# NORMS OF TENSOR PRODUCTS AND ELEMENTARY OPERATORS 

by

Odero, Beatrice Adhiambo

A Thesis submitted in partial fulfilment of the requirements for the award of the degree of Master of Science in Pure Mathematics

Faculty of Science

MASENO UNIVERSITY

© 2009

## ABSTRACT

In this thesis, we determine the norm of a two-sided symmetric operator in an algebra. More precisely, we investigate the lower bound of the operator using the injective tensor norm. Further, we determine the norm of the inner derivation on irreducible C*-algebra and confirm Stampfli's result for these algebras.

## Chapter 1

## INTRODUCTION

### 1.1 Introduction

In this section we give definitions of various mathematical concepts and examples that we intend to use in the subsequent chapters. We have also given some theorems and lemmas that we shall refer to in the subsequent chapters. We shall use the capital letters $X, Y, U, V, W$ to denote vector spaces and small letters $x, y, u, v, w$ to denote their elements.

### 1.1.1: Definition; Inner product space.

Let $X$ be a vector space over the field of real or complex numbers. A mapping, denoted by $\langle.,$.$\rangle defined on X \times X$ into the underlying field is called an inner product of any two elements $x$ and $y$ of $X$ if the following conditions are satisfied;
(1) $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0$ if and only if $x=0, \forall x, y \in X$.
(2) $\left\langle x+x^{\prime}, y\right\rangle=\langle x, y\rangle+\left\langle x^{\prime}, y\right\rangle, \forall x, x^{\prime}, y \in X$
(3) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle, \alpha$ belongs to the underlying field.
(4) $\overline{\langle x, y\rangle}=\langle y, x\rangle$

See [18] page 83 for verifications of 1-4.
If the inner product $\langle.,$.$\rangle is defined for every pair of elements (x, y) \in X \times X$, then the vector space $X$ together with the inner product $\langle.,$.$\rangle is called an$ inner product space or pre-Hilbert space usually denoted by $(X,\langle.,\rangle$.$) .$

### 1.1.2: Definition; Hilbert space.

An inner product space $X$ is called a Hilbert space if the normed space induced by the inner product is a Banach space (complete normed space). That is, every Cauchy sequence $x_{n} \in X$ with respect to the norm induced by the inner product is convergent with respect to this norm.

### 1.2 Operators and Functionals

### 1.2.1: Definition; Operator.

Let $X$ and $Y$ be normed spaces. Then the mapping $T: X \longrightarrow Y$ is called an operator.

### 1.2.2: Definition; A linear operator.

Let $X$ and $Y$ be normed spaces. An operator $T$ is said to be linear if the following conditions are satisfied;
$\forall x, y \in X, \alpha$ a scalar,
(i) $T(x+y)=T x+T y$
(ii) $T(\alpha x)=\alpha T x$.

So, the map $T: X \longrightarrow Y$ is linear if $\forall x, y \in X$ and $\alpha, \beta \in \mathbb{K}$,

$$
T(\alpha x+\beta y)=\alpha T x+\beta T y
$$

### 1.2.3: Definition; A bounded linear operator.

A linear operator $T: X \longrightarrow Y$ is said to be bounded if there exists a real constant $k>0$ such that $\|T x\| \leq k\|x\| \forall x \in X$. We shall denote by $B(X, Y)$ the set of $T: X \longrightarrow Y$.

### 1.2.4: Definition; Norm of a bounded operator.

Let $T \in B(X, Y)$. Then the norm of $T$ is defined as

$$
\begin{aligned}
\|T\| & =\sup \{\|T x\|: x \in \mathfrak{D}(T),\|x\|<1\} \\
& =\sup \{\|T x\|: x \in \mathfrak{D}(T), x \neq 0\}<\infty .
\end{aligned}
$$

The supremum being finite follows from the fact that $\|T(x)\| \leq k\|x\|, \forall x \in X$ and $k \geq 0$.

### 1.2.5: Theorem.

Let $T$ be a linear operator then,
(a) The range of the operator $T, \mathfrak{R}(T)$ is a vector space.
(b) The dimension of the domain of $T, \operatorname{dim} \mathfrak{D}(T)$ is finite.
(c) The null space of $T, \mathfrak{N}(T)$ is a vector space.

See [8] page 86 for proof.

### 1.2.6: Definition; Adjoint operator.

Let $T \in B(X, Y)$ where $X, Y$ are Hilbert spaces, then the unique linear operator $T^{*} \in B(Y, X)$ satisfying $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x \in X$ and $y \in Y$ is called the adjoint (Hilbert adjoint) of $T$.
1.2.7: Definition; Self-adjoint, Positive, Normal and Unitary operators.

Let $T$ be a bounded linear operator on a Hilbert space $H$ into itself then,
(i) $T$ is called self-adjoint or hermitian if $T=T^{*}$.
(ii) $T$ is called normal if $T T^{*}=T^{*} T$.
(iii) $T$ is called unitary if $T^{*} T=I=T T^{*}$ where $I$ is the identity on $H$. This implies that, $T$ preserves inner product on the Hilbert space, so that $\langle T x, T y\rangle=\langle x, y\rangle \forall x, y \in H$ and that $T$ is a surjective isometry.
(iv) $T$ is positive if $\langle T x, T y\rangle \geq 0$ for all $x \in H$.

### 1.2.8: Proposition.

Let $T \in B(H)$. Then the following statements are equivalent;
(i) $T$ is self-adjoint.
(ii) $\langle T x, x\rangle$ is a real number, $\forall x \in H$.

See [22] page 330 for proof.

### 1.2.9: Definition; Completely bounded operator.

Let $H$ be a complex Hilbert space and $B(H)$ the set of all bounded linear operators on $H$. Any map $\phi: B(H) \longrightarrow B(H)$ induces a family of maps $\phi_{n}: M_{n}(B(H)) \longrightarrow M_{n}(B(H)), n \geq 1$ defined by $\phi_{n}\left(\left[x_{i, j}\right]\right)$ for any matrix $\left[x_{i, j}\right] \in M_{n}(B(H))$. If $\sup \left\|\phi_{n}\right\|$ is finite then $\phi$ is said to be completely bounded and the supremum defines the completely bounded norm $\|\phi\|_{c b}$ of $\phi$. (Here, of course the norm in $M_{n}(B(H))$ is given by the identification $M_{n}(B(H))=B\left(H^{n}\right)$. "We refer to [4] and [14] for more on completely bounded mappings".

### 1.2.10: Definition; Elementary operator.

Let $H$ be a Hilbert space and $B(H)$ the algebra of all bounded linear operators on $H$. We call $T: B(H) \longrightarrow B(H)$ an elementary operator if $T$ has a representation;

$$
\begin{equation*}
T(x)=\sum_{i=1}^{k} a_{i} x b_{i} \tag{1.1}
\end{equation*}
$$

with $a_{i}, b_{i} \in B(H)$ for each $i$. The building blocks of such elementary operators of length one, that is if $k=1$ in (1.1), has the form $T_{a, b}(x)=a x b$.

## Compact operators:

### 1.2.11: Definition; Compactness.

A metric space $X$ is said to be compact (sequentially compact) if every sequence in $X$ has a convergent subsequence. A subset $M$ of $X$ is said to be compact if $M$ is compact considered as a subspace of $X$, i.e. if every sequence in $M$ has a convergent subsequence whose limit is an element of $M$.

### 1.2.12: Definition; Compact linear operators.

Let $X$ and $Y$ be normed spaces. An operator $T: X \longrightarrow Y$ is called a compact linear operator (or completely continuous linear operator) if $T$ is linear and if for every bounded subset $M$ of $X$ the image $T(M)$ is relatively compact i.e. the closure $\overline{T(M)}$ is compact or totally bounded subset of $Y$.

### 1.2.13: Definition; Compact operators on Banach spaces.

An operator $T \in B(X, Y)$ is compact if $T B_{x}$, the image of the unit ball $B_{x}$ under $T$, is relatively compact (i.e. totally bounded) subset of $Y$. Thus $T$ is compact if and only if for every sequence $\left(x_{n}\right) \in X$ the sequence ( $T x_{n}$ ) has a convergent subsequence. In short, compact operators are "small" in the sense that they map the unit ball into a "small" set.

### 1.2.14: Theorem.

Let $T: H_{1} \longrightarrow H_{2}$ be compact linear map between Hilbert spaces $H_{1}$ and $H_{2}$.
Then the image of the closed ball of $H_{1}$ under $T$ is compact.

## Proof.

Let $U$ be a closed unit ball of $H_{1}$. It is weakly compact, and $T$ is weakly continuous. So $T(U)$ is weakly compact and therefore weakly closed. Hence $T(U)$ is norm closed, since the weak topology is weaker than the norm topology. Since $T$ is a compact operator, this implies that $T(U)$ is norm compact.

### 1.2.15: Lemma.

Let $X$ and $Y$ be normed spaces. Then
(a) Every compact operator $T: X \longrightarrow Y$ is bounded hence continuous.
(b) If $\operatorname{dim} X=\infty$, the identity operator I $: X \longrightarrow X$ (which is continuous) is not compact.

## Proof.

(a) The unit ball $S \subset X$ such that $S=\{x \in X:\|x\|=1\}$ is bounded. Since $T$ is compact, $\overline{T(S)}$ is compact and is bounded by the fact that a compact subset $M$ of a metric space is closed and bounded. So that $\sup _{\|x\|=1}\|T x\|<\infty$. Hence $T$ is bounded since we have that $T$ is continuous.
(b) The closed unit ball $S \in X$ such that $S=\{x \in X:\|x\| \leq 1\}$ is bounded. If $\operatorname{dim} X=\infty$, then the fact that a normed space has a property that the closed unit ball $S$ is compact, then $X$ is finite dimensional, implies that $S$ cannot be compact. Thus $I(S)=S=\bar{S}$ is not relatively compact.

### 1.2.16: Theorem.

Let $X$ and $Y$ be normed spaces and $T: X \longrightarrow Y$ a linear operätor. Then $T$ is compact if and only if it maps every bounded sequence $\left(x_{n}\right) \in X$ onto a sequence $\left(T x_{n}\right) \in Y$ which has a convergent subsequence.

## Proof.

If $T$ is compact and $\left(x_{n}\right)$ is bounded then $\overline{\left(T x_{n}\right)} \in Y$ is compact and by definition of compactness, $\left(T x_{n}\right)$ contains a convergent subsequence.

Conversely,
Let every bounded sequence $\left(x_{n}\right)$ contain a subsequence $\left(x_{n_{k}}\right)$ such that $\left(T x_{n_{k}}\right)$ converges in $Y$. Consider any subset $S \subset X$ and let $\left(y_{n}\right)$ be any sequence in $T(S)$. Then $y_{n}=T x_{n}$ for some $\left(x_{n}\right) \in S$ and $\left(x_{n}\right)$ is bounded since $S$ is bounded. By assumption, $\left(T x_{n}\right)$ contain a subsequent sequence. Hence $\overline{T(S)}$ is compact because $y_{n} \in T(S)$ was arbitrary. Hence by definition, this shows that $T$ is compact. (compactness criterion.)

### 1.2.17: Theorem.

Let $X$ and $Y$ be normed spaces and $T: X \longrightarrow Y$ a linear operator. Then,
(i) If $T$ is bounded and $\operatorname{dim} T(X)<\infty$, the operator $T$ is compact.
(ii) If the $\operatorname{dim} X<\infty$, the operator $T$ is compact.

## Proof.

(i) Let $\left(x_{n}\right)$ be a bounded sequence in $X$. Then the inequality $\left\|T x_{n}\right\| \leq\|T\|\left\|x_{n}\right\|$ shows that $\left(T x_{n}\right)$ is bounded. Hence $\left(T x_{n}\right)$ is relatively compact (in a finite dimensional normed space $X$, any subset $S \subset X$ is closed and bounded.) Since $\operatorname{dim} T(X)<\infty$ it follows that
( $T x_{n}$ ) has a convergent subsequence. Since $\left(x_{n}\right)$ was arbitrary bounded sequence in $X$, the operator $T$ is compact by theorem 1.2.1' .
(ii) This follows from (i) by noting that $\operatorname{dim} X<\infty$ implies boundedness of $T$ and by the fact that if a normed space $X$ is finite dimensional, then every linear operator on $X$ is bounded. So $\operatorname{dim} T(X) \leq \operatorname{dim} X$ for any linear operator $T$. If $\operatorname{dim} \mathfrak{D}(T)=n<\infty$ then $\operatorname{dim} \mathfrak{R}(T) \leq n$.

### 1.2.18: Examples of compact operators.

(1) Every finite operator $T \in B(X, Y)$ is compact i.e. if $\operatorname{dim} T=\operatorname{dim} T(X)<$ $\infty$ then $T \in B_{o}(X, Y)$. Indeed, the set $\mathbb{Z}=\operatorname{Im} T$. Since $\mathbb{Z}$ is finite dimensional, $B_{\mathbb{Z}}$ is compact and so $T B_{X}$ is a subset of the compact set $T B_{\mathbb{Z}}$.
(2) Every bounded linear functional $f \in X^{*}$ is a compact operator from $X$ to $\mathbb{C}$.
(3) An operator $T$ defined on the space $\ell^{2}$ i.e. $T: \ell^{2} \longrightarrow \ell^{2}$ defined by $y=\left(\eta_{j}\right)=T x$ where $\eta_{j}=\varepsilon_{j} / j$ for $j=1,2, \ldots \ldots$

### 1.2.19: Definition; Uniform topology.

This is defined by the operator norm $\|T\|$ for $T \in B(H)$, where $\|T\|=\sup \{\|T x\|: x \in H,\|x\|<1\}$.

### 1.2.20: Definition; Strong-operator topology.

For $x \in H$, the map $T \longrightarrow\|T x\|$ defines a semi-norm on $B(H)$. The family of all such semi-norms $\{\|T x\|: x \in H\}$ defines a Hausdorff locally convex topology called the strong operator topology.

### 1.2.21: Definition; Weak-operator topology.

For $x, y \in H$, the map $T \longrightarrow|\langle T x, y\rangle|$ defines a semi-norm on $\dot{B}(H)$. The family of such semi-norms $\{|\langle T x, y\rangle|: x, y \in H\}$ define a Hausdorff locally convex topology called the weak-operator topology.

### 1.2.22: Definition; The maximal numerical range.

Let $H$ be a Hilbert space (complex). $T: H \longrightarrow H, T$ bounded. Let $B(H)$ be the set of all bounded linear operators on $H$. For all $T \in B(H)$ we define a set $W(T)$ given by
$W(T)=\left\{\lambda:\left\langle T x_{n}, x_{n}\right\rangle \longrightarrow \lambda,\left\|x_{n}\right\|=1,\left\|T x_{n}\right\| \longrightarrow\|T\|\right\}$.
When $H$ is finite dimensional, $W(T)$ corresponds to the numerical range produced by the maximal vectors (vectors $x$ such that $\|x\|=1$ and $\|T x\|=$ $\|T\|)$. Thus we have $W(T)=\{\langle T x, x\rangle:\|x\|=1\}$

### 1.2.23: Lemma.

The set $W(T)$ is non-empty, closed, convex and contained in the closure of the numerical range [19].

### 1.2.24: Definition; Diagonal matrix.

A diagonal matrix is a square matrix in which the entries outside the main diagonal are zero. The diagonal entries themselves may or may not be zero. Thus the matrix $A=\delta(i, j)$ with $n$ columns and $n$ rows is diagonal if $\delta(i, j)=$ $0, i \neq j \forall i, j=\{1,2, \ldots, n\}$.

### 1.2.25: Definition; Unitary diagonolizable operator.

A bounded operator $T$ on a Hilbert space $H$ is said to be unitary diagonolizable if it has diagonal matrix relative to some orthonormal basis i.e., if there is an orthonormal basis $\left\{e_{n}\right\}$ for $H$ consisting of eigen vectors of $T$. We note that all normed operators on a finite dimensional space, and generally, all
compact normed operators are unitarily diagonolizable.

### 1.2.26: Definition; Functionals.

A functional is an operator whose range lies on the real line $\mathbb{R}$ or in the complex plane $\mathbb{C}$ while its domain lies in a vector space. It is usually denoted by $f$ or $F$ i.e. $f: X \longrightarrow \mathfrak{D}(f) \longrightarrow \mathbb{K}, \mathbb{K}$ is either $\mathbb{R}$ or $\mathbb{C}$. Functionals are said to be linear and bounded if for $f: X \longrightarrow \mathbb{K}$ there exists a real number $k \geq 0$ such that; $|f(x)| \leq k\|x\|$ for all $x \in X$. Further,

$$
\|f\|=\sup _{x \neq 0}\left\{\frac{|f(x)|}{\|x\|}, x \in X\right\}
$$

### 1.2.27: Definition; Sesquilinear form.

Let $U$ and $V^{\prime}$ be vector spaces over the same scalar field $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$. Then a sesquilinear form (functional) $\ell$ on $U \times V$ is a mapping $\ell: U \times V \longrightarrow \mathbb{K}$ such that $\forall u, u_{1}, u_{2} \in U, v, v_{1}, v_{2} \in V$ and $\alpha, \beta \in \mathbb{K}$;
(i) $\ell\left(u_{1}+u_{2}, v\right)=\ell\left(u_{1}, v\right)+\ell\left(u_{2}, v\right)$
(ii) $\ell\left(u, v_{1}+v_{2}\right)=\ell\left(u, v_{1}\right)+\ell\left(u, v_{2}\right)$
(iii) $\ell(\alpha u, v)=\alpha \ell(u, v)$
(iv) $\ell(u, \beta)=\bar{\beta} \ell(u, v)$.

Thus $\ell$ is linear in the first argument and conjugate linear in the second. If $U$ and $V$ are in $\mathbb{R}$ then (iv) is simply $\ell(u, \beta v)=\beta \ell(u, v)$ and $\ell$ is bilinear since it is linear in both arguments. If $k \geq 0$ such that $|\ell(u, v)| \leq k\|u\|\|v\|$ $\forall u, v$, then $\ell$ is bounded and the number
$\|\ell\|=\sup _{u \neq 0, v \neq 0}\left\{\frac{|\ell(u, v)|}{\|u\|\|v\|}, u \in U, v \in V\right\}=\sup _{\|u\|=\|v\|=1}\{|\ell(u, v)| u \in U, v \in V\}$ is the norm of $\ell$.

### 1.2.28: Definition; Dual space.

The set of all functionals defined on a vector space $X$ is called the dual of $X$ and is denoted by $X^{*}$. It is also a vector space if addition and multiplication by vectors are pointwise defined.

### 1.2.29: Remark.

The dual space $X^{*}$ of $X$ is a Banach space whether $X$ is a Banach space or not. See [18] page 26.

### 1.3 Algebra

### 1.3.0: Definition; An algebra.

A vector space $X$ in which multiplication is defined having the following properties; $\forall x, y, z \in X$ and $\lambda \in \mathbb{K}$,
(a) $x(y z)=(x y) z$
(b) $x(y+z)=x y+x z$
(c) $(x+y) z=x z+y z$
(d) $\lambda(x y)=(\lambda x) y=x \lambda y$ is called an algebra.

An algebra $X$ is called commutative (abelian) if $x y=y x$.

### 1.3.1: Definition; A Banach algebra.

(e) Given that $X$ above is a Banach space (complete normed space) with respect to a norm that satisfies the multiplicative inequality

$$
\|x y\| \leq\|x\|\|y\| \forall x, y \in X
$$

then $X$ is called a Banach algebra.
(f) Given that $X$ contains a unit element $e$ such that $x e=e x=x, \forall x \in X$ and $\|e\|=1$. Then $X$ is a unital Banach algebra if the properties (a) to (f) are satisfied by $X$.

### 1.3.2: Definition; Subalgebra.

A subspace $S$ of $X$ which is also an algebra with respect to the operation on $X$ is a subalgebra of $X$.

### 1.3.3: Definition; Involution.

Let $X$ be an algebra. A mapping from $X \longrightarrow X$ defined by $x \longrightarrow x^{*} \forall x, x^{*} \in$ $X$ is an involution on $X$ it satifies the following conditions; $\forall x, x^{*}, y \in X$ and $\lambda$ a scalar,
(i) $(x+y)^{*}=x^{*}+y^{*}$
(ii) $(\lambda x)^{*}=\bar{\lambda} x^{*}$
(iii) $(x y)^{*}=y^{*} x^{*}$
(iv) $x^{* *}=x$

### 1.3.4: Definition; *-algebra.

An algebra $X$ with an involution $x \longrightarrow x^{*}$ is a ${ }^{*}$-algebra.

### 1.3.5: Definition; Banach *-algebra.

This is a normed algebra $X$ with an involution, which is complete and has the property $\|x\|=\left\|x^{*}\right\|$. In this case, we define a normed algebra as follows: i.e. the algebra $X$ is a normed algebra if for each element $x \in X$ there is an associated real number $\|x\|$, satisfying the axioms of a norm. Thus $\forall x, y \in X$,
(1) $\|x\| \geq 0$ and $\|x\|=0$ if and only if $x=0$
(2) $\|\alpha x\|=|\alpha|\|x\|$
(3) $\|x+y\| \leq\|x\|+\|y\|$
(4) $\|x y\| \leq\|x\|\|y\|$

### 1.3.6: Definition; $\mathrm{C}^{*}$-algebra.

A Banach *-algebra $X$ with the property $\left\|x^{*} x\right\|=\|x\|^{2} \forall x \in X$ is called a $\mathrm{C}^{*}$-algebra.

### 1.3.7: Examples of $\mathrm{C}^{*}$-algebra.

We refer to only one which is $B(H)$, the set of all bounded linear operators on a Hilbert space $H$. We prove that $B(H)$ is a C*-algebra.

## $B(H)$ is an algebra.

Let $T \in B(H)$ where $T: H \longrightarrow H$. Multiplication is defined pointwise in $B(H)$. Thus

$$
S T(x)=S(T(x)) \forall S, T \in B(H), x \in H
$$

$B(H)$ is a normed algebra.
$B(H)$ is a normed space,consequently, a normed algebra. For if we let $T \in$ $B(H)$ then $\|T\|$ satisfies the axioms of a norm i.e.,
(i) Clearly, $\|T\| \geq 0$ and $\|T\|=0$ if and only if $T=0$.
(ii) $\|\alpha T\|=\sup \left\{\frac{\|(\alpha T) x\|}{\|x\|}: x \neq 0\right\}$

$$
\begin{aligned}
& =\sup \left\{\frac{\|\alpha(T x)\|}{\|x\|}: x \neq 0\right\} \\
& =\sup \left\{\frac{\mid \alpha\|T x\|}{\|x\|}: x \neq 0\right\} \\
& =|\alpha| \sup \left\{\frac{\|T x\|}{\|x\|}: x \neq 0\right\} \\
& =|\alpha|\|T\| .
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
\|T+S\| & =\sup \left\{\frac{\|(T+S)(x)\|}{\|x\|}: x \neq 0\right\} \\
& =\sup \left\{\frac{\|T x+S x\|}{\|x\|}: x \neq 0\right. \\
& \leq \sup \left\{\frac{\|T x\|}{\|x\|}+\frac{\|S x\|}{\|x\|}: x \neq 0\right. \\
& \leq \sup \left\{\frac{\|T x\|}{\|x\|}: x \neq 0\right\}+\sup \left\{\frac{\|S x\|}{\|x\|}: x \neq 0\right\} \\
& =\|T\|\|S\| .
\end{aligned}
$$

$$
\text { (iv) } \begin{aligned}
\|T S\| & =\sup \left\{\frac{\|T S(x)\|}{\|x\|}:\|x\|=1\right\} \\
& =\sup \left\{\frac{\|T(S x)\|}{\|x\|}:\|x\|=1\right\} \\
& \leq\|T\| \sup \left\{\frac{\|S x\|}{\|x\|}:\|x\|=1\right\} \\
& =\|T\|\|S\| .
\end{aligned}
$$

$B(H)$ is a *-algebra.
Since $B(H)$ is an algebra and $T \in B(H)$, it has an involution from $B(H) \longrightarrow$ $B(H)$ define by $T \longrightarrow T^{*}$ i.e. since $T$ is a bounded linear operator,
(i) $(T+S)^{*}=T^{*}+S^{*}$.
$\langle(T+S) z, x\rangle=\left\langle z,(T+S)^{*} x\right\rangle \forall x, z \in H$.
Also,

$$
\begin{aligned}
\langle(T+S) z, x\rangle & =\langle T z+S z, x\rangle \\
& =\langle T z, x\rangle+\langle S z, x\rangle \\
& =\left\langle z, T^{*} x\right\rangle+\left\langle z, S^{*} x\right\rangle . \text { Thus } \\
\left\langle z,(T+S)^{*} x\right\rangle & =\left\langle z, T^{*} x+S^{*} x\right\rangle .
\end{aligned}
$$

(ii) $(\alpha T)^{*}=\bar{\alpha} T^{*}$. Clearly,

$$
\begin{equation*}
\langle(\alpha T) z, x\rangle=\left\langle z,(\alpha T)^{*} x\right\rangle \tag{1.2}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\langle(\alpha T) z, x\rangle=\alpha\langle T(z), x\rangle=\alpha\left\langle z, T^{*}(x)\right\rangle=\left\langle z, \bar{\alpha} T^{*}(x)\right\rangle \tag{1.3}
\end{equation*}
$$

From equations (1.2) and (1.3), $\left\langle z,(\alpha T)^{*} x\right\rangle=\left\langle z, \bar{\alpha} T^{*}(x)\right\rangle$.
(iii) $(T S)^{*}=S^{*} T^{*}$

Clearly, $\langle(T S) x, y\rangle=\left\langle x,(T S)^{*} y\right\rangle$
Since $(T S) x=T(S(x))$,

$$
\begin{aligned}
\langle(T S)(x), y\rangle & =\langle T(S(x)), y\rangle \\
& =\left\langle S x, T^{*} y\right\rangle \\
& =\left\langle x, S^{*}\left(T^{*}(y)\right)\right\rangle \\
& =\left\langle x,\left(S^{*} T^{*}\right)(y)\right\rangle
\end{aligned}
$$

(iv) $T^{* *}=T$

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\left\langle\left(T^{*}\right)^{*} x, y\right\rangle \forall x, y \in H
$$

Since $B(H)$ satisfy (i) to (iv), it is an involution and hence a ${ }^{*}$-algebra.
$B(H)$ is a Banach *-algebra.
For all $T \in B(H),\|T\|=\left\|T^{*}\right\|$.

$$
\begin{aligned}
\left\|T^{*}(x)\right\|^{2} & =\left\langle T^{*} x, T^{*} x\right\rangle \\
& =\left\langle T\left(T^{*}(x)\right), x\right\rangle \\
& \leq\left\|T\left(T^{*}(x)\right)\right\|\|x\| \\
& \leq\left\|T^{*} x\right\|\|T\|\|x\|
\end{aligned}
$$

$\left\|T^{*}(x)\right\| \leq\|T\|\|x\|$ i.e. $\left\|T^{*}\right\| \leq\|T\|$.
Conversely, applying this relation to $T^{* *}$ we have, $\left\|T^{* *}\right\| \leq\left\|T^{*}\right\|$. But $T^{* *}=T$. Therefore, $\|T\| \leq\left\|T^{*}\right\|$.

## $B(H)$ is a $\mathrm{C}^{*}$-algebra.

Since $B(H)$ is a *-algebra, we need to show that it has the property $\left\|T^{*} T\right\|=\|T\|^{2}, \forall T \in B(H)$.
$\left\|T^{*} T(x)\right\| \leq\left\|T^{*}\right\|\|T\|\|x\|=\|T\|^{2}\|x\|$ hence

$$
\begin{equation*}
\left\|T^{*} T\right\| \leq\|T\|^{2} \tag{1.4}
\end{equation*}
$$

On the other hand, $\|T x\|^{2}=\langle T x, T x\rangle$

$$
\begin{align*}
= & \left\langle T^{*} T x, x\right\rangle \\
\leq & \left\|T^{*} T\right\|\|x\|^{2} \text { hence } \\
& \|T\|^{2} \leq\left\|T^{*} T\right\| . \tag{1.5}
\end{align*}
$$

From equations (1.4) and (1.5), $\left\|T^{*} T\right\|=\|T\|^{2}$ : Hence $B(H)$ is a $\mathrm{C}^{*}$-algebra.

### 1.3.8: Definition; Positive functionals.

This is a linear functional $f$ on a Banach algebra $\mathcal{A}$ with an involution that satisfies the condition $f\left(x x^{*}\right) \geq 0$ for all $x \in \mathcal{A}$.

### 1.3.9: Definition; Complex Homomorphism.

Suppose $\mathcal{A}$ is a complex algebra and $f$ is a linear functional on $\mathcal{A}$ which is not identically zero. If $f(x y)=f(x) f(y)$ for all $x \in \mathcal{A}$ then $f$ is a complex homomorphism on $\mathcal{A}$ i.e. a multiplicative linear mapping from one Banach algebra into another.

An element $x \in \mathcal{A}$ is invertible if it has an inverse in $\mathcal{A}$ i.e. if there exists an element $x^{-1} \in \mathcal{A}$ such that $x^{-1} x=x x^{-1}=e, e$ is the unit element in $\mathcal{A}$.

### 1.3.10: Definition; *-morphism (homomorphism)

Suppose $\mathcal{A}$ and $\mathcal{B}$ are $\mathrm{C}^{*}$-algebras, a mapping $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ is a $\mathrm{C}^{*}$-homomorphism if for any $a, b \in \mathbb{C}$ and $x, y \in \mathcal{A}$ the following four conditions are satisfied.
(i) $\phi(a x+b y)=a \phi(x)+b \phi(y)$
(ii) $\phi(x y)=\phi(x) \phi(y)$
(iii) $\phi\left(x^{*}\right)=(\phi(x))^{*}$
(iv) $\phi$ maps a unit in $\mathcal{A}$ to a unit in $\mathcal{B}$

If further $\phi$ is $1-1$ and onto, then it is a $\mathrm{C}^{*}$-isomorphism i.e. $\forall x, y \in \mathcal{A}$ and $x \neq y, \phi(x) \neq \phi(y)$.

### 1.3.11: Definition; State.

Let $\mathcal{A}$ be an algebra with involution. A linear functional $f$ on $\mathcal{A}$ is self-adjoint or hermittian if $f\left(x^{*}\right)=f(\bar{x}) \forall x \in \mathcal{A}$. If further, $\|f\|=f(e)=1$, then $f$ is called a state.

### 1.3.12: Example.

A functional $f$ on $B(H)$ for example is a state if $x \in H,\|x\|=1$ and $f(T)=\langle T x, x\rangle$ for all $T \in B(H)$.

Proof.
For all $T_{1}, T_{2} \in B(H)$ and $\alpha_{1}, \alpha_{2} \in \mathbb{K}$

$$
\begin{aligned}
f\left(\alpha_{1} T_{1}+\alpha_{2} T_{2}\right) & =\left\langle\left(\alpha_{1} T_{1}+\alpha_{2} T_{2}\right) x, x\right\rangle \\
& =\left\langle\alpha_{1} T_{1} x, x\right\rangle+\left\langle\alpha_{2} T_{2} x, x\right\rangle \\
& =\alpha_{1}\left\langle T_{1} x, x\right\rangle+\alpha_{2}\left\langle T_{2} x, x\right\rangle \\
& =\alpha_{1} f\left(T_{1}\right)+\alpha_{2} f\left(T_{2}\right) .
\end{aligned}
$$

Also,
$|f(T)|=|\langle T x, x\rangle| \leq\|T x\|\|x\| \leq\|T\|\|x\|^{2}$
i.e. $\|f\| \leq\|x\|^{2}$ but $\|x\|=1$. So

$$
\begin{equation*}
\|f\| \leq 1 \tag{1.6}
\end{equation*}
$$

$$
\begin{align*}
& f(I)=\langle I x, x\rangle=\langle x, x\rangle=\|x\|^{2}=1 \\
& \quad 1=|f(I)| \leq\|f\|\|I\|=\|f\| . \tag{1.7}
\end{align*}
$$

From equations (1.7) and (1.8), $f(I)=\|f\|=1$. The functional $f$ on $B(H)$ is positive since $f\left(T^{*} T\right)=\left\langle T^{*} T x, x\right\rangle=\langle T x, T x\rangle=\|T x\|^{2} \geq 0$. Hence $f$ is a state on $B(H)$.

### 1.3.13: Definition; Representation.

A representation of a $C^{*}$-algebra $\mathcal{A}$ is defined to be the pair $(H, \phi)$, where $H$ is a complex Hilbert space and $\phi$ a ${ }^{*}$-morphism of $\mathcal{A}$ into $B(H)$. The representation $(H, \phi)$ is said to be faithful if and only if $\phi$ is a ${ }^{*}$-isomorphism. between $\mathcal{A}$ and $\phi(\mathcal{A})$ i.e. if and only if $\operatorname{ker}(\phi)=\{0\}$.

The space $H$ is called the representation space, the operators $\phi(x)$ are called the representatives of $\mathcal{A}$. By implicit identification of $\phi$ and the set of representatives, one also says that $\phi$ is a representation of $\mathcal{A}$ on $H$.

### 1.3.14: Gelfand-Naimark Segal Representation.

With each positive linear functional, there is associated representation. Suppose that $f$ is a positive linear functional on a $\mathrm{C}^{*}$-algebra $\mathcal{A}$, setting $N_{f}=\left\{a \in \mathcal{A}: f\left(a^{*} a\right)=0\right\}$ where $N_{f}$ is a left ideal on $\mathcal{A}$. $N_{f}$ is closed [11] and the map $\left(\mathcal{A} / N_{f}\right)^{2} \longrightarrow \mathbb{C}$ defined by $\left(a+N_{f}, b+N_{f}\right)=f\left(b^{*} a\right)$ is a well defined inner product on $\mathcal{A} / N_{f}$. We denote $H_{f}$ the Hilbert completion of $\mathcal{A} / N_{f}$. If $a \in \mathcal{A}$, we define an operator $\phi(a) \in B\left(\mathcal{A} / N_{f}\right)$ by setting $\phi(a)\left(b+N_{f}\right)=a b+N_{f}$. The inequality $\phi(a) \leq\|a\|$ holds since we have $\left.\left\|\phi(a)\left(b+N_{f}\right)\right\|^{2}=f\left(b^{*} a^{*} a b\right)\right) \leq\|a\|^{2} f\left(b^{*} b\right) \leq\|a\|^{2}\left\|b+N_{f}\right\|^{2}$. The operator $\phi(a)$ has a unique extension to a bounded operator $\phi_{f}(a)$ on $H_{f}$. The map $\phi_{f}: \mathcal{A} \longrightarrow B\left(H_{f}\right)$ defined by $a=\phi_{f}(a)$ is a *-homomorphism. The representation $\left(H_{f}, \phi_{f}\right)$ of $\mathcal{A}$ is called the Gelfand Naimark-Segal representation associated to $f$ (GNS representation).

### 1.3.15: Definition; Calkin algebra.

Calkin algebra denoted by $B(H) / K(H)$ is the quotient of $B(H)$, the algebra of all bounded linear operators on separable infinite dimensional Hilbert space $H$, by the ideal $K(H)$ of compact operators. Since the compact operator $K(H)$ is norm closed, minimal ideal in $B(H)$, the Calkin algebra is simple. As a C*-algebra, the Calkin algebra is remarkable because it is not isomorphic to an algebra of operators on a separable Hilbert space; instead, a larger Hilbert space has to be chosen. (By GNS theorem, every C*-algebra is isomorphic to an algebra of operators on a Hilbert space, for many other simple C*-algebras, there are explicit descriptions of such Hilbert spaces, but for the Calkin algebra this is not the case).

### 1.3.16: Remark.

If $K(H)$ is an ideal of $B(H)$, then $B(H) / K(H)$ is a $\mathrm{C}^{*}$-algebra with the multiplication given by
$(T+K(H))(S+K(H))=T S+K(H) \forall T, S \in B(H)$.
Calkin algebra is a vector space if we define addition as below;
For $B(H) / K(H)=\{T+K(H): T \in B(H)\}$,
$(T+K(H))+(S+K(H))=(T+S)+K(H) \forall T, S \in B(H)$.

### 1.3.17: Lemma.

Let $K(H)$ be a subspace of $B(H)$. Then the set of all cosets
$B(H) / K(H)=\{T+K(H): T \in B(H)\}$ is abelian under coset addition;
$(T+K(H))+(S+K(H))=(T+S)+K(H)$. In order for the product
$(T+K(H))(S+K(H))=T S+K(H)$ to be well defined, we must have,
$S+K(H)=S^{\prime}+K(H) \Longrightarrow T S+K(H)=T S^{\prime}+K(H)$ or equivalently,
$S-S^{\prime} \in K(H) \Longrightarrow T\left(S-S^{\prime}\right)=\left(S-S^{\prime}\right) T \in K(H)$. But $S-S^{\prime}$ may be any
element of $K(H)$ and $T$ any element of $B(H)$ and so this condition implies that $K(H)$ must be ideal.

Conversely, if $K(H)$ is an ideal, then the coset multiplication is well defined.

### 1.3.18: Theorem.

Let $B(H)$ be the set of all bounded operators on $H$ and $K(H)$ the set of compact operators on $H$. Then

$$
\begin{equation*}
\|T+S\|=\inf \{\|T+S\|: S \in K(H)\} \tag{1.8}
\end{equation*}
$$

defines a norm on the Calkin algebra $B(H) / K(H) \forall T \in B(H)$.

## Proof.

(i) $\|T+S\| \geq 0$ is clear since
$\|T+S\|=\inf \{\|T+S\|:\|T\|=1, S \in K(H)\}$.
Also,
$\|T+S\|=0$ if and only if $\|T+S\|=0$ implies that $\|T\|=0$ since the zero element in $B(H) / K(H)$ is the coset $0+K(H)=K(H)$ i.e. $0+S=S, S \in K(H)$.
(ii) $\|\alpha(T+S)\|=\inf \{\|\alpha(T+S)\|: S \in K(H)\}$

$$
\begin{aligned}
& =\inf \{|\alpha|\|T+S\|: S \in K(H)\} \\
& =|\alpha| \inf \{\|T+S\|: S \in K(H)\} \\
& =|\alpha|\|T+S\| .
\end{aligned}
$$

(iii) $\|(T+R)+S\|=\inf \{\|(T+R)+S\|: S \in K(H)\}$ for all $T, R \in B(H)$

$$
\begin{aligned}
& =\inf \left\{\|\left(T+S_{1}\right)+\left(R+S_{2}\right): S_{1}, S_{2} \in K(H)\right\} \\
& \leq \inf \left\{\left\|T+S_{1}\right\|: S_{1} \in K(H)\right\}+\inf \left\{\left\|R+S_{2}\right\|: S_{2} \in\right. \\
& K(H)\} \\
& =\left\|T+S_{1}\right\|+\left\|R+S_{2}\right\|
\end{aligned}
$$

### 1.3.19: Definition;Span of $S$.

Let $S$ be a non-empty subset of a linear space $X$ over the field $\mathbb{K}$. The set of all linear combinations of elements of $S$ is called the space spanned by $S$ and is represented by $[S]$ i.e. $[S]=\left\{\alpha_{1} x_{1}+\ldots . .+\alpha_{n} x_{n}\right\}: n \in \mathbb{N}, x_{i} \in S$ and $\alpha_{i} \in \mathbb{K}$ for $i=1, \ldots, n$.

### 1.3.20: Definition; Convex set.

Let $X$ be a linear space. A subset $M$ of the linear space $X$ is convex if. for all $x, y \in M$, and for any positive real number $t$ satisfying $0<t<1$, $t x+(1-t) y \in M$.

### 1.3.21: Lemma.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be points in the convex set $M$ and let $a_{1}, a_{2}, \ldots ., a_{n}$ be nonnegative scalars with $a_{1}+a_{2}+\ldots . .+a_{n}=1$; then $a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n} \in M$.

### 1.3.22: Definition; Convex hull.

If $M$ is a subset of a linear space $X$, then a convex hull of $M$, represented by $\left(C_{o} M\right)$ is the smallest convex subset of $X$ containing $M$ i.e. the intersection of all the convex subsets of $X$ that contain $M$.

### 1.3.23: Remark.

The intersection of any convex subsets of $X$ is also convex.

### 1.4 Tensor products

Tensor product, denoted by $\otimes$, may be applied in different contexts to vectors, matrices, tensors, vector spaces, algebras, topological vector spaces and modules. In each case the significance of the symbol $\otimes$ is the same; the most general, bilinear map.

Let $U$ and $V$ be vector spaces over the same field $F$, and let $T$ be the subspace of the free vector space $£_{u \times v}$ on $U \times V$ generated by all vectors of the form;
(i) $r(u, v)+s\left(u^{\prime}, v\right)-\left(r u+s u^{\prime}, v\right)$
(ii) $r(u, v)+s\left(u, v^{\prime}\right)-\left(u, r v+s v^{\prime}\right) \forall r, s \in F, u, u^{\prime} \in U$ and $v, v^{\prime} \in V$

The quotient space $£_{u \times v} / T$ is called the tensor product of $U$ and $V$ denoted by $U \otimes V$. An element of $U \otimes V$ has the form $\Sigma r_{i}\left(u_{i}, v_{i}\right)+T$. The coset $(u, v)+T$ is denoted by $u \otimes v$ and therefore any element $\mu$ of $U \otimes V$ has the form $\mu=\sum_{i} u_{i} \otimes v_{i}$. We note that by (i) and (ii), any element of $T$ is equal to the zero vector.

Given bases $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ for $U$ and $V$ respectively, the tensors of the form $u_{i} \otimes v_{i}$ forms a basis for $U \otimes V$. The dimensions of the tensor product therefore is the product of the dimensions of the original spaces, for example, $R^{m} \otimes R^{n}$ will have dimension $m n$.

### 1.4.1 Bilinear maps and tensor products

A mapping $f$ from the cartesian product $X \times Y$ of vector spaces into a vector space $Z$ is bilinear if it is linear in each variable i.e.
$f\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, y\right)=\alpha_{1} f\left(x_{1}, y\right)+\alpha_{2} f\left(x_{2}, y\right)$ and
$f\left(x, \beta_{1} y_{1}+\beta_{2} y_{2}\right)=\beta_{1} f\left(x, y_{1}\right)+\beta_{2} f\left(x, y_{2}\right) \forall x, x_{1}, x_{2} \in X, y, y_{1}, y_{2} \in Y$ and scalars $\alpha_{i}, \beta_{i},(i=1,2)$. We write $B(X, Y ; Z)$ to denote the vector space of bilinear mappings from the product $X \times Y$ into $Z$; (the set of all bilinear functions from $X \times Y$ to $Z$ ). When $Z$ is a scalar field we denote the corresponding space of bilinear forms simply by $B(X \times Y)$ i.e. bilinear
function $f: X \times Y \longrightarrow F$ with values in the base field $F$ is a bilinear form on $X \times Y$.

### 1.4.1.1: Lemma.

Let $f$ be a mapping from a cross product space to the tensor product space $f: X \times Y \longrightarrow X \otimes Y$ defined by $f(x, y)=x \otimes y$. Then $f$ is a bilinear map.

## Proof.

Let $x, x_{1}, x_{2} \in X$ and $y, y_{1}, y_{2} \in Y$. Also let $\alpha, \beta \in \mathbb{K}$.
Linearity in $X$

$$
\begin{aligned}
f\left(\alpha x_{1}+\beta x_{2}, y\right) & =\left(\alpha x_{1}+\beta x_{2}\right) \otimes y \\
& =\left(\alpha x_{1} \otimes y\right)+\left(\beta x_{2} \otimes y\right) \\
& =\alpha\left(x_{1} \otimes y\right)+\beta\left(x_{2} \otimes y\right) \\
& =\alpha f\left(x_{1}, y\right)+\beta f\left(x_{2}, y\right)
\end{aligned}
$$

Linearity in $Y$.

$$
\begin{aligned}
f\left(x, \alpha y_{1}+\beta y_{2}\right) & =x \otimes\left(\alpha y_{1}+\beta y_{2}\right) \\
& =\left(x \otimes \alpha y_{1}\right)+\left(x \otimes \beta y_{2}\right) \\
& =\alpha\left(x \otimes y_{1}\right)+\beta\left(x \otimes y_{2}\right) \\
& =\alpha f\left(x, y_{1}\right)+\beta f\left(x, y_{2}\right) .
\end{aligned}
$$

### 1.4.1.2: Remark.

The tensor product $X \otimes Y$, of vector spaces $X$ and $Y$ can be constructed as a space of linear functionals on $B(X \times Y)$ in the following ways. For $x \in X$, $y \in Y$, we denote $x \otimes y$ the functional given by evaluation at the point $(x, y)$ i.e. $(x \otimes y)(f)=\langle f, x \otimes y\rangle=f(x, y)$ for each bilinear form on $X \times Y$. The tensor product $X \otimes Y$ is the subspace of the dual $B(X \times Y)^{*}$ spanned by these elements. Thus a typical tensor in $X \otimes Y$ has the form $\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes y_{i}$ $\forall n \in \mathbb{N}, \lambda_{i} \in \mathbb{K}, x \in X$ and $y \in Y$. We also note that the space $(X \times Y)^{*}$
(the dual space of $X \times Y$ containing all linear functionals on that space) corresponds naturally to the space of all bilinear functionals on $X \times Y$ i.e. every bilinear functional is a functional on the tensor product and vise versa. Whenever $X$ and $Y$ are finite dimensional, there is a natural isomorphism between $X^{*} \otimes Y^{*}$ and $(X \otimes Y)^{*}$. For vector spaces of arbitrary dimension we only have an inclusion $X^{*} \otimes Y^{*} \subset(X \otimes Y)^{*}$. So the the tensors of linear functionals are bilinear functionals. This gives us a new way to look at the space of bilinear functionals as a tensor product itself.

### 1.4.2 Algebraic properties of tensor products.

Tensor products obey a number of nice rules. For matrices $A, B, C, D$, vectors $U, V, W$ and scalars $a, b, c, d$, the following hold;
(1) $(A \otimes B)(C \otimes D)=A C \otimes B D$
(2) $(A \otimes B)(U \otimes V)=A U \otimes B V$
(3) $(U+V) \otimes W=U \otimes W+V \otimes W$
(4) $U \otimes(V+W)=U \otimes V+U \otimes W$
(5) $a U \otimes b V=a b(U \otimes V)$
(6) $(U \otimes V)^{*}=U^{*} \otimes V^{*}$
(7) $(U \otimes V) \otimes W=U \otimes(V \otimes W)$
(8) $(\beta U) \otimes V=U \otimes(\beta V)$
(9) $(V \otimes U)^{-1}=V^{-1} \otimes U^{-1}$
i.e. $(U \otimes V)\left(U^{-1} \otimes V^{-1}\right)=U U^{-1} \otimes V V^{-1}=I \otimes I=I$

This shows that $(U \otimes V)^{-1}=U^{-1} \otimes V^{-1}$.
(10) Thus for matrices
$\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \otimes U=\left(\begin{array}{cc}A \otimes U & B \otimes U \\ C \otimes U & D \otimes U\end{array}\right)$
which specializes for scalars too
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \otimes U=\left(\begin{array}{ll}a U & b U \\ c U & d U\end{array}\right)$
We note that the conjugate transpose distributes over tensor products such that $(A \otimes B)^{t}=A^{t} \otimes B^{t}$.

### 1.4.3 Universal property of tensor products

The space of all bilinear maps from $X \times Y$ to another vector space $Z$ is naturally isomorphic to the space of all linear maps from $X \otimes Y$ to $Z$. This is built into the construction; $X \otimes Y$ has all relations that are necessary to ensure that a homomorphism from $X \otimes Y$ to $Z$ will be linear.

### 1.4.3.1: Lemma.

Let $X$ and $Y$ be vector spaces over the same field $F$. There exists $X \otimes Y$ called tensor product of $X$ and $Y$ with a canonical bilinear homomorphism $f: X \times Y \longrightarrow X \otimes Y$ distinguished up to isomorphism, by the following universal property; Every bilinear homomorphism $\phi: X \times Y \longrightarrow Z$ lifts to a unique homomorphism $\widetilde{\phi}: X \otimes Y \longrightarrow Z$ such that $\phi(x, y)=\widetilde{\phi}(x \otimes y)$ for all $x \in X$ and $y \in Y$.

## Proof.

Since $f(x, y)=x \otimes y=(x, y)+T$, the map $f: X \times Y \longrightarrow X \otimes Y$ is a
canonical injection $j: X \times Y \longrightarrow £_{X \times Y}$ followed by a canonical projection $\pi: £_{X \times Y} \longrightarrow X \otimes Y=£_{X \times Y} / T$ i.e. $f=\pi o j$

The universal property of free vector spaces implies that there is a unique linear transformation $\sigma: £_{X \times Y} \longrightarrow Z$ for which $\sigma o j=\phi$. Since $\phi$ is bilinear, it sends any of the vectors
(i) $r(x, y)+s\left(x^{\prime}, y\right)-\left(r x+s x^{\prime}, y\right)$
(ii) $r(x, y)+s\left(x, y^{\prime}\right)-\left(x, s y+s y^{\prime}\right)$
that generates $T$ to the zero vector, so $T \subset \operatorname{ker}(\sigma)$. Hence there exists a unique linear transformation $\widetilde{\phi}: X \times Y \longrightarrow Z$ for which $\widetilde{\phi} 0 \pi=\sigma$. Thus $\widetilde{\phi} \circ f=\widetilde{\phi} \circ \pi \circ j=\sigma \circ j=\phi$. Moreover, if $\widetilde{\phi} \circ f=\phi$, then $\sigma^{\prime}=\widetilde{\phi}^{\prime} o \pi: £_{X \times Y} \longrightarrow Z$ is a linear transformation for which $\sigma^{\prime} \circ j(x, y)=\tilde{\phi} \circ \pi \circ j(x, y)=\tilde{\phi} \circ f(x, y)=\phi(x, y)=\sigma o j(x, y)$ and so $\sigma^{\prime} o j=\sigma o j \Rightarrow \sigma^{\prime}=\sigma \Rightarrow \widetilde{\phi}^{\prime}=\phi$. Hence $\widetilde{\phi}$ is unique.

### 1.4.3.2: Remark.

The universal property of tensor products says that for each bilinear function $\phi: X \times Y \longrightarrow Z$, there corresponds a unique linear function $\widetilde{\phi}: X \otimes Y \longrightarrow Z$ through which the function $f: X \times Y \longrightarrow X \otimes Y$ is factored i.e.
$\phi=\widetilde{\phi} \circ f$. This establishes a map $\psi: B(X, Y ; Z) \longrightarrow \mathfrak{L}(X \otimes Y, Z)$ defined by $\psi(\phi)=\tilde{\phi}$ where $\psi(\phi)$ is a unique linear map $\psi(\phi): X \otimes Y \longrightarrow Z$ defined by $\psi(\phi)(x \otimes y)=\phi(x, y)$.
We observe that $\psi$ is linear, since if $\phi, t \in B(X, Y ; Z)$, then $\forall r, s \in F$ $[r \psi(\phi)+s \psi(t)](x \otimes y)=r(\phi)(x, y)+s(t)(x, y)=(r \phi+s t)(x, y)$ and so the uniqueness part of the universal property implies that $r \psi(\phi)+s \psi(t)=\psi(r \phi+s t)$.

Also, $\psi$ is surjective since if $\widetilde{\phi}: X \otimes Y \longrightarrow Z$ is any linear map, then $\phi=\widetilde{\phi} \circ f: X \times Y \longrightarrow Z$ is bilinear, and by the uniqueness part of the universal property, $\psi(\phi)=\widetilde{\phi}$.

Finally, $\psi$ is injective, for if $\psi(\phi)=0$ then $\phi=\psi(\phi) \circ f=0$.
This implies that for $X, Y, Z$ vector spaces over the same field $F$ the map $\psi: B(X, Y ; Z) \longrightarrow \mathfrak{L}(X \otimes Y ; Z)$ defined by the fact that $\psi(\phi)$ is the unique linear map for which $\phi=\psi(\phi)$ of is an isomorphism. Thus $B(X, Y ; Z) \simeq \mathfrak{L}(X \otimes Y ; Z)$.

### 1.4.4 Tensor norm

## Proposition 1

Let $X$ and $Y$ be Hilbert spaces. We denote $X \otimes Y$ the tensor product space between $X$ and $Y$. The elements of $X \otimes Y$ are denoted by $x \otimes y$ where $x \in X$ and $y \in Y$. Then $\|x \otimes y\|=\|x\|\|y\|$ defines a norm.

## Proof.

We shall prove that $\|x \otimes y\|$ satisfy all the axioms of a norm.
(i) $\|x \otimes y\| \geq 0$ and that $\|x \otimes y\|=0 \Leftrightarrow x \otimes y=0$ is clear.
(ii) $\|\alpha(x \otimes y)\|=|\alpha|\|x \otimes y\| \alpha \in \mathbb{K}$.

Now, $\|x \otimes y\|^{2}=\langle x \otimes y, x \otimes y\rangle=\langle x, x\rangle\langle y, y\rangle=\|x\|^{2}\|y\|^{2}$ and by the algebraic properties of tensor products,

$$
\begin{aligned}
& \alpha(x \otimes y)= \\
& \begin{aligned}
\|\alpha(x \otimes y)\|^{2} & =\langle\alpha x \otimes y)=(x \otimes \alpha y), \text { so } \\
& =\langle x \otimes \alpha y, x \otimes \alpha y\rangle \\
& =\langle\alpha x, \alpha x\rangle\langle y, y\rangle \\
& =|\alpha|^{2}\|x\|^{2}\|y\|^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =|\alpha|\|x \otimes y\| \\
\|\alpha(x \otimes y)\| & =|\alpha|\|x \otimes y\| .
\end{aligned}
$$

(iii) For all $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$ we have that

$$
\begin{aligned}
& \left\|\left(x_{1} \otimes y_{1}\right)+\left(x_{2} \otimes y_{2}\right) \leq\right\| x_{1} \otimes y_{1}\|+\| x_{2} \otimes y_{2} \| . \text { Now, } \\
& \left\|\left(x_{1} \otimes y_{1}\right)+\left(x_{2} \otimes y_{2}\right)\right\|^{2}=\left\langle x_{1} \otimes y_{1}+x_{2} \otimes y_{2}, x_{1} \otimes y_{1}+x_{2} \otimes y_{2}\right\rangle \\
& =\left\langle x_{1} \otimes y_{1}, x_{1} \otimes y_{1}\right\rangle+\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle+\left\langle x_{2} \otimes y_{2}, x_{1} \otimes y_{1}\right\rangle+\left\langle x_{2} \otimes y_{2}, x_{2} \otimes y_{2}\right\rangle \\
& =\left\langle x_{1}, x_{1}\right\rangle\left\langle y_{1}, y_{1}\right\rangle+\left\langle x_{1}, x_{2}\right\rangle\left\langle y_{1}, y_{2}\right\rangle+\left\langle x_{2}, x_{1}\right\rangle\left\langle y_{2} y_{1}\right\rangle+\left\langle x_{2}, x_{2}\right\rangle\left\langle y_{2}, y_{2}\right\rangle \\
& =\left\|x_{1}\right\|^{2}\left\|y_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\left\|y_{2}\right\|^{2}+\left\langle x_{1}, x_{2}\right\rangle\left\langle y_{1}, y_{2}\right\rangle+\overline{\left\langle x_{1}, x_{2}\right\rangle\left\langle y_{1}, y_{2}\right\rangle} \\
& =\left\|x_{1}\right\|^{2}\left\|y_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\left\|y_{2}\right\|^{2}+2 \operatorname{Re}\left\langle x_{1}, x_{2}\right\rangle\left\langle y_{1}, y_{2}\right\rangle . \\
& \leq\left\|x_{1}\right\|^{2}\left\|y_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\left\|y_{2}\right\|^{2}+2\left\|x_{1}\right\| x_{2}\| \| y_{1}\left\|y_{2}\right\| \\
& =\left\{\left\|x_{1}\right\|\left\|y_{1}\right\|+\left\|x_{2}\right\|\left\|y_{2}\right\|\right\}^{2} \text { by Cauchy-Schwarz inequality. } \\
& \Rightarrow\left\|\left(x_{1} \otimes y_{1}\right)+\left(x_{2} \otimes y_{2}\right)\right\| \leq\left\|x_{1}\right\|\left\|y_{1}\right\|+\left\|x_{2}\right\|\left\|y_{2}\right\| .
\end{aligned}
$$

## Proposition 2

Let $X$ and $Y$ be vector spaces, let $E$ and $F$ be linearly independent subsets of $X$ and $Y$ respectively. Then $\{x \otimes y: x \in E, y \in F\}$ is a linearly independent subset of $X \otimes Y$.

## Proof.

Suppose we have that $\mu=\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes y_{i}=0$ where $x_{i} \in E$ and $y_{i} \in F$. Let $f, g$ be linear functionals on $X$ and $Y$ respectively and consider the bilinear form defined by $\phi(x, y)=f(x) g(y)$. We have $\mu(\phi)=0$ and so $\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) g\left(y_{i}\right)=g\left(\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) y_{i}\right)=0$. Since this holds for every $g \in Y^{*}$, we can conclude that $\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) y_{i}=0$ and so by linear independence of $F$, we have $\lambda_{i} f\left(x_{i}\right)=0$ for all $f \in X^{*}$. But by linear independence of $E$, each $x_{i}$ is non zero and it follows that $\lambda_{i}=0$ for all $i$. Thus if $X$ and $Y$ are finite dimensional spaces then $\operatorname{dim}(X \otimes Y)=\operatorname{dim}(X) \operatorname{dim}(Y)$.

### 1.4.3.3: Definition; Haagerup norm.

The Haagerup norm on the algebraic tensor product $B(H) \otimes B(H)$ is defined by $\left\|\phi_{n}\right\|=\inf \left\|\sum_{i=1}^{k} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i=1}^{k} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}$, where the infimum is taken over all possible representations of $\phi$ in the form $\phi=\sum_{i=1}^{k} a_{i} \otimes b_{i}$. By natural map; $B(H) \otimes B(H) \longrightarrow \mathcal{C B}(B(H))$ is defined by $\theta\left(\sum_{i} a_{i} \otimes b_{i}\right)(x)=\sum_{i} a_{i} x b_{i}$. We may algebraically identify $B(H) \otimes B(H)$ with the space of all elementary operators on $B(H)$. For each $\phi$ in $B(H) \otimes B(H)$ the completely bounded norm of $\theta(\phi)$ is equal to the Haagerup norm of $\phi[9] . \theta\left(\sum_{i} a_{i} \otimes b_{i}\right)(x)=$ $\sum_{i} a_{i} x b_{i}$. We may algebraically identify $B(H) \otimes B(H)$ with the space of all elementary operators on $B(H)$. For each $\phi$ in $B(H) \otimes B(H)$ the completely bounded norm of $\theta(\phi)$ is equal to the Haagerup norm of $\phi[9]$.

### 1.4.5 Statement of The Problem

Let $H$ be a complex Hilbert space, $T: H \rightarrow H$ a bounded linear operator and $B(H)$ the set of bounded linear operators on $H$. Clearly $B(H)$ is an algebra. Our main result shall concern the operator $T_{a, b}: B(H) \rightarrow B(H)$ defined by $T_{a, b}(x)=a x b+b x a$ for all $x \in H$ and $a, b$ fixed in $B(H)$. No formula is known for computing the norm of $T_{a, b}$. Clearly,
$\left\|T_{a, b / B(H)}\right\| \leq 2\|a\|\|b\|$. But in estimating the norm of $T_{a, b}$ in the opposite direction, the largest possible $c$ such that $\left\|T_{a, b / B(H)}\right\| \geq c\|a\|\|b\|$ for all $a, b \in$ $B(H)$ and $c \in \mathbb{R}$ is not known. Nyamwala [12] proved $c=2$ in $B\left(\mathbf{C}^{2}\right)$. We shall extend our research to investigate the norm of derivation of the elementary operator and the corresponding tensor norm. We shall further establish the relationship between the norm of derivation of the elementary operator $T_{a, b}$ and the corresponding tensor norm.

### 1.4.6 Objectives of the study

(i) To investigate the lower bound of the operator $T_{a, b}$.
(ii) To investigate the derivation of the operator $T_{a, b}$.

## Chapter 2

## TENSOR PRODUCT <br> OPERATOR.

In this chapter we show that the tensor products $T \otimes S$ and $T \odot S$ are normed operators. We have also shown the relationship between the $\mathrm{C}^{*}$-norms; spatial, projective and Haagerup. Consequently, we prove that $\left\|T_{a, b}\right\| \geq 2\|a\|\|b\|$ on the injective tensor norm.

The standard tensor product of Hilbert spaces $H$ and $K$ shall be denoted by $H \widetilde{\otimes} K$ i.e. the tensor product $H \otimes K$ completed with respect to the norm induced by the inner product given on elementary tensors by $\left\langle x \otimes y, x^{\prime} \otimes y^{\prime}\right\rangle=\left\langle x, x^{\prime}\right\rangle_{H}\left\langle y, y^{\prime}\right\rangle_{K}$, so that $B(H) \otimes B(K) \subseteq B(H \widetilde{\otimes} K)$ via $(T \otimes S)(x \otimes y)=T(x) \otimes S(y)$ for all $T \in B(H), S \in B(K)$.

### 2.0.0: Theorem.

Let $H$ and $K$ be Hilbert spaces, $B(H)$ and $B(K)$ be sets of bounded linear operators on $H$ and $K$ respectively. Suppose that $T \in B(H)$ and $S \in B(K)$, then there is a unique linear bounded operator $T \widetilde{\otimes} S \in B(H \widetilde{\otimes} K)$ defined by
$(T \widetilde{\otimes} S)(x \otimes y)=T(x) \otimes S(y)$ for all $x \in H$ and $y \in K$. Moreover, $\|T \widetilde{\otimes} S\|=\|T\|\|S\|$.

## Proof.

The map $\phi: T \times S \longrightarrow T \otimes S$ defined by $\phi(T, S)=T \otimes S$ is bilinear.
Linearity in $T$
Let $\alpha, \beta \in \mathbb{K}, T_{1}, T_{2} \in B(H)$ and $S \in B(K)$. Then

$$
\begin{aligned}
\phi\left(\alpha T_{1}+\beta T_{2}, S\right) & =\left(\alpha T_{1}+\beta T_{2}\right) \otimes S \\
& =\left(\alpha T_{1} \otimes S\right)+\left(\beta T_{2} \otimes S\right) \\
& =\alpha\left(T_{1} \otimes S\right)+\beta\left(T_{2} \otimes S\right) \\
& =\alpha \phi\left(T_{1}, S\right)+\beta \phi\left(T_{2}, S\right) .
\end{aligned}
$$

Linearity in $S$.

$$
\begin{aligned}
\phi\left(T, \alpha S_{1}+\beta S_{2}\right) & =T \otimes\left(\alpha S_{1}+\beta S_{2}\right) \forall S_{1}, S_{2} \in B(K) . \\
& =\left(T \otimes \alpha S_{1}\right)+\left(T \otimes \beta S_{2}\right) \\
& =\alpha\left(T \otimes S_{1}\right)+\beta\left(T \otimes S_{2}\right) \\
& =\alpha \phi\left(T, S_{1}\right)+\beta \phi\left(T, S_{2}\right) .
\end{aligned}
$$

The operator $T \otimes S: H \otimes K \longrightarrow H \otimes K$ is bounded. We may assume that $T$ and $S$ are unitaries, since unitaries span the $\mathrm{C}^{*}$-algebras $B(H)$ and $B(K)$. Now, $\sum_{i=1}^{n} x_{i} \otimes y_{i} \in H \otimes K$ where $y_{1}, \ldots ., y_{n}$ are orthogonal. Hence

$$
\begin{aligned}
\left\|(T \otimes S)\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\|^{2} & =\left\|\sum_{i=1}^{n} T\left(x_{i}\right) \otimes S\left(y_{i}\right)\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|T\left(x_{i}\right) \otimes S\left(y_{i}\right)\right\|^{2} \\
& \left(\text { since } S \left(y_{1}, \ldots, S\left(y_{n}\right)\right.\right. \text { are orthogonal). } \\
& =\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{2}\left\|S\left(y_{i}\right)\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\left\|y_{i}\right\|^{2} \\
& =\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|^{2}
\end{aligned}
$$

Consequently, $\|T \otimes S\|=1$.

Thus, for all operators $T, S$ on $H, K$ respectively, the linear map $T \otimes S$ is bounded on $H \otimes K$ and hence has an extension to a bounded linear map $T \widetilde{\otimes} S$ on $H \widetilde{\otimes} K$. The maps $B(H) \longrightarrow B(H \widetilde{\otimes} K)$ defined by $T \longrightarrow T \widetilde{\otimes} e_{K}$ and $B(K) \longrightarrow B(H \widetilde{\otimes} K)$ defined by $S \longrightarrow e_{H} \widetilde{\otimes} S$ are injective *-homomorphism.

For example,
$\phi(T)=T \widetilde{\otimes} e_{K}=\phi(T)$,
$\phi\left(T_{1} T_{2}\right)=\phi\left(T_{1}\right) \phi\left(T_{2}\right)$ and
$\phi\left(T^{*}\right)=\phi(T)^{*}$ for all $T_{1}, T_{2} \in B(H)$.
Consequently, the maps are isometric for if $T_{1} \neq T_{2}$, then $\phi\left(T_{1}\right) \neq \phi\left(T_{2}\right)$.
Hence, $\|T \widetilde{\otimes} e\|=\|T\|$ and $\|e \widetilde{\otimes} S\|=\|S\|$.
So, $\|T \widetilde{\otimes} S\|=\|(T \widetilde{\otimes} e)(e \widetilde{\otimes} S)\| \leq\|T\|\|S\|$.
If $\epsilon$ is a sufficiently small positive number, and if $T, S \neq 0$, then there are unit vectors $x$ and $y$ such that $\|T(x)\|>\|T\|-\epsilon>0$ and $\|S(y)\|>\|S\|-\epsilon>0$.
Hence, $\|(T \widetilde{\otimes} S)(x \otimes y)\|=\|T(x)\|\|S(y)\|>(\|T\|-\epsilon)(\|S\|-\epsilon)$. So
$\|T \widetilde{\otimes} S\|>(\|T\|-\epsilon)(\|S\|-\epsilon)$ and as $\epsilon \longrightarrow 0$ we get
$\|T \widetilde{\otimes} S\| \geq\|T\|\|S\|$. See [11].

### 2.0.1: Lemma.

Let $H$ and $K$ be Hilbert spaces and suppose that $T, T^{\prime} \in B(H)$ and $S, S^{\prime} \in$ $B(K)$. Then
(i) $(T \widetilde{\otimes} S)\left(T^{\prime} \widetilde{\otimes} S^{\prime}\right)=T T^{\prime} \widetilde{\otimes} S S^{\prime}$ and
(ii) $(T \widetilde{\otimes} S)^{*}=T^{*} \widetilde{\otimes} S^{*}$.

## Proof.

(i) The proof follows from the following theorem.

### 2.0.2: Theorem.

If $\mathcal{A}$ and $\mathcal{B}$ are algebras, then there is a unnique associative © multiplication $M$ on the vector space $\mathcal{A} \otimes \mathcal{B}$ for which the equation
$M\left(a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right)=\left(a_{1} a_{2}\right) \otimes\left(b_{1} b_{2}\right)$ holds for all $a_{1}, a_{2} \in \mathcal{A}$ and $b_{1} b_{2} \in \mathcal{B}$

## Proof.

Let $\varrho: \mathcal{A} \longrightarrow \mathfrak{L}(\mathcal{A})$ and $\rho: \mathcal{B} \longrightarrow \mathfrak{L}(\mathcal{B})$ be left regular representations of $\mathcal{A}$ and $\mathcal{B}$ respectively. Consider a bilinear map $\phi: \mathcal{A} \times \mathcal{B} \longrightarrow \mathcal{L}(\mathcal{A} \otimes \mathcal{B})$ defined by $\phi(a, b)=\varrho(a) \rho(b)$ where $\varrho(a) \otimes \rho(b)$ is the unique linear transformation on $\mathcal{A} \otimes \mathcal{B}$ where, $\varrho(a) \otimes \rho(b)[c \otimes d]=(a c) \otimes(b d)$ for all $c \otimes d \in \mathcal{A} \otimes \mathcal{B}$. By the universal property of tensor products, there is a unique linear transformation $\tilde{\phi}: \mathcal{A} \otimes \mathcal{B} \longrightarrow \mathcal{L}(\mathcal{A} \otimes \mathcal{B})$ where $\widetilde{\phi}(a \otimes b)=\phi(a, b)$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. We define $M((\mathcal{A} \otimes \mathcal{B}) \times(\mathcal{A} \otimes \mathcal{B})) \longrightarrow \mathcal{A} \otimes \mathcal{B}$ by $M(\xi, \eta)=\widetilde{\phi} \xi[\eta]$ for all $\xi, \eta \in \mathcal{A} \otimes \mathcal{B}$. Since $\widetilde{\phi}$ and $\widetilde{\phi} \xi$ are linear transformations, $M$ is a bilinear function, thus it remains to show that $M$ is an associative multiplication. To do so, we note that by bilinearity of $M$, it is sufficient to show that $M$, it is sufficient to show that $M$ is associative on the spanning set of elementary tensors.

## Verification.

$$
\begin{aligned}
M\left(\left(a_{1} \otimes b_{1}\right), M\left(a_{2} \otimes b_{2}, a_{3} \otimes b_{3}\right)\right) & =\varrho\left(a_{1}\right) \otimes \rho\left(b_{1}\right)\left[\varrho\left(a_{2}\right) \otimes \rho\left(b_{2}\right)\left(a_{3} \otimes b_{3}\right)\right] \\
& =\varrho\left(a_{1}\right) \otimes \rho\left(b_{1}\left[\left(a_{2} a_{3}\right) \otimes\left(b_{2} b_{3}\right)\right]\right. \\
& =a_{1}\left(a_{2} a_{3}\right) \otimes\left(b_{1} b_{2}\right) b_{3} \\
& =\left(a_{1} a_{2}\right) a_{3} \otimes\left(b_{1} b_{2}\right) b_{3} \\
& =M\left(M\left(a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right) a_{3} \otimes b_{3}\right) .
\end{aligned}
$$

Thus $M$ is an associative multiplication on $\mathcal{A} \otimes \mathcal{B}$. Suppose now
$M^{\prime}$ is another such multiplication and similarly we can show that $M^{\prime}\left(a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right)=\left(a_{1} a_{2}\right) \otimes\left(b_{1} b_{2}\right)$ holds $\forall a_{1}, a_{2} \in \mathcal{A}$ and ${ }^{\leftarrow} b_{1}, b_{2} \in \mathcal{B}$. Then $M$ and $M^{\prime}$ have identical values on spanning set of $\mathcal{A} \otimes \mathcal{B}$ and therefore $M=M^{\prime}$, which proves that $M$ is unique.
(ii) $(T \widetilde{\otimes} S)^{*}=T^{*} \widetilde{\otimes} S^{*} \Leftrightarrow(T \widetilde{\otimes} S)^{*}(x \otimes y)=T^{*}(x) \widetilde{\otimes} S^{*}(y) \forall x \otimes y \in H \otimes K$. By definition of $(T \widetilde{\otimes} S)^{*}$,
$\left\langle(T \widetilde{\otimes} S) x^{\prime} \otimes y^{\prime}, x \otimes y\right\rangle=\left\langle x^{\prime} \otimes y^{\prime},(T \widetilde{\otimes} S)^{*} x \otimes y\right\rangle \forall x \otimes y, x^{\prime} \otimes y^{\prime} \in H \otimes K$.
Also, $\left\langle(T \widetilde{\otimes} S) x^{\prime} \otimes y^{\prime}, x \otimes y\right\rangle=\left\langle T\left(x^{\prime}\right) \widetilde{\otimes} S\left(y^{\prime}\right), x \otimes y\right\rangle$
$=\left\langle T\left(x^{\prime}\right), x\right\rangle \tilde{\otimes}\left\langle S\left(y^{\prime}\right), y\right\rangle$
$=\left\langle\left(x^{\prime}, T^{*} x\right\rangle \widetilde{\otimes}\left\langle\left(y^{\prime}, S^{*} y\right\rangle\right.\right.$
$=\left\langle x^{\prime} \widetilde{\otimes} y^{\prime}, T^{*} x \widetilde{\otimes} S^{*} y\right\rangle$
i.e. $\left\langle x^{\prime} \otimes y^{\prime},(T \widetilde{\otimes} S)^{*} x \otimes y\right\rangle=\left\langle x^{\prime} \otimes y^{\prime}, T^{*} x \widetilde{\otimes} S^{*} y\right\rangle$.

### 2.0.3:Theorem.

Let $H$ and $K$ be Hilbert spaces. Then there is a unique inner product $\langle.,$. on $H \otimes K$ such that $\left\langle x \otimes y, x^{\prime} \otimes y^{\prime}\right\rangle=\left\langle x, x^{\prime}\right\rangle\left\langle y, y^{\prime}\right\rangle \forall x, x^{\prime} \in H$ and $y, y^{\prime} \in K$.

## Proof.

Let $\tau: H \longrightarrow \mathbb{C}$ and $\rho: K \longrightarrow \mathbb{C}$ be conjugate linear maps. Then there is a unique conjugate linear map, $\tau \otimes \rho: H \otimes K \longrightarrow \mathbb{C}$ defined by $\tau \otimes \rho(x \otimes y)=$ $\tau(x) \otimes \rho(y) \forall x \in H, y \in K$. We note that $\bar{\tau}$ and $\bar{\rho}$ are linear and set $\tau \otimes \rho=(\bar{\tau} \otimes \bar{\rho})^{-}$. Now, $\tau x$ is a conjugate linear functional defined by setting $\tau x(y)=\langle x, y\rangle \forall x \in H$. If $X$ is the space of all conjugate linear functionals on $H \otimes K$, then the map from $H \times K$ defined by $(x, y)=\tau x \otimes \tau y$ is bilinear, i.e. $\forall \alpha, \beta \in \mathbb{K}, x, x^{\prime} \in H$,

$$
\begin{aligned}
\left(\alpha x+\beta x^{\prime}, y\right) & =\tau\left(\alpha x+\beta x^{\prime}\right) \otimes \tau y \\
& =(\tau \alpha x \otimes \tau y)+\left(\tau \beta x^{\prime} \otimes \tau y\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha(\tau x \otimes \tau y)+\beta\left(\tau x^{\prime} \otimes \tau y\right) \\
& =\alpha(x, y)+\beta\left(x^{\prime}, y\right)
\end{aligned}
$$

$$
\text { Also, } \begin{aligned}
\left(x, \alpha y+\beta y^{\prime}\right) & =\tau x \otimes \tau\left(\alpha y+\beta y^{\prime}\right) \\
& =(\tau x \otimes \tau \alpha y)+\left(\tau x \otimes \tau y^{\prime}\right) \\
& =\alpha(\tau x \otimes \tau y)+\beta\left(\tau x \otimes \tau y^{\prime}\right) \\
& =\alpha(x, y)+\beta\left(x, y^{\prime}\right) \forall y, y^{\prime} \in K
\end{aligned}
$$

And so by the universal property of tensor products, there exists a unique linear map $f: H \otimes K \longrightarrow X$ defined by $f(x \otimes y)=\tau x \otimes \tau y \forall x \in H$ and $y \in K$. The map $\langle.,\rangle:.(H \otimes K)^{2} \longrightarrow \mathbb{C}$ defined by $\left(z, z^{\prime}\right)=f(z)\left(z^{\prime}\right)$ is a sesquilinear form on $H \otimes K \forall z \in H \otimes K$ such that $\left\langle x \otimes y, x^{\prime} \otimes y^{\prime}\right\rangle=\left\langle x, x^{\prime}\right\rangle\left\langle y, y^{\prime}\right\rangle$ for all $x, x^{\prime} \in H$ and $y, y^{\prime} \in K$. If $z \in H \otimes K$, then $z=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ for some $x_{1}, \ldots, x_{n} \in H$ and $y_{1}, \ldots, y_{n} \in K$. Let $e_{i}, . ., e_{m}$ be an orthonormal basis for the linear span of $y_{1}, \ldots, y_{n}$. Then $z=\sum_{i=1}^{n} x_{i} \otimes e_{i}$ for some $x_{1}, . ., x_{m} \in H$. So, $\left\langle z, z^{\prime}\right\rangle=\sum_{i, j=1}^{m}\left\langle x_{i}^{\prime} \otimes e_{i}, x_{j}^{\prime} \otimes e_{j}\right\rangle=\sum_{i, j=1}^{m}\left\langle x_{i}^{\prime}, x_{j}^{\prime}\right\rangle\left\langle e_{i}, e_{j}\right\rangle=\sum_{i=1}^{m}\left\|x_{i}^{\prime}\right\|^{2}$. Thus $\langle.,$.$\rangle is positive, and therefore if \langle z, z\rangle=0$ then for $x_{i}^{\prime} s$ we have $z=0$ for $i=1, \ldots, m$. Hence $\langle.,$.$\rangle is an inner product.$

### 2.0.4: Lemma.

If $E_{1}$ and $E_{2}$ are orthonormal basis for $H$ and $K$ as above respectively, then $E_{1} \otimes E_{2}=\left\{x \otimes y: x \in E_{1}, y \in E_{2}\right\}$ is an orthonormal basis for $H \widetilde{\otimes} K$. See [12] and [20] page 301 for the proof.

### 2.1 Norm of tensor product operator.

Let $V, V^{\prime}, W, W^{\prime}$ be vectors over the same field. Let $T: V \longrightarrow V^{\prime}$ and $S: W \longrightarrow W^{\prime}$ be operators. Then there is a unique linear operator

$$
\begin{equation*}
T \odot S: V \otimes W \longrightarrow V^{\prime} \otimes W^{\prime} \tag{2.1}
\end{equation*}
$$

defined by $T \odot S(x \otimes y)=T(x) \otimes S(y)$ for all $x \in V, y \in W$. The function $\widetilde{\phi}: V \times W \longrightarrow V^{\prime} \otimes W^{\prime}$ defined by $\widetilde{\phi}(x, y)=T(x) \otimes S(y)$ is bilinear and so by the universal property of tensor products, there exists a unique linear operator for which (2.1) holds. The map $T \odot S$ is called the tensor product of $T$ and $S$. The map $\phi: \mathfrak{L}(V, W) \otimes \mathfrak{L}\left(V^{\prime}, W^{\prime}\right) \longrightarrow \mathfrak{L}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right)$ defined by $\phi(T, S)=T \odot S$ is also bilinear and so there is a linear transformation $\psi: \mathfrak{L}(V, W) \otimes \mathfrak{L}\left(V^{\prime}, W^{\prime}\right) \longrightarrow \mathfrak{L}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right)$ defined by $\psi(T \otimes S)=T \odot S$. $\psi$ is injective.

We observe that any non zero product $\xi \in \mathfrak{L}(V, W) \otimes \mathfrak{L}\left(V^{\prime}, W^{\prime}\right)$ has the form $\xi=\sum_{i=1}^{n} T_{i} \otimes S_{i}$ where $T_{i}^{\prime} s$ and $S_{i}^{\prime} s$ are linearly independent. It suffices therefore to show that $\operatorname{ker}(\psi)=\{0\}$.

Suppose $\psi(\xi)=\psi\left(\sum_{i=1}^{n} T_{i} \otimes S_{i}\right)=0$ then $\forall v \in V, y \in W$,

$$
\begin{equation*}
\sum_{i=1}^{n} T_{i}(x) \otimes S_{i}(y)=0 \tag{2.2}
\end{equation*}
$$

Let us choose $x \in V$ so that $T_{i}(x) \neq 0$ and suppose that $T_{1}(x), \ldots, T_{k}(x)$ is a maximal linearly independent set among $T_{1}(x), . ., T_{n}(x)$. Then $T_{1}(x)=\sum_{i=1}^{k} r_{l, j} T_{j}(x)$ for $l=k+1, \ldots, n$. Hence equation (2.2) gives $0=\sum_{i=1}^{k} T_{i}(x) \otimes S_{i}(y)+\sum_{i=k+1}^{n}\left(\sum_{j=1}^{n} r_{i, j} T_{j}(x)\right) \otimes S_{l}(y)$
$=\sum_{i=1}^{k} T_{i}(x) \otimes S_{i}(y)+\sum_{j=1}^{k} T_{i}(x) \otimes \sum_{i=k+1}^{n} r_{i, j} S_{l}(y)$
$=\sum_{i=1}^{k} T_{i}(x) \otimes S_{i}(y)+\sum_{i=k+1}^{n} r_{i, j} S_{l}(y)$ and since $T_{1}(x), . ., T_{k}(x)$ are linearly independent, we must have $S_{i}(y)+\sum_{i=k+1}^{n} r_{i, j} S_{l}(y)=0$ for all $i=1, . ., k$ and
$y \in W$. So $S_{i}+\sum_{i=k+1}^{n} r_{i, j} S_{l}=0$ which is a contradiction to the fact that the $S_{i}^{\prime} s$ are linearly independent. Hence $\psi(\xi) \neq$ and so $\psi$ is injective. See [20] page 303.

### 2.1.1: The operator $T \odot S$ is both linear and bounded.

## Linearity

The map $T \odot S: V \otimes W \longrightarrow V^{\prime} \otimes W^{\prime}$ is defined by
$T \odot S\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)=\sum_{i=1}^{n} T\left(x_{i}\right) \otimes S\left(y_{i}\right) \forall x \in V, y \in W$. Let $\alpha, \beta \in \mathbb{K}$ and $\sum_{i=1}^{n} x_{i} \otimes y_{i}, \sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime} \in V \otimes W$. Then
$T \odot S\left(\alpha \sum_{i=1}^{n} x_{i} \otimes y_{i}+\beta \sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}\right)=$

$$
=T \odot S\left(\alpha \sum_{i=1}^{n} x_{i} \otimes y_{i}\right)+T \odot S\left(\beta \sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}\right)
$$

$$
=\alpha \sum_{i=1}^{n} T\left(x_{i}\right) \otimes S\left(y_{i}\right)+\beta \sum_{i=1}^{n} T\left(x_{i}^{\prime}\right) \otimes S\left(y_{i}^{\prime}\right)
$$

$$
=\alpha T \odot S\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)+\beta T \odot S\left(\sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}\right)
$$

Boundedness

$$
\begin{aligned}
\left\|T \odot S\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\| & =\left\|\sum_{i=1}^{n} T\left(x_{i}\right) \otimes S\left(y_{i}\right)\right\| \\
& \leq \sum_{i=1}^{n}\left\|T x_{i}\right\|\left\|S y_{i}\right\| \\
& \leq \sum_{i=1}^{n}\|T\|\left\|x_{i}\right\|\|S\|\left\|y_{i}\right\| \\
& =\|T\|\|S\| \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\| \\
& =\|T\|\|S\|\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\| .
\end{aligned}
$$

### 2.1.2: The norm of $T \odot S$.

$\|T \odot S\|=\sup _{\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|=1}\left\{\left\|T \odot S\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\|, x \in V, y \in W\right\}$

$$
\begin{gather*}
\leq \sup _{\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|=1}\left\{\frac{\|T\|\|S\|\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|}{\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|}, x \in V, y \in W\right\}=\|T\|\|S\| \\
\|T \odot S\| \leq\|T\|\|S\| \tag{2.3}
\end{gather*}
$$

Conversely,since

$$
\|T \odot S\|=\sup \left\{\frac{\left|T \odot S\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right|}{\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|}, x \in V, y \in W\right\}^{c}
$$

It follows that

$$
\|T \odot S\| \geq \frac{\left|T \odot S\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right|}{\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|}
$$

for all $\sum_{i=1}^{n} x_{i} \otimes y_{i} \in V \otimes W$ and $\sum_{i=1}^{n} x_{i} \otimes y_{i} \neq 0$

$$
\begin{equation*}
\|T\|\|S\| \geq\|T\|\|S\| \tag{2.4}
\end{equation*}
$$

So by equations (2.3) and (2.4) we have $\|T \odot S\|=\|T\|\|S\|$.

### 2.2 Tensor products of Banach spaces

The obvious way to define the tensor product of two Banach spaces A and B is to copy the method for Hilbert spaces; define a norm on the algebraic tensor product, then take the completion in this norm. The problem is that there are more than one natural way to define a norm on the tensor product. A cross norm $\|$.$\| on the algebraic tensor product of \mathbf{A}$ and B is a norm satisfying the conditions $\|a \otimes b\|=\|a\|\|b\|$ and $\left\|a^{*} \otimes b^{*}\right\|=\left\|a^{*}\right\| \| b^{*}$. Here $a^{*}$ and $b^{*}$ are the duals of $a$ and $b$ respectively and $\|\cdot\|^{*}$ is the dual of $\|\cdot\|$. There is the smallest cross norm $\|\cdot\|_{V}$ called the injective cross norm given by $\|\mu\|_{\vee}=\operatorname{Sup}\left|\left(a^{*} \otimes b^{*}\right)(\mu)\right|$ where the supremum is taken over all pairs $a^{*}$ and $b^{*}$ of norm at most one. The largest cross norm $\|\cdot\|_{\wedge}$ is called the projective cross norm given by $\|\mu\|_{\wedge}=\inf \sum_{i}\left\|a_{i}\right\|\left\|b_{i}\right\|$ where the infimum is taken over all finite decompositions $\mu=\sum_{i} a_{i} \otimes b_{i}$. The completion of the algebraic tensor products in these two norms are called injective and projective tensor products, denoted by $\mathbf{A} \otimes_{V} \mathbf{B}$ and $\mathbf{A} \otimes_{\wedge} \mathbf{B}$ respectively.

The norm used for the Hilbert space tensor product is not equal to either of these norms in general.

### 2.3 Tensor products of operator spaces

The operator space injective tensor product also known as spatial tensor product is defined as follows; if $X$ and $Y$ are operator spaces contained in $B(H)$ and $B(K)$ respectively, then $B(H \otimes K)$ assigns an operator space structure to $X \otimes Y$ which is independent of the particular Hilbert spaces on which $X$ and $Y$ are represented. We write this operator space as $X \otimes_{\vee} Y$. The operator space projective tensor product $X \otimes_{\wedge} Y$, is defined by specifying $\mathcal{C B}\left(\mathcal{X} \otimes_{\wedge} Y, B(H)\right)$ for any arbitrary Hilbert space. A map $\phi: X \otimes_{\wedge} Y \longrightarrow B(H)$ is completely contractive iff $\|\left[\phi\left(x_{i, j} \otimes y_{k, l}\right] \|_{n, m} \leq\right.$ $\left\|\left[x_{i, j}\right]\right\|_{n}\left\|\left[y_{k, l}\right]\right\|_{m}$ whenever $\left[x_{i, j}\right] \in M_{n}(X)$ and $\left[y_{k, l}\right] \in M_{m}(Y)$. The Haagerup tensor product $X \otimes_{h} Y$ of operator spaces $X$ and $Y$ may also be defined by specifying $\mathcal{C B}\left(X \otimes_{h} Y, B(H)\right)$ for an arbitrary Hilbert space. The map $\phi: X \otimes_{h} Y \longrightarrow B(H)$ is completely contractive iff $\left\|\left[\sum_{k} \phi\left(x_{i, k} \otimes y_{k, j}\right)\right]\right\|_{h} \leq$ $\|\left[x_{i, j}\left\|_{h}\right\|\left[y_{i, j}\right] \|_{h}\right.$ whenever $\left[x_{i, j}\right] \in M_{n}(X)$ and $\left[y_{i, j}\right] \in M_{n}(Y)$.

### 2.3.1; Theorem.

The largest reasonable operator space norm (cross norm) is maximal and minimal is the smallest operator space tensor norm $\|\cdot\|$ such that $\|.\|^{*}$ is also reasonable. Also, $\|\cdot\|_{\vee}=\|\cdot\|_{\wedge}$

This theorem is the precise analogue of the Banach case.

### 2.4 Tensor product of $\mathrm{C}^{*}$-algebras.

From [5] the norm of $\mathrm{C}^{*}$-algebra is unique in the sense that on a given algebra $\mathcal{A}$, there exists at most one norm which make $\mathcal{A}$ into a $\mathrm{C}^{*}$-algebra. Also, on a ${ }^{*}$-algebra $\mathcal{A}$ there may exist different norms satisfying the $\mathrm{C}^{*}$-property. The completion with respect to any of such norms results in a $\mathrm{C}^{*}$-algebra which contain $\mathcal{A}$ as a dense subalgebra. This is precisely what happens when tensor product of $\mathrm{C}^{*}$-algebras is considered; in general case, there are many norms on the algebraic tensor $\mathcal{A} \otimes \mathcal{B}$ (which is a *-algebra) with the $\mathrm{C}^{*}$ property i.e. $\mathrm{C}^{*}$-tensor norms and tensor products of $\mathrm{C}^{*}$-algebras completed with respect to $\mathrm{C}^{*}$-norm shall be refered to as $\mathrm{C}^{*}$-tensor product. These are spatial (minimal) and maximal norms.

### 2.4.1 Spatial norm.

### 2.4.1.1: Lemma.

Suppose that $f$ is a positive linear functional on a $C^{*}$-algebra $\mathcal{A}$ then
(i) For each $a \in \mathcal{A}, f\left(a^{*} a\right)=0$ if and only if $f(b a)=0$ for all $b \in \mathcal{A}$.
(ii) The linearity of $f\left(b^{*} a^{*} a b\right) \leq\left\|a^{*} a\right\| f\left(b^{*} b\right)$ holds for all $a, b \in \mathcal{A}$.

## Proof.

Condition (i) follows from the Cauchy Schwarz inequality i.e $|f\langle x, y\rangle| \leq$ $f(x, x)^{\frac{1}{2}} f(y, y)^{\frac{1}{2}}$ for all $x, y \in H$ holds for any positive sesquilinear form $f$. It implies that the function $p: x \longrightarrow \sqrt{f(x, x)}$ is a semi-norm on $H ; p$ satisfies the axioms of a norm except that the implication $p(x)=0 \Rightarrow x=0$ may not hold.

To show condition (ii) we may suppose, using (i) that $f\left(b^{*} b\right)>0$. The function $p: \mathcal{A} \longrightarrow \mathbb{C}$ defined by $f\left(b^{*} c b\right) / f\left(b^{*} b\right)$ is positive and linear. If $\left(\mu_{\lambda}\right)_{\lambda \in \Lambda}$ is any approximate unit for $\mathcal{A}$, then $\|p\|=\lim _{\lambda} p\left(\mu_{\lambda}\right)=\lim _{\lambda} f\left(b^{*} \mu_{\lambda} b\right) / f\left(b^{*} b\right)=$ $f\left(b^{*} b\right) / f\left(b^{*} b\right)=1$. Hence we have $p\left(a^{*} a\right) \leq\left(a^{*} a\right)$, therefore $f\left(b^{*} a^{*} a b\right) \leq$ $\left\|a^{*} a\right\| f\left(b^{*} b\right)$.

### 2.4.1.2: Theorem (GNS).

If $\mathcal{A}$ is a $C^{*}$-algebra, then it has a faithful representation. Specifically, its universal representation is faithful. [11]

## Proof.

Let $(H, \phi)$ be the universal representation of $\mathcal{A}$ and suppose that $a$ is an element of $\mathcal{A}$ such that $\phi(a)=0$, then since if $a$ is a normal element of a non-zero $\mathrm{C}^{*}$-algebra $\mathcal{A}$, then there is a state $f$ of $\mathcal{A}$ such that $\|a\|=|f(a)|$. We have $\left\|a^{*} a\right\|=f\left(a^{*} a\right)$. If $b=\left(a^{*} a\right)^{\frac{1}{4}}$, then $\|a\|^{2}=f\left(a^{*} a\right)=f(b)^{4}=$ $\left\|\phi f(b)\left(b+N_{f}\right)\right\|^{2}=0$ since $\phi f\left(b^{4}\right)=\phi f\left(a^{*} a\right)=0$ so $\phi(f)(b)=0$. Hence $b=0$ and thus $\phi$ is injective.

### 2.4.1.3: Theorem.

Suppose that $(H, \phi)$ and $K, \psi)$ are representations of $C^{*}$-algebras $\mathcal{A}$ and $\mathcal{B}$ respectively, then there exists $\pi: \mathcal{A} \otimes \mathcal{B} \longrightarrow B(H \widetilde{\otimes} K)$ such that $\pi(a \otimes b)=$ $\phi(a) \widetilde{\otimes} \psi(b)$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Moreover, if $\phi$ and $\psi$ are injective, so is $\pi$. See [11] and [12] for the proof.

### 2.4.1.4: Definition.

Let $\mathcal{A}$ and $\mathcal{B}$ be $\mathrm{C}^{*}$-algebras with faithful representations $(H, \phi)$ and $(K, \psi)$ respectively. The norm $\|\cdot\|_{\vee}$ defined by the inclusion $\mathcal{A} \otimes \mathcal{B} \subseteq B(H) \otimes$ $B(K) \subseteq B(H \widetilde{\otimes} K)$ is called the Spatial norm i.e. for all $t \in \mathcal{A} \otimes \mathcal{B}$ we have $\|t\|_{\vee}=\|(\phi \otimes \psi)(t)\|_{B(H \otimes K)}$.
$\left\|t_{\vee}=\right\|(\phi \otimes \psi)(t) \|_{B(H \otimes K)}$ defines a norm.
(i) $\|t\|_{\checkmark} \geq 0$ and $\|t\|_{\vee}=0$ if and only if $t=0$. i.e.
$\left\|(\phi \otimes \psi)\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\|_{B(H \otimes K)} \geq 0$ and
$\left\|(\phi \otimes \psi)\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\|_{B(H \otimes K)}=0$ iff $\sum_{i=1}^{n} x_{i} \otimes y_{i}=0 \forall x \in H, y \in K$.
(ii) $\|\alpha t\|=\|\alpha(\phi \otimes \psi)(t)\|$

$$
=\left\|\alpha(\phi \otimes \psi)\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\|
$$

$$
=\left\|\alpha\left(\sum_{i=1}^{n} \phi\left(x_{i}\right) \otimes \psi\left(y_{i}\right)\right)\right\| \forall \alpha \in \mathbb{K} . \text { So, }
$$

$$
\left\|\alpha\left(\sum_{i=1}^{n} \phi\left(x_{i}\right) \otimes \psi\left(y_{i}\right)\right)\right\|^{2}=\left\langle\alpha\left(\sum_{i=1}^{n} \phi\left(x_{i}\right) \otimes \psi\left(y_{i}\right)\right), \alpha\left(\sum_{i=1}^{n} \phi\left(x_{i}\right) \otimes\right.\right.
$$

$$
\left.\left.\psi\left(y_{i}\right)\right)\right\rangle
$$

$$
=\left\langle\alpha \sum_{i=1}^{n} \phi\left(x_{i}\right), \alpha \sum_{i=1}^{n} \phi\left(x_{i}\right)\right\rangle\left\langle\psi\left(y_{i}\right), \psi\left(y_{i}\right)\right\rangle
$$

$$
=|\alpha|^{2} \sum_{i=1}^{n}\left\|\phi\left(x_{i}\right)\right\|^{2}\left\|\psi\left(y_{i}\right)\right\|^{2}
$$

$$
=|\alpha|^{2} \sum_{i=1}^{n}\left\|\phi\left(x_{i}\right) \otimes \psi\left(y_{i}\right)\right\|^{2}
$$

$$
=|\alpha|^{2}\left\|(\phi \otimes \psi)\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\|^{2} \text {. So, }
$$

$$
\left\|\alpha\left(\sum_{i=1}^{n} \phi\left(x_{i}\right) \otimes \psi\left(y_{i}\right)\right)\right\|=|\alpha|\left\|(\phi \otimes \psi)\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right\|
$$

$$
=|\alpha|\|t\|
$$

(iii) Let $x_{i}, x_{i}^{\prime} \in \mathcal{A}, y_{i}, y_{i}^{\prime} \in \mathcal{B}$ and $\alpha \in \mathbb{K}$. Then for $t=\sum_{i=1}^{n} x_{i} \otimes y_{i}$,

$$
\begin{aligned}
& s=\sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}, \\
& \begin{aligned}
\|(\phi \otimes \psi)(t)+(\phi \otimes \psi)(s)\|^{2} & =\langle(\phi \otimes \psi)(t)+(\phi \otimes \psi)(s),(\phi \otimes \psi)(t)+(\phi \otimes \psi)(s)\rangle \\
& =\langle(\phi \otimes \psi)(t),(\phi \otimes \psi)(t)\rangle+\langle(\phi \otimes \psi)(t),(\phi \otimes \\
& \psi)(s)\rangle+\langle(\phi \otimes \psi)(s),(\phi \otimes \psi)(t)\rangle+\langle(\phi \otimes \psi)(s),(\phi \otimes \\
& \psi)(s)\rangle \\
= & \sum_{i=1}^{n}\left\|\phi\left(x_{i}\right)\right\|^{2}\left\|\psi\left(y_{i}\right)\right\|^{2}+\sum_{i=1}^{n}\left\|\phi\left(x_{i}^{\prime}\right)\right\|^{2}\left\|\psi\left(y_{i}^{\prime}\right)\right\|^{2}+ \\
2 & \operatorname{Re}\left\langle\sum_{i=1}^{n} \phi\left(x_{i}\right), \sum_{i=1}^{n} \phi\left(x_{i}^{\prime}\right)\right\rangle\left\langle\psi\left(y_{i}\right), \psi\left(y_{i}^{\prime}\right)\right\rangle \\
\leq & \left\{\sum_{i=1}^{n}\left\|\phi\left(x_{i}\right)\right\|\left\|\psi\left(y_{i}\right)\right\|+\left\|\sum_{i=1}^{n}\right\| \phi\left(x_{i}^{\prime}\right)\| \| \psi\left(y_{i}^{\prime}\right) \|\right\}^{2}
\end{aligned}
\end{aligned}
$$

Taking square roots on both sides,
$\|(\phi \otimes \psi)(t)+(\phi \otimes \psi)(s)\| \leq\|t\|\|s\|$.

### 2.4.1.5: Remark.

The spatial norm is the least reasonable C*-norm on the tensor product of $\mathrm{C}^{*}$-algebras and is often referred to as "the minimal $\mathrm{C}^{*}$-norm" [5].

### 2.4.2 Projective norms on tensor products.

Let $U, V, W$ be normed spaces and $\phi: U \times V \longrightarrow U \otimes V$ the tensor map. Then every continuous bilinear map $f: U \times V \longrightarrow W$ factors through a linear map $g: U \otimes V \longrightarrow W$ i.e. $f=g(\phi)$. The identification $T: \mathfrak{L}(U, V:$ $W) \longrightarrow \mathfrak{L}(U \otimes V: W)$ defined by $T(f)=g$ is an algebraic isomorphism. Here the norm is defined on $U \otimes V$ so that $T$ becomes an isometry. A norm on the algebraic tensor product $U \otimes V$ is called a tensor norm or cross norm if $\|x \otimes y\|=\|x\|\|y\|$ for all decomposable tensors $x \otimes y$. [See proposition 1 page 28]. Clearly, if $U, V$ contain non zero vectors, then $\|\phi\|=1$ for every tensor norm on $U \otimes V$. For every $\mu \in U \otimes V$, we shall write $\mu=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ where $x_{i} \in U$ and $y_{i} \in V$. We note that $x_{i}, y_{i}$ may be zero vectors and hence $\mu$ may be zero tensor. Let $\|\mu\|=\inf \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|$ where the infimum is taken over all representations of $\mu$ as a sum of decomposable tensors. This is called the projective norm.
In theorems 2.4.2.1 and 2.4.2.2. we assume that our results holds for finite tensor products of normed spaces without further specifications: see [21].

### 2.4.2.1: Theorem.

The projective norm is the largest tensor norm on $U \otimes V$.
Proof.

Clearly, the projective norm is positive and projective norm of zero tensor is zero. Let $c=\sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}$ and $\mu=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ be tensors in $U \otimes V$. We have $\|c+\mu\| \leq \sum_{i=1}^{n}\left\|x_{i}^{\prime}\right\|\left\|y_{i}^{\prime}\right\|+\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|$. Taking infimum over the representations of $c, \mu$ we obtain $\|c+\mu\| \leq\|c\|\|\mu\|$. Similarly, $\|\lambda \mu\| \leq|\lambda|\|\mu\|$ $\forall \lambda \in \mathbb{K}$. If $\lambda \neq 0$, then $|\lambda|\|\mu\|=|\lambda|\left\|\frac{1}{\lambda} \lambda \mu\right\| \leq\left|\lambda\left\|\left.\frac{1}{\lambda} \right\rvert\,\right\| \lambda \mu\|=\| \lambda \mu \|\right.$. i.e. $|\lambda|\|\mu\| \leq\|\lambda \mu\|$. Therefore, $|\lambda|\|\mu\|=\|\lambda \mu\|$ which can be verified directly if $\lambda=0$.

Suppose $\mu \neq 0$, we write $\mu=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ where $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ are linearly independent sets. There are continuous linear forms $f, g$ on $U, V$ respectively such that $f\left(x_{i}\right)=g\left(y_{i}\right)=1$ and $f\left(x_{i}\right)=g\left(y_{i}\right)=0$ for all $i \geq 2$. Hence, $(f \otimes g)(\mu)=_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)=1$. But for any representation $\mu=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, $1=(f \otimes g)\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)$
$=\sum_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)$
$=\left|\sum_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)\right|$
$\leq \sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|\left|g\left(y_{i}\right)\right|$
$\leq\|f\|\|g\| \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|$. Taking infimum over all representations of $\mu$, we have $1 \leq\|f\|\|g\|\|\mu\|$. Therefore $\mu \neq=0$. This proves that the projective norm is a norm on $U \otimes V$.

To show that the projective norm is a tensor norm, we suppose that $\mu=$ $E \otimes F \neq 0$ is a decomposable tensor. Then both $E$ and $F$ are continuous linear forms on $U$ and $V$ respectively such that $\|f\|=\|g\|=1, f(E)=$ $\|E\|$ and $g(F)=\|F\|$. Thus $(f \otimes g)(\mu)=f(E) g(F)=\|E\|\|F\|$. For any representation $\mu=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, calculation as above gives $\|E\|\|F\| \leq\|\mu\|$. This together with the definition shows that $\|E\|\|F\|=\|\mu\|$. Therefore projective norm is a tensor norm on $V \otimes U$. Finally, let |.| be any tensor norm
on $U \otimes V$. Then for every $\mu=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, we have $|\mu| \leq \sum_{i=1}^{n}\left|x_{i} \otimes y_{i}\right| \leq$ $\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|$. Taking the infimum over all representations of $\mu,{ }^{\prime}\lceil\mu \mid \leq\|\mu\|$ hence projective norm is the largest tensor norm.

### 2.4.2.2: Theorem.

For every continuous bilinear map $f: U \times V \longrightarrow W$, there is a unique continuous linear map $g: U \otimes V \longrightarrow W$ such that $f=g \phi$ where $\phi: U \times V \longrightarrow$ $U \otimes V$ is a tensor map. If we let $T: \mathfrak{L}(U, V ; W) \longrightarrow \mathfrak{L}(U \otimes V ; W)$ defined by $T f=g$. Then $T$ is an isometric isomorphism.
Proof.
Let $\mu=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ be any tensor in $U \otimes V$ for all $x_{i} \in U$ and $y_{i} \in V$. Then, $\|g(\mu)\| \leq \sum_{i=1}^{n}\left\|g\left(x_{i} \otimes y_{i}\right)\right\|=\sum_{i=1}^{n}\left\|f\left(x_{i}, y_{i}\right)\right\| \leq \sum_{i=1}^{n}\|f\|\left\|x_{i}\right\|\left\|y_{i}\right\|$.
Taking the infimum over all representations of $\mu$, we have $\|g(\mu)\| \leq\|f\|\|\mu\|$. Hence $g$ is continuous under the projective norm on $U \otimes V$. Furthermore, $\|g\| \leq\|f\|$.
Conversely, if $g \in U \otimes V \longrightarrow W$ is continuous linear, then the composite $f=g \phi$ is continuous bilinear, i.e.
$f(x, y)=\|f(x \otimes y)\| \leq\|\dot{g}\|\|x \otimes y\|=\|g\|\|x\|\|y\|$ so that $\|f\| \leq\|g\|$. Thus $\|f\|=\|g\| . T f$ is linear in $f$.

### 2.4.2.3: Maximal C*-norm.

This norm has good properties, the most important being that the representation defined by $\sum_{i=1}^{n} a_{i} \otimes b_{i} \longrightarrow \sum_{i=1}^{n} \phi\left(a_{i}\right) \psi\left(b_{i}\right)$ can be continuously extended to a representation on the $\mathrm{C}^{*}$-algebra $\mathcal{A} \otimes_{\wedge} \mathcal{B}$ for any pair of commuting representations $\phi$ and $\psi$ of $\mathcal{A}$ and $\mathcal{B}$ respectively, on the same Hilbert space. A pair $(\phi, \psi)$ of representations is called commuting if $\phi(a) \psi(b)=\psi(b) \phi(a)$ for every $a \in \mathcal{A}$ and $b \in \mathcal{B}$. An algebraic representation $\phi: \mathcal{A} \otimes \mathcal{B} \longrightarrow B(H)$
which satisfies $\|\phi(a \otimes b)\| \leq\|a\|\|b\| \forall a \in \mathcal{A}, b \in \mathcal{B}$ is called a subtensor representation. Since for every subtensor representation $\pi$ of $\dot{\mathcal{A}}^{\circ} \otimes \mathcal{B}$ there exists a pair of commuting representation $\phi$ and $\psi$ of $\mathcal{A}$ and $\mathcal{B}$ such that $\pi(a \otimes b)=\phi(a) \psi(b)=\psi(b) \phi(a)$ and every representation of $\mathcal{A} \otimes\|.\| \mathcal{B}$ is a subtensor ( for every $\mathrm{C}^{*}$-norm $\|$.$\| ), then$
$\|t\|_{\wedge}=\sup \{\|\phi(t)\|: \phi$ subtensor representation of $A \otimes B\}$ for $t \in \mathcal{A} \otimes \mathcal{B}$. This is the original Guichardet's definition of the maximal C*-norm for the tensor product of $\mathrm{C}^{*}$-algebras [5].

## Proposition 4.

Let $\mathcal{A}$ and $\mathcal{B}$ be $C^{*}$-algebras. $\phi$ and $\psi$ be faithful representations of $\mathcal{A}$ and $\mathcal{B}$ respectively on Hilbert spaces $H$ and $K$ also respectively. Then there is a maximal $C^{*}$ norm $\|\cdot\|_{\wedge}$ on $A \otimes B$ defined by $\|t\|_{\wedge}=\sup \left\{\|\phi(t)\|_{B(H)}\right\}$.

## Proof.

(i) Clearly, $\|t\|_{\wedge}=\sup \left\{\|\phi(t)\|_{B(H)}\right\} \geq 0$ and $\|t\|_{\wedge}=0$ if and only if $t=0$ for all $t \in \mathcal{A} \otimes \mathcal{B}$.
(ii) $\|\alpha t\|_{\wedge}=\sup \{\|\alpha \phi(t)\|: \phi$ subtensor representation of $A \otimes B\}$

$$
\begin{aligned}
& =\sup \left\{\alpha \phi\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right) \|\right\} \\
& =\sup \left\{\left\|\sum_{i=1}^{n} \alpha \phi_{1}\left(x_{i}\right) \otimes \phi_{2}\left(y_{i}\right)\right\|\right\} \\
& =|\alpha| \sup \left\{\left\|_{i=1}^{n} \phi_{1}\left(x_{i}\right) \otimes \phi_{2}\left(y_{i}\right)\right\|\right\} \\
& =|\alpha|\|t\|_{\wedge} \text { for all } \alpha \in \mathbb{K} .
\end{aligned}
$$

(iii) Let $t=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ and $s=\sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}$, then

$$
\begin{aligned}
\|t+s\| & =\sup \{\|\phi(t+s)\|: \phi \text { subtensor representation of } \mathcal{A} \otimes \mathcal{B}\} \\
& =\sup \left\{\|\phi t+\phi s\|_{B(H)}\right\} \\
& =\sup \left\{\|\left[\sum_{i=1}^{n} \phi_{1}\left(x_{i}\right) \otimes \phi_{2}\left(y_{i}\right]+\left[\sum_{i=1}^{n} \phi_{1}\left(x_{i}^{\prime}\right) \otimes \phi_{2}\left(y_{i}^{\prime}\right)\right] \|\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup \left\{\left\|\sum_{i=1}^{n} \phi_{1}\left(x_{i}\right) \otimes \phi_{2}\left(y_{i}\right)\right\|\right\}+\sup \left\{\left\|\sum_{i=1}^{n} \phi_{1}\left(x_{i}^{\prime}\right) \otimes \phi_{2}\left(y_{i}^{\prime}\right)\right\|\right\} \\
& =\|t\|_{\wedge}+\|s\|_{\wedge} .
\end{aligned}
$$

### 2.4.2.4: Theorem.

Let $\mathcal{A}$ and $\mathcal{B}$ be $C^{*}$-algebras. There is a minimal $C^{*}$-norm $\left\|_{\cdot}\right\|_{\vee}$ and maximal norm $\|\cdot\|_{\wedge}$, so that any $C^{*}$-norm on $\mathcal{A} \otimes \mathcal{B}$ must satisfy, $\|t\|_{\vee} \leq\|t\| \leq\|t\|_{\wedge}$ for all $t \in \mathcal{A} \otimes \mathcal{B}$.

## Proof.

We denote by $\mathcal{A} \widetilde{\otimes}_{\vee} \mathcal{B}$ (respectively $\mathcal{A} \widetilde{\otimes}_{\wedge} \mathcal{B}$ ) the completion of $\mathcal{A} \otimes_{\vee} \mathcal{B}$ for the norm $\|t\|_{\vee}$ (respectively $\|t\|_{\wedge}$ ). The maximal norm is described as $\|t\|_{\wedge}=\sup \|\phi(t)\|_{B(H)}$ where the supremum runs over all possible Hilbert spaces $H$ of all possible *-homomorphisms; $\phi: \mathcal{A} \otimes \mathcal{B} \longrightarrow B(H)$. For any such $\phi$, there is a pair of (necessary contractive) *-homomorphisms $\phi_{i}: A \longrightarrow B(H)(i=1,2)$ with commuting ranges such that, $\phi\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)=\sum_{i=1}^{n} \phi_{1}\left(x_{i}\right) \phi_{2}\left(y_{i}\right)$.
Conversely, any such pair $\phi_{i}: \mathcal{A} \longrightarrow B(H), \phi_{i}: \mathcal{B} \longrightarrow B(H)(i=1,2)$ of *-homomorphisms of commuting ranges determines uniquely a *homomor$\operatorname{phism} \phi: \mathcal{A} \otimes \mathcal{B} \longrightarrow B(H)$ by setting $\phi\left(x_{i} \otimes y_{i}\right)=\phi_{1}\left(x_{i}\right) \phi_{2}\left(y_{i}\right)$. Thus we can write for $t=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in \mathcal{A} \otimes \mathcal{B},\|t\|_{\wedge}=\sup \left\{\left\|\sum_{i=1}^{n} \phi_{1}\left(x_{i}\right) \phi_{2}\left(y_{i}\right)\right\|\right\}$ where the supremum runs over all possible such pairs. The inequality $\|t\| \leq\|t\|_{\wedge}$ follows by considering Gelfand Naimark embedding of the completion of $(\mathcal{A} \otimes \mathcal{B},\|t\|)$ into $B(H)$ for some $H$ [11].
The minimal norm can be described as follows; embedding $\mathcal{A}$ and $\mathcal{B}$ ac $\mathrm{C}^{*}$ -sub-algebras of $B\left(H_{1}\right)$ and $B\left(H_{2}\right)$ respectively. Then for any $t=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ in $\mathcal{A} \otimes \mathcal{B},\|t\|_{\vee}$ coincides with the norm induced by the space $B\left(H_{1} \otimes_{\|.\|} H_{2}\right)$, i.e. we have an embedding (an isometric *-homomorphism) of the comple-
tion denoted by $\mathcal{A} \widetilde{\otimes}_{\vee} \mathcal{B}$ into $B\left(H_{1} \otimes H_{2}\right)$. In other words, the minimal tensor product operator spaces, when restricted to two $\mathrm{C}^{*}$-algebras coincides with the minimal $\mathrm{C}^{*}$-tensor product.

Let $(\mathcal{C}, \mathcal{D})$ be another pair of $\mathrm{C}^{*}$-algebras and consider completely bounded maps $f_{1}: \mathcal{A} \longrightarrow \mathcal{C}$ and $f_{2}: \mathcal{B} \longrightarrow D$. Then $f_{1} \otimes f_{2}$ defines a completely bounded map from $\mathcal{A} \widetilde{\otimes}_{\vee} \mathcal{B}$ to $\mathcal{C} \otimes \mathcal{D}$ with $\left\|f_{1} \otimes f_{2}\right\|_{c b}=\left\|f_{1}\right\|_{c b}\left\|f_{2}\right\|_{c b}$. In sharp contrast, the analogous property does not hold for the maximal tensor products. However, it does hold if we moreover assume that $f_{1}$ and $f_{2}$ are positive and then the resulting map $f_{1} \otimes f_{2}$ is also completely positive (on the maximal tensor product) hence
$\left\|f_{1} \otimes f_{2}(t)\right\|_{\mathcal{C} \tilde{\otimes}_{\wedge} \mathcal{D}} \leq\left\|f_{1}\right\|\left\|f_{2}\right\|\|t\|_{\mathcal{A} \tilde{\otimes}_{\wedge} \mathcal{B}}$ for all $t \in \mathcal{A} \otimes \mathcal{B}$.

### 2.4.3 Haagerup norm.

Besides the minimal and the maximal norm, there is another important operator space cross-norm: the Haagerup norm. Generally, the Haagerup norm on the algebraic tensor product $\mathcal{A} \otimes \mathcal{B}$, where $\mathcal{A}$ and $\mathcal{B}$ are $\mathrm{C}^{*}$-algebras is defined by

$$
\|t\|_{h}=\inf \left\|\sum_{i=1}^{n} x_{i} x_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i=1}^{n} y_{i}^{*} y_{i}\right\|^{\frac{1}{2}}
$$

for $t \in \mathcal{A} \otimes \mathcal{B}$. The proof that $\|\cdot\|_{h}$ is a norm is not completely trivial since the proof of the triangle inequality and the definiteness are non-trivial. We also note that the Haagerup norm is not a C*-norm, but if the definition is repeated for $n \in \mathbb{N}$ and $t \in M_{n}(X \otimes Y)$ for operator spaces $X$ and $Y$, it turns out that the Haagerup norm is an operator space cross-norm with a number of good properties [5].

The motivation for the Haagerup norm was the consideration of elementary
operator $\phi: B(H) \longrightarrow B(H)$ defined by $\phi(a)=\sum_{i=1}^{n} x_{i} a y_{i}$ for $a \in B(H)$ and $x_{i}, y_{i}$ fixed in $B(H)$. These operators result from the action of $\sum_{i=1}^{n} x_{i} \otimes y_{i} \in B(H) \otimes B(H)^{o p}$ on $B(H)$ (where $B(H)^{o p}$ is the $C^{*}$-algebra with the reversed product). For some $\xi, \eta \in H$ where $\|\xi\|=\|\eta\|=1$, the Cauchy-Shwarz inequality implies;

$$
\begin{aligned}
|\langle\phi(a) \xi, \eta\rangle| & =\left|\left\langle\sum_{i=1}^{n} x_{i} a y_{i} \xi, \eta\right\rangle\right| \\
& =\left|\left\langle\sum_{i=1}^{n} a y_{i} \xi, x_{i}^{*} \eta\right\rangle\right| \\
& \leq\left(\sum_{i=1}^{n}\left\|a y_{i} \xi\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left\|x_{i}^{*} \eta\right\|^{2}\right)^{\frac{1}{2}} . \text { But } \\
\sum_{i=1}^{n}\left\|x_{i}^{*} \eta\right\|^{2} & =\sum_{i=1}^{n}\left\langle x_{i}^{*} \eta, x_{i}^{*} \eta\right\rangle \\
& =\sum_{i=1}^{n}\left\langle\eta, x_{i} x_{i}^{*} \eta\right\rangle \\
& \leq\left\|\sum_{i=1}^{n} x_{i} x_{i}^{*}\right\|\|\eta\|^{2}
\end{aligned}
$$

Also, $\left\|a y_{i} \xi\right\| \leq\|a\|\left\|y_{i} \xi\right\|$,
$\sum_{i=1}^{n}\left\|y_{i} \xi\right\|^{2}=\sum_{i=1}^{n}\left\langle y_{i} \xi, y_{i} \xi\right\rangle$

$$
=\sum_{i=1}^{n}\left\langle\xi, y_{i}^{*} y_{i} \xi\right\rangle
$$

$$
\leq\left\|\sum_{i=1}^{n} y_{i}^{*} y_{i}\right\|\|\xi\|^{2} .
$$

So, $\left\lvert\,\langle\phi(a) \xi, \eta\rangle \leq\|a\|\left\|\sum_{i=1}^{n} x_{i} x_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i=1}^{n} y_{i}^{*} y_{i}\right\|^{\frac{1}{2}}\|\xi\|\|\eta\|\right.$.
Hence, $\|\phi\| \leq\left\|\sum_{i=1}^{n} x_{i} x_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i=1}^{n} y_{i}^{*} y_{i}\right\|^{\frac{1}{2}}$
From these considerations we obtain the natural definition;
$\|t\|_{h}=\inf \left\{\left\|\sum_{i=1}^{n} x_{i} x_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i=1}^{n} y_{i}^{*} y_{i}\right\|^{\frac{1}{2}}: n \in \mathbb{N}, t \in B(H) \otimes B(H)\right\}$.

### 2.4.3.1: Theorem.

Let $a, b \in B(H)$ and let $T_{a, b}=a \otimes b+b \otimes a$. Then $\left\|T_{a, b}\right\|_{\vee} \geq 2\|a\|\|b\|$.

## Proof.

Let $\underline{a}=[a, b], \underline{b}=[b, a]^{t}$. We shall use the notation $\underline{a} \odot \underline{b}=a \otimes b+b \otimes a$ and recall that the Haagerup norm of $\|a \otimes b+b \otimes a\|_{h} \geq\|a\|\|b\|[9]$. We assume that $\|a\|=\|b\|=1$. Let $a, b \in \Delta=\left(B(H)^{*}\right)_{1}$ where $\Delta=\left\{f \in B(H)^{*}:\|f\| \leq 1\right\}$
and $T_{a, b} \in \Delta \times \Delta$. We let $s_{o}, t_{o} \in \Delta$ be some scalars of modulae 1 and that $a\left(s_{o}\right)=1, b\left(t_{o}\right)=1$. If $a_{1}=a\left(t_{o}\right)$ and $b_{1}=b\left(s_{o}\right)$, then
(i) $T_{a, b}\left(s_{o}, s_{o}\right)=(a \otimes b+b \otimes a)\left(s_{o}, s_{o}\right)$

$$
\begin{aligned}
& =a \otimes b\left(s_{o}, s_{o}\right)+b \otimes a\left(s_{o}, s_{o}\right) \\
& =a\left(s_{o}\right) b\left(s_{o}\right)+b\left(s_{o}\right) a\left(s_{o}\right) \\
& =b_{1}+b_{1} \\
& =2 b_{1} .
\end{aligned}
$$

(ii) $\left.T_{a, b}\left(t_{o}, t_{o}\right)=a \otimes b+b \otimes a\right)\left(t_{o}, t_{o}\right)$

$$
\begin{aligned}
& =a \otimes b\left(t_{o}, t_{o}\right)+b \otimes a\left(t_{o}, t_{o}\right) \\
& =a\left(t_{o}\right) b\left(t_{o}\right)+b\left(t_{o}\right) a\left(t_{o}\right) \\
& =a_{1}+a_{1} \\
& =2 a_{1} .
\end{aligned}
$$

(ii) $T_{a, b}\left(s_{o}, t_{o}\right)=a \otimes b\left(s_{o}, t_{o}\right)+b \otimes a\left(s_{o}, t_{o}\right)$

$$
\begin{aligned}
& =a \otimes b\left(s_{o}, t_{o}\right)+b \otimes a\left(s_{o}, t_{o}\right) \\
& =a\left(s_{o}\right) b\left(t_{o}\right)+b\left(s_{o}\right) a\left(t_{o}\right) \\
& =1.1+b_{1} a_{1} \\
& =1+a_{1} b_{1} .
\end{aligned}
$$

If $\left|a_{1}\right|$ or $\left|b_{1}\right|$ is greater or equal to 1 , then the proof is completed.

## Chapter 3

## THE NORM OF A <br> DERIVATION

### 3.1 Introduction.

In this chapter, we determine the norm of the inner derivation
$\Delta_{T}: T A-A T$ acting on $B(H)$ which is irreducible.More precisely, we show that $\left\|T_{A, A}\right\|=2 \inf \{\|A-\lambda\| \lambda \in \mathbb{C}\}$.

A derivation $\Delta$ on a $C^{*}$-algebra $\mathcal{A}$ is a linear mapping $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the usual Leibniz product rule i.e. $\Delta(x, y)=x(\Delta y)+(\Delta x) y \forall x, y \in \mathcal{A}$. Such a mapping is bounded as was first shown by Sakai [16]. If there is an element $a$ such that $\Delta x=x a-a x \forall x \in \mathcal{A}$, then the derivation is inner. In most cases such an element doesn't exist in $\mathcal{A}$. Therefore one tries to extend the derivation $\Delta$ to a bigger $\mathrm{C}^{*}$-algebra which may contain an implementing element.

Since $\Delta$ is inner, it is easier to estimate its norm which of course, is important from the analytic point of view. It is easy to see that if $\Delta x=x a-a x \forall x \in \mathcal{A}$,
then $\|\Delta\| \leq 2 \operatorname{dist}(a, Z(\mathcal{A}))$ where $Z(\mathcal{A})$ is the center of $\mathcal{A}$.

### 3.2 Preliminary results.

"We say that a state $f$ of a $\mathrm{C}^{*}$-algebra $B(H)$ is definite on the self-adjoint operator $A$ in $B(H)$ when $f\left(A^{2}\right)=f(A)^{2}$. In this case, $f$ is multiplicative on the $\mathrm{C}^{*}$-subalgebra of $B(H)$ generated by $A$. The following lemma is a combination of Singer's argument that the derivations of commutative C* ${ }^{*}$ algebras are 0 and results on the multiplicative properties of definite states". See [7].

### 3.2.1: Lemma.

If $\Delta$ is a derivation of the $C^{*}$-algebra $B(H)$ and $f$ is definite on $A$ in $B(H)$, then $f(\Delta(A))=0$.

## Proof.

We note that $\Delta(I)=\Delta\left(I^{2}\right)=2 \Delta(I)$, so that $\Delta(I)=0$. Thus
$\Delta(A)=\Delta(A-f(A) I)$; and we may assume that $f(A)=0$. In this case $0=f\left(A^{+}\right)=f\left(A^{-}\right)$, where $A=A^{+}-A^{-}, A^{+}$and $A^{-}$are "positive" and "negative" parts of $A$; for $A^{+} A=A^{+^{2}}$, so that
$0=f\left(A^{+}\right) f(A)=f\left(A^{+} A\right)=f\left(A^{+^{2}}\right)=f\left(A^{+}\right)^{2}$.
Since $\Delta(A)=\Delta\left(A^{+}\right)-\Delta\left(A^{-}\right)$, it will suffice to show that
$f\left(\Delta\left(A^{+}\right)\right)=f\left(\Delta\left(A^{-}\right)\right)=0$. We may assume that $A>0$ and $f(A)=0$. Let $T=A^{\frac{1}{2}}$. Then $f(T)=0$. Hence
$f(\Delta(A))=f[\Delta(T) T]+f[T \Delta(T)]=f[\Delta(T)] f(T)+f(T) f[\Delta(T)]=0$. The substance of the foregoing lemma is that each derivation of a $\mathrm{C}^{*}$-algebra maps each self-adjoint operator in the algebra onto an operator that has 0 diagonal relative to a diagonalization which diagonalizes $A[7]$.

### 3.2.2: Theorem.

Each derivation of a $C^{*}$-algebra annihilates its center [7].

## Proof.

Let $\Delta$ be a derivation of the $\mathrm{C}^{*}$-algebra $B(H)$ with center $Z(B(H))$. Let $f$ be a pure state of $B(H)$, and $z$ an element of $Z(B(H))$. The representation of $B(H)$ associated with $f$ is irreducible [23] and therefore maps $Z(B(H))$ into scalars. Together with the Schwarz inequality, this yields that $f$ is multiplicative on $Z(B(H))$. From the preceding lemma, $f(\Delta(z))=0$. Since the pure states of $B(H)$ separate $B(H), \Delta(z)=0$.

### 3.2.3: Lemma.

If $\Delta$ is a derivation of the $C^{*}$-algebra $B(H)$ acting on the space $H$, then $\Delta$ has a unique ultra weakly continuous extension which is a derivation of $B(H)^{-}$.

## Proof.

We show that for each $x, y$ in $H, \omega_{x, y} o \Delta$ is strongly continuous at 0 on $\vartheta_{1}^{+}$, the positive operators in the unit ball $\vartheta_{1}$ of $B(H)$. Now

$$
\left.A \longrightarrow([A \Delta(A)+\Delta(A) A] x, y) \quad\left(=\left(\Delta A^{2}\right) x, y\right)\right)
$$

is strongly continuous at 0 on $\vartheta_{1^{*}}$, the set of self-adjoint operators in the unit ball of $B(H)$, since $|\langle(A \Delta(A)+\Delta(A) A) x, y\rangle| \leq\|\Delta\|(\|A x\|\|y\|+\|x\|\|A y\|)$ where $\|\Delta\|<\infty$ by Sakai's theorem [21]. Moreover, $A \longrightarrow A^{\frac{1}{2}}$ is strongly continuous at 0 on positive operators, since $\left\|A^{\frac{1}{2}}\right\|=|\langle A x, x\rangle| \leq\|A x\|\|x\|$. Thus $A \longrightarrow A^{\frac{1}{2}} \longrightarrow(\Delta(A) x, y)$ is strongly continuous at 0 on $\vartheta_{1}$. We note next that $\Delta$ is weakly continuous on $\vartheta_{1}$ to $B(H)$ in the weak operator topology. Since $A x=A^{+} x-A^{-} x$ with $A^{+}$and $A^{-}$orthogonal, $\left\|A^{+}\right\| \leq$ $\|A x\|$ and $\left\|A^{-} x\right\| \leq\|A x\|$; so that $A \longrightarrow A^{+}$and $A \longrightarrow A^{-}$are strongly
continuous mappings on the self-adjoint operators in $B(H)$ at 0 . Thus, $A \longrightarrow$ $\left(\Delta\left(A^{+}\right) x, y\right)-\left(\Delta\left(A^{-}\right) x, y\right)=(\Delta(A) x, y)$ is strongly continuous ax 0 on $\vartheta_{1^{*}}$. By linearity this mapping is strongly continuous at 0 on $2 \vartheta_{1^{*}}$ and from this, everywhere on $\vartheta_{1^{*}}$. Hence the inverse image of a closed convex subset of the complex numbers under $A \longrightarrow(\Delta(A) x, y)$ has an intersection with $\vartheta_{1^{*}}$ which is strongly closed relative to $\vartheta_{1^{*}}$. This intersection being convex, each weak limit point is a strong limit point [3,15], so that it is weakly closed relative to $\vartheta_{1^{*}}$. Since the closed convex subsets of the complex numbers form a subbase for the closed subsets, $A \longrightarrow(\Delta(A) x, y)$ is weakly continuous on $\vartheta_{1^{*}}$. Now $A \longrightarrow\left(A+A^{*}\right) / 2$ and $A \longrightarrow\left(A-A^{*}\right) / 2 i$ are weakly continuous mappings of $\vartheta_{1}$ into $\vartheta_{1^{*}}$; so that $A \longrightarrow\left(\Delta\left(\frac{A+A^{*}}{2}\right) x, y\right)+i\left(\Delta\left(\frac{A-A^{*}}{2 i}\right) x, y\right)=(\Delta(A) x, y)$ is weakly continuous on $\vartheta_{1}$. Thus $\Delta$ is weakly continuous on $\vartheta_{1}$. The linearity of $\Delta$ yields its uniform continuity relative to the weak-operator uniform structure on $\vartheta_{1}$. From the Kaplansky density theorem [14], $\vartheta_{\overline{1}}$ is the unit ball in $B(H)^{-}$, and is compact in the weak-operator topology. Thus $\Delta$ has a unique weak-operator continuous extension to $\vartheta_{\overline{1}}$, and this extension has an obvious extension $\Delta$ from $\vartheta_{\overline{1}}$ to $B(H)^{-}$. It is easily checked that this extension is well defined and linear. For if $x \in H,(A, T) \longrightarrow([\bar{\Delta}(A T)-$ $\bar{\Delta}(A) T-A \bar{\Delta}(T)] x, x)$ is strongly continuous on $\vartheta_{\overline{1}^{*}} \times \vartheta_{\overline{1^{*}}}$, by strong continuity of operator multiplication on bounded sets, weak continuity of $\bar{\Delta}$ on $\vartheta_{\overline{1}}$ and boundedness of $\Delta$ (hence $\bar{\Delta}$ ). Since this mapping is 0 on $\vartheta_{1^{*}} \times \vartheta_{1^{*}}$, a strongly dense subset of $\vartheta_{\overline{1}^{*}} \times \vartheta_{\overline{1^{*}}}$; it is 0 on $\vartheta_{\overline{\overline{1}^{*}}} \times \vartheta_{\overline{1^{*}}}$, for each $x$, so that $\bar{\Delta}$ is a derivation on $B(H)^{-}[7]$.

### 3.2.4: Lemma.

Every derivation $\Delta$ on a $C^{*}$-algebra is bounded.

## Proof.

Since every derivation on a non-unital C*-algebra can be uniquely extended to its minimal unitization, the assertion follows from the fact that every generalised derivation on a unital C*-algebra is bounded.

### 3.3 Main results.

### 3.3.1: Lemma.

Every derivation $\Delta$ on a $C^{*}$-algebra $\mathcal{A}$ vanishes on the center $Z(\mathcal{A})$ of $\mathcal{A}$.
Proof.
Let $a \in Z(\mathcal{A})$. Then for all $x \in \mathcal{A}, x(\Delta a)=\Delta(x a)-(\Delta x) a=\Delta(a x)-$ $a(\Delta x)=(\Delta a) x$ where $\Delta a \in Z(\mathcal{A})$. From $a(\Delta a)-(\Delta a) a=0$, "the boundedness of a derivation and the general version of Kleinecke-Shirokov theorem" [7], we conclude that $\Delta a$ is quasinilpotent but being central, this implies that $\Delta a=0$.

### 3.3.2: Lemma.

If $\|T\|=\|x\|=1$ and $\|T x\|^{2} \geq(1-\varepsilon)$, then $\left\|\left(T^{*} T-I\right) x\right\|^{2} \leq 2 \varepsilon$.
Proof.

$$
\begin{aligned}
& 0 \leq\left\|\left(T^{*} T-I\right) x\right\|^{2} \\
& \left\|\left(T^{*} T-I\right) x\right\|^{2} \\
& =\left\langle\left(T^{*} T-I\right) x,\left(T^{*} T-I\right) x\right\rangle \\
& \\
& =\left\langle T^{*} T x-I x, T^{*} T x-I x\right\rangle \\
& \\
& =\left\langle T^{*} T x, T^{*} T x\right\rangle-\left\langle T^{*} T x, I x\right\rangle-\left\langle I x, T^{*} T x\right\rangle+\langle I x, I x\rangle \\
& \\
& =\left\|T^{*} T x\right\|^{2}-2\langle T x, T x\rangle+\|x\|^{2} \\
& \\
& =\left\|T^{*} T x\right\|^{2}-2\|T x\|^{2}+\|x\|^{2} \\
& \\
& \leq\left(\left\|T^{*}\right\|\|T\| x\right)^{2}-2\|T x\|^{2}+\|x\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =1-2\|T x\|^{2}+1 \\
& =2\left(1-\|T x\|^{2}\right) \\
& \leq 2(1-(1-\varepsilon) \\
& =2 \varepsilon
\end{aligned}
$$

### 3.3.3: Lemma.

Let $\mu \in W(T)$. Then $\Delta_{T} \geq 2\left(\|T\|^{2}-|\mu|^{2}\right)^{\frac{1}{2}}$.

## Proof.

We note that $\left\|\Delta_{T}\right\|=\sup \{\|T A-A T\|: A \in B(H),\|A\|=1\}$. Since $\mu \in W(T)$, there exists $x_{n} \in H$ such that $\left\|x_{n}\right\|=1,\left\|T x_{n}\right\| \longrightarrow\|T\|$, and $\left(T x_{n}, x_{n}\right) \longrightarrow \mu$. If we set $T x_{n}=\alpha_{n} x_{n}+\dot{\beta}_{n} y_{n}$, where $\left\langle x_{n}, y_{n}\right\rangle=0$ and $\left\|y_{n}\right\|=1$. Also, $V_{n} x_{n}=x_{n}, V_{n} y_{n}=-y_{n}$ and $V_{n}=0$ on $\left\{x_{n}, y_{n}\right\}$. Then $\left\|\left(T V_{n}-V_{n} T\right) x_{n}\right\|^{2}=\left\|T x_{n}-V_{n} T x_{n}\right\|^{2}$

$$
=\left\|\alpha_{n} x_{n}+\beta_{n} y_{n}-V_{n}\left(\alpha_{n} x_{n}+\beta_{n} y_{n}\right)\right\|^{2}
$$

$$
=\left\langle\alpha_{n} x_{n}+\beta_{n} y_{n}-V_{n}\left(\alpha_{n} x_{n}+\beta_{n} y_{n}\right), \alpha_{n} x_{n}+\beta_{n} y_{n}-V_{n}\left(\alpha_{n} x_{n}+\beta_{n} y_{n}\right)\right\rangle
$$

$$
=\left\langle\alpha_{n} x_{n}+\beta_{n} y_{n}, \alpha_{n} x_{n}+\beta_{n} y_{n}\right\rangle-\left\langle\alpha_{n} x_{n}+\beta_{n} y_{n}, V_{n}\left(\alpha_{n} x_{n}+\beta_{n} y_{n}\right)\right\rangle-\left\langleV _ { n } \left(\alpha_{n} x_{n}+\right.\right.
$$

$$
\left.\left.\beta_{n} y_{n}\right), \alpha_{n} x_{n}+\beta_{n} y_{n}\right\rangle+\left\langle V_{n}\left(\alpha_{n} x_{n}+\beta_{n} y_{n}\right), V_{n}\left(\alpha_{n} x_{n}+\beta_{n} y_{n}\right)\right\rangle
$$

$$
=\left[\left\langle\alpha_{n} x_{n}, \alpha_{n} x_{n}\right\rangle+\left\langle\alpha_{n} x_{n}, \beta_{n} y_{n}\right\rangle+\left\langle\beta_{n} y_{n}, \alpha_{n} x_{n}\right\rangle+\left\langle\beta_{n} y_{n}, \beta_{n} y_{n}\right\rangle\right]-\left[\left\langle\alpha_{n} x_{n}, V_{n} \alpha_{n} x_{n}\right\rangle+\right.
$$

$$
\left.\left\langle\alpha_{n} x_{n}, \beta_{n} y_{n}\right\rangle+\left\langle\beta_{n} y_{n}, V_{n} \alpha_{n} x_{n}\right\rangle+\left\langle\beta_{n} y_{n}, V_{n} \beta_{n} y_{n}\right\rangle\right]-\left[\left\langle V_{n} \alpha_{n} x_{n}, \alpha_{n} x_{n}\right\rangle+\left\langle V_{n} \alpha_{n} x_{n}, \beta_{n} y_{n}\right\rangle+\right.
$$

$$
\left.\left\langle V_{n} \beta_{n} y_{n}, \alpha_{n} x_{n}\right\rangle+\left\langle V_{n} \beta_{n} y_{n}, \beta_{n} y_{n}\right\rangle\right]+\left[\left\langle V_{n} \alpha_{n} x_{n}, V_{n} \alpha_{n} x_{n}\right\rangle+\left\langle V_{n} \alpha_{n} x_{n}, V_{n} \beta_{n} y_{n}\right\rangle+\right.
$$

$$
\left.\left\langle V_{n} \beta_{n} y_{n}, V_{n} \alpha_{n} x_{n}\right\rangle+\left\langle V_{n} \beta_{n} y_{n}, V_{n} \beta_{n} y_{n}\right\rangle\right]
$$

$$
=\left[|\alpha|^{2}\left\|x_{n}\right\|^{2}+\alpha_{n} \bar{\beta}_{n}\left\langle x_{n}, y_{n}\right\rangle+\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle+|\beta|^{2}\left\|y_{n}\right\|^{2}\right]-\left[\left|\alpha_{n}\right|^{2}\left\|x_{n}\right\|^{2}-\alpha_{n} \bar{\beta}_{n}\left\langle x_{n}, y_{n}\right\rangle+\right.
$$

$$
\left.\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle-\left|\beta_{n}\right|^{2}\left\|x_{n}\right\|^{2}\right]-\left[\left|\alpha_{n}\right|^{2}\left\|x_{n}\right\|^{2}+\alpha_{n} \bar{\beta}_{n}\left\langle x_{n}, y_{n}\right\rangle-\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle-\right.
$$

$$
\left.\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}\right]+\left[\left|\alpha_{n}\right|^{2}\left\|x_{n}\right\|^{2}-\alpha_{n} \bar{\beta}_{n}\left\langle x_{n}, y_{n}\right\rangle-\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle+\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}\right]
$$

$$
=\left[\left|\alpha_{n}\right|^{2}\left\|x_{n}\right\|^{2}+\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle+\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}\right]-\left[\left|\alpha_{n}\right|^{2}\left\|x_{n}\right\|^{2}+\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle-\right.
$$

$$
\left.\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}\right]-\left[\left|\alpha_{n}\right|^{2}\left\|x_{n}\right\|^{2}-\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle-\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}\right]+\left[\left|\alpha_{n}\right|^{2}\left\|x_{n}\right\|^{2}-\beta_{n} \bar{\alpha}_{n}\left\langle y_{n}, x_{n}\right\rangle+\right.
$$

$\left.\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}\right]$
$=\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}+\left|\beta_{n}\right|^{2}\left\|y_{n}\right\|^{2}=2\left|\beta_{n}\right|^{2}$.
$\Longrightarrow\left\|\left(T V_{n}-V_{n} T\right) x_{n}\right\|=2\left|\beta_{n}\right| \geq 2\left(\|T\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}-\epsilon_{n}$, where $\epsilon_{n} \longrightarrow 0$ and since $\alpha_{n} \longrightarrow \mu$ the proof is complete. see [19].

### 3.3.4: Theorem.

$\left\|\Delta_{T}\right\|=2\|T\|$ if and only if $0 \in W(T)$.

## Proof.

From lemma 3.3.3, we have that $\left\|\Delta_{T}\right\| \geq 2\|T\|$ if $0 \in W(T)$. Since $\left\|\Delta_{T}\right\| \leq$ $2\|T\|$ for any $T$, sufficiency is proved. We assume that the $\left\|\Delta_{T}\right\|=2\|T\|$, and hence there exists $x_{n}$ and $A_{n}$ such that $\left\|x_{n}\right\|=\left\|A_{n}\right\|=1$ and $\|\left(T A_{n}-\right.$ $\left.A_{n} T\right) x_{n}\|\rightarrow 2\| T \|$. Clearly, $\left\|A_{n} x_{n}\right\| \rightarrow 1,\left\|T x_{n}\right\| \rightarrow\|T\|$ and $\left\|T A_{n} x_{n}\right\| \rightarrow$ $\|T\|$. Moreover, since $\left\|\left(T A_{n}-A_{n} T\right) x_{n}\right\| \rightarrow 2\|T\|, T A_{n} x_{n}=-A_{n} T x_{n}+\vec{\epsilon}_{n}$ where $\left\|\vec{\epsilon}_{n}\right\| \longrightarrow 0$. Let ( $T x_{n}, x_{n}$ ) $\rightarrow \mu$ by choosing subsequence if necessary, i.e. $\mu \in W(T)$. We observe that $\left(T A_{n} x_{n}, A_{n} x_{n}\right)=-\left(A_{n} T x_{n}, A_{n} x_{n}\right)+\epsilon_{n}$

$$
\begin{aligned}
& =-\left(T x_{n}, A_{n}^{*} A_{n} x_{n}\right) \\
& =-\left(T x_{n}, x_{n}\right)+\epsilon_{n}^{\prime} \text { where the }
\end{aligned}
$$

last step follows from lemma 3.3.2. Thus, $\lim _{n \rightarrow \infty}\left(T A_{n} x_{n}, A_{n} x_{n}\right)=-\mu$. Since $\mu,-\mu \in W(T)$, it follows that $0 \in W(T)$.

### 3.3.5: Theorem

If $0 \in W(T)$, then $\|T\|^{2}+|\lambda|^{2} \leq\|T+\lambda\|^{2}$ for all $\lambda \in \mathbb{C}$. Conversely, if $\|T\| \leq\|T+\lambda\|$ for all $\lambda \in \mathbb{C}$, then $0 \in W(T)$.

## Proof.

If $0 \in W(T)$, then there exists $x_{n} \in H,\left\|x_{n}\right\|=1$ such that
$\left\|(T+\lambda) x_{n}\right\|^{2}=\left\|T x_{n}\right\|^{2}+\operatorname{Re} \bar{\lambda}\left(T x_{n}, x_{n}\right)+|\lambda|^{2} \rightarrow\|T\|^{2}+|\lambda|^{2}$.
Conversely, let $\|T\| \leq\|T+\lambda\| \forall \lambda \in \mathbb{C}$. We assume that $0 \notin W(T)$. By rotating $T$, we may assume that $\operatorname{Re} W(T) \geq \tau>0$. Let
$\zeta=\{x \in H:\|x\|=1 \operatorname{andRe}(T x, x) \leq \tau / 2\}, \eta=\sup \{\|T x\|: x \in \zeta\}$. Then $\eta<\|T\|$. Let $\mu=\min \{\tau / 2,(\|T\|-\eta) / 2\}$ and consider $(T-\mu)$. If $x \in \zeta$, then $\|(T-\mu) x\| \leq\|T x\|+\mu \leq \eta+\mu<\|T\|$.

Let $T x=(a+i b) x+y$ where $x \notin \zeta,\|x\|=1$ and $(x, y)=0$. Then

$$
\begin{aligned}
\|(T-\mu) x\|^{2} & =(a-\mu)^{2}+b^{2}+\|y\|^{2} \\
& =\|T x\|^{2}+\left(\mu^{2}-2 a \mu\right) \\
& <\|T\|^{2} \text { since } a>\mu>0
\end{aligned}
$$

i.e. $\|T-\mu\|<\|T\|$, contrary to the hypothesis

### 3.3.6:Corollary. (Pythagorean relation for operator.)

Let $T$ be a bounded linear operator. Then there exists a unique $z_{o} \in \mathbb{C}$, such that $\left\|T-z_{o}\right\|^{2}+|\lambda|^{2} \leq\left\|\left(T-z_{o}\right)+\lambda\right\|^{2} \forall \lambda \in \mathbb{C}$. Moreover, $0 \in W(T-\lambda)$ if and only if $\lambda=z_{0}$.

## Proof.

Now, there exists a $z_{o} \in \mathbb{C}$ such that $\left\|T-z_{o}\right\| \leq\left\|\left(T-z_{o}\right)+\lambda\right\| \forall \lambda \in \mathbb{C}$. The rest of the proof easily follow from theorem 3.3.5.

### 3.3.7: Theorem.

Let $\Delta_{T}$ be a derivation on $B(H)$. Then $\left\|\Delta_{T / B(H)}\right\|=\sup \{\|T A-A T\|: A \in$ $B(H),\|A\|=1\}=\inf f_{\lambda \in \mathbb{C}}\{2\|T-\lambda\|\}$.

## Proof.

Since $\|T A-A T\|=\|(T-\lambda) A-A(T-\lambda)\| \leq 2\|T-\lambda\|\|A\|$. It follows
therefore that $\left\|\Delta_{T}\right\| \leq \inf f_{\lambda \in \mathbb{C}}\{2\|T-\lambda\|\}$.
On the other hand, $\|T-\lambda\|$ is larger for $\lambda$ large. So inf $\|T-\lambda\|$ must be taken on at some point, say $Z_{o}$. But $\left\|T-Z_{o}\right\| \leq \|\left(T-Z_{o}+\lambda \| \forall \lambda \in \mathbb{C}\right.$ implies that $0 \in W\left(T-Z_{o}\right)$. Hence $\left\|\Delta_{T}\right\|=\left\|\Delta_{T-Z_{o}}\right\|=2\left\|T-Z_{o}\right\|$.

### 3.3.8: Definition.

A C ${ }^{*}$-algebra $\mathcal{A}$ is irreducible if the commutant of $\mathcal{A}$ contains only the scalars.

### 3.3.9: Theorem.

Let $B(H)$ be an irreducible $C^{*}$-algebra on $H$. Let $T \in B(H)$. Then
$\left\|\Delta_{T / B(H)}\right\|=\sup \{\|T A-A T\|: A \in B(H),\|A\|=1\}=\inf _{\lambda \in \mathbb{C}}\{2\|T-\lambda\|\}$. See[19] for proof.

### 3.3.10: Theorem.

Let $A, B \in B(H)$. Then $\left\|T_{A, B}\right\|=\sup \{\|A X-X B\|: X \in B(H),\|X\|=$ $1\}=\inf _{\lambda \in \mathbb{C}}\{\|A-\lambda\|+\|B-\lambda\|\}$.

## Proof.

$\left\|T_{A, B}\right\| \leq \inf \{\|A-\lambda\|+\|B-\lambda\|\}$ follows from theorem 3.3.7. If we let $\inf _{\lambda \in \mathcal{C}}\{\|A-\lambda\|+\|B-\lambda\|\}=\left\|A-\lambda_{o}\right\|+\left\|B-\lambda_{o}\right\|$. Then it follows from [19] lemma 6 and theorem 7 that $\left\|T_{A, B}\right\|=\left\|T_{\left(A-\lambda_{o}, B-\lambda_{o}\right)}\right\|=\left\|A-\lambda_{o}\right\|+\left\|B-\lambda_{o}\right\|$. If $A=B$, then the norm of $T_{A, B}$ is an inner derivation induced by $A$ or $B$ respectively i.e. $\left\|T_{A, A}\right\|=\inf \{\|A-\lambda\|+\|A-\lambda\|: \lambda \in \mathcal{C}\}$

$$
=2 \inf \{\|A-\lambda\|: \lambda \in \mathcal{C}\}
$$

$=2 R_{A}$ where $R_{A}$ is the radius of the spectrum of $A$.
If $B(H)$ is irreducible then $\left\|T_{A, A}\right\|=2 \inf \{\|A-\lambda\|: \lambda \in \mathcal{C}\}$ implies that $\lambda$ is the center of $B(H)$. Further if $X$ is close to $\lambda$, then the norm is small hence $X$ almost commute with the elements of the unit ball of $B(H)$.

### 3.4 Conclusion

In this thesis, the problem stated in 1.4 has been solved. We have shown in section 2.4 that the constant $c=2$ i.e. $\left\|T_{a, b}\right\| \geq 2\|a\|\|b\|$ by taking $T_{a, b}=$ $a \otimes b+b \otimes a$. We have also shown that $\| T_{A, B}=\inf f_{\lambda \in \mathcal{C}}\{\|A-\lambda\|+\|B-\lambda\|\}$ which in turn is an inner derivation when $A$ coincides with $B$.

## REFERENCES

[1 ] Anna K. "Trends in Banach Spaces and Operator Theory." American Mathematic Soc., (2001).
[2] Baraa M. and Boumazgour M. Norm of a Derivation and Hyponormal Operators." Extracta Mathematicae, vol. 16 pp. 229-233 (2001).
[3 ]Bratteli O. and Robinson D.W. "Operator algebras and Quantum Statistical Mechanics 1". Springer-Verlag, United States of America, (1979).
[4 ]Effros E.G. and Ruan Z.J. "Operator. Spaces." London Math. Soc. Monographs, vol. 23 (2000).
[5]Franka Miriam B."Tensor products of $C^{*}$-algebras, Operator Spaces and Hilbert $C^{*}$-modules". Mathematical Communications, vol. 4 pp . 257-268, (1999).
[6 ]Halemski A. Ya. "Lecture and Exercises on Functional Analysis". American Math Soc., vol. 230 pp. 182-183, (.... ).
[7] Kadison R.V. "Derivations of operator algebras". Ann. of Math. vol. $83 \mathrm{pp} .280-293$, (1996).
[8 ]Kreyzig E."Introductory Functional Analysis with Applications." Kim Hup Lee Printing Co. Ltd. - Y oar * C.t.,
[9] Magajna B. and Turnsek A. "On the norm of Symmetrised Two-sided Multiplications." Bull. Austral. Math. Soc., vol. 67 pp. 27-38, (2003).
[10 ]Martin M. "Elementary Operators on Calkin Algebras." Irish Math. Soc. Bulletin, vol. 46 pp. 33-42, (2001).
[[11 ]Murphy J.G." ${ }^{*}$-algebras and Operator Theory." Academic Press Inc., Oval Road, London, (1990).
[12 ]Nyamwala F. O. "On the norms of derivations and two-sided multiplications." Masters thesis, Maseno University, (2004).
[13] Nyamwala F. O. "Norms and Spectrum of Elementary Operators in $B(H)$."Ann.of Math., preprint (2005).
[14 ] Paulsen V. I. "Completely bounded maps and dilations." Pitman Research Notes in Math. vol. 146, (1986).
[15 ]Richard M. T. "Norms of Elementary Operators."Irish Math. Soc. Bulletin, vol. 46 pp. 13-17, (2001).
[16 ]Sakai S. "Derivations of $W^{*}$-algebras." Springer-Verlag, Ann. of Math., vol $83 \mathrm{pp} .273-279,(1966)$.
[17 ]Sakai S. "C ${ }^{*}$-algebras and $W^{*}$-algebras." Springer-Verlag, New York Heidelberg Berlin, (1971).
[18 ] Siddiqui A. H. "Functional Analysis with applications." Tata McGraw Publishing Company, second edition, (1986).
[19 ]Stampfli G. J. "The Norm of a Derivation." Pacific Journal of Mathematics, vol. 33 pp . 737-746, (1970).
[20 ]Steven R. "Advance Linear Algebra." Springer-Verlag, New York, Inc., 175th Avenue, (1992).
[21 ]Tsoy-woma. "Banach Hilbert Spaces, Vector Measures and Group Rep-resentation."Springer-Verlag, New York,(2000)
-litu
[22 ] Walter R. "Functional Analysis." McGraw-Hill Inc.,(1991).

