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Abstract

This thesis present anti-Jaynes interaction, an interaction where anti-rotating light mode

couples to a two-level atom. The anti-bunching properties of the anti-Jaynes-Cummings

model was explicitly demonstrated, a model which researchers have always shied away

from studying due to the notion that it was non-energy conserving. The energy con-

servation property was recently addressed hence creating a wider gap which need to be

addressed. The anti-Jaynes-Cummings interaction was redefined as a generator of the

anti-polariton qubit. Anti-polariton qubit is a two-state quantized particle specified by

state vectors, Hamiltonian, conserved excitation number, identity, state transition, U(1)

symmetry operators. Formation of anti-polariton qubit involves absorption or emission

of negative energy photon by field mode triggered by initial emission or absorption of

negative energy photon by the atom. Superposition of qubit state vectors provides the

eigenvectors and eigenvalues of the anti JC Hamiltonian. The mean photon number,

photon number fluctuation, density operator and atomic inversion are easily evaluated.

The result of the mean and its fluctuation were used in the Mandel operator to explic-

itly demonstrate the anti-bunching properties of the anti-JC interaction. Exact solution

of the long standing problem is of importance in understanding the statistical proper-

ties and physical properties of the interacting two level atom system which shall be of

great importance in the optimization of the technological application, especially in the

emerging areas of quantum teleportation and quantum computing. Attention can now

be refocused in studying the practical application of the anti JC model such as quantum

computing.
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Chapter 1

Background Information

1.1 Introduction

A simple system which has two energy levels is called a two-level atom (also known as

a two-state system). The two states are described by two eigen-states |a〉 and |b〉 [1–7].

In the following sections, the various models that describe the interaction between the

two-level atom and the optical fields are discussed.

1.2 The Rabi Model

The Rabi model [8] describes an atom that interacts with harmonic electric field. It

is realized by injecting an atom into an electromagnetic cavity [9]. The Rabi model is

associated by the Hamiltonian

HR = ~ω
(
ĉ† ĉ+ 1

2

)
+ ~ωo Ωz + ~ g ( ĉ† + ĉ ) ( Ω− + Ω+ ) . (1.2.1)

where ω , ωo are the respective field mode and atomic spin state angular frequencies while

g is the atom-field coupling constant. The coupling constant represents the strength of

the atom-field coupling.

For field mode in standard number (fork) state |n〉, ĉ, ĉ† are the respective creation and

annihilation operators, lowering or raising the number state according to:

ĉ|n〉] =
√
n|n− 1〉 ; ĉ+|n〉] =

√
n+ 1|n+ 1〉 (1.2.2)

1



Chapter 1. Background Information

while for the atom in the excited spin state |u〉 or ground state |d〉. Ω−, Ω+, Ωz are the

spin state lowering ,raising and population inversion operators respectively acting on the

spin state according to:

|d〉 =

 0

1

 ; |u〉 =

 1

0

 (1.2.3)

Ωz = 1
2~|u〉〈u| − |d〉〈d| ; Ω+ = ~|u〉〈d| ; Ω− = ~|d〉〈u|

Ω−|d〉 = 0 ; Ω+|u〉 = 0 ; Ω+|d〉 = |u〉 ; Ω−|u〉 = |d〉

Ωz|u〉 = 1
2 |u〉 ; Ωz|d〉 = −1

2 |d〉 (1.2.4)

The Rabi model accurately describes the dynamical properties of a wide variety of systems

in quantum optics and solid state models. Moreover a variety of protocols in modern

information theory [10] employ the quantum Rabi model as a fundamental building block

with plausible technologies [11–17].

The time-dependent Schrödinger equation governing the time evolving dynamics of the

Rabi interaction would be solved directly through simple integration with respect to

time, but the resulting time evolution operator is not exactly evaluated in explicit form

therefore, only approximate solutions of the time-dependent Schrödinger equation for

the dynamics generated by the Rabi Hamiltonian have so far been obtained explicitly.

However, exact analytical solution have been obtained explicitly in the rotating wave ap-

proximation(RWA), which assumes that the interaction is very weak so that the constant

g is very small in comparison to the field mode and atomic angular frequency ω and ωo.

In RWA, the Rabi Hamiltonian is reduced to only one component in which the interaction

conserves energy called Jaynes-Cummings model(JCM) discussed in the next section.

1.3 Jaynes-Cummings Model

A simple but exactly solvable model called the Jaynes-Cummings model was introduced

by Jaynes and Cummings [18] to consider a single two-level atom interacting with a

single-mode field. Through the RWA, the 2HR reduces to the JC Hamiltonian. Since

the ground state energy does not generate any dynamical evolution we drop it. The field

2



Chapter 1. Background Information

mode Hamiltonian from Eq. (1.2.1) is expressed in the form

~ω
(
ĉ†ĉ+ 1

2

)
= 1

2~ω
(
ĉ†ĉ+ ĉĉ†

)
(1.3.1)

which gives

~ω
(
ĉ†ĉ+ 1

2

)
= 1

2~ωĉ
†ĉ+ 1

2~ωĉĉ
† (1.3.2)

while the free atomic spin is symmetrized to take the form

~ω0Ωz = 1
2~ωΩz + 1

2~ωΩz (1.3.3)

Substituting Eq. (1.3.2) and Eq. (1.3.3) into Eq. (1.2.1) and collecting the normal order

terms gives the JC Hamiltonian in the form

HJC = ~ω ĉ† ĉ+ ~ωo Ωz + 2 ~ g (ĉΩ+ + ĉ†Ω−) . (1.3.4)

The JCM has over the years attracted a lot of interest because of its energy conserving

nature. In the JCM, the quantized field mode is represented by the positive frequency

component in which the wave propagation is identified with the rotation in the clockwise

sense and both the atom and field conserves the total excitation number [19]. The

normally ordered excitation number operator is identified as

N̂ = ĉ† ĉ+ Ω+Ω− −
1
2 . (1.3.5)

The JCM is exactly solvable because of the presence of the conserved excitation num-

ber operator N̂ . Because of its conserved nature, the dynamics generated by the JC

Hamiltonian is exactly solvable since it is possible to apply the conservation principle to

reorganize the JC Hamiltonian in a diagonal form, in which the resulting time-dependent

Schrödinger equation is exactly solvable through simple integration. Other alternative

solutions [20] are also possible still based on the conservation principle. We observe

that the component of the Rabi Hamiltonian Eq. (1.2.1) which is ignored in the RWA is

identified with rotation in the anticlockwise sense is discussed in the next section.

1.4 Anti Jaynes-Cummings model

The property that the counter rotating component of the Rabi Hamiltonian operate in

a sense which is reverse relative to the JC Hamiltonian leads to the reference anti JCM.

3
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Substituting Eq. (1.3.2) and Eq. (1.3.3) into Eq. (1.2.1) and collecting the anti-normal

order terms gives the anti JC Hamiltonian in the form

HaJC = ~ωĉĉ+ + ~ωoΩz + 2~g(ĉΩ− + ĉ+Ω+). (1.4.1)

After explicit symmetrization of the Rabi Hamiltonian in terms of the normal and anti-

normal form in Eq. (1.3.4) and Eq. (1.4.1). The Rabi Hamiltonian in Eq. (1.2.1) take the

form

HR = 1
2 (HJC + HaJC ) . (1.4.2)

As we have observed above, the common experience in quantum optics over the years

has been that only the Jaynes-Cummings model represented by the JC Hamiltonian

Eq. (1.3.4) is exactly solvable while the dynamics generated by the anti JCM is not exactly

solvable always believing that it generates non-energy conserving dynamics. However,

the energy conservation property of the anti JC Hamiltonian was established in the

recent work in [21], where the existence of energy conservation property was explicitly

demonstrated. It is this specific proof of energy conservation that has stirred the interest

in the anti Jaynes-Cummings interaction [22].

Recent development on the Rabi model was the introduction of the polariton and anti-

polariton terms where polariton involves emission of positive energy photon by the field

mode and anti-polariton involves absorption or emission of negative energy photon by

the field mode. Polariton or anti-polariton is defined as a two-state quantized particle

specified by two state vectors, Hamiltonian, conserved excitation number, state transi-

tion operator, U(1) symmetry operator, SU(2) or U(1) symmetry operator and SU(1,1)

symmetry operator.

Polariton and anti-polariton are obtained through appropriate re-definitions of the JC

and anti JC Hamiltonian respectively [23]. The polariton qubit Hamiltonian takes the

form

H = ~ωÂ2+~gÂ−~
4ωα

2− 1
2~ω ; Â = αΩz+ĉΩ++ĉ+Ω− ; α = δ

g
; δ = ωo+ω (1.4.3)

while the anti-polariton qubit Hamiltonian is expressed as

H̄ = ~ωÂ
2
+~gÂ−~

4ωα
2− 1

2~ω ; Â = αΩz+ĉΩ−+ĉ+Ω+ ; α = δ

g
; δ = ωo−ω (1.4.4)

4
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where Â is the polariton qubit state transition operator and Â is the anti-polariton qubit

state transition operator. With this transition operator one can easily determine the

JC qubit state vectors as well as the anti JC qubit state vectors leading to a simple

determination of eigen state vectors through superposition of the qubit state vectors and

also determining the eigenvalue equation. The anti JC Hamiltonian is reorganized in the

form

H̄ = ~ω(n+ 1
2)Î + ~R̄n+1ε̂. ; R̄n+1(t) =

√
δ2 + 16g2(n+ 1) (1.4.5)

In this thesis, we study the statistical properties of a two-level atom interacting with a

single quantized field mode in the anti JC model.

1.5 Statement of the problem

The anti-bunching properties of the anti JC model has never been studied due to its non-

energy conservation property. The energy conservation property of the anti JC Hamil-

tonian was only established recently[23], conservation of the excitation number operator

means that it is energy conserving and it should be specified by eigenvectors and eigen-

values just like it has been done for the Jaynes-Cummings interaction. The proof of

energy conservation made it clear that the model is solvable, the anti JC has stirred

interests in the recent past. We study the photon anti-bunching properties of the anti JC

model. Where photon anti-bunching by definition is the process through which photons

are produced one by one.

5
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1.6 Objectives of the study

The general objective of this study is to describe the anti-bunching property of a two-level

atom interacting with a quantized electromagnetic field mode (anti Jaynes-Cummings

model) without using the rotating wave approximation. The specific objectives are to

determine the:

1. Mean photon number and fluctuations.

2. Atomic spin population inversion in the state |Ψ(t)〉.

3. Fluctuation in the atomic inversion.

4. Density operator and purity of state.

1.7 Significance of the study

An exact solution of the long outstanding problem provided clearer understanding of the

statistical properties and physical features of the anti JC model. Results obtained will

be of much importance in optimizing technological applications of the model especially

in the emerging areas of quantum computation and quantum teleportation.

6



Chapter 2

Literature Review

A lot of work [22, 24–26] has been done towards understanding the internal dynamics

and physical properties of a two-level atom interacting with a single mode of quantized

electromagnetic field, formulated as a quantum Rabi model with Hamiltonian HR in

Eq. (1.2.1).

An exact analytical solution of the time-dependent Schrödinger equation describing the

time evolving states of the Rabi model has never been determined and has over the

years remained a major challenge. This long standing problem may be attributed to the

approximate nature of the Rabi model, which is based on the electric dipole approximation

or to the non-commutative algebraic properties of the model Hamiltonian HR.

The difficulty to obtain an exact analytical solution describing the dynamical evolution

of the Rabi model led to a reformulation of the Rabi Hamiltonian in exactly solvable

approximate form [18]. The remainder of the chapter is organized as follows. The Rabi

model is discussed in section 2.1, followed by the review of the Jaynes-Cummings model

(JCM) in section 2.2 and anti JCM in section 2.3.

2.1 The Rabi Model

The Rabi model constitutes probably the simplest physical system beyond the harmonic

oscillator. Its applications range from quantum optics [20, 27–30], magnetic resonance

[31–34] to molecular physics [35]. The model has also gained a prominent role in novel

7



Chapter 2. Literature Review

fields of research such as cavity quantum electrodynamics [36, 37].

Several attempts have been made towards solving the Rabi model. One of the approaches

is described in [38] where the energy spectrum of the Rabi Hamiltonian is obtained using

Bargmann-space formalism [24] where the field annihilation and creation operators are

converted into C-number variables. The exact spectrum of the Rabi Hamiltonian for

arbitrary coupling strength and detuning are then analytically determined. The work in

Ref. [38] also demonstrated the criteria for integrability of quantum systems containing

discrete degrees of freedom. To this end, the phenomenological level-labeling criterion of

quantum integrability proposed in [38] satisfies the quantum Rabi model and the approach

yields the energy eigenspectrum of the Rabi model. Despite the success of the method

in [38], the results obtained for eigenvalues and eigenstates spectrum are complicated

making it difficult to use them to obtain the general time evolution of the Rabi model.

Specification of the full spectrum of the classical Rabi system has also been done after

the work of [39], where the Bargmann-Fock Hilbert space < was applied. This is a space

of entire functions of one complex variable with a scalar product. In the approach, the

Rabi model turns out to be a quasi-exactly solvable model. The concept of quasi-exact

solvability applies to a quantum system for which only part of the eigen spectrum can

be derived algebraically [40, 41]. For the quantum Rabi model, this is exceptional part

of the eigen spectrum made up of the isolated exact Judd points, which can be derived

algebraically, among a number of different approaches.

Eq. (1.2.1) posses a serious obstruction to its analytical solutions because of the apparent

lack of second conserved quantity [18] besides the energy conservation which has led

to widespread opinion that it is not integrable. To remedy this difficulty, Jaynes and

Cummings proposed the rotating wave approximation (RWA) [18]. This approximation

assumes that the interaction is very weak and the coupling constant g is very small in

comparison to the field mode and atomic spin angular frequencies ω and ωo. In the

rotating wave approximation, the Rabi model is reduced to a solvable JCM, discussed in

the following section.

8



Chapter 2. Literature Review

2.2 The Jaynes-Cummings Model

The Jaynes-Cummings model [18] was introduced to describe the interaction between a

two-level atom and quantized electromagnetic field. The JCM is obtained from the Rabi

model by the RWA which is justified for small detuning. The JCM has been useful in

describing various physical phenomenon such as collapse-revivals [25, 42], Rabi oscillations

[43] and atom-field entanglement [16, 22, 44]. Within the RWA, the JCM has been studied

in two different pictures, the Schrödinger picture [20] and the Heisenberg picture [45].

In the Schrödinger dimension, the exact solution of the JCM can be obtained [20] and

the Rabi oscillation predicted with the solution proof of the population inversion. Since

the JCM proved to be solvable, this was a clear indication that the JCM has algebraic

expression for probability amplitudes [20]. In the Heisenberg picture [45], it was shown

that the model permits simple expressions for the solutions of the Heisenberg equations

[46].

The JCM has also been used to get the density operator [47]. Density operator is then

used to get the Bloch vector which is useful in describing the state of an atom. For a

pure atom state, the Bloch vector has a unit length and hence move on a sphere of unit

length while mixed state has a shorter vector.

Photon number state of the JCM has also been investigated in [48] and the result is a

direct proof that during the JC interaction, there is periodic exchange of energy between

the field and the atom and that the oscillation of the field energy is given by the mean

photon number.

The statistical properties of the JCM has been investigated using the Mandel-Q operator

[49], which measures how the field differs from the classical field [48]. The Mandel-

Q operator explains the boundary process such that when Q > 0, then the photon is

interpreted to be bunched but when Q < 0, the photon is anti-bunched hence sub-

Poissonian statistics, which is purely quantum in nature [49].

The expectation values of the quadrature operators of the JCM has been studied where

it was noted that when the variance is less than 1
4 then the field is squeezed [50].

However, experimental observations have revealed that some effects such as atom-cavity

9
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entanglement [44] are not accounted for in the RWA [51]. This limitation led to the

study of Rabi model in improved RWA [52]. In the improved RWA, the dynamics of

the Rabi model is studied numerically by subjecting it to a dissipative effect acting only

on both the atom and the cavity mode. It came out that the anti-rotating term of the

Rabi model induces photon creation of the vacuum which is interpreted using quantum

trajectory approach and macroscopic ad hoc model of dephasing based on stochastic

oscillations of the atomic transition frequency. It was evident that the photon creation

through atomic decoherence [48, 53] is suppressed in the presence of damping mechanism

and estimated the magnitude of this phenomenon using current experimental values of

parameters, noting that the phenomenon might become relevant in future experiments.

The JCM has also been explicitly studied by subjecting it to a strong coupling regime

[26, 54], i. e., a regime where the RWA does not apply. Under this regime, the RWA

breaks down and Rabi model becomes analytically unsolvable.

In strong coupling regime [26], the photon number wave packets propagate coherently

along two independent chains, where they generates counter-propagating photon number

wave-packets in both directions. The results are full collapse and partial revivals where

probability is not restored. The collapses and revivals have interesting consequences in

phase space which is analyzed using Wigner function [55] and phase space trajectories

[24].

The counter-rotating terms have also been shown to have profound effect on the long time

behavior of the system since by including them in the semi-classical equations lead to

chaotic behavior [56]. The solution of the JCM with the counter rotating terms have been

presented under weak coupling regimes and a small dependence of the atomic inversion

arising from interference.

It was later considered that the anti JCM may be responsible for such experimental effects

leading to the interpretation that those effects are associated with anti JC components

which are dropped in the approximation. The anti JCM is discussed in the next section.

10
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2.3 The anti Jaynes-Cummings Model

The long outstanding problem of conserved excitation number operator of the anti JC

model was explicitly addressed in Ref. [21] using operator ordering a fundamental alge-

braic property to determine the conserved nature of the excitation number operator and

U(1) symmetry operator for the rotating and anti-rotating of the Rabi model.

The determination of N̂ = ĉĉ+ + Ω−Ω+ using the principle of operator ordering was

enough proof that the anti JCM is solvable. In the work described in Ref. [21], the anti

JC Hamiltonian is reorganized in the form

H̄ = ~ω(ĉĉ+ + Ω−Ω+) + 2~g(ᾱΩz + ĉΩ− + ĉ+Ω+)− 1
2~ω; ᾱ = ωo − ω

2g (2.3.1)

where the symbols have their usual meaning. It was explicitly shown in [21] that the Rabi

Hamiltonian is composed of two algebraically complete JC and anti JC components each

specified by its characteristic excitation number, state transition, u(1)-symmetry and red

and blue side-band eigenvalue spectrum.

The realization that the excitation number operator of the anti JC model is conserved

has sparked interest in the study of the anti JC model [22]. Even though it was a

great achievement, the dynamical properties of the JC model was never investigated

hence leaving a wider gap which needs to be bridged. The precise algebraic and physical

framework for studying the dynamics and practical applications of polariton and anti-

polariton qubits[23], interpreted as a two-state quantized particles formed through the

coupling of an atomic spin to a rotating positive frequency or anti-rotating negative

frequency component of the quantized electric field was developed [23]. The quantum

Rabi optical lattice was taken as a geometrical framework for studying the dynamics and

physical properties of systems of interacting polariton and anti-polariton qubits.

The conserved nature of the anti JC Hamiltonian was again proved by introducing a state

transition operator given by

ˆ̄A = ᾱΩz + ĉΩ− + ĉ†Ω+ (2.3.2)

which gave the reformulated anti-Jaynes-Cummings Hamiltonian

H̄ = ~ωN̂ + 2g ˆ̄A− 1
2~ω. (2.3.3)
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Chapter 2. Literature Review

The only studies which so far has been done on the anti JCM are the proof of the conserved

nature of the excitation number operator [21], obtaining its eigenvectors and eigenvalues

[23] and the Rabi oscillations, entanglement and teleportation of the anti JCM [22] are

the only studies which have so far been done explicitly on the model. But the specific

studies of the statistical properties like determination of the time development of the

photon number and obtaining the density matrix have not been studied.
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Chapter 3

Research Methodology

We started by noting that within Schrödinger picture the state vectors evolve in time

but the operators are constant with time while in the Heisenberg picture the states

are constant while operators evolve in time whereas within the interaction picture both

state and operators evolve in time. Our method involves the analysis of the anti JC

Hamiltonian. We use direct integration method within the Schrödinger picture since

the anti JC Hamiltonian is time independent. Since the Rabi Hamiltonian has been

expressed in terms of the JC and anti JC Hamiltonian in Eq. (1.3.4) and Eq. (1.4.1)

[23], by introducing normal and anti-normal operator ordering respectively, we consider

the lower Rabi subspace, subspace where the interaction begins with the atom in an

initial spin-down state |d〉 and the field mode in an initial number state |n〉 such that the

polariton and anti-polariton qubit [21] is formed in an initial n-photon spin-down state

|Ψnd〉 defined by

|Ψnd〉 = |nd〉

We redefine anti JC Hamiltonian as anti-polariton qubit Hamiltonian, then the time-

dependent Schrödinger equation is used to calculate the time evolution of the anti JC

model in the form

i~
∂

∂(t) |Ψnd〉 = HaJC |Ψnd〉 (3.0.1)

The state vector |Ψ〉 is taken to evolve from a spin-down state. Since anti polariton

13



Chapter 3. Research Methodology

Hamiltonian is time-independent, the time evolving state vector is evaluated in the form

|Ψnd(t)〉 = U(t)|Ψnd〉 (3.0.2)

where

U(t) = e−
i
~HaJCt (3.0.3)

Eq. (3.0.3) is the unitary time evolution equation.

3.1 Eigenvalue and eigenvectors of the anti JC model

We let the transition operator Â to act on state vector |Ψnd〉 to get

Â|Ψnd〉 = ( δ2gΩz + ĉΩ− + ĉ+Ω+)|nd〉 (3.1.1)

which by applying algebraic operations from Eq. (1.2.4) give

Â|Ψnd〉 = −1
4
δ

g
|nd〉+

√
n+ 1|n+ 1u〉 (3.1.2)

simplified in the form

−1
4
δ

g
|nd〉+

√
n+ 1|n+ 1u〉 =

√
(−1

4
δ

g
)2 + (

√
n+ 1)2

−−1
4
δ
g
|nd〉+

√
n+ 1|n+ 1u〉√

(−1
4
δ
g
)2 + (

√
n+ 1)2

 (3.1.3)

we define probability amplitudes in the form

χn+1 =
−1

4
δ
g√

(δ)2 + 16g2(n+ 1)
(3.1.4)

and

χ =
√
n+ 1√

(δ)2 + 16g2(n+ 1)
(3.1.5)

we substitute Eq. (3.1.5) and Eq. (3.1.4) to Eq. (3.1.3) to obtain

Â|nd〉 =
√

(δ)2 + 16g2(n+ 1){χn+1|nd〉+ χ|n+ 1u〉} (3.1.6)

from Eq. (3.1.6) the state vector |Φnd〉 is given by

|Φnd〉 = χn+1|nd〉+ χ|n+ 1u〉 (3.1.7)

14
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substituting Eq. (3.1.6) into Eq. (3.1.7) to get

Â|Ψnd〉 =
√
δ2 + 16g2(n+ 1)|Φnd〉 (3.1.8)

We then proceed by allowing the state transition operator Â to act on the state vector

|Φnd〉 defined in Eq. (2.3.2), in the form

Â|Φnd〉 = Â{χn+1|nd〉+ χ|n+ 1u〉} = χn+1(Â|nd〉) + χ(Â|n+ 1u〉) (3.1.9)

Since the first term on the right hand side of Eq. (3.1.9) had already been evaluated

explicitly in Eq. (3.1.8), we evaluate the last term on the right hand side in the form

Â|Ψn+1d〉 = 1
2
δ

g
Ωz|n+ 1u〉+ ĉΩ−|n+ 1u〉+ ĉ+Ω+|n+ 1u〉 (3.1.10)

which on noting that

ĉ+Ω+|n+ 1u〉 = 0 (3.1.11)

Equation (3.1.10) now takes the form

Â|Ψn+1d〉 = 1
4
δ

g
|n+ 1u〉+

√
n+ 1|nd〉 (3.1.12)

further expressible in the form

Â|Ψn+1d〉 =
√

(δ)2 + 16g2(n+ 1) δ
4g√

(δ)2 + 16g2(n+ 1)
|n+ 1u〉+

√
n+ 1

δ2 + 16g2(n+ 1) |nd〉
 (3.1.13)

From Eq. (3.1.4) and Eq. (3.1.5) it is easy to see that
√
n+ 1 = χ{

√
(δ2 + 16g2(n+ 1)} (3.1.14)

and

δ = −4gχn+1

√
δ2 + 16g2(n+ 1) (3.1.15)

using Eq. (3.1.14) and Eq. (3.1.15) in Eq. (3.1.13) gives

Â|Φnd〉 =
√
δ2 + 16g2(n+ 1)|Ψnd〉 (3.1.16)

We observe that as expected the time evolving interaction variables |Ψnd〉 and |Φnd〉 in

this fully quantized electromagnetic field mode are quantized. In summary

Â|Ψnd〉 =
√
δ2 + 16g2(n+ 1)|Φnd〉 (3.1.17)
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Â|Φnd〉 =
√
δ2 + 16g2(n+ 1)|Ψnd〉 (3.1.18)

We consider action of the transition operator on the state vector in the form

|Ψ+〉 = |Ψnd〉+ |Φnd〉 (3.1.19)

|Ψ−〉 = |Ψnd〉 − |Φnd〉 (3.1.20)

Â|Ψ+〉 =
√
δ2 + 16g2(n+ 1)(|Ψnd〉+ |Φnd〉) (3.1.21)

and

Â|Ψ−〉 =
√
δ2 + 16g2(n+ 1)(|Ψnd〉 − |Φnd〉) (3.1.22)

where |Ψ+〉 and |Ψ−〉 are the state eigenvectors of the anti JC Hamiltonian. It follows

that

HaJC |Ψ+〉 = ~ωÂ
2
|Ψ+〉+ 2~gÂ|Ψ+〉 − 1

4~ω
δ2

g2 |Ψ
+〉+ 1

2~ω|Ψ
+〉 (3.1.23)

giving

HaJC |Ψ+〉 = ~ω(n+ 3
2) + 2~g

√
δ2 + 16g2(n+ 1)|Ψ+〉 (3.1.24)

which means that

~ω(n+ 3
2) + ~g

√
δ2 + 16g2(n+ 1)|Ψ+〉 = En+ |Ψ+〉 (3.1.25)

which implies that

HaJC |Ψ+〉 = En+|Ψ+〉 (3.1.26)

and

HaJC |Ψ−〉 = En−|Ψ−〉 (3.1.27)

where

En+ = ~ω(n+ 3
2) + 2~g

√
δ2 + 16g2(n+ 1) (3.1.28)

and

En− = ~ω(n+ 3
2)− 2~g

√
δ2 + 16g2(n+ 1) (3.1.29)

We have derived the eigenvalue equations Eq. (3.1.28) and Eq. (3.1.29) of the anti JC

model. The fact that the anti JC model has both eigenvalues and eigenvectors is enough

prove that the anti JC model is exactly solvable.
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3.2 Dynamical Evolution

The dynamical evolution of the polariton qubit states is generated by the polariton qubit

state evolution operator. We start by writing the time-dependent Schrödinger equation

in the form [21]

i~
∂

∂t
|Ψnd〉 = HaJC |Ψnd〉 (3.2.1)

substituting Hamiltonian Eq. (1.4.5) into Eq. (3.0.3) provides the unitary time evolution

operator in a factorized form

U(t) = e−iω(n+1) 3
2 Ite−iRn+1ε̂t (3.2.2)

We proceed to investigate the algebraic properties of the anti polariton state vector in

the form

ε̂+ = ε̂ ; ε̂2 = I ; ε̂2k = Î ; ε̂2k+1 = ε̂ ; k = 0, 1, 2, 3........... (3.2.3)

e±iθÎ = e±iθI ; e±iθε̂ = cos θÎ ± i sin θε̂ (3.2.4)

leading to

U(t) = e−iRn+1ε̂t =
∞∑
k=0

(−iβt)k
k! ε̂k (3.2.5)

where

eβε̂ =
∞∑
k=0

(β)k
k! ε̂

k (3.2.6)

which implies that

U(t)|Ψnd〉 =
∞∑
k=0

(−iβt)k
k! ε̂k|Ψnd〉 (3.2.7)

We solve Eq. (3.2.7) using exponential expansion where odd terms are grouped together

and even terms also grouped together in the form

U(t)|Ψnd〉 = (
∞∑
k=0

(−iRn+1t)2k

(2k)! ε̂2k +
∞∑
k=0

(−iRn+1t)2k+1

(2k + 1)! ε̂2k+1)|Ψnd〉 (3.2.8)

by applying

ε̂2k|Ψnd〉 = |Ψnd〉 ; ε̂2k+1|Φnd〉 = |Φnd〉 (3.2.9)

it is now easy to see that

U(t)|Ψnd〉 =
∞∑
k=0

(−iRn+1t)2k

(2k)! ε̂2k|Ψnd〉+
∞∑
k=0

(−iRn+1t)2k+1

(2k + 1)! ε̂2k+1|Φnd〉 (3.2.10)
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further expressed in the form

U(t)|Ψnd〉 =
∞∑
k=0

(−i)k(Rn+1t)2k

(2k)! ε̂2k|Ψnd〉

−
∞∑
k=0

(−i)k(Rn+1t)2k+1

(2k + 1)! ε̂2k+1|Φnd〉 (3.2.11)

by letting
∞∑
k=0

(−i)k(Rn+1t)2k

(2k)! ε̂2k|Ψnd〉 = cos(Rdt) (3.2.12)

∞∑
k=0

(−i)k(Rn+1t)2k+1

(2k + 1)! ε̂2k+1|Φnd〉 = sin(Rdt)

which now gives

U(t)|Ψnd〉 = cos(Rn+1t)− i sin(Rn+1t) (3.2.13)

We use the time evolution operator U(t) to explicitly determine the general time evolving

anti-polariton qubit state vectors starting from spin down state |nd〉, the general time

evolving anti-polariton qubit state vectors |Ψnd(t)〉 and |Φnd(t)〉 are generated from the

respective initial qubit state vectors |Ψnu(t)〉 and |Φnu(t)〉 through the respective time

evolution operators according to

|Ψnd(t)〉 = U(t)|Ψnd(t)〉 ; |Φnd(t)〉 = U(t)|Φnd(t)〉 (3.2.14)

implying that

|Ψnd(t)〉 = e−iω(n+ 3
2 )t{cos(Rn+1(t))|Ψnd〉 − i sin(Rn+1(t))|Φnd} (3.2.15)

|Φnd(t)〉 = e−iω(n+ 3
2 )t{cos(Rn+1(t))|Φnd〉 − i sin(Rn+1(t))|Ψnd} (3.2.16)

but

|Φnd〉 = χn+1|nd〉+ χ|n+ 1u〉 (3.2.17)

which we substitute back to obtain |Ψnd(t)〉 explicitly in the form

|Ψnd(t)〉 = e−iω(n+ 3
2 )t(cos(Rn+1(t))− iχn+1 sin(Rn+1(t))|nd〉

− iχ sin(Rn+1(t))|n+ 1u〉 (3.2.18)
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3.3 Algebraic Properties of Qubit State Vectors

We determine if time-evolving anti-polariton qubit state vectors |Ψnu(t)〉 and |Φnu(t)〉

obtained above preserve the normalization and non-orthogonality and state-transition

algebraic relation of the qubit state vectors in the form [23]

〈Ψnd(t)|Ψnd(t)〉 = 1 (3.3.1)

〈Φnd(t)|Φnd(t)〉 = 1 (3.3.2)

We continue to investigate the non-orthogonality of the state vectors in the form

〈Ψnd(t)|Φnd(t)〉 (3.3.3)

On substituting (3.2.16) and (3.2.15) into (3.3.3), noting that cos2
n+1 + sin2

n+1 = 1 gives

〈Ψnd(t)|Φnd(t)〉 = −χn+1 (3.3.4)

We have explicitly established that the polariton qubit state vectors are non-orthogonal

and normalized according to the relation

〈Ψnd(t)|Φnd(t)〉 = −χn+1 ; 〈Ψnd(t)|Ψnd(t)〉 = 1 (3.3.5)

We observe the general time evolving state vectors to be entangled and preserve the

normalization and non-orthogonality relations according to Eq. (3.3.5).

3.4 Dynamics of the anti JC model

We apply operator ordering as a fundamental algebraic property to determine the dy-

namics of the anti JC model. We start by calculating mean photon number which plays

a fundamental role in the characterization of the light states, it is calculated in form

n = 〈Ψnd(t)|n̂|Ψnd(t)〉
〈Ψnd(t)|Ψnd(t)〉

. (3.4.1)

but

〈Ψnd(t)|Ψnd(t)〉 = 1 (3.4.2)
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hence

n = 〈Ψnd(t)|n̂|Ψnd(t)〉. (3.4.3)

We proceed to calculate the mean fluctuation which is used in the determination of the

statistical properties of the model

4n(t) =
√
n2(t)− (n(t))2 (3.4.4)

We again proceed by noting that the mean value of the atomic spin population inver-

sion Ωz in the general time evolving state |Ψ(t)〉 constitutes the atomic spin population

inversion in the form

Ωz(t) = 〈Ψnd(t)|Ωz|Ψnd(t)〉
〈Ψnd(t)|Ψnd(t)〉

(3.4.5)

hence

Ωz(t) = 〈Ψnd(t)|Ωz|Ψnd(t)〉 (3.4.6)

After calculating the mean photon fluctuation we can easily calculate atomic inversion

fluctuations in the form

4Ωz(t) =
√

Ω2
z(t)− (Ωz(t))2 (3.4.7)

After explicit determination of the mean photon number and its fluctuation, spin atomic

inversion and its fluctuation. We then plot the results to analyze the nature of the graphs.

3.5 Statistical properties of the anti JC interaction

We shall use the results obtained for the mean photon number to study photon statistics.

Depending on the light source three regimes of statistical distribution can be obtained,

poissonian or non-poissonian or super-poissonian. [49].

We finally calculate the reduced density matrix using the state vectors, this provide a

useful way to characterize the state of the ensemble of quantum system given in the form

ρ(t) = |Ψ(t)nd〉〈Ψ(t)nd|. (3.5.1)

After developing the reduced density matrix, will then use it to generate the Bloch vector

[57] which will be used to study the state of the atom, if the length of the state vector

equals 1 then the atom is in pure state but if its ≤ 1 then the atom is in mixed state [58].
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Results and Discussion

4.1 Mean Photon Number

The mean photon number is an important figure of merit for the characterization of the

light states. from Eq. (3.4.1), Eq. (3.4.2) and Eq. (3.4.3), it follows that

n̂|Ψnd(t)〉 = e−iω(n+ 3
2 )t
{

cos(Rn+1t)− iχn+1 sin(Rn+1t)ĉĉ+|nd〉

−i sin(cos(Rn+1t))ĉĉ+|n+ 1u〉
}

(4.1.1)

expressible in the form

n̂|Ψnd〉 = e−iω(n+ 3
2 )t
{

(n+ 1) cos(Rn+1t)− iχn+1 sin(Rn+1t)|nd〉

−i(n+ 2)χ sin(Rn+1t)|n+ 1u〉
}

(4.1.2)

we then let

µ(t) = cos(Rn+1t)− iχn+1 sin(Rn+1t) ; ν(t) = −iχsin(Rn+1t) (4.1.3)

substituting Eq. (4.1.3) back to Eq. (4.1.2) gives

n̂|Ψnd(t)|〉 = e−iω(n+ 3
2 )t{(n+ 1)µ(t)|nd〉+ (n+ 2)ν(t)|n+ 1u〉} (4.1.4)

Taking the conjugation of |Ψnd(t)〉 in Eq. (3.2.15)

〈Ψnd(t)| = {µ∗(t)〈nd|+ ν∗(t)〈n+ 1u|}eiω(n+ 3
2 )t (4.1.5)
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Figure 4.1: Mean photon number at n=0, time=1s

which now implies that

〈Ψnd(t)|n|Ψnd(t)〉 = (n+ 1)|µ(t)|2 + (n+ 2)|ν(t)|2 (4.1.6)

which on further simplification taking note that |µ(t)|2 + |ν(t)|2 = 1 gives

n(t) = n+ 1 + |ν(t)|2 (4.1.7)

substituting ν(t) from Eq. (4.1.3) into Eq. (4.1.7) gives the form

n(t) = n+ 1 + χ2 sin2(Rn+1t) (4.1.8)

The mean photon number in Eq. (4.1.8) is time-dependent as expected. Setting n = 0

reveals that the anti JC interaction leads to an excitation of the quantized field mode

vacuum state.

From Fig. (4.2), Fig. (4.3), Fig. (4.4), it is clear that all the graphs starts from the origin

meaning ground state and evolves with time . The photon is seen to undergo periodic

changes across the three displays, though at the vacuum state the oscillation is not much

faster compared to when n = 50. This is because, the stronger the field, the size of

the transition matrix elements also in turn increases and this makes the evolution to be
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Figure 4.2: Mean photon number at n=50, time=1s
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Figure 4.3: Mean photon number at n=15, time=1s
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Figure 4.4: Mean photon number at n=30, time=1s

faster. More detailed comparison of the behavior of photons and atoms are explicitly

explained in 4.2.

4.2 Fluctuations in Mean Photon Number

In quantum optics, fluctuations in mean photon number is calculated in [20]

4n(t) =
√
n2(t)− (n(t))2 (4.2.1)

We proceed to calculate the mean square photon number n2(t) in the form

n2(t) = 〈Ψnd(t)|n2|Ψnd(t)〉 ; n̂ = ĉĉ+ ; n̂2 = ĉ2ĉ+2 (4.2.2)

n2(t) = 〈Ψnd(t)|ĉ2ĉ+2|Ψnd(t)〉+ 〈Ψnd(t)|ĉĉ+|Ψnd(t)〉 (4.2.3)

which further takes the form

n2(t) = 〈Ψnd(t)|ĉ2ĉ+2|Ψnd(t)〉+ n(t) (4.2.4)

We solve 〈Ψnd(t)|ĉ2ĉ+2|Ψnd(t)〉 in the form

〈Ψnd|ĉ2ĉ+2|Ψnd〉 = (µ∗(t)〈nd|+ ν∗(t)〈n+ 1u|)

ĉ2ĉ+2(µ(t)|nd〉+ ν(t)|n+ 1u〉) (4.2.5)
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further expressible in the form

〈Ψnd|ĉ2ĉ+2|Ψnd〉 = (µ∗(t)〈nd|+ ν∗(t)〈n+ 1u|)

(n(n− 1)µ(t)|nd〉+ ν(t)n(n+ 1)|n+ 1u〉) (4.2.6)

We obtain

〈Ψnd(t)|ĉ2ĉ+2|Ψnd(t)〉 = n(n− 1)|µ(t)|2 + n(n+ 1)|ν(t)|2 (4.2.7)

which we express in the form

〈Ψnd(t)|ĉ2ĉ+2|Ψnd(t)〉 = n2 − n(|µ(t)|2 − |ν(t)|2) (4.2.8)

Substituting Eq. (4.2.8) back into Eq. (4.2.4) gives

n2(t) = n2 − n(|µ(t)|2 − |ν(t)|2) + n (4.2.9)

Using Eq. (4.2.9) in Eq. (4.2.1) gives the photon number fluctuations in the form

4n(t) =
√
n2 − n(|µ(t)|2 − |ν(t)|2) + n− (n̄(t))2 (4.2.10)

simplified further in the form

4n(t) =
√
n(t)(1− n(t)) + n(n− |µ|2 + |ν|2) (4.2.11)

Factoring out
√
n(t) gives the form

4n(t) =
√
n(t)

√√√√(1− n(t)) + n(n− |µ|2 + |ν|2)
n(t) (4.2.12)

where the factor √√√√(1− n(t)) + n(n− |µ|2 + |ν|2)
n(t) (4.2.13)

leads to the interpretation that the process takes non-poisonian statistics. In Fig. (4.8),

Fig. (4.9), Fig. (4.7), Fig. (4.6), Fig. (4.5) the photon displays the same periodic behavior

as mean photon number and oscillate much faster at the same photon state. Much details

on whether the model is poisonian, non-poisonian or super-poisonian is explained in 4.2.1.
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Figure 4.5: Mean fluctuation when n=10,time=5s

1 2 3 4
time

13.70

13.75

13.80

13.85

fluctuations
MEANFLUCTUATINSATn = 10, time = 4

Figure 4.6: Mean fluctuation at n=10,time=4s
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Figure 4.7: Mean fluctuation at n=10,time=3s
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Figure 4.8: Mean fluctuation at n=10,time=1s
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Figure 4.9: Mean fluctuation at n=10,time=2s
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4.2.1 Mandel’s Factor

We then proceed to examine the statistical properties of the anti JC model by comparing

the results obtained for the mean photon number and its fluctuations by using Mandel’s

theory. Mandel’s theory [49] applies to any kind of linearly polarized incident light,

irrespective of its statistical properties or irrespective of whether light fluctuations are

statistically stationary or not. The theory states that

Q = (4n(t))2

n(t) − 1 (4.2.14)

From the Mandel’s factor, one can obtain different types of statistical regimes that is

Poisonian, super-poisonian and sub-poisonian regimes. We proceed by substituting the

results obtained for the mean and its fluctuation in Eq. (4.1.8) and Eq. (4.2.12) respec-

tively into Eq. (4.2.14) to obtain

Q = n(t)(1− n(t)) + n(n− |µ|2 − |ν|2)
n+ 1 + |ν(t)|2

− 1 (4.2.15)

By considering the initial field mode vacuum state n = 0 in Eq.(4.2.15) results to

Q0 = n0(t)(1− n0(t)) + 0
n0(t) − 1 (4.2.16)

meaning at n = 0

Q0 = 1− n0(t)− 1 = −n0(t) (4.2.17)

Hence, in the initial field mode vacuum state n = 0, the Mandel’s factor Q is given by:

Q0 = −n0(t) (4.2.18)

but from Eq. (4.1.8), taking n = 0 gives

n0(t) = 1 + |ν(t)|2 (4.2.19)

which we substitute into Eq. (4.2.18) to get

Q0 = −1− |ν(t)|2 (4.2.20)

Substituting ν(t) from Eq.(4.1.3) for n = 0 into Eq.(4.2.20) gives

Q0 = −1− χ sin2(R1t) (4.2.21)
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We now proceed to consider Mandel’s factor at n = 1, by first noting that

− |µ(t)|2 − |ν(t)|2 = −(|µ(t)|2 + |ν(t)|2) = −1 (4.2.22)

It follows that at n = 1

Q1 = n1(t)(1− n1(t)) + (1− |µ|2 − |ν|2)
2 + |ν(t)|2

− 1 (4.2.23)

but we note that n = 1

n1(t) = 2 + |ν(t)|2 (4.2.24)

which is substituted and expanded to get

Q1 = −2− 2|ν(t)|2 − |ν(t)|2 − |ν(t)|4
2 + |ν(t)|2 − 1 (4.2.25)

further simplified in the form

Q1 = −2− 3|ν(t)|2 − |ν(t)|4
2 + |ν(t)|2 − 1 (4.2.26)

which can be expressed in the form

Q1 = −(2 + 3|ν(t)|2 + |ν(t)|4
2 + |ν(t)|2 + 1) (4.2.27)

We finally consider a case when n = 2 in the form

− |µ(t)|2 − |ν(t)|2 = −(|µ(t)|2 + |ν(t)|2) = −1 (4.2.28)

it then follows that

Q2 = n2(t)(1− n2(t)) + 2
2 + |ν(t)|2

− 1 (4.2.29)

simplified to take the form

Q2 = 3 + |ν(t)|2(−2− |ν(t)|2) + 2
3 + |ν(t)|2 − 1 (4.2.30)

expanded and simplified in the form

Q2 = −6− 3|ν(t)|2 − 2|ν(t)|2 − |ν(t)|4 + 2
3 + |ν(t)|2 − 1 (4.2.31)

simplified in the final form

Q2 = −4− 5|ν(t)|2 − |ν(t)|4)
3 + |ν(t)|2 − 1 (4.2.32)
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can be simplified further in the form

Q2 = −(4 + 5|ν(t)|2 + |ν(t)|4)
3 + |ν(t)|2 + 1) (4.2.33)

We finally consider a general case for n in the form

Q = n(t)(1− n(t)) + n(n− |µ|2 − |ν|2)
n+ 1 + |ν(t)|2

− 1 (4.2.34)

which is expressible in the form

Q = n(t)(1− n(t))
n(t) + n(n− |µ|2 − |ν|2)

n(t) − 1 (4.2.35)

simplified to take the form

Q = 1− n(t) + n(n− |µ|2 − |ν|2)
n(t) − 1 (4.2.36)

which on expansion and substitution takes the form

Q = −n− χ2 sin2(Rn+1t)+
n2 − n(cos2(Rn+1t) + χ2

n+1 sin2(Rn+1t) + χ2 sin2(Rn+1t))
n(t) − 1 (4.2.37)

which on factorization takes the form

Q = −1− n− χ2 sin2(Rn+1t)−
n2 − nsin2(Rn+1t)− n(cos2(Rn+1t)

n+ 1 + sin2(Rn+1t)
(4.2.38)

which after noting that

sin2(Rn+1t) + cos2(Rn+1t) = 1 (4.2.39)

now takes the form

Q = −1− n− χ2 sin2(Rn+1t)−
n(n− 1)

n+ 1 + χ2 sin2(Rn+1t)
(4.2.40)

Taking a final explicit form

Q = −{1 + n+ χ2 sin2(Rn+1t) + n(n− 1)
n+ 1 + χ2 sin2(Rn+1t)

} (4.2.41)

The results obtained from Eq. (4.2.21), Eq. (4.2.27), Eq. (4.2.33) and Eq. (4.2.41) both

have negative value meaning that the photon statistics is sub-poissonian in nature and

hence the photons are produced in anti-bunches, one at a time and the process is known

as photon anti-bunching. Photon anti-bunching generally refers to a light with photons

more equally spaced than a coherent laser field.

From the results obtained for Mandel’s factor, it is now clear that the anti JC is purely

quantum.
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4.3 Atomic Spin Population Inversion

Atomic inversion is the photon number probability weighted sum of oscillating terms.

It can also be taken as the difference in probabilities for the atom to be in the excited

and ground states as earlier predicted by the JC model [18]. The mean value of the

atomic spin operator Ωz in the general time evolving state |Ψ(t)〉 constitutes the atomic

spin-population inversion. We therefore obtain it in the form [28]

Ωz(t) = 〈Ψnd(t)|Ωz|Ψnd(t)〉
〈Ψnd(t)|Ψnd(t)〉

; 〈Ψnd(t)|Ψnd(t)〉 = 1 (4.3.1)

we proceed to solve

Ωz(t) = 〈Ψnd(t)|Ωz|Ψnd(t)〉 (4.3.2)

in the form

Ωz|Ψnd(t)〉 = e−iω(n+ 3
2 )t{µ(t)Ωz|nd〉+ ν(t)Ωz|n+ 1u〉} (4.3.3)

which gives

Ωz|Ψnd(t)〉 = 1
2e
−iω(n+ 3

2 )t{−µ(t)|nd〉+ ν(t)|n+ 1u〉} (4.3.4)

Taking the conjugation of |Ψnd(t)〉 in Eq. (3.2.15)

〈Ψnd(t)| = µ∗(t)〈nd|+ ν∗(t)〈n+ 1u|eiω(n+ 3
2 )t (4.3.5)

implies that

〈Ψnd(t)|Ωz|Ψnd(t)〉 = 1
2{|ν(t)|2 − |µ(t)|2} (4.3.6)

meaning

Ωz(t) = 1
2{|ν(t)|2 − |µ(t)|2} (4.3.7)

Using the definition of µ(t) and ν(t) Eq. (4.1.3) gives

|µ(t)|2 = cos2(Rn+1t) + χ2 sin2(Rn+1t) ; |ν(t)|2 = χ2sin2(Rn+1t) (4.3.8)

We obtain

1
2(|ν(t)|2 − |µ(t)|2) = 1

2((Ω2
n+1 − χ2) sin2(Rn+1t)− cos2(R2

n+1)) (4.3.9)

further simplified in the form

Ωz(t) = 1
2(Ω2

n+1 sin2(Rn+1t)− cos2(Rn+1t)− χ2 sin2(Rn+1t)) (4.3.10)
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Using χ2 and χn + 12 from Eq. (3.1.4) and Eq. (3.1.5) in Eq. (4.3.10) gives

Ωz(t) = 1
2(δ

2 − 16g2(n+ 1)
δ2 + 16g2(n+ 1)) sin2(Rn+1t)− cos2(Rn+1t) (4.3.11)

Eq.(4.3.11) is the atomic spin population inversion expressed in its explicit form.

As predicted by the presence of the term χ2−χ2
n+1 in Eq. (4.3.11), which tells us analyt-

ically that the Rabi Hamiltonian oscillates between the negative and the positive values.

The same has been predicted numerically from the graphs of the atomic inversion. Just

as expected, as the atom is emitted, a photon is absorbed and vice versa.

4.4 Fluctuation in Atomic Inversion

From the mean photon fluctuation we can easily calculate atomic inversion fluctuations

in the form

4Ωz(t) =
√

Ω2
z(t)− (Ωz(t))2 (4.4.1)

but as proved earlier

Ωz(t) = 1
2{|ν(t)|2 − |µ(t)|2} (4.4.2)

which when squared takes the form

(Ωz(t))2 = 1
4(|ν(t)|2 − |µ(t)|2)2 (4.4.3)

we then proceed to determine the mean square atomic inversion in the form

Ω̂Z = 1
2 δ̂z = 1

2

 1 0

0 −1

 (4.4.4)

which on squaring gives

Ω̂z

2
Z = 1

2 δ̂
2
z = 1

4

 1 0

0 −1


 1 0

0 −1

 = 1
4

 1 0

0 1

 = 1
4I (4.4.5)

it therefore means that

Ω2
z(t) = 〈Ψnd(t)|Ω2

z|Ψnd(t)〉 (4.4.6)

Ω2
z(t) = 1

4 (4.4.7)
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Figure 4.10: Atomic fluctuation at n=40,time=8s

meaning

4Ωz(t) = 1
4(1− (|µ|2 − |ν|2)2) (4.4.8)

meaning

Ω2
z(t)− (Ωz(t))2 = 1

4 − (Ω(t))2 (4.4.9)

further implies that

4Ωz(t) = 1
2
√

1− (|µ|2 − |ν|2)2 (4.4.10)

which now gives the atomic fluctuations in the final explicit form

4Ωzt = 1
2
√

1− ((Ω2
n+1 − χ2) sin2(Rn+1t)− cos2(Rn+1t))2 (4.4.11)

In Fig. (4.10), Fig. (4.11), Fig.(4.12), Fig. (4.17) Fig. (4.16), Fig. (4.18) shows the process

through which atoms are emitted from the ground state as expected. Directly related

to the atomic fluctuation is the mean fluctuations. They both show the same periodic

behaviors. Fig. (4.13), Fig. (4.14), Fig. (4.15) clearly illustrates that fluctuations do not

take place at vacuum state.

We have explicitly displayed the statistical and dynamical properties of the anti JC model

by use of wolfram mathematica. We have taken the numerical path of solutions just to

compare the behaviors we arrived at through the initial analytic method. It is clear that

the numerical behaviors so far explained are the same with the analytical solutions as
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Figure 4.11: Atomic fluctuation at n=0,time=2s
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Figure 4.12: Atomic fluctuation at n=40,time=1s
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Figure 4.13: Atomic fluctuation at n=0,time=8s
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Figure 4.14: Atomic fluctuation at n=0,time=2s
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Figure 4.15: Atomic fluctuation at n=0,time=1s
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Figure 4.16: Atomic fluctuation at n=45,time=3s
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Figure 4.17: Atomic fluctuation at n=45,time=8s

expected. For example, we obtained numerically that the state is pure similar to the

result obtained analytically.

4.5 Density Matrix

The density matrix denoted by ρ(t) [25, 59, 60] provides a useful way to characterize the

state of the ensemble of quantum system given in the form

ρ(t) = |Ψ(t)|〉〈Ψ(t)| (4.5.1)
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Figure 4.18: Atomic fluctuation at n=45,time=2s

which on substituting the time evolving state vector |Ψ(t)〉 which takes the form

|Ψ(t)〉 = cos(Rn+1t)|Ψnd〉 − i sin(Rn+1t|Φnd〉) (4.5.2)

gives

ρ(t) = {(cos(Rn+1t)|Ψnd〉 − (i sin(Rn+1t))|Φnd〉}

{(cos(Rn+1t))〈Ψnd|+ (i sin(Rn+1t))〈Φnd|} (4.5.3)

evaluated to get

ρ(t) = cos2(Rn+1t)|Ψnd〉〈Φnd|+ i cos(Rn+1t) sin(Rn+1t)|Ψnd〉〈Φnd|

−i sin(Rn+1t) cos(Rn+1t)|Ψnd〉〈Φnd|+ sin2(Rn+1t)|Ψnd〉〈Φnd|

(4.5.4)

we then proceed by letting

ρ11
n+1(t) = cos2(Rn+1t)

ρ12
n+1(t) = i cos(Rn+1t) sin(Rn+1t) = 1

2sin(2Rn+1t)

ρ21
n+1(t) = −i sin(Rn+1t) cos(Rn+1t) = −1

2 sin(2Rn+1t)

ρ22
n+1(t) = sin2(Rn+1t) (4.5.5)
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We interpret the density operator ρ(t) as elements of 2 × 2 density operator which we

express in terms of the standard2× 2 matrix I, σx, σy, σz in the form

ρn+1(t) =

 ρ11
n+1(t) ρ12

n+1(t)

ρ21
n+1(t) ρ22

n+1(t)

 (4.5.6)

but

ρ11
n+1(t) + ρ22

n+1(t) = 1⇒ ρn+1(t) = 1
2(I + ~ρn+1(t).~σ) (4.5.7)

Where we have introduced the Pauli spin matrix vector ~σ and a time evolving density

vector ~ρn+1(t) defined by

~σ = (σx, σy, σz) ; ρn+1(t) = (ρxn+1(t), ρyn+1(t), ρzn+1(t)) (4.5.8)

where

ρxn+1 = ρ12
n+1(t) + ρ21

n+1(t) ; ρyn+1 = i(ρ12
n+1(t)− ρ21

n+1(t))

ρyn+1 = ρ11
n+1 + ρ22

n+1(t) (4.5.9)

Substituting the density matrix elements obtained earlier gives the components and length

of the density matrix in the explicit form

ρxn+1 = ρ12
n+1(t) + ρ21

n+1(t) = 0 (4.5.10)

ρyn+1(t) = i(ρ12
n+1(t)− ρ21

n+1(t)) = i( i2 sin(2Rn+1t) + i

2 sin(2Rn+1t))

hence

ρyn+1(t) = − sin(Rn+1t) (4.5.11)

where we have used the trigonometric relation given by

cos(2α) = cos2 α− sin2 α (4.5.12)

to obtain

ρzn+1(t) = cos(2Rn+1)(t) = cos(2Rn+1t) (4.5.13)

giving

~ρn+1(t) = (ρxn+1(t), ρyn+1(t), ρzn+1(t))

resulting to the density matrix in the final explicit form

~ρn+1(t) = (0,− sin(2Rn+1t), cos(2Rn+1t)) (4.5.14)
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4.5.1 Length of Bloch Vector

|~ρn+1(t)| =
√

(sin(2Rn+1t))2 + (cos(2Rn+1t))2 =
√

1 (4.5.15)

which gives the length of a Bloch vector in the final explicit form

|~ρn+1(t)| = 1 (4.5.16)

The Bloch vector of a density matrix of the anti JC Hamiltonian is seen to have a unit

length and is interpreted as the unit radius of a circle in the yz plane. This further implies

that the model is in a pure state.

The process observed is purely quantum in nature and hence the model is very impor-

tant for testing the prediction of quantum theory. Numerical solutions are also of great

importance in the field of quantum information processing.
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

In this Thesis, we applied the recently constructed excitation number operator[21, 23],

to study the physical and statistical properties of the anti JC model, noting that similar

studies have been successfully done on the JC model[61]. We have explicitly obtained

the mean and its fluctautions which is then used in Mandel’s factor to study the statis-

tical properties of the anti-JC model. We have observed sub-poisonian statistics from

the results obtained from Mandel’s factor. This property reveals that the anti-Jaynes-

Cummings interaction is characterize by photon anti-bunching process.

We have obtained the density operator which is then used in Bloch vector to study

purity of state. The purity of state was shown by the Bloch sphere having a unit radius

which demonstrates that the state generated in aJC is a pure state. The knowledge of

quantized atom interacting with quantized light is fundamental in developing effective

quantum computation protocols.

Theoretical adjustment in the aJC model will be important since approximations applied

in the full Rabi model may be overlooked and the interaction taken strictly in the aJC

interaction where now the effect of the negative component of the electromagnetic can now

be implemented experimentally. Since it is still in the early stages of its development, it

will be important to allow for new approaches in experimental realization if not observing

the aJC interaction.
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We have explicitly determine the statistical properties of the anti JC model. Attention

can now be refocused on the study of the practical application of the anti JC model such

as quantum computing and quantum teleportation.

5.2 Recommendations for further Research

We have explicitly obtained the dynamics of the anti JC model. Attention can now be

refocused on the study of the practical application of the anti JC model such as quantum

computing and quantum teleportation.
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