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ABSTRACT

Calculating norms of matrices when the entries are not constants is the
first problem tackled in this thesis. We have considered the space of ma-
trices with entries from the algebra of bounded linear operators and have
managed to approximate norm in this space. The basic idea has been to
identify this space with the space of bounded operators from H™ (whe}re
H™ is the orthogonal sum of n-copies of H) to H™ and calculating the
norm of an operator on H™. This forms the content of chapter two. The
notion of completely bounded operators is a fairly new and developing
area in Mathematics. It started its life in the early 1980’s following Stine-
spring’s and Arveson’s work on completely positive operators. It later
gave rise to operator spaces, a new ‘branch in operator algebra. Progress
in this new area of Mathematics has been rapid and it is difficult to say
which results motivated others. We have investigated the norm of com-
pletely bounded operators and have shown that they form an increasing
sequence. The idea was to apply Hilbert-Schmidt norm to the definition
of these operators. We have also given examples of these operators for
illustration, something which is missing in the available literature. We
have also investigated operator spaces, especially their algebraic tensor

product. Specific interest has been in the matricial tensor product.



Chapter 1

Introduction

Norms of matrices are induced from the vector norms,(see [17]). Cal-
culating these norms is not easy especially when the matrix entries are
not constants. In our study, we have considered the space M, ,(B(H))
where the entries are bounded linear operators. We have managed to ap-
proximate the norms from this space. This was possible since the space
M, .(B(H)) has been identified with the space of bounded operators from
H™ to H™. All of these are covered in chapter two. Chapter one basically

covers the basic concepts that are vital in the understanding of this thesis.

The motivation of the study of operator spaces ties up with the no-
tion of quantisation. In fact, this notion started its life with the 'matrix
mechanics’ of Heisenberg (see [7]). Influenced by this work of Heisen-
berg, Von Neumann suggested that onelshould seek quantised analogues
of Mathematics, in the sense of replacing functions by operators. Mur-
ray and Von Neumann put this into practice by producing the operator
(quantised) version of integration. This gave birth to the whole field of
operator algebras. Similarly, one can seek for the notion of ‘quantisation

of Banach spaces’ which turns out to be operator spaces. On the other



hand, the study of operator spaces is related to the study of complete
boundedness of operators or mappings (i.e. morphisms be‘EWeen operator
spaces) which was found to be useful in the study df operator algebras
long before the operator space theory was axiomatised, (see [9]).

As noted in the above, operator spaces basically means spaces of bounded

operators on some Hilbert spaces.

The theory of completely bounded maps is the basis for operator space
theory. It emerged in the early 1980's through the works of Haageru-p,
Wittstock and Paulsen, who proved independently, a fundamental fac-
torisation and extension theorem for completely bounded maps, (see [9]).
This factorisation theorem is a generalisation of an earlier important work
by Stinespring and Arveson (see [1]), who proved a factorisation/extension
theorem for completely positive maps. Completely bounded operators de-
veloped from 1980 onwards with the basic linear results complete by 1984.
Progress was rapid and it is difficult to explain which results motivated
others. In our study, we have investigated the norms of these operators,
given some examples of completely bounded operators and finally, we
have investigated the tensor norm of operator spaces. All of these form

the content of chapter three.

1.1 Literature review

Let H be a Hilbert space, B(H) be the algebra of bounded linear operators
and M,, ,(B(H)) be the space of m x n matrices with entries from B(H).
When speaking about the norm of a matrix T € M, .(B(H)), we will

always mean its norm as an operator from H" to H™, (see [7]). Let
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M, .(B(H)) be the algebra of m x n matrix of operators acting on n-
dimensional complex Hilbert space H™ and if T € B(H"}?:{m), then the

norm of this operator is given by
|IT|| = sup{||Thl| : h € H"; [|h]| = 1}.

The following theorem provides formulae that can be used to calculate

the three commonly used matrix norms

Theorem 1.1.1. If the elements of an n x n matriz A are a;;, then

i) ||All1 = max{3>_" |aij| : 1 <j < n} the matriz 1-norm.

i) ||Allo = max{d_7_, a;| : 1 <4 < n} the co-norm.

iii) ||All2 = \/ > ey 2y laj|? the Frobenius or Hilbert-Schmidt norm
Proof. See [17] for the proof of this theorem. O

The notion of completely bounded maps first appeared in the early
1980’s following Stinespring’s pioneering work and Arveson’s fundamental
results on completely positive maps, (see [1]). Stinespring showed that
completely positive maps have a representation of the form m[¢(Az)] =
V*m(A;)V, where 7, and 7, are representations of the algebras A, A,,

¢ is completely positive operator and V.is a bounded operator.

Theorem 1.1.2. (Stinespring’s representation theorem). Let A
be a unital C*-algebra and let ¢ : A — B(H) be completely positive map,
then there e.m:sts a Hilbert space IC, a bounded operator V : H — K and a
unital *-homomorphism, 7 A B(K) such that ¢(a) = V*n(a)V, for
every a € A.




For the proof see [14]. ¢
Arveson showed that, if S C A is an operator system and ¢ : S — B(H)
is completely positive, then, there exists a completely positive map ¥ :

A — B(H) that extends ¢ such that ¥(a) = ¢(a) for every a € S.

Theorem 1.1.3. (Arveson’s Extension Theorem) Let S C A be an
operator system and let ¢ - S — B(H) be completely positive, then there
exists a completely positive map 1 A — B(H) that extends ¢, such that

Y(a) = ¢(a) for every a € S.

For the proof see [14].
This result by Arveson yielded another result due to Wittstock, who
worked on operator spaces instead of operator systems and showed that if
M C A'is an operator space and ¢ : M — B(H) is completely bounded,
then there exists a completely bounded map v : 4 — B(H) that extends
¢ and satisfies ||¢||o = [|B||cb-

Theorem 1.1.4. (Wittstock’s Extension Theorem.) Let M C A
be an operator space and let ¢ : M — B(H) be completely bounded, then
there exists a completely bounded map v : A — B(H) that extends ¢ and

satisfies ||¢|| = ||®]|cb-

For the proof see [14].
Wittstock and Paulsen proved that the span of the completely positive
maps from a C*-algebra into an injective C*-algebra is identical with
the set of corﬁpletely bounded maps. Hadwin showed that a bounded
unital homomorphism from a C*-algebra into L(H) (algebra of linear

operators on a Hilbert space) is similar to a *-homomorphism if and




only if the homomorphism belongs to the span of the completely positive
maps. Together, these two results by Wittstock and Pauls:én and Hadwin,
prove that a bounded unital homomorphism from a C*-algebra into L(H)
is similar to a *-homomorphism if and only if it is completely bounded.
Recently, Paulsen [[14], chapter 10] proved that a bounded linear operator
on a Hilbert space is similar to a contraction if and only if it is completely
polynomially bounded.

Haagerup, Paulsen and Wittstock proved independently the fundamental

factorisation theorem for completely bounded operators, (see [9]).

Theorem 1.1.5. (Fundamental Factorisation/Extension theorem.) Con-
sider a completely bounded map ¢ : B(H) D E — F C B(K). Then there
is a Hilbert space M, a representation

7 : B(H) — B(H) and operators Vi : K — H, V3 : H — K such that
VAl [Vall = ll¢lle and

Vze E ¢(z) = Vo ()W) (1.1.0.1)

Conversely, if (1.1.0.1) holds then ¢ is completely bounded and
l|lles < ||VA|ll|Val|. Moreover, ¢ admits a completely bounded extension
¢ : B(H) — B(K) such that ||| = ||¢]].

See [14] for the proof of this theorem.
We shall continue with the analysis of these completely bounded maps
as has been done by Paulsen, Wittstock and other Mathematicians. In
our case, we have investigated their norms especially the norm of the
multiplicity maps, given exdmples of completely bounded operators and

finally, have investigated the algebraic tensor product of operator spaces.




1.2 Statement of the problem

Let H be a complex Hilbert space. Consider the Space B(H) of all
bounded linear operators on H. Then clearly, B(H) is a C*-algebra.

Let M, ,(B(H)) be the space of m x n matrices with entries in B(H). Let
also H" = H&...®H (n copies) and H™ = H®...®H (m copies) be the
orthogonal sum of n, m copies of H respectively and B(H", H™) be the
space of all bounded linear operators from H™ to H™. Then, we shall cal-
culate norms on M, ,(B(H)) using the fact that the space M, ,(B(H))
have been identified with B(H™, H™). We shall also investigate norms of
the multiplicity maps and the algebraic tensor product of operator spaces

with respect to the matrix tensor norms.




1.3 Mathematical background .

In this section we give definitions of some of the terms that are very
fundamental in understanding this study. We have also shown that B(H)
is indeed a C*-algebra. Finally, we have given a brief account of the

Gelfand-Naimark-Segal construction.

1.3.1 Vector spaces

Ssuch a way that

Definition 1.3.1. Free vector space- Given any nonempty set X, let
K be a field. F is a vector space over K with X as basis and

Fx={3 1 rzi:z;€ X, r; €K},

where the operations are as expected' -i.e. combine like terms using the
rules

rr+ sz = (r+s)z

r(az) = (r8)x.

The vector space Fx is called the free vector space, (see[13]).:

Definition 1.3.2. Tensor product- Let U and V be vector spaces over
K, and let I be the subspace of the free vector space Fy .y generated by
all vectors of the form

r(u,v) + s(v/,v) — (ru + su’,v) and

r(u,v) + s(u,v") — (u,rv + sv') for all ;s € K, u,v’ € U and v,v' € V.

The quotient space Fyxy /I is called the tensor product of U and V' and



is denoted by U ® V. An element of U ® V' has the form
Z ri(ug,v;) + 1.
i=1

It is customary to denote the coset (u,v)+ I by u ® v hence any element

of U ® V has the form
Z U; & Vg,
i=1

where 7(u ® v) + s(v’ ® v) = (ru + su’) ® v and
ru®v)+s(u®v) =u® (rv+ sv').

Definition 1.3.3. Operator/Functional- Functionals are mappings
from vector space X to the field of scalars K, while operators are map-
pings from one vector space X to another vector space Y or to the same

vector space X.

Definition 1.3.4. Linear Operator- Let X and Y be vector spaces

over the same field K. An operator T: X — Y is a linear map if

T(oqz1 + agry) = ayT(xq) + T (xs), VY 21,25 € X, g, oy € K.

The vector space of linear operators from X to Y is denoted by

L(X,Y).

Definition 1.3.5. Norm- A real valued function ||.|]| : V — R, where
V is a vector space over the field K is called a norm if it satisfies the

following conditions:

@) ||zl >0, VzeV;



(ii) ||z||=0if and only if z =0, Vz € V;

(iii) [lex|| = le|[|z]|, Yz €V, c€K;

) llz+yll <zl +lyll, Yz, yeV.

Definition 1.3.6. Bounded operator- A linear operator T' € L(X,Y)

is bounded if there is a constant N > 0 such that
ITa|| < Nljall, ¥z € X.

We shall write B(X,Y") for the set of bounded linear operators from X
toY.

Definition 1.3.7. Operator Norm- Let B(X,Y) be the set of bounded
linear operators from X to Y. Let T € B(X,Y) then the norm of T is

defined as

IT]| = sup{[|Tz|| : [zl =1}
rzeX

Definition 1.3.8. Inner product- Let X be a vector space over C. An
inner product is a map (.,.) : X x X — C satisfying, for z,y,z € X and

scalars a € C,

i) (z,9) = (y,2),
iy {maey =0, with {g,0)=0 &= z=10,
iii) (z+vy,2) = (z,2) + (y, 2),

iv) (az,y) = afz,y).



The pair (X, (,)) is called an inner product space or pre-Hilbert space.

<

Definition 1.3.9. Hilbert space- A complex Hilbert space H is a vector
space over C with an inner product such that H is complete in the metric

d(z,y) = llz —yll = (z —y,z - y)'/%

1.3.2 Algebra

Definition 1.3.10. Algebra- An algebra A over K is a vector space A
over K that also has a multiplication defined on it making A into a ring

such that for « € K and a,b € A,
a(ab) = (aa)b = a(ab).

Example 1.3.11. Let H be a Hilbert space , B(H) the set of all bounded
linear operators on the Hilbert space H. Then B(H) is an algebra when

multiplication is defined pointwise.

Example 1.3.12. If S is a set , £*°(S) the set of all bounded complex-

valued functions on the set S is an algebra where the operations are defined

as follows:
(f +9)(z) = /(@) + 9(a)
(f9)(@) = f(@)g()
(AN(@) =M (@)
Vz € S,

10



Definition 1.3.13. Sub-algebra- A sub-algebra of an algebra Ais a

vector space M such that for all u,u’ € M we have uu/ € M.~

Definition 1.3.14. Unital Algebra- If an algebra A admits a unit 1
such that al = la = a, Va € A, then we say that A is a unital algebra,

otherwise it is non-unital.

Definition 1.3.15. Involution- If A is an algebra, an involution is a
map a — a* of A into itself such that Va,b € A, and a € C the

following conditions hold:

(i) (a+b)* =a* +b*

An algebra A with an involution a — a* is called a *-algebra or an

involutive algebra.

Definition 1.3.16. Banach algebra- A Banach algebra is an algebra
A over K that has a norm ||.|| relative to which A is a Banach space and

such that for all a,b in A,
|abl| < [[all[[b]]-

A Banach *-algebra is a Banach algebra A with involution satisfying

the property ||a|| = ||a*||, Va € A.

11



Definition 1.3.17. Spectrum of an operator- If A is a Banach algebra
with identity and a € A, the spectrum of a, denoted by c;fa), is defined
by 7

o(a) ={A € K:a— X is not invertible}.

Definition 1.3.18. Spectral radius- If A is a Banach algebra with

identity and a € A, the spectral radius of a, r(a), is defined by
r(a) =sup{|A| : X € o(a)}.

Definition 1.3.19. Algebra norm- Let A be an algebra. An algebra
norm on A is a map |[.|| : A — RT such that (4,]|.||) is a normed space
and , further:

|ladl| < [[al[l[b]] a,be A

The normed algebra (A4, ||.||) is a Banach algebra if ||.|| is a complete

norm i.e. if every Cauchy sequence converges.

Definition 1.3.20. Abelian algebra- An algebra 4 which is commu-
tative, that is ab = ba, Y a,b € A is referred to as an Abelian algebra. If

the product is non-commutative, it is known as a non-Abelian algebra.

Example 1.3.21. Let C(f2) be the Banach space of all complex con-
tinuous functions on a non-empty compact Hausdorff space (2, with the

supremum norm. Define multiplication in the usual way:

(f9)(z) = f(z)g(z) =zeQ.

This makes C(2) into a commutative or Abelian Banach algebra, where

the constant function 1 is the unit element.

12
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Definition 1.3.22. Adjoint of an operator- If T € B(H, K), where
H and K are Hilbert spaces, then the linear operator T* € B(K,H)
satisfying (T'z,y) = (z,T*y) Vz € H and y € K is called the adjoint of
7. ¢

<

Definition 1.3.23. C*-algebra- A Banach *-algebra A such that
laa*(| = lafl>  VaeA

is called a C*-algebra.

Example 1.3.24. The algebra of all bounded linear operators B(H) on
a Hilbert space H is a C*-algebra with the usual adjoint operation as
involution. To show this, we note first that this follows from the well

known identity

IT*T|| = sup (T*Tz, )]

[|2]|=1

= sup [(Tz,Tz)|

[z[|=1

= |ITII*.

B(H) is a vector space over C. In fact it is an algebra if multiplication
is defined pointwise (see [2]) i.e. for S,T € B(H) where S,T : H — H
then
STxr=S5(Tz) VS, T € B(H) and z € H.

Since B(H) is complete and V T € B(H),

IT|| = sup{|[T=z]| : [l«|l = 1}.

13



is a norm on it. This norm is submultiplicative i.e. ¢

I1STz|| = [IS(T=)ll
< |ISIIIT =]l
< [ISIHIT]]- (1.3.2.1)

and satisfies the C*-condition

||T||? = ||T*T|| and hence the assertion follows.

Definition 1.3.25. Self-adjoint operator- A bounded operator T €
B(H) is said to be self-adjoint if 7% = T.

Definition 1.3.26. Unitary operator- A unitary operator is a bounded
linear operator U on a Hilbert space H satisfying U*U = UU* = I, where

U* is the adjoint of U and I is the identity operator.

1.3.3 Positive linear functional

Definition 1.3.27. positive linear functional- A positive linear func-
tional is a linear functional on a Banach *-algebra A with involution such

that f(aa*) > 0. Va € A.

Definition 1.3.28. State- Let .4 be an involutive algebra. Then the
linear functional f is called a state on A if f is positive and ||f|| =

f(e) =1 where e is a unit element in A.

Theorem 1.3.29. If [ is a positive linear functional on a C*-algebra A,

then it is bounded.

14



Proof. If f is not bounded, then the sup,.¢ f(a) = oo where S is the set
of all positive elements of A4 of norm not greater than one‘\i “Hence , there
is a sequence (a,) C S such that

2" < f(a,) for all n € N.

Seta=>3 1 a,/2" ,s0a € A"

Now 1 < f(a,/2") and therefore

=z

N <Y flan/2) = £ aa/2) < £

n

Il
o

Hence f(a) is an upper bound for the set N , which is impossible. This

shows that f is bounded. a

This proof was obtained from [13].

Proposition 1.3.30. Every positive linear functional f on a Banach *-

algebra A has the following properties :

i) f(z*) = f(z),
i) |f(zy*)]? < f‘(m*)f(yy*),
i) |f(2)]> < f(1)f(zz*) or [f(@)]* < ||fI|f (z2*) since ||f]] = F(1).

Proof. See [3] for the proof. : O

1.3.4 Representations of C*-algebras.

In this section, we shall develop the basic properties of representations of

C*-algebras. This will culminate in a proof of the fundamental theorem of

15



Gelfand and Naimark that every C*-algebra is isomorphic to a C*-algebra
§

<

of operators.

Definition 1.3.31. *~homomorphism- Suppose A and B are C*-algebras.
A mapping 7 : A — B is said to be a C*-homomorphism or simply a *-
homomorphism , if for any o, 3 € C and a, b € A, the following conditions

are satisfied

(a) m(aa + Bb) = an(a) + Br(b).
(b) m(ab) = m(a)m(b)

(©) n(a*) = (n(a))*

(d) = maps a unit in A to a unit in B.

Definition 1.3.32. Representation- A representation of a C*-algebra
A is a pair (H, ) where H is a Hilbert épace and 7 : A — B(H) is a
*-homomorphism. We say (H, ) is faithful if 7 is injective. If A is non-
zero, we define its universal representation to be the direct sum of all the

representations (Hy, 7;) where f ranges over S(.A)
Definition 1.3.33. *-representation- A *-representation of a C*-algebra

A on a Hilbert space H is a mapping 7 : A — B(H) such that

i) 7 is a ring homomorphism which carries involution on .4 into invo-

lution on operators.

ii) 7 is non-degenerate i.e. the space of vectors m(a)z is dense as a

ranges through 4 and z ranges through H.

16



For a representation 7w of a C*-algebra A on a Hilbert space H, an
C
element z is called a cyclic vector if the set of vectors {m(®}z : a € A} is

norm dense in H, in which case 7 is called a cyclic répresentation.
Definition 1.3.34. Ideal- A subset I of a commutative complex algebra
A is said to be an ideal if

e I is a subspace of A (in the vector sense) and

e zy and yz are in [ whenever z € A and y € I.

Associated to any positive linear functional is a positive semi-definite

sesquilinear form on A given by
(a,b) = f(b*a).

that is (.,.) is linear in the first variable and conjugate linear in the sec-
ond.

The key to representing a C*-algebra on a Hilbert space is to build rep-
resentations from states. This important procedure is called the GNS

construction named after Gelfand, Naimark and Segal, (see [12, 11]).

Theorem 1.3.35. If f is a state of a C*-algebra A, there is a cyclic
representation 7y of A on a Hilbert space Hy, and a unit cyclic vector z;

for s, such that f = w,, o m; that is
fla) = (mf(a)zs,24),  V a€A

wg, 18 a positive linear functional on B(H).

I
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Proof. Let N ={a € A: f(a*a) =0}. Then

N is a closed left ideal of A. That is: If a € A and I[)wE A then by
proposition (1.3.30), we have

|[f(b*a)|* < f(b"D)f(a"a) =0, but f(b*a) > 0

so f(b*a) = 0.

Upon replacing b by b*ba, it follows that

f((b*ba)*a) = f((ba)*ba) = 0 by definition (1.3.27). So ba € N whenever
a € N and b € A. Hence N is a left ideal of A.

To show that A is closed, let (z,) C NV such that z, = .

Since f is positive linear functional, it is bounded by theorem (1.3.29)
and therefore continuous. Hence f(z*z,) = f(z*z)

but (Tn) cN, VneN.

= f(zhz,) — 0,50 f(z*r) = 0 implying that z € N and hence NV is

closed. Now, define a positive definite inner product on A/N by
(z+N,y+N) = f(y*z).

This is well defined because if

Ni, Ny € N, then

fy+No)'(z+ M) = f((y"+ N3)(z + M)
= fly'z+(y+ No)* N1+N2T)
= fy'z) + f((y + N2)"N1) + (N3 z)
= fy'z)+ f((y+ No)* 1) + F(zDN5)
= fly'z)+0+0
(

*

= fly'z.)

18



e g
3

mi(ab)(c+N) = abe+ N
= ms(a)(bc+N) -

= 7rf(a)7rf(b)((:+./\/), (1342)

b+ N, 1 (@) c+N)) = (m;@)b+N),c+ N) = (ab+N,c+N)
= f(c'ab)
= f((a*c)'D)
= (b+N,a*c+N)
= (b+N,m(a*)e+N).
(1.3.4.3)

From (1.3.4.1), (1.3.4.2) , (1.3.4.3) and since A/N is everywhere dense in
Hy, it follows that

7rf(aa + ,Hb) = a7rf(a) = /Bﬂ‘f(b),

m¢(ab) = ms(a)ms(b),

mp(a)” = mp(a”).

Thus 77 is a *-homomorphism of A into B(Hy). Accordingly, 75 is a
representation of A on H; with z; the vector I + N in A/N.

Now 7¢(a)zy = mp(a)(I+ N) =a+ N Va e A Hence 15(A)zy is the
everywhere-dense subset A/N of Hy, and z; is a cyclic vector for 7.

Moreover,

(me(a)zs,zg) = (@ + N, I+ N) = f(a), Vae A,

20



ie. f((J,) = (’/Tf((L).’L‘f,J,‘f>. O

For more details see [11, 13, 21] .

Theorem 1.3.36. (Gelfand-Naimark) If A is a C*-algebra , then it has a

faithful representation. Specifically, its universal representation is faithful.
Proof. For the proof of this theorem, see [13]. O

The Gelfand-Naimark theorem (1.3.37) is one of those results that

are used all the time and in this thesis it has been used in the proof of

theorem (2.2.4)

Theorem 1.3.37. (Gelfand-Naimark) A C*-algebra A is isomorphic to

an algebra of bounded operators in o Hilbert space.

Proof. See [19] for the proof of this theorem. O
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Chapter 2

Calculating Norm on

Mmn(B(H))

In this chapter, we shall first identify the space M, ,(B(H)) of m x n
matrices with entries from B(H) with B(H", H™), the space of bounded
linear operators from H™ to H™ and then use this identification to deter-
mine the norm of any element [T; ;| € My, »(B(H)).

Given a Hilbert space H, and operators, T;; € B(H),1 < i <m, 1<
J < n, we identify the m x n matrix of operators, [T; ;] with an operator
from H™W = H @& ... ®H (n copies) to H™ =H @& ... ® H (m copies)
by regarding vectors in these spaces as columns and performing usual
matrix multiplication. This endows M, ,(B(H)) with a norm and this
collection of norms on B(H) are often referred to as the matrix norms
on B(H), (see [14, 15]). When speaking about the norm of a matrix
[Ti;] € Mpn(B(H)), we will always mean its norm as an operator from
H™ to H™. That is, My, »(B(H)) will be the space of m x n matrix of op-
erators acting on an n-dimensional complex Hilbert space H"™ to H™. We

note that when m = n, then M, ,(B(H)) = M, »(B(H)) and B(H", H™)

22



is B(H"). If T € B(H™,'H™), then the norm of T is given by

[|T|| = sup{||Th|| : h € H™;||h|| = 1}_\

<

220 Maknix inequalivies

In this section, we prove some important matrix inequalities which we

shall use later in the sequel.

Proposition 2.1.1. Let M,(B(H)) be an n x n matriz with entries from
B(H). Let [Tij] € Mn(B(H)), then we have that

Tl < Tl < 32D Il (2.1.0.1)

i=1 5=1

Proof. By the matrix 1-norm, we have

T3l = mﬁXZHﬂ,J’H > || Tlls G=1,...,n.

i=1

This implies that
Tl = 1T (2.1.0.2)

Also, we have

—— e =\
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is B(H™). If T € B(H™,’H™), then the norm of T is given by
: N

I T(| = sup{||Th|| : b € H™; ||| = 1}.

2.1 Matrix inequalities

In this section, we prove some important matrix inequalities which we

shall use later in the sequel.

Proposition 2.1.1. Let M,(B(H)) be an n x n matriz with entries from
B(H). Let [T;;) € Ma(B(H)), then we have that

1Tl < T < S ST I (2.1.0.1)

=1 7=l

Proof. By the matrix 1-norm, we have

Tl = mase STl > WTiglly 5 =1,

i=1

This implies that
Tl = (1T 51 (2.1.0.2)

Also, we have

Tl = ggglm,jn <D D Tl

j=1 i=1
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Implying that

[RES )M e e (2.1.0.3)

j=1 i=1

Hence, from (2.1.0.2) and (2.1.0.3) we obtain

1Tl S NTAM YD Tl Goi=1,...,m)

i=1 =1

O

Although these inequalities do not determine the matrix norms, they
provide important constraints on their properties. In particular, any two
such norms must be equivalent on M, (B(H)) and a sequence say T(k)
(k € N) in M,,(B(H)) converges if and only if the entries T'(k); ; converges.
It is also apparent from these inequalities that B(H) is complete if and

only if each of the normed spaces M, (B(H)) is complete.

2.2 Identification of M, ,(B(H)) with
B(Hn, Hm)

If we can identify the space M,(B(H)) with B(H") then we can do the
same to M, ,(B(H)) with B(H", H™), after which we can equate norm
on M, »(B(H)) to norm on B(H", Hm) This norm is defined by letting
the space M,,(B(H)) act on a Hilbert space H™. We shall denote a typical
element of M,(B(H)) by [T;,]. _

In fact the space M,(B(H)) is an involutive algebra if we define multipli-
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cation as
L

<

[T:k)-[Skj] = (2": T; xSk ) for any [T:,], [Si;] c M, (B(H)),

k=1

and define involution as

[ﬂ,j] f= [T;:z] v

It is not obvious that the *-algebra M, ,(B(H)) is a C*-algebra with
this identification. We shall prove in Proposition (2.2.2) that indeed
M n(B(H)) is a C*-algebra.

Now, let H™ denote the direct sum of n copies of H. Then we shall de-

_ ha
fine an inner product on H" by: V h, f € H" where h = : and
hx
fi
J={ |
fn
hy fi
(h,f>=< iola k. > = (hy, fibn+ oo+ (B fadm
hn fn Hn
and also a norm by:
2
hy
|IAl1? = i = [hal®+... +|lhal?
By

So H™ is a normed space. In fact it is a Hilbert space.

25
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Proposition 2.2.1. Let M, (B(H)) and B(H™) be ”‘-algebmé.‘v Then there
exists a linear mapping ™ : M,(B(H)) — B(H") such that 7 is a *-

isomorphism.

Proof. Let m : M,(B(H)) — B(H") be a mapping between these two

*_algebras. If [T} ;] € M,(B(H)), we define 7([T;;]) € B(H") by setting

hy
for all : e H".
hn,

From the above development, the map 7 is just the ordinary matrix

multiplication. We need to show that this map 7 : M, (B(H)) — B(H")

> i1 T3k,

> ie1 Taghy

Tll

Tnl

Tl n

Tnn

is a *-isomorphism, whence it would follow that M,(B(H)) = B(H").

To do this, it suffices to show that 7 is a *-homomorphism and is

bijective.

26
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Let o, 8 € C, [T;,],[S:,] € Mn(B(H)) and h € H™, then
L

<

( > i=1(aTr; + BS15)(hy)
m(a[Ti ;] + B[S:;])(h) i

\ 37 (0Tn; + BSn;)(hy)
[ > i (@ j(hy) + BSy,;(hy))

> 1T i(hs) + 8Sn(hs)) ]
( > =1 @Thi(hy) + 375, BS15(hy)

\ 30 oTnj(hy) + X0, BSni(hs)
> i1 T1,5(h;) > i=151,5(hy)
v + 5
Z?:l Tn,j (hj ) 23'1:1 Sn,j (hj)
= an([Tiz))(h) + Br([S:;])(h)

= (am([Ti,]) + Br([S:,))(h)

= «a

Thus 7 is linear.

Next, we show that 7((Si ) (Tk,;)) = 7((Sik))m((Tk,;)). Let [R; ;] = [Si,;c] [Tk, ;]-
Then
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m([Ris))(h) =

Also

(w([Sie])m((Tk 1)) (R)

n
=1 B15hj

> i1 Bnghy

2 b1 21 STk ghy

2 k=1 2oj=1 Sk Tl

> ki1 S16 Tk ‘
: (2.2.0.4)

= m([Six]) |

\ ZZ;J'zl Sn;kaxjhfj

i1 Tu,5h;

> i1 Tnhy
> =1 Stk ( =1 Tk,jhj)

D k=1 Sk (Z?:l Tk,jhj)

Zzzl E?:l Sl,ka,j h;

22:1 E}Ll Sn,ka;jhj

> k=1 STk by

- ; (2.2.0.5)

ZZ,jzl Snk Tk b
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3

From (2.2.0.4) and (2.2.0.5) it follows that 7 ([S; &][T: x]) = 7([Si ]) 7 ([Tk ;])-

Hence 7 is a homomorphism. o

We then show that, for this 7, m([T;;])* = 7 ([T}.]).

hy f
Let N P : € H™
hn I
Then
hy h ha h
<7f([Ti,j]) S "1 >=< N PR (V271) N >
' hn In hn In

(2.2.0.6)
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Also

Iy fi S Tishy fi
<w([n,j]) 2 I >=< : o} >
hn fn Z;'lzl Tn,jhj fn
= <ZT1,jhj,f1>+---+<2Tn,jhjvfn>
J=1 j=1
= > > (Tishi fi)
i=1 j=1
= Z_(Ti,jhj,fi)
.,j g
- Z<h,,T;‘, i)
4,7=1
- (T (ST
i=1 i=1
hl Z?lef.if'i

)ET)

h’" 21 =1 nz
By \ fi

_ < LT | > (2.2.0.7)

hn Jn

From (2.2.0.6) and (2.2.0.7) and since H is a complex Hilbert space,
it follows that

m([Ti))* = n([T}.])-
Thus 7 is a *~homomorphism.

It now remains to show that 7 is bijective.
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Let

E;:H—H" : (2.2.0.8)

be a map defined by

Ey(h) = vector that has h for its k-th entry and is 0 elsewhere

Now, suppose 7([T; ;]) = 0, then

0 Tyih
= m([Ti ;] Ee(h)) = : ; k=A{1,...,n}
0 Tn,k:h

This implies that T;xh = 0 for all h € H and for all 4,k = {1,...,n}.
Hence [T; ;] = 0. Therefore, 7 is injective. We next show that  is onto.

To do this , we define a map
Ei-H'">H (2.2.0.9)

We shall first show that, this map sends a vector in H™ to its j-th com-

b
ponent. Note that from (2.2.0.8), >7_, Exhy =
: "
ha
To show that 2.2.0.9 is the required map, let h € H, : € H™.
P
Then by the definition of adjoints,
h1 ha
<EJ* : ,h> = < : ,Ejh> = (hj, h). Thus EJ is the map
ha s, ' ‘
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hy )
that sends : to h; as required. We then proceed £5 show that 7
hx
is onto. To prove this, it is enough to show that w([T;,]) = T for any
T € B(H™).
1 fi
To show this, let T; ; = E;/TE;, JUN T L eHn"
hn fn
Then
. hl fl E?:l TlrJh'] fl
<w<m,j1> ] >=< AN >
B fa | > i1 Tn,ih; fn
= > (Tishi fi)
ij=1
= Y (ETE;h; f;)
ij=1
= Y (TEjh;, Ef)
ij=1

= <T iEjhj)viEifi>
=1 i=1

hy f

=<T;,;>

\ \ P A
(2.2.0.10)
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Thus, from (2.2.0.10), and since H is a complex Hilbert space, it fol-
{
lows that 7 ([T} ;]) = T. Hence  is onto and therefore is a *<isomorphism.

O

Moreover, this 7 is a representation of M, (B(H)) on the Hilbert space
‘H™. We call 7 the canonical *-isomorphism of M, (B(H)) onto B(H™).
Therefore, we can identify M,, ,(B(H)) with B(H™, H™). This identifica-
tion gives us a norm that makes the *-algebra M, ,(B(H)) a C*-algebra

as evident in the following proposition.

Proposition 2.2.2. Let 7 : My o(B(H)) — B(H", H™) be a *-isomorphism.
Then the norm defined by

1Tl = Hl ([Tas Dl (2.2.0.11)
makes the *-algebra M, ,(B(H)) a C*-algebra.

Proof. 1t is clear that ||[T;,]|| = ||7([T;,])|| is a norm. In fact it is sub-
multiplicative. It now remains to show that equation (2.2.0.11), satisfies

the condition [T ;]*[T: I = I|[T:;]I|*.

T Tl = (Tl [Tl
= |Im([T ) (T
< 7 ( T O (T DI
< el 1 W T 511
< N ) T )

I[T:]112 since [I[T301l = (T3]

because My, »(B(H)) is a *-algebra.
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Hence

I TN < TP o (22012)

On the other hand,

0<ITI* = le(IT DI
= (m(

(

(

3

[T;,;])h, 7([T;;])h) for h € H™ and of unit length.
= ([T D) ([Tig1)h, h)
= (m([Ti,]"[Tig])h. B

= [{7([T:,]"[TisDh,

< ([Tl [TsDAllIA by C.B.S inequality.

< (T TR

S eamuvemiiliidly

< T [Tl
Hence

NTi* < T (T ) (2.2.0.13)

From (2.2.0.12) and (2.2.0.13), it follows that ||[T;;]*[Ti ]l = |I[Ti]1|?
implying (2.2.0.11) satisfies the C*-condition, and therefore M, ,(B(H))
is a C*-algebra. O

The norm defined above is unique. Before showing this, we shall

require the following result.

Proposition 2.2.3. If ||.|| is a complete C*-norm on a *-algebra A, then

it is given by the expression
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la|| = r(a*a)?, Va € A, (2.2.0.14)

where r(a) is the spectral radius of a. Hence a C*-norm on a *-algebra is

unique if it exists.

Proof. See [22, 13] for the proof. O

Theorem 2.2.4. If B(H) is a C*-algebra, then there is a unique norm
on M,(B(H)) making it a C*-algebra.

Proof. M,(B(H)) being a C*-algebra has been shown in Proposition
(2.2.2). It now remains to show that the C*- norm defined in Propo-
sition (2.2.2) is unique. The uniqueness of this C*-norm follows from

expression of equation (2.2.0.14). For, if ||.||; and ||.||2 are norms on the

*.algebra M, (B(H)) making it a C*-algebra, then

T = T (Tl = r(Tgl [Tigl) = sup AL
A€o ((Ti,51*(Ts,4])
and
T = ML [Tl = r(Tyl [Tig) = sup ||
Aeo([To,)* [To,5))
which implies that ||[T;;]||1 = ||[T;,]||2, i-e. the two norms are equal. O

2.3 Norm on M, ,(B(H))

There is a natural way to regard an element of M, ,(B(H)) as a linear

map on H", by using the usual rules for matrix products (see [7]).
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Let [T; ;] € My n(B(H)) and h € H™, then ¢

h >i—1 Tush
[Til(h) = [Tig] | = :

We shall check if this element of M,,,(B(H)), is a bounded linear

operator on H", i.e. if 3c e R:||[Ti )bl £ c||hl].
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h/l Tll “ e Tln hl
[Tis] | -
B, \Tml S h

( > =1 T3k

S

\ Z?:l T jh;
. 2
= ZTL:"%‘

+...+

m,j'tj

i,J

i=1

Z Z |T;;h;]* Dby triangle inequality.
i=1 )

DD TPl

=] 3=1

IN

IN

n

> |m,jn2) S llasl?
j=1 J=1
;]2 where ¢ = ) (Z llTi,jnz)

1 i=1 \j=1

Ms

.
Il
-

[
O
[

[
Il

and the assertion follows.

Putting 37, [|h;]|* = 1 and then taking the square root on both sides

we obtain
hy

[Tl | : < Ve
h
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L
e

= |[[Tiy]ll < \/E:ll > i1 I Ti4]1% - Since [T:4] was picked arbitrarily,
we have that the norm of [T; ;] € Mpun(B(H)) can be approximated by

I < |/ (S S3 I Tl?).
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Chapter 3

Operator Spaces and
Completely Bounded

Operators

3.1 Completely bounded operators.

This chapter contains the formal definition of operator spaces, complete
boundedness for linear operators between C*-algebras, the main repre-
sentation theory for completely bounded operators, Wittstock’s decom-
position theorem for c.b. operators, algebraic tensor product of operator

spaces and a discussion of other basic related results.

Definition 3.1.1. Let H be a Hilbert space, B(H) a set of bounded lin-
ear operators on H and let M C B(H) be a subspace. Let M, (B(H))
be a n x m matrix algebra with entries from B(#). Then the inclu-
sion, M, (M) C ]\d’n:m(B(H)) endows this vector space with a col-

lection of matrix norms and we call M together with this collection
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of matrix norms on M, ,,(M) an operator space. When m = n, then

My m(M)=M,, n(M) = Mp(M).

<

Alternatively, an operator space is a closed subspace of B(H).

The study of operator spaces is related to the study of completely

bounded operators (i.e. the morphisms between operator spaces).

Definition 3.1.2. Given a C*-algebra A, an operator space M C A, and
a linear map ¢ : M — B(H), we define a linear operator ¢,, : M,(M) —
M, (B(H)) by

Pn(laij]) = [#(ai;)]
for [a;;] € M,(M). We call ¢ completely bounded, if ||¢||s = sup,cw || x|,

is finite

The space of completely bounded opefators from A to B with this
norm is denoted by CB(A, B). We shall show that ||.||s is a norm on
CB(A, B).

Proposition 3.1.3. ||.||e is @ norm on the linear space CB(A, B).

Proof. Clearly ||¢||. is non-negative and is zero if and only if ¢, is zero
for every n € N.
Now, let A € C, then

”/\¢|lcb = Sup H)‘¢n||

= sup |AL[[¢n]|
= |Alsup||¢n]]
= [All[@lles
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Let 1, ¢ be completely bounded linear operators, then it’s clear that ¥+ ¢

is also completely bounded. Therefore -

1Y+ dllee = sup|ltn + ¢nl|

< sup{|[¢nl] + [|énll}
< sup||¢n|| + sup ||énl|
= [[%lles + [ lles
Thus ||@||cs = sup,, ||¢x]|. is indeed a norm. O

Proposition 3.1.4. Let M, M* be operdtor spaces in the C*-algebra A
such that M* = {a* : a € M}. Let B(H) be another C*-algebra such
that ¢ : M — B(H) is a linear map. Then the map ¢* : M* — B(H)
defined by '

is also linear map and ||¢n|| = ||&%]]-

Proof. Let M and M* be operator spaces. Let also o, 3 € C and a,b €
M, then by definition, aa + b € M so that (aa + Bb)* € M*.

Now

¢*(aa+Bb) = ¢((ca+ b))
= ¢(aa* + Bb*)*
= [ag(a*) + Bo(b*)]* since ¢ is linear
= To(a)" +Bo()’
= ag¢*(a) + B4 (b)




Hence ¢* is a linear map.

With these linear maps: ¢ : M — B(H), ¢* : M* — B(H), we can

define their corresponding linear maps:
Gn : Mo(M) = Mu(B(H))
via ¢n([ai,) = [6(ai;)] where [a;;) € My (M) and
6% : Ma(M?) — Mo(B(H))

via (Zb:;([(llj]) = [¢*((],1‘7]‘)] — [qﬁ(a,i:j)*]* fOI‘ all ?,] = 1, etk {8

For the case when n = 2, we have

¢5(lais]) = [o((aif))]*

| d(az1) ¢(az2)
— ¢2<[a‘i,j])
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From the above calculation, we have, for any n € N that

$n([aig]) = [0 (aiz)] = [o(a;,

= [#(aj)]"
= [¢(a]})]
= [¢(ai;)]
= ¢n([ai )

i)

Hence ||, ([a:;])]] = [|¢n([ai;DI] < [lnllllai ]|
Thus ||¢5([ai DI < [|énll-l[asl]]-
Taking the supremum norm on both sides with [|[a;;]|| = 1, one thus
obtains ||¢5[| < [|¢a|
Similarly
[#n(las DIl = |65 ([as DI < NS5l [aislll
Thus ||¢n([ai DIl < [Ié7l]-[ass]]-

Again taking the supremum norm on both sides with [|[a;,]|| = 1, one

thus obtains ||¢,|| < ||#%]|- Hence ||¢n|| = ||#%]|. Therefore

[1¢llc = sup [|¢nl| = sup [[@p|| = ||¢"]|cb-

O

Proposition 3.1.5. Given a C'*-algebra A, an operator space M C A,
and a linear map, ¢ : M — B(H), The norms ||¢n||nen form an increasing

sequence

ol < llgoll < - < Hlgnll < .o <l Dlleb-
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and

lall < nllg]]-

Proof. We shall first prove the first inequality. Notice that when n = 1,
then by the definition of ¢,, ¢; coincides with ¢ and hence ||¢| = | ¢1].
Now let’s consider cases when n = 2, 3.

Let [a; ;] € May(M) i, j =1,2, then for

bg : My(M) — My(B(H)), we have

&5 a1 a12 _
Q1 Q22 '
and
11 Q12
o w '
Q1 Q22

©

(al,l)
¢(az,1)

P
©-

(011,2) )
(012,2)

| I\ d(a21) d(az)

e
= \} ZZ |¢(ai;)]2 by Hilbert-Schmidt norm

©-

i=1 j=1

\/Il¢(a1,1)li2 + ll¢(ar2)I? + [[#(az, )12 + [ $(az,2) 2
[¢(ar,)[? = l¢(ar,)ll = ll¢1(ara)ll

Vv

Thus ||a|| = supy, jers ) ll2([0:;D)]] = sup ||¢1(ar 1)l = ||é1]]. Hence
| @2l] = [|¢nll-

For n. = 3, we have
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a1 Q12 013 ¢(f11,1) ¢(0/1,2) (15(0/1,3)

®3 Q21 Q22 Q23 = ¢(a2,1) ¢((12,2) ¢(a2,3)
as1 @32 033 das1) Plasz) o(ass)
So

a1 Q12 13 ¢(0f1,1) ¢(a1,2) ¢(011.,3)
¢3 az1 G2 Q23 = ‘(15(0/2,1) d(az2) ¢(asz3)
as1 a3z a3g3 ¢((1'3}1) ¢((13,2) ¢(a3:3)

3

= D0 le(ais)ll?
i=1 j=1

= (Bl + #(ar2)l? + [#(ars)l? + éaa) > +
[ 8(aza)]1? + | $aza)ll? + 6(as I + 6(as )2 +

| 6(as) %)

VBl + 91 2)[12 + [ $az )2 + | $(az2)] 2

= JZZIW(%)HZ

i=1 j=1

= |lo2([ai )]l

v

Thus [|¢s]| = supp, jensy iy [183([ai DIl > suP, jean [182(ai))]] =
||#2l]- Hence [|¢s]| > ||#2]|-

Therefore in general, let’s consider
b1t My (M) = M1 (B(H))
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defined by ¢,11([aij]) = [¢(a:;)] for all i,j = 1,... ,n+ . By the above

calculations we have

Ifn1(laiDll = Ilié(as)]l

n+1 nt1

= D0 el

i=1 j=1

n n

> \ S léai)IP

i=1 j=1

= lign(aD)l

Taking supremum on both sides we thus obtain ||¢, 1| > ||éx]-

The completely bounded norm of ¢ is given by

||d)||cb = sup H¢n”

= |[Blles > ll¢nl Vn € N.

Thus |[¢]| < [|#,]| < ... < lgnll < ... < |||t
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To show that ||¢,|| < n||4||, let ||ai || <1 V4,7, then

I

[@n(fas ) [ (ai I

= \ D0 liglasy)l?

i=1 j=1

IA

\ZZ 6112[l(a:5)I?

i=1 j=1

= el | D> Iasy)l?

i=1 j=1
= [Bll(lavill®+ -+ [laval® + llaza|* + - - - + ||lagal | +- .. +

an |+ ... + |[annl|?)"?

< |l¢llvV/(n+n+n+n+...+n)ie add n n-times since ||a; ;|| < 1
= ll¢l[vn?
= 4]

Thus [[¢n|| < nl|4]].

3.2 Representation of completely bounded

operators.

Each C*-algebra A has an isometric *-representation in the algebra B(H)
of all bounded linear operators on H, where H is a Hilbert space (see
[4]). This representation also identifies M,(A) with a subalgebra of

M,(B(H)) = B(H™). In discussing completely bounded linear oper-
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ators from a C*-algebra A into another, initially it will be assumed that
the range algebra is B(H). This leads to the Haagerup—Paulétfn—Wittstock
representation theorem for a completely bounded operator into B(H), (see

[14]).

Theorem 3.2.1. (Representation theorem). Let A be a unital C*
algebra, ¢ : A — B(H) completely bounded. Then there exists a Hilbert

space K, a unital *~homomorphism = : A — B(K) and bounded linear

operators Vi, Vy : H — K with ||V1||.||Va|| = ||¢||e such that for alla € A
¢(a) = Vi'r(a)Vs.
Moreover, if ||p|| = 1 then Vi and Vo may be taken to be isometries.

Proof. For the proof of this theorerﬁ, see ([14], theorem 8.4. ) O

Definition 3.2.2. Let A, B be C*-algebras and ¢ : A — B be a lin-
ear map, then ¢ is called a positive map provided that it maps positive

elements of A to positive elements of B.

Definition 3.2.3. Let .4 and B be C*-algebras, M, (A) and M, (B) be
n X n matrices with entries in A and B respectively. For each linear map

¢ : A — B, we define a linear map ¢, : M, (A) — M,(B) by

nlai ) = [$(ai,)].

If ¢, is positive, then ¢ is said to be n-positive. If ¢ is n-positive for all
n, then ¢ is said to be completely positive.

Definition 3.2.4. If A is a unital C*-algebra, then a subspace S C A

with 7 € S and S* = S is called an operator system.
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S
Completely positive maps are all completely bounded but it is worth
noting here that not all positive maps are completely positive and not all

bounded maps are completely bounded (see [9]).

Proposition 3.2.5. Let S C A be an operator system, let B be a C*-
algebra, and ¢ : & — B be completely positive. Then ¢ is completely
bounded and [|¢(I)[| = [|¢]| = ||l

Proof. By theorem (3.2.1) ¢ is a completely bounded operator. It now
remains to show that ||¢||w. = ||¢|| = ||#(I)||. Clearly, we have that
(DIl < Igll < [|¢lle, so it is sufficient to show that [|¢|le < [[G(T)]]-
Let A = [a; ;] € M,(S) with ||A|| < 1. Let I, be the unit of M,(S). Since

I, A
A* I,

I, A on(In)  #n(A)
¢2'n. =

A I, dn(A)* Gu(ln)

is positive, we have that

is positive, since § is an operator system.

Thus we have )

l8n(A)I1* = [|6n(A)$n(AM] < [I6n(Tn)dn(In)l| < lén(Tn)]-l|n(Tn)ll =
[6n(III* = 16(D)II”

Since S is an operator system, and A € § we have

[18n(AI? < [l6n (T2 = [I6(D)I*.

Taking square root on both sides we obtain

l[én(A| < llén (L)l = ll&(D]. So
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||#]|e = sup,, ||¢n(A)|| < [|¢(I)|| which completes the proof.

An alternative proof can be obtained from [14]. O

Define Re¢ = 3[¢ + ¢'] and Im¢ = 5-[¢p — ¢*] so that Reg, Im¢ are

self-adjoint.

Completely bounded operators can be decomposed into at most four
completely positive maps, (see [9]). The following decomposition theorem

is by Wittstock:

Theorem 3.2.6. Let A be a unital C*-algebra, ¢ : A — B(H) completely
bounded. Then there exists a completely positive map ¢ : A — B(H) such
that ||¢||a < ||@l|e and that ¥ £ Rep, 1 = Im¢ are completely positive.
Consequently, every completely bounded operator is a linear combination

of at most four completely positive maps.

Proof. We shall use the Haagerup-Paulsen-Wittstock representation the-
orem (3.2.1). Write ¢(a) = Vi*r(a)Vs for all a € A with

IVAI1? = Va1 =[] lles

Define 9(a) = 5[Vi'm(a)Vi + V5 (a)Va], then ¢ is completely positive
according to ([21],theorem 3.6) and [|¢||ss = [[¥(I)|| since A is unital.

Therefore

(DI = [[¥]les < 1I]cb-

Notice that




¢*(a) = (Vim(a)V)*
= Vym(@)(V)

= Vym(a)\

and the real and imaginary parts of ¢ are given as:
Rep = 3(¢ + ¢*)
Img = L(6— ¢").
So
Reg(a) = 3(Vi'm(a)Va + V5m(a)V1)

Img(a) = £(Kim(a)Vs — Vym(@)Vh) = (Vym(a)Vi — Vim(a)Va)

Now,

20(a) + Redla)] = Vim(a) + Vin(@)Vs + Vim(a)Vs + Vym(a)Vh
= V(@) + Vi r(a)Vi + Vin(a)Vs + Vim(a)Va
= (W +V)m(@)Vi + (V + V3)m(@)Va
= (V +V3)m(a)(Vi + V5)

= N1+ Va)'m(a)(Vi +V3)
This shows that 2[¢)(a) + Re¢(a)] is completely positive.

Similarly, 2[¢)(a) — Re¢(a)] = (Vi — Va)*n(a)(Vi — Va) which is also com-

pletely positive.
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2[p(a) + Img(a)] = Vim(a)Vi+ Vim(a)Vs +i[Vim(a)Vi — Vi'm(a) V]
= Vin(a)V1 +iV5n(a)V1 + Vi (a)Va — iVi'n(a)V,
= (' +iVy)m(a)Vi —i(Vy" + iVa)m(a) V2
= (W +iVy)[r(a)V1 —im(a) V2]
= '+ iVy)m(a)(Vi —iVa)
= (V1 —iVe)*'n(a)(V1 —iV2)

This again shows that 2[¢)(a) + Im¢(a)] is completely positive. Similarly,
2[Y(a) — Img(a)] = (Vi +iVa)*n(a)(Vi + V). It therefore follows that
Y¥(a) + Reg(a) , Y(a) — Red(a), ¥(a) + Im¢(a) and ¢ (a) — Im¢p(a) are

all completely positive. So

¥(a) + Reg(a) — (¥(a) — Red(a)) +
i[(W(a) + Imd(a)) - ((a) - Im$(a))] = w(a) + Red(a) — ¥(a) + Rea(a)) +
if(a) + Im(a)) - ¥(@) + Img(o)]
= 2Red(a+ 2iIm¢(a))
= 2[Red(a) + iImd(a)]
= 2(a)

Hence

b= %[w + Re¢ — (¢ — Reg) + i($ + Img — (¢ — Img)))

52




Taking

'U;l = 2_1 /l/) + R€¢)7
uy = 271y — Red),
us = 2~1

(
(
(¥ + Im¢) and
(

ug = 27 — Img),
we have
¢ = up — ug + i(uz — uy),

where u1, us, uz and u4 are all completely positive maps.

An alternative proof can be obtained from [9, 14]. O

Lemma 3.2.7. Let A and B be unital C*-algebras, and let m: A — B be
a *-homomorphism with w(I14) = Ig. Then m is completely positive and

completely bounded and that ||w|| = ||ma|| = ||7||e = 1.

Proof. If 7 is a *-homomorphism with 7(14) = Iz, then 7 maps invertible

elements in A into invertible elements in B. So

o(m(a)) C o(a) for any a € A.
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It follows that

Im(@)[* = [|m(a)*n(a)ll
= ||m(a*a)l|
= r(n(a*a))
< r(a’a)

= lla*all = [la||?

where 7(a*a) denotes the spectral radius of a*a.
Thus ||7|| < 1 which implies that 7 is"bounded and moreover 7 is con-
tractive.
Since m(14) = Ip,
I (Lal = [|Is]] = 1.

Hence ||7|| = 1.

If a is a positive element of A, then there exists an z € A such that

a = x*x. Therefore
m(a) = m(z*z) = n(z*)m(z) = w(z)*r(z) > 0.

This shows that 7 is positive.

Define 7, by
Ta([ai]) = [m(aiz)]-

Since 7 is positive, m(a; ;) > 0 V14, ;. Hence
[m(a;;)] > 0 implying that

To([ai;]) = [m(ai;)] > 0 for every n € N. This shows that m, is positive
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for every n € N. Hence 7 is completely positive. b

In m,([a;;]) = [7(as;)], take [a;;] = I,, the n x n identity matrix.
But
def
Tn([In]) = 7([In]),

thus ||mn (L) = (I ([LD)]] = [[[Za]l] = 1.
Hence ||m,|| =1 for every n € N.
Therefore 7, is bounded for all n > 1.
So
irllas = sup lmall = 1 = [
This shows that 7 is completely bounded and
Il = [lall = [l7lles = 1. O

Corollary 3.2.8. Let A, B and C be C*-algebras and let ¢ : A — B and
Y B — C be completely positive maps. Then 1oy is completely positive.

Proof. Given that ¢ and ¢ are completely positive, it suffices to show
that (Y o0@)n = 1m0, for every n € N, whence it would follow that 1o ¢

is completely positive.

(po)allaisl) = [pot(aiy)]
= [pa(a,)]
= [p-¥n([ai;])]

Put ¢, ([ai;]) = by
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(poPIn(laiz]) = [p(bn)]
= on([bn])

= @nPn([ais])

= $noO wn([a‘i;j])
Hence (¢ 0 9)n = @n © Yp. | O

The same proof holds when ¢ and 1/1 are completely bounded.

3.3 Examples of completely bounded oper-

ators.
The following examples are given purposely for illustration.

i) Let A and B be C*-algebras. Let 7 : A — B be a *-homomorphism,
then 7 is completely positive and completely contractive, see [9,
19]. Each map m, : M,(A) — M,(B) is a *-homomorphism. *-
homomorphism is both positive and contractive. Thus
sup,, ||ma|| < 1. Hence ||7||a = sup, ||| < 1= 7 is a completely

bounded operator.

ii) Let A and B be as in the example above. Fix z,y € A where z and

y are diagonal elements.
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o(a) =zay Ya € A

If [a; ;] € Mn(A) then

|ln([ai DI = [|z[a: ]yl =

Tri1 0 0
ai1 a1n
0
0
Qn1 ... Onn
0 0 ZTan

< [lzlHl[ai ]l gl = llenll < [lz]] 1ly]]-
Hence sup,, ||¢al] < [|2]]]]y]| for all n € N.

Thus ¢ is completely bounded and ||| < [|2]| ||y]]-

map ¢ : A — B(Hy) by
ola) =Vyr(a)V, VaeA
We show that ¢ is completely bounded and that

llolle < (VAL [[Vall-

o7

Define ¢ : 4 — A by ¢

Y11

0o ... 0

0 Yum

iii) Let H; and H, be Hilbert spaces, V; : Hi — Ha ¢ = 1,2 be bounded

operators, and let 7 : A — B(H3) be a *-homomorphism. Define a



Let &,m in H; be of unit lengths, then ¢

{en(@)lm] = V5 ® Lum(a)Vi ® Ing, 7))
[(m(a)Vi ® Ing, V2 ® Inn)|

< lm(@)Vi ® Li£|[[|[Va ® Lun|| by C.B.S inequality.

< lw @)1V ® L[ I€]] [V ® Ll | [nl|

< AllHH@IHVALTENTTVaI ]

< [@IHVAIIEN V2l [nl] since ||=]] < 1.
Solleall < VAl V2l

Thus sup,, ||@a|| < [|Vi]|||V2|| which is finite since V; and V, are
bounded operators.

Hence

llplles = sup [lnl| < [[VA[l{[V2ll < o0
Therefore ¢ is completely bounded and ||¢||s < [|[VA]] || Va]|-

In this example, we shall consider the transpose mapping. Let

{E:;}? ;-1 denote the system of matrix units for M(C). That is

1 0 0 1
Ei= , Eip =
00 00

00 00
By = and Fyy =

10 01
Let ¢ : My(C) — M,(C) be the transpose mapping so that ¢(E; ;) =

E;;. It is easy to show that the transpose of a positive matrix is pos-
itive and that the norm of the transpose of a matrix is the same as

the norm of the matrix. Clearly ||¢|| = 1. This is true for any n € N

58



and hence ¢ is bounded.

Now let’s consider

¢2 1 My(My(C)) — My(My(C)) and
let A = (E;; ?,j:l € M>(M(C)), then

So

$2(A) = [p(A)]
_ | (B 6(En)
| $(Er2) ¢(Enp)

Ey Ei
Ey1 Ess

(100 1
0000
0000
100 1
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Therefore

‘100 1|
0000
[[o2([AD]| =
0000
(100 1|
:2 e

and sup ||¢s|| = 2 < 0o. Thus ¢ is completely bounded.
The following example is a counterexample to show that not all

bounded operators are completely bounded.

When the underlying space is inﬁnitely—dimgnsional, then ¢ turns
out not to be completely bounded, see [4, 14]. To see this, Let H
be a separable infinite-dimensional Hilbert space with a countable,
orthonormal basis, {e,}22,. Every bounded linear operator say T
on H can be thought of as an infinite matrix whose (i, j)th entry is
the inner product (Te;, e;).

Define a map ¢ : M,(C) — M,(C) by the transpose mapping. Let

{E;;}$5—, be matrix units. For a fixed n € N, let A = (Ej;;), be an
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element of M,(C) whose (i, j)th entry is Ej, i.e.

I

o o o
—
o

Each column entry of matrix A has only one element 1 in each col-
umn (and in each row). Thus, taking the matrix 1-norm, we obtain
that |[A[| =1, but [[¢n([A])[| = [[[#(A)]]| = n. So sup, ||¢a|| = oco.

So ¢ is not completely bounded.

3.4 Tensor product of operator spaces.

In this section, we give the basics of tensor products, tensor norms, tensor

product of operator spaces and other related results.

Let H and K be vector spaces and H x K = {(z,y) :z € H, y € K}

be the cartesian product of H and K.

Definition 3.4.1. Let H, K and Z be linear spaces over the same scalar
field, say C. A function ¢ : H x K — Z is bilinear if ¢(z,.) : K — Z is

linear for each z € H and ¢(.,y) : H — Z is linear for each y € K.
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The algebraic tensor product of vector spaces H and K denoted by
H ® K is the linear span of the collection of elementary tensors, {:z@y :

z € H,y € K}. So a typical v € H ® K has the form

u = Z AiZ; @ Yi
i=1

where Ay, ..., \, are scalars, z1,...,2Z, € Hand Y1, ..., ¥Un € Kandn € N

is arbitrary.

Theorem 3.4.2. Let7: Hx K - HQK, 7(z,y) =z ®y be a mapping

from a cross product to tensor product space. Then T is a bilinear map.

Proof. Let z,z1,22 € H, y,y1,92 € K. and a,3 € C. To show that 7 is
bilinear, it suffices to show that 7 is linear in both the vector spaces 'H
and K.

We show linearity in H.

Since

T(z,y) =2 ®Y,

T(axy + Bz, y) = (ax1 4+ B22) ®Y

[l

(az1 ®y) + (B2 ® Y)
= a(z;19y) +B(z20 )

= aT(‘(I’.lv y) 13 /HT(:I;21 3/)

Hence 7 is linear in H.
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Next, we show linearity in K.

7’("]’;7 Yy — 6:{/2) = z® (ayl I /Hy2>
= (zQoy) + (z® B)
= a(r®@y)+ Lz Q)

i O{T('r[;: 3/1) + /BT(I1 ?/2)
Hence 7 is linear in K and therefore 7 is a bilinear mép. O

If H and K are Hilbert spaces, then the algebraic tensor product H® K

is a pre-Hilbert space with the inner product determined by

(z®y,z1 Q1) = (z,21)(y, 11)-

This leads to the following theorem.

‘Theorem 3.4.3. Let H and K be Hilbert spaces. Then there is a unique
inner product (,) on H® K such that

(z®y,z1Quy1) = (,z1)(y,51) z,71€H Y,y € K.

For the proof of this theorem see [13].

Remark 3.4.4. We note that in the theorem above, the tensor product
space H® K with the above inner product forms a pre-Hilbert space. The
- completion of this pre-Hilbert space H ® K which is denoted by H®K

makes it a Hilbert space.

Lemma 3.4.5. Let H and K be Hilbert spaces. Then if Ey = {e; : i € I}

is an orthonormal basis for H and Ey = {€}; : j € J} is an orthonormal
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basis for K, then the set

EiQEy={e;®¢€}:i€1,j€ J}, where I and J are index sets.

is an orthonormal basis for HRK .

Proof. We need to show that the elements of F; ® Ey are linearly inde-
pendent and that E; ® E, spans HRK.

Now suppose that

Z /\i,j(ei &K (3;) 5 Z € ® (Z /\i:je;) =0.
i,j t J

Since e; are linearly independent for all ¢ € I, it implies that

Zei%o

and hence

J

But ¢}, are also linearly independent, meaning €} # 0, Vj € J
Therefore, A; ; =0, Viel, jeJ

Hence e; ® e; are linearly independent.

Let 1@y € HRK such that z =3} A\ie; and y = Z;” azel, with A;, a; €
K, Vi,j
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Then

TQY = i)\iei@io@e;
i J
= ZQ](Z )\iei Y 8;)

J

= Z @ Z Aie; ® €)
2 7

= ) oj(e®d),
]

where k is taken to be the max{n,m}.
Since z ® y was picked arbitrarily in H&K, any vector in HQK can be
expressed as a linear combination of the vectors e; ® (’; Hence F; ® E,

spans H®K and is therefore an orthonormal basis for it. » O

Proposition 3.4.6. Let H and K be Hilbert spaces. We denote by HO K
the tensor product space between H and K. The elements of H @ K are
denoted by  ® y where x € H and y € K. Then

|z @ yll = ll=ll|lyll
defines a norm.

Proof. Tt is clear that ||z ® y|| > 0 and
lz®yll=0 ©zy=0

Next, we show that for any @ € C we must have ||a(z®7y)|| = |||z Q]|
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Recall that

lz®yll? = (t®y,z07y)
= (z,2)(y,9)

= [l=ll?llyll?

and from the algebraic properties of tensor products, for any a € C we
have a(z ® y) = (az ® y) = (z ® ay).

Therefore

ooyl = (woy0zey)
= (zQay,z ® ay)
= (z,z)(0oy, ay)
= |lzll*lallyll?
= lafllz]?|ly|?

= loPllz @yl

Taking square roots on both sides, the assertion follows.

Finally, we show the triangular inequality.
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Let 21,29 € H and y1,y, € K then ¢

(1 ® y1) + (22 @ )|

1 @ Y1) + (T2 ® ¥2), (1 ® Y1) + (22 ® 12))

T1 Y1, L1 ® Y1) + (21 Q Y1, T2 ® y2) + (L2 @ Y2, 1 ® Y1) +

((
(
(T2 ® Y2, T2 ® Y2)
(21, 21) (Y1, 1) + (T1, T2) (Y1, Y2) + (T2, 21) (Yo, 41) +
(

Tz,T2><y2,yz>

2| Pllyall + llz2l?[lgell® + (@1, z2) (v, 92) + (21, 22) (U1, 22)
Nzl Plyall® + 122l *[l92ll” + 2Re(z1, 22) (Y1, y2)

21?1yl + [zl *[lg2ll? + 2llzllllz2lll|y1lllzell by the
C.B.S inequality

(lzallllyall + llz2lllya])?

(llz1 ® | + [|z2 ® al])*:

Taking square roots on both sides, we obtain

I(z1 ®y1) + (22 @ y2)l| < |lz1 @ pull + [|22 ® 2l.

O

Theorem 3.4.7. Suppose H and K are Hilbert spaces and B(H) and

B(K) Banach spaces of bounded linear operators of H and K respectively.

Let uw € B(H) and v € B(K).

Then the operator defined as

wRv)(z ®y) =u(r)®v(y) =€M,yeK,
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is a bounded linear operator on B(HRK). Moreover,
[u@vl| = [ulll]v]]-

Proof. See [13] for the proof of this theorem. a

Remark 3.4.8. In case u : X; — Xy and v : Y] — Y5 are completely
bounded maps between operator spaces, then there is a map u ® v on the
algebraic tensor product X; ® Y7 into Xy ® 5.

Now if w is a norm on X ® Y, then we denote by X ®, Y the completion
of the algebraic tensor product X ® Y for the norm w. Recalling that
X ®,Y is defined for all pairs of operator spaces, it may be the case that
u®v: X1 ®u Y1 — X2 ®y Y2 is completely bounded and satisfies

|lu @ vlles = [[elles][v]]cb-

The most important result on operator spaces is the Ruan’s theorem,

[9] which gives the abstract characterisation of operator spaces:

Theorem 3.4.9. (Ruan) A vector space V with a sequence of norms
[|./ln on M,(V) (n € N) is an operator space if and only if the following
two conditions are satisfied:

For allm,n € N,

i) ||a ® bl|pem = max{||a||n,||bllm} for all a € M,(V),b € M, (V)

where a @ b denotes the matrix

a 0
0 b

= A/[n-%m (V) .
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i) |laaB|ln < [lelllalll|8]] for all o € Mn(C),a € My(V), 3 € My(C)

(the matriz multiplication being the natural one).

Proof. Let H, and K, (n € N) be Hilbert spaces and ¢, : H, — K,
be operators such that sup,en{||tn||} < oo. Then H = @®,enH, and
K = ®,enK, are Hilbert spaces and the n-tuple (%,),cn determines a
bounded operator from H to K which we shall denote by ¢.

Now, the norm of ¢ is given by

I = sup{litall all, - ., Il : n € N}

max{|[t]], [[t2ll, - - -, |Itn]l : 7 € N} (3.4.0.1)

[l

With the identification, M, (B(H)) = B(H"),let a € M,(B(H)) and b €
M,,(B(H)) and using 3.4.0.1 we have that ||a @ b|| = max{||a||», ||b||m}
Note that, we can identify B(H") with B(C" ®\ H). Therefore, for any
@ € Mun(C), B € Myn(C) and a € M, (B(H)) , we have

laaBl] = [la® ILaBQ L]
< lle® Llllalll|8 ® I|
< lelllIZz[allI8IHal
= lledlllalllBI]-
which completes the proof. O

norms on M, (X), induced by regarding M,(X) as a subspace of
M, (B(H)) and identifying this algebra with B(H").

Each rectangular space M, ,(X) embeds into a larger square one, and so
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we also obtain a norm on M, ,(X) for any pair of integers p and q.

3.5 The matricial tensor product.

Given operator spaces V, W and elements v € M, ,(V),w & M, (W), we
define

VO W E Mprgs(V QW)

(v @ W)y = Vi © Wigss
See [6] for more details.

Also given integers p, q,r and v € M, ,(V'), w € M, (W), we define

vOw e M, (VW)

(v O w)y = E Vik & Wy

For any operator spaces V and W, we say that an operator space matrix

norm |[|.||, on V' ® W is subcross matrix norm if

o ® wll, < I[ofl[wl]
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for all v € M,(V) and w € My (W). If in addition,

llv ® wl|x = [[]|[w]],

then we say that ||.||, is a cross matrix norm on V ® W.
Given an element u € M, (V ® W), we define the projective tensor norm
by

[lulln = inf{{el[[v][[[w]|[|8]] : v = (v ® w)B}

where the infimum is taken over arbitrary decompositions of u with v €
My(V), w e My(W), a € Mypxq and 8 € Mpyqn and p,q € N arbitrary.
We shall show that V @, W = (V ® W, ||.||») is again an operator space,
and define the operator space projectiye tensor product VW to be the

completion of this space i.e. |[.||x is the projective tensor norm.

Theorem 3.5.1. Given operator spaces V and W, V @, W is again an

operator space.

Proof. Given u; € M,,(VQW),uy € M,(V®W) and € > 0, we may find

decompositions uy, = ag(vy®@w)Bk, (k= 1,2) where ||au||||vel|||wil|||Bel] <

[|uk||s + €.
We may assume ||vg|| = ||wg|| = 1, and that
llewll = 118l < (lusllr +€)'2.
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If v =v; ® vy and w = w; & wy, then we have the natural identification

(%1 0 w1 0]
vRQW = ®
\ 0 v 0 1w
U1 ® wy 0 0 0
0 V1 @ Woy | 0 0
0 0 Uy & Wy 0
\ 0 0 0 Vg ® Wy

and thus

uBuy = o(viQw)B @ ag(vy ® ws) B

= (v ® azs) @ (w151 & waf32)

a; 0 v 0 ” wq 0 ﬁ1 0
0 (e%) 0 Vg 0 (%) 0 ,32
= a(vew)f
B 0
a, 00 0 o o | . _
where o = 5 4B = since v @ w is a 4 X 4
0 0 0 o 0 0
0 B

matrix and multiplication here is the natural one. « and (3 above are
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scalar matrices. So

[lus @ ug|| = inf{|la(v®w)B|| : ur = ow(vi ® we)Be}
llelllv @ w8
llad[llv[[[llI5ll

lle[18]] since [Jv]| = [|w]] =1

= laa*|[2]|B*BI"

I IA

Note that
1 0
. a 00 0 0 0
(670% —
0 0 0 0 0
0 [6%)
11 0
0  agas
So
. 1o 0
llaa]| = | | = max{llasasll, [lzasll}
(67185

= max{||aal| : i=1,2}
< max{||aifl||esl] : 7=1,2}

= max{||al*: i=1,2}

Similarly, [|8*A]| < max{[|3;[|* : j = 1,2}
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Therefore

i @ usll < laa®||?]16*B]1
< (max{||el[*})"/*(max{]|8;]|*})"/?
< (max{|[uilln} + €)/* (max{|Jus||n} + €)'/

= max{||ui[} +€
and since € > 0 is arbitrary, we have
[|ur @ ua|| < max{||u||a, ||ualla}- (3.5.0.2)

Given scalars 7y € Mpm(C) and § € M ,(C), then yu1d = you (v1 @w) 510

and thus

l[yuidl|n = [lyai(vi ® w)Bidl|
||yl o[ [|w][]| 1]
< (|| + €161l

IN

AN

Since € > 0 is arbitrary, we have

[lyudlla < [V Huallll0]]- (3.5.0.3)

It follows from (3.5.0.2) and (3.5.0.3) that V ®, W is an operator space.

An alternative proof can be obtained from [6]. O

Definition 3.5.2. Injective(spatial) tensor product

Given operator spaces V and W, we define the injective matrix norm [|.||y
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on V®W by

llully = sup{||f ® gn(u)l| : £ € Mp(V"), g € My(W™), [|f]],lgll <1}

for each matrix u € M,(V @ W).

Definition 3.5.3. The Haagerup tensor product
Given operator spaces V and W and an element u € M,(V ® W), we

define the Haagerup tensor product matrix norm ||.||, by

[|ulln = nf{||v||||w]| : v=vOw,v € ]'\f[n,,(V),w € M, ,(W),r € N}.

The Haagerup norm is not a C*-norm, but if the definition is repeated
forn € Nand u € M,(VQ W) fof operator spaces V and W, it turns
out that the Haagerup norm is an operator cross-norm (see [16]). Note
that the Haagerup tensor product (i.e.V ® W equipped with the Haagerup

norm) is associative:

Furthermore, the norm is injective i.e. for subspaces V, C V and W, C W
the restriction of the Haagerup norm from V ®, W to V, ® W, is the
Haagerup norm. Also the tensor product 7'® S of completely bounded
operators T and S on V and W is completely bounded on V &, W.
Moreover, ||T ® S||a < ||T||el|S]|e (see[8]).

Theorem 3.5.4. For any operator spaces V and W, ||.||r is an operator
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space matriz norm on'V Q W, and for any u € M,(V @ W)
[lullv < Julla < [lulla-

Proof. Let us suppose that u € M,(VQW), v € M,(V®W), and € > 0.
By definition, we may find v € M, ,(V) and w € M, (W) such that
u=vQ@uw, ||w||=1,and [|v|| < [|u|lr+e.
Similarly, we let v/ = v/ @w’, v =v®v and w” = w @/, ||w'|| =1 and
[|V|| < ||u/||n + €, then from the expression

V' ouw' =@wev)o (w @ w') we have

vy = vWow)d W ouw)
= ()0 (wew)

= ® w”
and thus

e @ o]

IA

[|o"][]w"]]

= max{||v]|, ||[v'|| since ||[w|| = [|w'|| = 1}

< max{||u||n, [|t'||n} + €.

Since € is arbitrary, we obtain
|lu @ v/|ln < max{][ul[n, |[w/[|n}-

If a, 8 € M,(C), then

auf = alvow)g
= (av) ® (wP)
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and hence

lauBln < low][[lwg]]
< Alefllvlifwl18
< led(fulls +e)lA1l-

Since € is arbitrary, we obtain
lauB|ln < [le[[[ul[n]|B]]. So ||.||» is an operator space matrix norm and

consequently, (V' ® W, ||.||s) is an operator space.

Next we prove the inequality. If u € M,(V ® W), let us suppose that
€ > 0, and that

u = v O w,where

v=[vix] € My (V) and w = [wy ;] € M, (W) satisfy

lollljwll < llulla+e.

Let us suppose that f € M,(V*) and g € M,(W*) are contractions. Then

we have

(f@uwow) = [3 f(0is) ® glwny)]
[F (vi) ® L][I, ® glwes)],

where we are using a product of matrices over M,(C) ® M,(C). Since
matrix multiplication is contractive bilinear function on M,(C) ® M,(C),

1(f ® g)n(v @ w)I| < || fnr ()llgra(w)l] < [[oll[J2w]l-

Now from

lully = sup{[|(f ® g)n(w) : f € Mp(V*),g € My(W*), [|£Il,]lg]] < 1}, it

7



follows that 3
lullv < [oll|wl] < [[ullx + €,
from which we obtain

llully < Jlella-

Recall that the Haagerup norm is defined by
[lul|ln = inf{||v||||w]] : v = v O w}.

Now given u = a(v ® w)B3 with ||| [[v]| [[w][ [|B]] < [|ul[s + €, we have
that

lulla < (ol llwll < [lulln + €

and since € > 0 was chosen arbitrarily, it follows that
ulln < [l]a-
which completes the proof. O

The above proof can be obtained from [7].

Remark 3.5.5. We observe from this theorem that the projective tensor
product matrix norm is the largest among the operator space matrix

norms.
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Chapter 4

Conclusions and

Recommendations

Calculating norms of matrices when the entries are not constants is not
easy. In this thesis, we have approximated this norm when the elements
of matrices are operators.To do this we had to first identify the space
M n(B(H)) of m x n matrices with entries from B(H) with the space
B(H™,'H™) of bounded linear operators from H" to H™. We observed
that, the elements of the space M, ,(B(H)) are the bounded linear oper-
ators acting on the n-dimensional Hilbert space H"™. The notion of com-
pletely bounded operators is a new area in Mathematics. It started its life
in the early 1980°‘s following Stinespring and Arveson‘s work. This later
gave rise to operator spaces, a new branch in operator algebra. Progress
in this new area of Mathematics has been rapid and it is difficult to say
which results motivated others. Here, we have investigated the norm
of completely bounded operators and have looked at certain examples
of completely bounded operators. Among_the results, we have obtained

include:
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e Showing that, for any n € N, ||¢|| < [|¢nia1ll < ||¢lle and that

l|6n|| < nl|¢|| for any completely bounded operator ¢.

e Giving four examples of completely bounded operators, something

that is missing in the available literature.

e Giving a counterexample to show that not all bounded linear oper-

ators are completely bounded.

We hope that the results we have obtained are fundamental to the devel-
opment of this area of Mathematics. Moreover, this thesis opens the way
for further research in other aspects of completely bounded operators and

operator spaces.
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