVIIIII~IIIIV2IIII1]11 since 117f11< l.

So IICPnl1 < IIVI1111V211·

Let ~,1] in 'HI be of unit lengths, then

Thus sup., IICPnl1 ::; IIVtIIIIV2II which is finite since VI and 112 are

bounded operators.

Hence

Ilcpllcb = sup IICPnl1::; IIVtIIII"li2II < 00
n

Therefore cP is completely bounded and Ilcpllcb ::; IIVIIIIIV2II·

iv) In this example, we shall consider the transpose mapping. Let

{Ei,j}L=1 denote the system of matrix units for M2(C), That is

E),) ~ C ~),E),2 ~ (~ ~)

&,) ~ (~ :) and E2,2 ~ (~ ~)

Let ¢ : M2(C) -+ M2(C) be the transpose mapping so that ¢(Ei,j) =

Ej,i' It is easy to show that the transpose of a positive matrix is pos-

itive and that the norm of the transpose of a matrix is the same as

the norm of the matrix. Clearly II¢II = l. This is true for any n E N
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and hence ¢ is bounded.

Now let's consider

¢2 : M2(M2(C)) -> M2(M2(C)) and

let A = (Ej,i)L=l E M2(M2(C)), then

A ( E", E2,1 )

E1,2 E2,2

1 a a a
a a 1 a
a 1 a o.
a a a 1

So

¢2(A) = [¢(A)]

[4>(E",) 4>(E2,,) J
¢(E1,2) ¢(E2,2)

[E", E',2 J
E2,1 E2,2

1 a a 1

a a a a
a a a a
1 a a 1
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Therefore

100 1
o 0 0 0
o 0 0 0
100 1

2

and sup 114>211 = 2 < 00. Thus 4> is completely bounded.

The following example is a counterexample to show that not all

bounded operators are completely bounded.

v) When the underlying space is infinitely-dimensional, then 4> turns

out not to be completely bounded, see [4, 14]. To see this, Let 7{

be a separable infinite-dimensional Hilbert space with a countable,

orthonormal basis, {en}~=l' Every bo~nded linear operator say T

on 7{ can be thought of as an infinite matrix whose (i, j)th entry is

the inner product (Tei, ei).

Define a map 4> : Mn(C) -t Mn(C) by the transpose mapping. Let

{Ei,j}f,j=l be matrix units. For a fixed n E fiI, let A = (Ej,i), be an
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element of Mn(rC) whose (i,j)th entry is Ej,i, i.e.

( E", E2,1

1A E1,2 E2,2 ...

1 0 0 0 "-'

0 0 1 0

0 1 0 0

0 0 0 1

Each column entry of matrix A has only one element 1 in each col-

umn (and in each row). Thus, taking the matrix l-norm, we obtain

that IIAII = 1, but II¢n([ADII = 11[¢(A)lll = n, So sUPn II¢nll = 00.

So ¢ is not completely bounded.

3.4 Tensor product. of operator spaces.

In this section, we give the basics of tensor products, tensor norms, tensor

product of operator spaces and other related results.

Let 'H and Kbe vector spaces and H x K = {(::r,y) : x E 7t, y E K}

be the cartesian product of H and K.

Definition 3.4.1. Let 'H, K and Z be linear spaces over the same scalar

field, say C. A function <p : 'H. x K ----Z is bilinear if <p(x,.) : K ----Z is

linear for each .1: E 'H and <p(., y) : 'H ~ Z is linear for each y E K.
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The algebraic tensor product of vector spaces 'H and K denoted by
\

'H ® K is the linear span of the collection of elementary tensors, {x!& y :

x E H, y E K}. So a typical u E 'H ® K has the form

n

1.L = LAixi ®Yi
i""l

where A1, ... ,An are scalars, .7:1, ... ,Xn E 'H and Y1,·· . ,Yn E K and n E N

is arbitrary.

Theorem 3.4.2. Lei r : 1txK -t 1t®K, T(.7:,y) = x®y be a mapping

from a cross product to tensor product space. Then T is a bilinear map.

Proof. Let x, X1,.7:2 E 'H, y, Y1, Y2 E K. and 0:, fJ E C. To show that T is

bilinear, it suffices to show that T is linear in both the vector spaces 'H.

and K.

We show linearity in 'H.

Since

T(X, y) = x ® y,

(0:.7:1 + fJX2) ® y

(O:X1 ® y) + (fJX2 ® y)

0:(.7:1 ® y) + ,6(.7:2 ® y)

O:T(X1, y) + fJT(X2, y).

Hence T is linear in 'H.
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Next, we show linearity in K.

x ® (QYl + j3Y2)

(x ® Qyd + (x ® j3Y2)

Q(x ® Yl) + j3(x ® Y2)

QT(:r, Yl) + j3T(X, Y2)·

Hence T is linear in K and therefore T is a bilinear map. o

If1-i and K are Hilbert spaces, then the algebraic tensor product 1-i®K

is a pre-Hilbert space with the inner product determined by

This leads to the following theorem.

Theorem 3.4.3. Let 'H. and K be Hilbert spaces. Then there is a unique

inner product (,) on 'H. ® K such. that

For the proof of this theorem see [13].

Remark 3.4.4. We note that in the theorem above, the tensor product

space 1-i®K with the above inner product forms a pre-Hilbert space. The

. completion of this pre-Hilbert space 'H ® K which is denoted by 1-i@K

makes it a Hilbert space.

Lemma 3.4,5, Let H and K be Hilbert spaces. Then if El = {ei : i E I}

is an orthonormal basis for 'H and E2 = {ej : j E J} is an orthonormal
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basis for K, then the set

EI ® E2 = {e, ® ej : i E I,j E J}, where I and J are index sets.

is an orthonormal basis fOT 1i@K.

Proo]. We need to show that the elements of EI ® E2 are linearly inde-

pendent and that EI ® E2 spans 1i@K.

Now suppose that

Since ei are linearly independent for all i E I, it implies that

and hence

L '\jej = 0, V j E J
j

I3ut ej,s are also linearly independent, meaning ej i= 0, V j E J

Therefore, Ai,j = 0, ViE I, j E 1.

Hence e, ® ej are linearly independent.
, ",n ",m I .Let .7:®Y E 1i®K such that x = ui Aiei and y = uj O'.jej, with Ai, O'.j E

lK, Vi,j
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Then

x@Y
n m:L ;\ei @ :L O'.jej

j

m n

:L O'.j(:LAiCi @ ej)
j

m n

:L O'.j:L Ai(ei @ ej)
j

k::L AiO'.j(ei @ ej),
i,j

where k is taken to be the max{n, m}.

Since x @ Y was picked arbitrarily in 1-i.®K, any vector in 1-i.®K can be

expressed as a linear combination of the vectors e, @ ej. Hence E1 @ E2

spans 1-i.®K and is therefore an orthonormal basis for it. 0

Proposition 3.4.6. Let ic and K be Hilbert spaces. We denote by 1-i.@K

the tensor product space between H and K. The elements of 'H @ K are

denoted by x @ Y where x E H and Y E K. Then

Ilx@yll = 11·r,llllyll

defines a norm.

Proof. It is clear that Ilx @ yll 2::0 and

11.r,@yll=O {:}x@y=O .

.Next, we show that for any 0'. E C we must have 11000(x@y)11= 100011Ix@yll·
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Recall that

(:r (8) y, x (8) y)

(x, x) (y, y)

11.1;WllyW

and from the algebraic properties of tensor products, for any a E C we

have a(:r (8)y) = (a:r (8)y) = (x (8)ay).

Therefore

(ax (8) u. ax (8) y)

(x (8) cq), x (8) ay)

.(x, .'E)(ay, ay)

11·'EWlo:I21IyW
laI211·'EWllyW
lal211x (8) Y112.

Taking square roots on both sides, the assertion follows.

Finally, we show the triangular inequality.
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((Xl 0 Yd + (X2 0 Y2), (.'1:10 Yl) + (X2 0 Y2))

(Xl 0 u.. Xl 0 Yl) + (Xl 0 Y1, ·'1:20 Y2) + (X2 0 Y2, ·'1:10 Yl) +
(X2 0 Y2, X2 0 Y2)

(.'1:1, Xl)(Y1, Yl) + (Xl, .'1:2)(Yl, Y2) + (.'1:2,.'1:1)(Y2, Yl) +
(.'1:2,.'1:2)(Y2, Y2)

11·'1:lI121IYlI12+ 11·'1:2WIIY2W + (Xl,X2)(Yl,Y2) + (X1,.'1:2) (Yl,Y2)

= IIxll1211Yl W + 11·'1:2W IIY2112+ 2Re(Xl, X2) (Y1, Y2)

< 11.'1:lWIIYlI12 + IIx2WIIY2W + 211xlllllx21111YlIIIIY211 by the

c.n.s inequality

= (1lxlllllYlll + 11·'1:21111Y211)2

= (1lxl 0 Ylil + 11.'1:20 Y211)2,

Taking square roots on both sides, we obtain

o

Theorem 3.4.7. Suppose 'H. and K are Hilbert spaces and B (1-i) and

B(K) Banach spaces of bounded linear operators oj H and K respectively.

Let 1}, E B(1-i) and v E B(K). Then the operator defined as

(1},0 v)(x 0 y) = 11,(.'1:)0 v(y) .'1:E H, Y E K,
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is a bounded linear operator on B(1i®K). Moreover,

Ilu®vll = ll'U,llllvll·

Proof. See [13] for the proof of this theorem. o

Remark 3.4.8. In case 11, : Xl --t X2 and v : Yl --t Y2 are completely

bounded maps between operator spaces, then there is a map '11, ® v on the

algebraic tensor product Xl ® Yl into X2 ® 1'2.

Now if w is a norm on X ® Y, then we denote by X ®w Y the completion

of the algebraic tensor product X ® Y for the norm w. Recalling that

X ®w Y is defined for all pairs of operator spaces, it may be the case that

11, ® v : Xl ®w Yl --t X2 ®w Y2 is completely bounded and satisfies

1111,® vllcb = ll'U,llcbllvllcb'

The most important result on operator spaces is the Ruan's theorem,

[9] which gives the abstract characterisation of operator spaces:

Theorem 3.4.9. (Ruan) A vector space V with a sequence of norms

11.lln on Mn (V) (n E N) is an operator space if and only if the followiing

two conditions are satisfied:

For all m,n E N,

i) Iia E9 blln+m = max{llalln, Ilbllm} for all a E Mn(V), b E Mm(V)

where a E9 b denotes the matrix

(
aO'o

b
) E Mn+m(V).
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ii) Ilaa,6lln :S Ilallllallll,611 for all a E Mn(C),a E Mn(V),,6 eMn«C)
"-'

(the matrix multiplication being the natural one).

Proof. Let H« and K; (n E N) be Hilbert spaces and t-. : Hn ~ K;

be operators such that sUPnEN{lltnll} < 00. Then H = ffinENHn and

K = ffinENKn are Hilbert spaces and the n-tuple (tn)nEN determines a

bounded operator from H to K which we shall denote by t.

Now, the norm of t is given by

Iltll sup{llt111, Ilt211, , Iitrill : n E N}

max{llt111, Ilt211, , Iltnll : n E N} (3.4.0.1)

With the identification, Mn(B(H)) == B(1{n), let a E Mn(B(H)) and b E

Mm(B(H)) and using 3.4.0.1 we have that Iia ffi bll = max{llalln, Ilbllm}.

Note that, we can identify B(Hn) with B(Cn Q9 H). Therefore, for any

a E Mm,n(C), ,6 E Mn,m(C) and a E Mn(B(H)) , we have

Ilaa,611 Iia Q9 Ina,6 Q9 Inll

< Iia Q9 Inllllallll,6 Q9 Inll

< IlallllInllllallll,6IIIIInll

Ilallllallll,6ll·

which completes the proof. 0

norms on Mn(X), induced by regarding Mn(X) as a subspace of

Mn(B(H)) and identifying this algebra with B(Hn).

Each rectangular space 1vlp,q(X) embeds into a larger square one, and so
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we also obtain a norm on Mp,q(X) for any pair of integers p and q.

3.5 The matricial tensor product.

Given operator spaces V, Wand elements v E A1p,q(V), 11) E Mr,s(W), we

define

v ® 11) E Mpr,qs (V ® W)

by

See [6] for more details.

Also given integers p, q, r and v E Mp,q(V), 11) E Mq,r(W), we define

by

For any operator spaces V and W, we say that an operator space matrix

norm 11.111-'on V ® W is sub cross matrix norm if

Ilv ® will-' ::; Ilvllll11)11
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for all v E Mp(V) and w E Mq(W). If in addition,

Ilv @wlll' = Ilvllllwll,

then we say that 11.111'is a cross matrix norm on V @ W.

Given an element 11,E Mn(V @ W), we define the projective tensor norm

by

1111,11"= inf{llallllvllllwllll,611 : 11,= a(v @w),6}

where the infimum is taken over arbitrary decompositions of 11,with v E

Mp(V), wE Mq(W), a E Mn,pxq and ,6 E Mpxq,n and p, q E N arbitrary.

We shall show that V@" W = (V @ W, 11.11,,)is again an operator space,

and define the operator space projective tensor product V®W to be the

completion of this space i.e. 11.11"is the projective tensor norm.

Theorem 3.5.1. Given operator spaces V and W, V @" W is again an

operator space.

Proof. Given 1)'1E Mm(V@W),1J,2 E Mn(V@W) and f > 0, we may find

decompositions Uk = ak(vk@wk),6k, (k = 1,2) where Ilakllllvkllllwkllll,6kll :S

Ilv'kll" + f.

We may assume Ilvkll = Ilwkll = 1, and that

Ilakll = II,6kll :S (1Iukll" + f)1/2.
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If v = 711 EEl 712 and w = W1 EEl W2, then we have the natural identification

(VI 0) ("'1 0)v®w o 712 ® 0 W2

711 ®W1 0 0 0
0 711 ® W2 0 0
0 0 712 ®W1 0
0 0 0 712 ®W2

and thus

!X1(V1 ® W1){31 EEl !X2(V2 ® W2){32

(!X1V1 EEl !X2V2) ® (wd31 EEl W2(32)

(
!Xl 0) (711 0) ® (W1 0') ({31 0)

O!X2 0 712 0 W2 . 0 {32

!X(v®w){3

(31 0
o 0

o 0
since 1J ® w is a 4 x 4

o (32
matrix and multiplication here is the natural one. !X and (3 above are
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scalar matrices. So

inf{lla(v @w),6I1 : Uk = ak(vk @Wk)!3k}

< Ilallllv @wllll!311
Ilallllvllllwllll!311
Ilallll!311 since Ilvll = Ilwll = 1

= Ilaa*III/211!3*!3111/2

Note that

al 0

( a, 0 0 0) 0 0
aa*

o 0 0 a2 . 0 0

0 a2

(a,a, 0 )
o a2a2

So

max{Ilaiaill : i = 1, 2}

< max{llaillllaill: i = 1, 2}

max{llaiW: i = 1, 2}

Similarly, I1!3*,6II ::; max{ll!3jW : i= 1, 2}
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Therefore

1111,1$11,211 < Ilaa*111/211,6*,6111/2

< (max{llailn )1/2(max{ll,6jI12} )1/2

< (max{ll1J,illll} + f)1/2(max{ll1J,illll} + 1')1/2

max{ll1J,ill} + I'

and since I' > 0 is arbitrary, we have

(3.5.0.2)

Given scalars, E Mp,m(C) and 6 E Mm,p(C), then ,11,16 = ,a1(v1@w),616

and thus

11,'/1'161111 Iha1(V1 @ w),61611

< II,a11111v11111wllll,61611

< 11I11(111J,11111+ 1')11611·

Since I' > 0 is arbitrary, we have

(3.5.0.3)

It follows from (3.5.0.2) and (3.5.0.3) that V @II W is an operator space.

An alternative proof can be obtained from [6]. D

Definition 3.5.2. Injective(spatial) tensor product

Given operator spaces V and W, we define the injective matrix norm 11·llv
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on V@Wby

Iluliv = sup{lll @gn(u)11 : 1 E Mp(V*), g E Mq(W*), 11111,Ilgll :::; I}

for each matrix 1},E Mn (V @ W).

Definition 3.5.3. The Haagerup tensor product

Given operator spaces V and Wand an element 1),E Jvfn(V @ W), we

define the Haagerup tensor product matrix norm 11·11h by

Ilulih = inf{llvllll11111: u = v 0 111,V E Mn,r(V), 111E Mr,n(W), r EN}.

The Haagerup norm is not a C*-norm, but if the definition is repeated

for n E Nand u E Mn (V @ W) for operator spaces V and W, it turns

out that the Haagerup norm is an operator cross-norm (see [16]). Note

that the Haagerup tensor product (i.e. V @ W equipped with the Haagerup

norm) is associative:

Furthermore, the norm is injective i.e. for subspaces Va ~ V and Wa ~ W

the restriction of the Haagerup norm from V @h W to Va @ Wa is the

Haagerup norm. Also the tensor product T @ S of completely bounded

operators T and S on V and W is completely bounded on V @h W.

Moreover, liT @ Sllcb :::; IITllcbllSllcb (see[8]).

Theorem 3.5.4. For any operator spaces V and W, 11.llhis an operator
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space matrix nann on V ® W, and for any v, E Mn(V ® W)

Proof Let us suppose that u. E Mn(V ® W), 11,'E Mn(V ® W), and f > O.

I3y definition, we may find v E Mm,r(V) and 11) E A1r,m(W) such that

v, = v (11), 1111)11= 1, and Ilvll ::; 11v,llh + f.

Similarly, we let v,' = v' 8 11)', u" = v EB v' and 11)" = 11)EB 11)'! 1111)'11= 1 and

Ilv'll ::; 11v,'llh + e, then from the expression

u" 8 11)" = (v EB v') 8 (11)EB 11)') we have

v, EB u' (v 8 11)) EB (v' 8 11)')

= (v EB v') 8 (11)EB 11)')

v" 8 11)"

and thus

11v,EB v,'11h < IIv"IIII11)"11

= max{llvll, Ilv'll since 1111)11= 1111)'11= I}

< max{IIv,llh, 11v,'llh} + f.

Since f is arbitrary, we obtain

11v,EB v,'llh ::; max{IIv,llh, 11v,'llh}.

If a, (3 E Mn(C), then

av,(3 a(v811))(3

(av) 8 (11)(3)
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and hence

Ilau,Bllh < Ilavllllw,B11

< Ilallllvllllwllll,8I1

< Ilall(llullh + f.)II,BII·

Since f. is arbitrary, we obtain

IlmL,8Ilh s. Ilodlllullhll,Bll· So 11·llh is an operator space matrix norm and

consequently, (V ® W, 11.11h) is an operator space.

Next we prove the inequality. If 11, E Mn(V ® W), let us suppose that

f. > 0, and that

11, = v 0 w,where

v = [Vi,k] E Mn,r(V) and w = [Wk,j] E Mr,n(W) satisfy

Ilvllllwll s. Ilulih + f..

Let us suppose that f E Mp(V*) and 9 E Mq(W*) are contractions. Then

we have

[2: f(1Ji,k) ® 9(Wk,j)]

[J(Vi,k) ® Iq][Ip ® g(Wk,j)],

where we are using a product of matrices over Mp(C) ® Mq(C). Since

matrix multiplication is contractivebilinear function on Mp(C) ® Mq(C) ,

Now from
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follows that

Ilv,llv :S Ilvllllwll :S Ilnllh + E,

from which we obtain

Recall that the Haagerup norm is defined by

Ilnllh = inf{llvllllwll : 11,= v 8w}.

Now given 11,= cr(v ® w){3 with Ilcrllllvllllwllllf311 :S 1111,11"+ E , we have

that

and since E > a was chosen arbitrarily, it follows that

which completes the proof. o

The above proof can be obtained from [7].

Remark 3.5.5. We observe from this theorem that the projective tensor

product matrix norm is the largest among the operator space matrix

norms.
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~------------------------------------------------------------------------------~---,"

Chapter 4

Conclusions and

.Recommendations

Calculating norms of matrices when the entries are not constants is not

easy. In this thesis, we have approximated this norm when the elements

of matrices are operators.To do this we had to first identify the space

Mm,n(B(1{)) of m x n matrices with entries from B(1{) with the space

B(1{n,1{m) of bounded linear operators from H" to H'", We observed

that, the elements of the space Mm,n(B(1{)) are the bounded linear oper-

ators acting on the n-dimensional Hilbert space 'H", The notion of com-

pletely bounded operators is a new area in Mathematics. It started its life

in the early 1980's following Stinespring and Arveson's work. This later

gave rise to operator spaces, a new branch in operator algebra. Progress

in this new area of Mathematics has been rapid and it is difficult to say

which results motivated others. Here, we have investigated the norm

of completely bounded operators and have looked at certain examples

of completely bounded operators. Among the results, we have obtained

include:
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• Showing that, for any n E N, ii¢nii ::; ii¢n+lii ::; ii¢iicb and that
"--'

ii¢nii ::; nii¢ii for any completely bounded operator ¢.

• Giving four examples of completely bounded operators, something

that is missing in the available literature.

• Giving a counterexample to show that not all bounded linear oper-

ators are completely bounded.

We hope that the results we have obtained are fundamental to the devel-

opment of this area of Mathematics. Moreover, this thesis opens the way

for further research in other aspects of completely bounded operators and

operator spaces.
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