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ABSTRACT

In this thesis, we determine the norm of a two-sided symmetri; operator
in an algebra. More precisely, we investigate the lower bound of the oi)erator
using the injective tensor norm. Further, we determine the norm of the inner
derivation on irreducible C*-algebra and confirm Stampfli’s result for these

algebras.
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Chapter 1

INTRODUCTION

1.1 Introduction

In this section we give definitions of various mathematical concepts and ex-
amples that we intend to use in the subsequent chapters. We have also given

some theorems and lemmas that we shall refer to in the subsequent chapters.

We shall use the capital letters X,Y,U,V,W to denote vector spaces and

small letters x, vy, u, v, w to denote their elements.

1.1.1: Definition; Inner product space.
Let X be a vector space over the field of real or complex numbers. A mapping,
denoted by (.,.) defined on X x X into the underlying field is called an inner
product of any two elements x and y of X if the following conditions are

satisfied;
(1) (z,z) >0 and (z,z) =0if and only if z =0, Vz,y € X.

2) (z+2,y) = (z,y) + (¢,y), V2,2, y € X
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(3) (az,y) = a(z,y), a belongs to the underlying field.

4) (z,y) = (y,2)

See [18] page 83 for verifications of 1-4.
If the inner product (.,.) is defined for every pair of elements (z,y) € X x X,
then the vector space X together with the inner product (.,.) is called an

inner product space or pre-Hilbert space usually denoted by(X, (.,.)).

1.1.2: Definition; Hilbert space.
An inner product space X is called a Hilbert space if the normed space
induced by the inner product is a Banach spéce (complete normed space).
That is, every Cauchy sequence z, € X with respect to the norm induced

by the inner product is convergent with respect to this norm.

1.2 Operators and Functionals

1.2.1: Definition; Operator.
Let X and Y be normed spaces. Then the mapping T': X — Y is called

an operator.

1.2.2: Definition; A linear operator.
Let X and Y be normed spaces. An operator T is said to be linear if the
following conditions are satisfied; '

Vr,y € X, a a scalar,
(i) T(z+y)=Tz+Ty

(i) T(az) = oT'z.




So, the map T': X — Y is linear if Va:,y € X and o, € K,
T(az + By) = aTz + BTy.

1.2.3: Definition; A bounded linear operator.
A linear operator T': X — Y is said to be bounded if there exists a real
constant k£ > 0 such that | Tz|| < k||z|| Vz € X. We shall denote by B(X,Y)
theset of T: X — Y. ’

1.2.4: Definition; Norm of a bounded operator.
Let T € B(X,Y). Then the norm of T is defined as
1Tl = sup{[| Tz : = € D(T), |l«]| < 1}
= sup{”Ty:]l sz € D(T),z # 0} < c0.
The supremum being finite follows from the fact that |T'(z)|| < k|| z||, Vz € X
and k > 0.

1.2.5: Theorem.

Let T be a linear operator then,
(a) The range of the operator T, R(T') is a vector space.
(b) The dimension of tﬁe domain of T', dim®(T) s finite.
(¢) The null space of T, N(T) is a vector space.

See [8] page 86 for proof.

1.2.6: Definition; Adjoint operator.
Let T € B(X,Y) where X,Y are Hilbert spaces, then the unique linear
operator T* € B(Y, X) satisfying (T'z,y) = (z,T*y) forallz € X andy € Y
is called the adjoint (Hilbert adjoiﬁt) of T.



1.2.7: Definition; Self-adjoint, Positive, Normal and Unitary
operators. » ke
Let T be a bounded linear operator on a Hilbert space H into itself then,

(i) T is called self-adjoint or hermitian if T' = T™.
(ii) T is called normal if TT’f‘. =T

(iii) T is called unitary if T*T = I = TT* where [ is the identity on H.
This implies that, T preserves inner product on the Hilbert space, so

that (T'z,Ty) = (z,y)Vz,y € H and that T is a surjective isometry.
(iv) T is positive if (T'z,Ty) > 0 for all x € H.

1.2.8: Proposition.

Let T € B(H). Then the following statements are equivalent;
(i) T is self-adjoint.
(i1) (T'z,z) is a real number, Vo € H.

See [22] page 330 for proof.

1.2.9: Definition; Completely bounded operator.

, | Let H be a complex Hilbert space and B(H) the set of all bounded linear
operators on H. Any map ¢ : B(H) — B(H) induces a family of maps
¢n : M (B(H)) — M,(B(H)), n > 1 defined by ¢,([z;;]) for any matrix
[z;;] € M,(B(H)). If sup||¢,| is finite then ¢ is said to be completely
bounded and the supremum defines the completely bounded norm ||¢||e of
¢. (Here, of course the norm in M,(B(H)) is given by the identification
M,(B(H)) = B(H"). "We refer to [4] and [14] for more on completely
bounded mappings”.




1.2.10: Definition; Elementary operator.
Let H be a Hilbert space and B(H) the algebra of all bounded Ifhear oper-
ators on H. We call T : B(H) — B(H) an elementary operator if T has a

representation;
k

T(z] = Zaia:bi (1.1)

i=1

with a;,b; € B(H) for each i. The building blocks of such elementary oper-

ators of length one, that is if £ = 1 in (1.1), has the form T, s(x) = azb.
Compact operators:

1.2.11: Definition; Compactness.
A metric space X is said to be compact (sequentially compact) if every
sequence in X has a convergent subsequence. A subset M of X is said to
be compact if M is compact considered as a subspace of X, i.e. if every

sequence in M has a convergent subsequence whose limit is an element of M.

1.2.12: Definition; Compact linear operators.
Let X and Y be normed spaces. An operator T : X — Y is called a
compact linear operator (or completely continuous linear operator) if T is
linear and if for every bounded subset M of X the image T'(M) is relativély

compact i.e. the closure T'(M) is compact or totally bounded subset of Y.

1.2.13: Definition; Compact operators on Banach spaces.
An operator T € B(X,Y) is compact if T'B,, the image of the unit ball B,
under T, is relatively compact (i.e. totally bounded) subset of Y. Thus 7' is
compact if and only if for every sequence (z,) € X the sequence (T'x,) has
a convergent subsequence. In short, compact operators are ”small” in the

sense that they map the unit ball into a "small” set.




€
¥

1.2.14: Theorem.
Let T : H — Hj be compact linear map between Hilbert spaces ﬁl and Hs.
Then the image of the closed ball of H; under T is compact. ‘
Proof.
Let U be a closed unit ball of H;. It is weakly compact, and T is weakly
continuous. So T'(U) is weakly compact and therefore weakly closed. Hence
T(U) is norm closed, since the weak topology is weaker than the norm topol-

ogy. Since T is a compact operator, this implies that 7'(U) is norm compact. .

1.2.15: Lemma.

Let X andY be normed spaces. Then

(a) Every compact operator T : X — Y is bounded hence continuous.

(b) If dimX = oo, the identity operator I : X —s X (which is continuous)

s not compact.
Proof.

(a) The unit ball S C X such that S = {z € X : ||z|| = 1} is bounded.
Since T' is compact, T'(S) is compact and is bounded by the fact that
a compact subset M of a metric space is closed and bounded. So that

sup|jz|=1]|Tz|| < oo. Hence T is bounded since we have that T is

continuous.

(b) The closed unit ball S € X such that S = {z € X : |z|| < 1}
is bounded. If dimX = oo, then the fact that a normed space has
a property that the closed umit ball S is compact, then X is finite
dimensional, implies that S cannot be compact. Thus I(S) =S = S is

not relatively compact.



1.2.16: Theorem.

Let X and Y be normed spaces and T : X — Y a linear oper(a(tmt Then
T is compact if and only if it maps every bounded sequence (z,) € X onto a
sequence (Txz,) € Y which has a convergent subsequence.

Proof. _

If T is compact and (z,) is bounded then (Tz,) € Y is compact and by
definition of compactness, (T'z,) contains a convergent subsequence.
Conversely,

Let every bounded sequence (z,) contain a subsequence (z, ) such that
(Txy,) converges in Y. Consider any subset S C X and let (y,) be any
sequence in 7(S). Then y, = Tz, for some (z,) € S and (z,) is bounded
since S is bounded. By assumption, (T'z,) contain a subsequent sequence.

Hence T'(S) is compact because y,, € T'(.S) was arbitrary. Hence by definition,

this shows that 7" is compact. (compactness criterion.)

1.2.17: Theorem.

Let X andY be normed spaces and T : X — Y a linear operator. Then,
(i) If T is bounded anai dimT(X) < oo, the operator T is compact.
(ii) If the dimX < oo, the operator T is compact.
Proof.

(i) Let (z,) be a bounded sequence in X. Then the inequality
|Tz,|| < ||T||||zn| shows that (Tz,) is bounded. Hence (Tz,) is rel-
atively compact (in a finite dimensional normed space X, any subset

S C X is closed and bounded.) Since dimT'(X) < oo it follows that




(T'z,) has a convergent subsequence. Since (z,,) was arbitrary bounded

sequence in X, the operator T is compact by theorem 1.2.16.

(ii) This follows from (i) by noting that dimX < oo implies boundedness
of T" and by the fact that if a normed space X is finite dimensional,
then every linear operator on X is bounded. So dimT'(X) < dimX for

any linear operator T'. If dim®(T') =n < oo then dimR(T) < n.
1.2.18: Examples of compact operators.

(1) Every finite operator T' € B(X,Y’) is compact i.e. if dimT = dimT(X) <
oo then T' € B,(X,Y). Indeed, the set Z = ImT'. Since Z is finite di-
mensiohal_, By is compact and so T'By is a subset of the compact set

T Bjy.

(2) Every bounded linear functional f € X* is a compact operator from X

to C.

(3) An operator T defined on the space ¢ i.e. T : ¢> — ¢? defined by

y = (n;) = Tz where n; = ¢;/j for j=1,2, ......

1.2.19: Definition; Uniform topology.
This is defined by the operator norm ||T|| for T € B(H), where
ITN| = sup{||Tz|| : « € H, ||| <1}.

1.2.20: Definition; Strong-operator topology.
For z € H, the map T' — ||Tz|| defines a semi-norm on B(H). The family
of all such semi-norms {||Tz|| : + € H} defines a Hausdorff locally convex

topology called the strong operator topology.



1.2.21: Definition; Weak-operétor topology.
For z,y € H, the map T — [(T'w,y)| defines a semi-norm on B(H) The
family of such semi-norms {|(Tz,y)| : x,y € H} define a Hausdorff locally

convex topology called the weak-operator topology.

1.2.22: Definition; The maximal numerical range.
Let H be a Hilbert space (complex). T': H — H, T bounded. Let B(H)
be the set of all bounded linear operators on H. For all T € B(H) we define .
a set W(T') given by |
W(T) ={X: (Tzn,zn) — A |zl = L[| Tznl| — 1T}
When H is finite dimensional, W (T) corresponds to the numerical range

produced by the maximal vectors (vectors x such that ||z|| = 1 and ||Tz| =

IT|]). Thus we have W(T) = {(Tz,z) : ||3:H =1}

1.2.23: Lemma.
The set W(T') is non-empty, closed, conver and contained in the closure of

the numerical range [19].

1.2.24: Definition; Diagonal matrix.
A diagonal matrix is a square matrix in which the entries outside the main
diagonal are zero. The diagonal entries themselves may or may not be zero.

Thus the matrix A = §(i, j) with n columns and n rows is diagonal if (4, j) =
0,4 # j¥i,j = {1,2,...,n}.

1.2.25: Definition; Unitary diagonolizable operator.
A bounded operator T on a Hilbert space H is said to be unitary diagonoliz-
able if it has diagonal matrix relative to some orthonormal basis i.e., if there
is an orthonormal basis {e,} for H consisting of eigen vectors of T'. “We note

that all normed operators on a finite dimensional space, and generally, all

A



compact normed operators are unitarily diagonolizable.

1.2.26: Definition; Functionals.
A functional is an operator whose range lies on the real line R orJ in the
complex plane C while its domain lies in a vector space. It is usually denoted
by for Fie f:X — D(f) — K, K is either R or C. Functionals are
said to be linear and bounded if for f : X — K there exists a real number

k > 0 such that; | f(z)| < k||z|| for all z € X. Further,

£l = Supz¢o{ljﬂfv—?,x € X}

1.2.27: Definition; Sesquilinear form.
Let U and V be vector spaces over the same scalar field K (RorC). Then a

sesquilinear form (functional) £ on U x V' is a mapping £ : U x V' — K such

that Yu,uy,us € U, v,v1,09 € V and o, 8 € K;
(i) €(uy + ug,v) = £(ug, v) + £(ug, v)
(i1) €(u,vy + vg) = L(u,v1) + £(u, ve)
(iil) 4(au,v) = al(u,v)
(iv) €(u, B) = Bl(u,v).

Thus ¢ is linear in the first argument and conjugate linear in the second. If
U and V are in R then (iv) is simply E(u,ﬁv)' = [B(u,v) and £ is bilinear
since it is linear in both arguments. If k£ > 0 such that |¢(u,v)| < k|ju|/|v]]

Vu, v, then £ is bounded and the number

L(u,v .
14| = sup#o,#o{—ll-l—q—i—“—m—)ﬁ, u € Uv €V} = supy=joj=1{|¢(v,v)|u € U,v € V}

is the norm of .
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1.2.28: Definition; Dual spacé.
The set of all functionals defined on a vector space X is called the"dual of X
and is denoted by X*. It is also a vector space if addition and multiplication

by vectors are pointwise defined.

1.2.29: Remark.
The dual space X* of X is a Banach space whether X is a Banach space or
not. See [18] page 26.

1.3 Algebra

1.3.0: Definition; An algebra.
A vector space X in which multiplication is defined having the following

properties; Vz,y,z € X and X € K,
(a) z(yz) = (zy)z
(b) z(y+ 2) =zy + z2
(¢) (z+yz=22+yz
(d) A(zy) = (Ax)y = zAy is called an algebra.
An algebra X is called commutative (abelian) if zy = yz.
1.3.1: Definition; A Banach algebra.

(e) Given that X above is a Banach space (complete normed space) with

respect to a norm that satisfies the multiplicative inequality
leyll < llzllllyllve, y € X

then X Is called a Banach algebra.

11



(f) Given that X contains a unit element e such that ze = ex =z, Vz € X
and |le|| = 1. Then X is a unital Banach algebra if the properties (a)
to (f) are satisfied by X.

1.3.2: Definition; Subalgebra.
A subspace S of X which is also an algebra with respect to the operation on

X is a subalgebra of X.

1.3.3: Definition; Involution.
Let X be an algebra. A mapping from X — X defined by z — z* Vz,2* €
X is an involution on X it satifies the following conditions; Vz,z*,y € X

and A a scalar,
(i) (z+y) =2z"+y
(i) (\z)* = Az*

K

(iii) (2y)* =y'z

*x

(iv) ™ =w

1.3.4: Definition; *-algebra.

An algebra X with an involution z — z* is a *-algebra.

1.3.5: Definition; Banach *-algebra.
This is a normed algebra X with an involution, which is complete and has
the property ||z|| = ||z*||. In this case, we define a normed algebra as follows:
i.e. the algebra X is a normed algebra if for each element x € X there
is an associated real number ||z||, satisfying the axioms of a norm. Thus

Vr,ye X,
(1) |lz|| > 0 and ||z|| = 0 if and only if z = 0

12



(2) Nazll = [l
(3) llz+yll < ll=ll + llyll

(4) llzyll < ]yl

1.3.6: Definition; C*-algebra.
A Banach *-algebra X with the property [z*z| = ||z||? Vz € X is called a
C*-algebra.

1.3.7: Examples of C*-algebra.
We refer to only one which is B(H), the set of all bounded linear operators
on a Hilbert space H. We prove that B(H) is a C*-algebra.

B(H) is an algebra.
Let T € B(H) where T : H — H. Multiplication is defined pointwise in
B(H). Thus
ST(x) =S(T(z))VS,T € B(H),x € H

B(H) is a normed algebra.
B(H) is a normed space,consequently, a normed algebra. For if we let T" €

B(H) then ||T'|| satisfies the axioms of a norm ie.,
(i) Clearly, ||T|| > 0 and ||T|| = 0 if and only if T = 0.

(i) T = sup{LeDel . o £ 0}

:sup{——‘-”aﬁfﬁ”)l i i o= 10}

= sup{l("'l;lj;f” > =k 0}
= |a|sup{ ””?”“ o # 0}
= ||| T
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(i) 17+ S| = sup{LLEDE . 4 2 0}

Tx+Sz
— sup{IZzt52l . 5 20

=], Szl .
< sup{Tpp + g 12 #0

< sup{ ””ﬁ” L # 0} + sup{ﬂﬁ—’” rws 0}

= ITlIs1-

(iv) (TS| = sup{Z2L - ]| = 1}

T(Sz
= sup{I5EDL + |z = 13
< | Tl sup{IEL - ||z|| = 1}

[E]
=Tl

B(H) is a *-algebra.
Since B(H) is an algebra and T' € B(H), it has an involution from B(H) —

B(H) define by T'— T™* i.e. since T is a bounded linear operator,

Q) (T +8)" =T* + 5.
(T + 8)z,z) =(2,(T + S)*z) Vzr,z € H.
Also,

(T + S)z,z) = (Tz+ Sz,z)

= (Tz,z) + (Sz, )

— (2,T*z) + (2, S*z). Thus
(z,(T + S)*z) = (2, T*z + S*z).

(ii) (aT)* =aT™. Clearly,
((aT)z,z) = (z, (aT)*x) (1.2)

Also,

({o )z, 5} = 0dT(2) 2} = ale, T())= (2 a1 (x)) (1.3)
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From equations (1.2) and (1.3),(z, (aT)*z) = (z,aT™*(x)).

(iii) (TS)* = S*T*
Clearly, (T'S)z,y) = (z, (T'S)*y)
Since (T'S)z = T(S(z)),
(TS) (), y) =(T(S(x)), )
={S&, T*y)
z, S*(T*(y)))
z, (S*T*)(y))

{
{
{
=

v} T =T
(Tz,y) = (z,T*y) = (T")"z,y) Y,y € H.

Since B(H) satisfy (i) to (iv), it is an involution and hence a *-algebra.

B(H) is a Banach *-algebra.
For all T € B(H), |T|| = |T*||.
1T (z)||* = (T*z, T*z)
— (T(T*(@)),2)
ST T (@)=
< Tz T N =
17| < NTWlll e T < 11T
Conversely, applying this relation to 7** we have, |T**| < ||T*|. But
T* = T. Therefore, |T|| < |T*|. |

B(H) is a C*-algebra.
Since B(H) is a *-algebra, we need to show that it has the property
IT*T|| = I|T|1*, VT € B(H). |

15




IT*T@)| < IT*MT Il = 1T |l] hence

17| < |71 - (14)

On the other hand, ||Tz||? = (Tz, Tx)
s {1 T, 1)
< | T*T||||z||* hence

1T < 17T 15

From equations (1.4) and (1.5), |T*T|| = ||T||?>. Hence B(H) is a C*-algebra.

1.3.8: Definition; Positive functionals.
This is a linear functional f on a Banach algebra A with an involution that

satisfies the condition f(zz*) > 0 for all z.€ A.

1.3.9: Definition; Complex Homomorphism.
Suppose A is a complex algebra and f is a linear functional on A which is
not identically zero. If f(zy) = f(x)f(y) for all x € A then f is a complex
homomorphism on A i.e. a multiplicative linear mapping from one Banach
algebra into another.
An element x € A is invertible if it has an inverse in A i.e. if there exists an

1

element 27! € A such that 27z = 227! = ¢, e is the unit element inA.

1.3.10: Definition; *-morphism (homo'morphism)

Suppose A and B are C*-algebras, a mapping ¢ : A — B is a C*-homomorphism

if for any a,b € C and z,y € A the following four conditions are satisfied.
(i) ¢laz +by) = ag(x) + bd(y)
(if) d(zy) = ¢(z)d(y)

16




(iv) ¢ maps a unit in A to a unit in B

If further ¢ is 1 — 1 and onto,’then it is a C*-isomorphism i.e.Vz,y € A and
T # Yy, ¢(x) # ¢(y).

1.3.11: Definition; State.
Let A be an algebra with involution. A linear functional f on A is self-adjoint
or hermittian if f(z*) = f(T) Vz € A. If further, || f|| = f(e) = 1, then f is

called a state.

1.3.12: Example.

A functional‘ f on B(H) for example is a state if z € H, ||z|] = 1 and
f(T)= (Tz,z) for all T € B(H).
Proof.
For all T, Ty € B(H) and ay,a2 € K
flanTy + aoTh) = ((q T + aoTy)x, x)
= (a1Thz,z) + (aThz, x)
= a1 (Tiz,z) + on(Toz, z)
= a1 f(Th) + 02 f(T3).
Also,
[f(T) = Tz, )| < [ Tzllll=]| < | T]l|®
ie. £ < loll? but o]l = 1. So

Ifll <1 (1.6)
f) = Iz, ) = (z,2) = |=||* = I

L= F(DI < WA= 1A (1.7)

17




From equations (1.7) and (1.8), f(I) = || f|| = 1. The functional f on B(H)
is positive since f(T*T) = (I"Tz,z) = (Tz,Tz) = |Tx|?> > 0. Hence fisa
state on B(H).

1.3.13: Definition; Representation.
A representation of a C*-algebra A is defined to be the pair (H, @), where
H is a complex Hilbert space and ¢ a *-morphism of A into B(H). The
representation (H, ¢) is said to be faithful if and only if ¢ is a *-isomorphism.
between A and ¢(A) i.e. if and only if ker(¢) = {0}.
The space H is called the representation space, the operators ¢(z) are called
the representatives of A. By implicit identification of ¢ and the set of repre-

sentatives, one also says that ¢ is a representation of A4 on H.

1.3.14: Gelfand-Naimark Segal Representation.

With each positive linear functional, there is associated representation. Sup-
pose that f is a positive linear functional on a C*-algebra A, setting

Ny = {a € A: f(a*a) = 0} where Ny is a left ideal on A. Ny is closed
[11] and the map (A/va)2 — C defined by (a + N, b+ Ny) = f(b*a) is
a well defined inner product on A/N;. We denote H ¢ the Hilbert comple-
tion of A/Ny. If a € A, we define an operator ¢(a) € B(A/N;) by setting
¢(a)(b+ Ny) = ab+ Ny. The inequality ¢(a) < ||a| holds since we have
[6(a)(b+ Np)II2 = f(baab)) < [lalPf(5*8) < flalPlb+ Ny[[2. The operator
¢(a) has a unique extension to a bounded operator ¢¢(a) on Hy. The map
¢r : A — B(Hy) defined by a = ¢¢(a) is a *-homomorphism. The repre-
sentation (Hy,¢y) of A is called the Gelfand Naimark-Segal representation

associated to f (GNS representatién).
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1.3.15: Definition; Calkin algébra._
Calkin algebra denoted by B(H)/K (H)is the quotient of B(H), (tTle algebra
of all bounded linear operators on separable infinite dimensional Hilbert space
H, by the ideal K(H) of compact operators. Since the compact operator
K(H) is norm closed, minimal ideal in B(H), the Calkin algebra is simple.
As a C*-algebra, the Calkin algebra is remarkable because it is not isomorphic
to an algebra of operators on a separable Hilbert space; instead, a larger
Hilbert space has to be chosen. (By GNS theorem, every C*-algebra is
isomorphic to an algebra of operators on a Hilbert space, for many other
simple C*-algebras, there are explicit descripfions of such Hilbert spaces,

but for the Calkin algebra this is not the case).

1.3.16: Remark. ‘
If K(H) is an ideal of B(H), then B(H)/K(H) is a C*-algebra with the
multiplication given by \
(T+KH)S+K(H)=TS+K(H)VT,S € B(H).
Calkin algebra is a vector space if we define addition as below;
For B(H)/K(H)={T+K(H):T € B(H)},
(T+KH)+(S+KH)=(T+S)+K(H)VT,Se€ B(H).

1.3.17: Lemma.
Let K(H) be a subspace of B(H). Then the set of all cosets
B(H)/K(H)={T+ K(H):T € B(H)} is abelian under coset addition,
(T+KH)+(S+KH))=(T+S)+ K(H). In order for the product
(T+ K(H))(S+ K(H)) =TS+ K(H) to be well defined, we must have,
S+KH)=S8+K(H) = TS+ K(H) =TS + K(H) or equivalently,
S-S eKH) =T(S-5)=(S-5)T € K(H). But S-S may be any
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element of K(H) and T any element of B(H) and so this condition implies

that K(H) must be ideal. 7
Conversely, if K(H) is an ideal, then the coset multiplication is well defined.

1.3.18: Theorem.
Let B(H) be the set of all bounded operators on H and K(H) the set of

compact operators on H. Then
IT+S|=inf{|T+S|:5SeK(H)} . (1.8) -

defines a norm on the Calkin algebra B(H)/K(H) VT € B(H).
Proof. ‘

1) 1T+ SH > 0 is clear since
IT + S| = inf{lIT+ S| : Tl =1,5 € K(H)}.
Also,
IT + S| = 0 if and only if |T + S| = 0 implies that ||| = 0 since
the zero element in B(H)/K(H) is the coset 0 + K(H) = K(H) i.e.
0+S5=S5,Se€ K(H).

(i) (T + )|l = inf{la(T + )| : S € K(H)}
— inf{lof|IT + 5] : § € K(H)}
— lafinf{|IT + 5| : § € K(H)}
= lo]|IT + S]I

(iii) (T+R)+ S| =inf{|(T+R)+S| :S e K(H)} for all T, R € B(H)
= inf{|(T+S1)+ (R+S): 1,5, € K(H)}
<inf{IT+ S : S € K(H)} +inf{|R+ S| : 5 €
K(H)}
=T+ 51+ [|R+ S|
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1.3.19: Definition;Span of S.

Let S be a non-empty subset of a linear space X over the field ]R The set
of all linear combinations of elements of S is called the space spannéd by S
and is represented by [S] i.e. [S] = {21 + ... + apz,}: n € Nyz; € S and

a, € Kfori=1,...,n.

1.3.20: Definition; Convex set.
Let X be a linear space. A subset M of the linear space X is convex if.
for all z,y € M, and for any positive real number ¢ satisfying 0 < ¢ < 1,

tr+(l—-t)ye M.

1.3.21: Lemma.
Let x1, 9, ...,z be points in the convex set M and let ay,as, .....,a, be non-

negative scalars with a;+as+.....+a, = 1, then a;x; +asxs+....+a,z, € M.

1.3.22: Definition; Convex hull.
If M is a subset of a linear space X, then a convex hull of M, represented by
(CoM) is the smallest convex subset of X containing M i.e. the intersection

of all the convex subsets of X that contain M.

1.3.23: Remark.

The intersection of any convex subsets of X is also convex.

1.4 Tensor products

Tensor product, denoted by ®, may be applied in different contexts to vec-
tors, matrices, tensors, vector spaces, algebras, topological vector spaces and
modules. In each case the significance of the symbol ® is the same; the most

general, bilinear map.

21




Let U and V be vector spaces over the same field F', and let T' be the sub-
space of the free vector space £yx, on U x V' generated by all vectors of the

form;
(i) r(u,v) + s(u’,v) — (ru+ su',v)
(i) r(u,v)+ s(u,v') = (u, v +sv') Vr,s € F,u, v eUandv,v eV

The quotient space £,x,/T is called the tensor product of U and V' denoted
by U® V. An element of U ® V' has the form Xr;(u;,v;) + T The coset,
(u,v) 4+ T is denoted by u ® v and therefore any element p of U ® V has the
form u = Yyu; @ v;. We note that by (i) and (ii), any element of T is equal
to the zero véctqr.

Given bases {u;} and {v;} for U and V/ respectively, the tensors of the form
u; ®@v; forms a basis for U®V. The dimensions of the tensor product therefore
is the product of the dimensions of the original spéuces, for example, R™ ® R"

will have dimension mn.

1.4.1 Bilinear maps and tensor products

A mapping f from the cartesian productX x Y of vector spaces into a vector
space Z is bilinear if it is linear in each variable i.e.

flarzy + aome,y) = au f(z1,y) + aaf (72, y) and

fz, Biyr + Boy2) = Buf(z,91) + Baf(x,y2) Vo, 21,72 € X, y,y1,92 € Y
and scalars «;, 3, (i = 1,2). We write B(X,Y;Z) to denote the vector
space of bilinear mappings from the product X x Y into Z; (the set of all
bilinear functions from X x Y to Z). When Z is a scalar field we denote

the corresponding space of bilinear forms simply by B(X x Y) i.e. bilinear
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function f: X x Y — F with values in the base field F'is a bilinear form

on X xY.

<

1.4.1.1: Lemma.
Let f be a mapping from a cross product space to the tensor product space
f: X XY — X®Y defined by f(z,y) =x®vy. Then f is a bilinear map.
Proof.
Let z,z1,20 € X and y, 1,95 € Y. Also let o, 8 € K.
Linearity in X
flamy + Bra,y) = (az1 + B22) @y
(az1 ®@y) + (Br2 @ y)
a(r ®y) + Bz ®y)
= af(z1,y) + Bf (22, 9)

Il

Linearity in Y.

f(z,ay1 + Bya) = = ® (ay1 + By2)
= (z®@ay1) + (z ® Bys)
=alz®y)+ Bz ®ys)
= af(z, 1) + 67 (2, ).

1.4.1.2: Remark.

The tensor product X ® Y, of vector spaces X and Y can be constructed as
a space of linear functionals on B(X x Y) in the following ways. For z € X
y € Y, we denote z ® y the functional given by evaluation at the point (z,y)
Le. (z®@y)(f) = (f,z®y) = f(x,y) for each bilinear form on X x Y. The
tensor product X ® Y is the subspace of the dual B(X x Y)* spanned by
these elements. Thus a typical tensor in X ® Y has the form Yo ATy
Vne N, A\ €K,z € X and y € Y. We also note that the space (X x Y)*
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(the dual space of X x Y contai»ning all linear functionals on that space)
corresponds naturally to the space of all bilinear functionals on X x Y ie.
every bilinear functional is a functional on the tensor product and vise versa.
Whenever X and Y are finite dimensional, there is a natural isomorphism
between X* @ Y* and (X ® Y)*. For vector spaces of arbitrary dimension
we only have an inclusion X* ® Y* C (X ® Y)*. So the the tensors of linear
functionals are bilinear functionals. This gives us a new way to look at the

space of bilinear functionals as a tensor product itself.

1.4.2 Algebraic properties of tensor products.

Tensor products obey a number of nice rules. For matrices A, B, C, D, vectors

U,V,W and scalars a, b, ¢, d, the following‘ hold;
(1) (A®B)(C®D)=AC® BD

(2) (A®B)(U®V)=AUQ® BV

@) U+V)eW=UaW+VoW

QD UV+W)=UV+UW

(5) aURbV =ab(U®V)

6) (UV)y:=U*V*

M UV)eW=Ug(VaeW)

(8) (BU)eV =Us (V)
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9) (VeU)l=V-1gU-!
fe. UV U@V ) =UU-'@VV-1i=I@I=1 <
This shows that (U@ V) 1 =U"1g V-1

(10) Thus for matrices
A B AU BU
QU=
C D CU DU
which specializes for scalars too
a b aU bU
QU =
¢ d cU dU
We note that the conjugate transpose distributes over tensor products

such that (A® B)! = A' ® B".

1.4.3 Universal property of tensor products

The space of all bilinear maps from X x Y to another vector space Z is
naturally isomorphic to the space of all linear maps from X ® Y to Z. This
is built into the construction; X ® Y has all relations that are necessary to

ensure that a homomorphism from X ® Y to Z will be linear.

1.4.3.1: Lemma.

Let X and 'Y be vector spaces over the same field F'. There exists X @ Y
called tensor product of X and Y with a canonical bilinear homomorphism
f:XxY — X®Y distinguished up to isomorphism, by the following
unwversal property; Every bilinear homomorphism ¢ : X XY — Z lifts to a
unique homomorphism 6: X®Y — Z such that o(z,y) = 5(:6 ®y) for all
reXandyeyY.

Proof.

Since f(z,y) =2 ®y = (z,y) + T, themap f : X XY — X @Y isa
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canonical injection j : X x Y — £ xxy followed by a canonical projection
7 fxxy — X QY = Lxyxy/T ie. f=moj -
The universal property of free vector spaces implies that there is a unique

linear transformation o : £xxy — Z for which coj = ¢. Since ¢ is bilinear,

it sends any of the vectors
(i) r(z,y) + sz’ y) — (rz + sz',y)
(ii) 7(z,y) +s(z,y) = (z, 59 + sy)

that generates T' to the zero vector, so T' C ker(c). Hence there exists a
unique linear transformation 5 : X xY — Z for which $o7r = ¢. Thus
aof = gﬂgowoj‘ = 00j = ¢. Moreover, if cgof = ¢, then
o = gmr : £xxy — Z is a linear transfqrmation for which
o' 0j(x,y) = gomoj(z,y) = gof (z,y) = d(z,y) = 0oj(,y) and so
coj=00j=0 =0= 5’ = ¢. Hence (Z is uniqﬁe.

1.4.3.2: Remark.
The universal property of tensor products says that for each bilinear function
¢: X XY — Z, there Cofresponds a unique linear function 5 X®Y — 7
through which the function f: X x Y — X ® Y is factored i.e.
¢ = dof. This establishes a map 1 : B(X,Y;Z) — £(X ®Y, Z) defined by
P(d) = ¢ where ¥ (¢) is a unique linear map 9 (¢) : X ® Y — Z defined by
P(@)(x ®y) = oz, y).
We observe that v is linear, since if ¢,t € B(X,Y; Z), then Vr,s € F
(@) + sv(t)](z ® y) = r(8)(z,y) + s(t)(z,y) = (r¢ + st)(z,y) and so the

uniqueness part of the universal property implies that

(@) + s¥(t) = Y(re + st).
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Also, v is surjective since if ¢: X®Y — Z is any linear map, then
¢ = (Zo f: X xY — Z is bilinear, and by the uniqueness (ﬁ“art of the
universal property, ¥(¢) = 0.

Finally, ¢ is injective, for if 1/)((;5) = 0 then ¢ = ¢¥(d)of = 0.

This implies that for X,Y,Z vector spaces over the same field F' the map
Vv :B(X,Y;Z) — £(X ®Y; Z) defined by the fact that ¢(¢) is the unique
linear map for which ¢ = ¥(¢)of is an isomorphism. Thus

BX,Y;Z)~&(X®Y;2).

1.4.4 Tensor norm

Propositioh 1

Let X and Y be Hilbert spaces. We deno?e X ®Y the tensor product space
between X andY . The elements of X QY are denoted by x @y where x € X
and y € Y. Then ||z ®y|| = ||z||||y|| defines a norm.

Proof.

We shall prove that ||z ® y|| satisfy all the axioms of a norm.

i) le®y| >0 and that [t ®y|| =0 < z®y = 0 is clear.

(ii) e(z@y)| = lallz@yll « € K

Now, [lz @ y|* = (z @ y,2 ® y) = (z,2)(y,¥) = [|lz*|ly||* and by the
algebraic properties of tensor products,
a(z®y) = (az®y) = (r ® ay), so
la(z @ Y)II* = (az ®y,az @ y)
= (z® ay,r ® ay)

= (o, az)(y, y)
= [a?|l=[*/lyl®

27



= |afllz @]
la(z @ y)ll = lalllz ® yll.

(iii) For all z1, 22 € X and y1,y2 € Y we have that
(z1 ® 1) + (22 @ %2) < [l @ y1|| + [|z2 @ y2|. Now,
(1 @ y1) + (22 @ 2)|I> = (21 @ Y1 + T2 @ Y2, 71 ® Y1 + T2 @ Y2)
= (£1®y1, 1 ®Y1) + (21 @Y1, L2 ®Ya) +(T2@Y2, T1®Y1) + (T2 ®Y2, 228 Y2)
= (z1, 21) (Y1, 1) + (@1, T2) (Y1, Y2) + (T2, 21) (Y2y1) + (22, T2) (Y2, ¥2)
= |z [PPllya 1 + 22l ly2l1? + (1, 22) (Yr, g2) + (21, 22) (Y1, Y2)
=z [Plly:l1* + lz2l*lly2ll? + 2Relz1, 22) (1, y2)-
< llaalPllyall® + le2llly2l? + 2llz 22yl
= {llz1llllvall + lz2lllly2l| }* by Cauchy-Schwarz inequality.

= [[(z1 @ 1) + (22 @ o) | < llzallllyall + [lz2lllly]l-

Proposition 2

Let X and Y be vector spaces, let E and F' be linearly independent subsets of
X andY respectively. Then {z®vy: x € E,y € F} is a linearly independent
subset of X ® Y.

Proof.

Suppose we have that p = Y >  \z; @ y; = 0 where z; € E and y; € F.
Let f,g be linear functionals on X and Y respectively and consider the
bilinear form defined by é(z,y) = f(z)g(y). We have u(¢) = 0 and so
S A (@)g(ys) = 9(X iy Aif(x:)ys) = 0. Since this holds for every

g € Y*, we can conclude that > ", A\;f(z;)y; = 0 and so by linear indepen-
dence of F', we have \;f(x;) =0 fqr all f € X*. But by linear independence
of E, each z; is non zero and it follows that A\, = 0 for all 7. Thus if X and

Y are finite dimensional spaces then dim(X ® V) = dim(X)dim(Y").
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1.4.3.3: Definition; Haagerup/norm.
The Haagerup norm on the algebraic tensor product B(H)® B(H Yis defined
by ||¢nll = inf]] Zle aal|?| N i brb,||2, where the infimum is taken over
all possible representations of ¢ in the form ¢ = Zle a; @ b;. By natural
map; B(H)® B(H) — CB(B(H)) is defined by (3", a; ®b;)(z) = Y, a;xb;.
We may algebraically identify B(H)® B(H) with the space of all elementary
operators on B(H). For each ¢ in B(H) @ B(H) the completely bounded
norm of #(¢4) is equal to the Haagerup norm of ¢ [9]. (3, a; ® b;)(z) = .
>, a;xb;. We may algebraically identify B(H) ® B(H) with the space of all
elementary operators on B(H). For each ¢ in B (H) ® B(H) the completely

bounded norm of 6(¢) is equal to the Haagerup norm of ¢ [9].

1.4.5 Statement of The Problem

Let H be a complex Hilbert space, T': H — H “a bounded linear operator
and B(H) the set of bounded linear operators on H. Clearly B(H) is an
algebra. Our main result shall concern the operator T, : B(H) — B(H)
defined by T,u(z) = axb + bzra for all x € H and a,b fixed in B(H). No
formula is known for computing the norm of 75 ;. Clearly, |

| Tap/Bemll < 2|lall][b]l. But in estimating the norm of T, in the opposite
direction, the largest possible c such that || T B || = cllal|||b] for all a,b €
B(H) and ¢ € R is not known. Nyamwala [12] proved ¢ = 2 in B(C?).
We shall extend our research to investigate the norm of derivation of the
elementary operator and the corresponding tensor norm. We shall further
establish the relationship between the norm of derivation of the elementary

operator T, ; and the corresponding tensor norm.
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1.4.6 Objectives of the stﬁdy

(i) To investigate the lower bound of the operator 7.

(i1) To investigate the derivation of the operator L.
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Chapter 2

TENSOR PRODUCT
OPERATOR.

In this chapter we show that the tensor préducts T®S and T®S are normed
operators. We have also shown the relationship between the C*-norms; spa-
tial, projective and Haagerup. Consequently, we prove that ||T, 5| > 2||al|||b]]
on the injective tensor norm.

The standard tensor product of Hilbert spaces H and K shall be denoted by
H®K ie. the tensor product H ® K completed with respect to the norm
induced by the inner product given on elementary tensors by

(z®y,z ®y) = (2,2Yu(y,y )k, so that B(H) ® B(K) C B(H®K) via

(T®S)(z®y) =T(z)®S(y) for all T € B(H), S € B(K).

2.0.0: Theorem.
Let H and K be Hilbert spaces, B(H) and B(K) be sets of bounded linear
operators on H and K respectively. Suppose that T € B(H) and S € B(K),
then there is a unique linear bounded operator T®S € B(H®K) defined by
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(TRS)(z®@y) = T(x) ® S(y) for allz € H and y € K. Moreover,
IT&SI =718
Proof.
Themap ¢: T xS —T® S’ defined by ¢(T,S) =T ® S is bilinear.
Linearity in T |
Let o, € K, T1,T5 € B(H) and S € B(K). Then
d(aTy + BT1,,8) = (eT1 + B1) ® S
=1 ®S)+ (BT, ® S)
=a(T1®S5)+B8(T,®S)
= a¢(Th,5) + Bo(T>, 5).
Linearity in S.
&(T, aS; + BS;) = T ® (aSy + BS,) VS, S, € B(K).
= (T®aSy) + (T ® BS2)
=a(T®S)+B(T®S,)
= ad(T, 51) + B4(T, 52).
The operator T® S : H® K — H ® K is bounded. We may assume that T'
and S are unitaries, since unitaries span the C*-algebras B(H) and B(K).
Now, S°7  z; ®y; € H® K where yi, ...., Y, are orthogonal. Hence
1T © Sy 21 @ )P = | Sy Tlai) @ S
=it 1T (i) @ S(ya)l®
(since S(y1, ..., S(y,) are orthogonal).
=2t TIPS (w12
= iy il Pl
= | Xims 7 ® will?
Consequently, |7 ® S|| = 1.
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Thus, for all operators T,S on H, K /respectively, the linear map T ® S is
bounded on H ® K and hence has an extension to a bounded (qunear map
T®S on HRK. The maps B(H) — B(H®K) defined by T — T®ey and
B(K) — B(H®K) defined by S — en®S are injective *-homomorphism.
For example,

o(T) = Toex = (T),

¢(T\Tz) = ¢(T1)¢(12) and

&(T*) = ¢(T)* for all Ty, T, € B(H).

Consequently, the maps are isometric for if Ty # Tp, then ¢(T1) # ¢(T2).
Hence, |T®e|| = |T| and [le®S]| = |IS].

So, TS| = [[(T®e)(e®S)]| < TSI

Ifeisa sufﬁcienﬂy small positive number, and if ', S # 0, then there are unit
vectors z and y such that |T(2)|| > [Tl — € > 0 and [|S(y)|| > [|S]| — € > 0.
Hence, |[(T@S)(z @ y)|| = [T@) IS > (ITII = €)(IS]| —¢). So

IT&S|| > (IT]| — e)(IS]| — €) and as e — 0 we get

IT@S|| > (TSI See [11].

2.0.1: Lemma.
Let H and K be Hilbert spaces and suppose that T, T € B(H) and S, 5 e
B(K). Then

(i) (TRS)T'®S') =TT ®SS" and
(ii) (T®S)* = T*®S*.
Proof.

(i) The proof follows from the following theorem.
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2.0.2: Theorem.
If A and B are algebras, then there is a unnique associative Kﬁlultz’plz’ca—
tion M on the vector space A® B for which the equation
M (a1®b1, a2®by) = (a1a2)®(b1bs) holds for all ay,ay € A and biby € B
Proof.
Leto: A — £(A) and p : B — £(B) be left regular representations of
A and B respectively. Consider a bilinear map ¢ : Ax B — L(A®B)
defined by ¢(a,b) = o(a)p(b) where o(a) ® p(b) is the unique linear |
transformation on A ® B where, o(a) ® p(b)[c® d] = (ac) ® (bd) for all
c®d e A® B. By the universal proper“cy of tensor products, there is
a uniqﬁe linear transformation ¢: A®B — L£(AQ B) where
dla®b) = ¢(a,b) for all a € A and b € B. We define
M((A®B)x (A®B)) — A®B by M(f,n) = 5&[77] forall §,n € A®B.
Since 5 and 55 are linear transformations, M is a bilinear function, thus
it remains to show that M is an associative multiplication. To do so,
we note that by bilinearity of M, it is sufficient to show that M, it is
sufficient to show that M is associative on the spanning set of elemen-
tary tensors. |
Verification.
M((a1 ®by), M(az @ by, a3 ® bs)) = (a1) ® p(b) [e(a2) @ p(b)(as @ bs)]

= o() ® p(b1[(azas) © (bobs)]

= ay(azas) ® (bib2)bs

= (aia)as ® (bib)bs

= M(M(a; ® by, a2 @ ba)as ® b3).

Thus M is an associative multiplication on A ® B. Suppose now
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M' is another such multiplicafion ‘and similarly we can show that
M (a1 @ by, a3 ® bs) = (a1a2) ® (bybz) holds Vay, as € A and'by, b, € B.
Then M and M’ have identical values on spanning set of A ® B and

therefore M = M, which proves that M is unique.

(i) (T®S)* = T*®S* & (TRS)* (z @ y) = T*(2)®S*(y) Vz®y e HO K.
By definition of (T®S)*,
(TRS)r @y ,z®y) = (z' ®y,(TRS)*rQy) Vz®y,z ®y € HOK. .
Also, (T®S)z' @y, z®y) = (T(=)BSY),z®Y)
= (T(z"), 2)®(S(y), )
= ((«', T*z)®((y, S*y)
= (z' ®y , T*z®5"*y)

/

ie(r ®y,(TRS)r®y) = (' @y, T*z®S*y).

2.0.3:Theorem.
Let H and K be Hilbert spaces. Then there is a unique inner product (.,.)
on HQ K such that (z@y,2' @y') = (z,2')y,y) Yo,z € H and y,y € K.
Proof.
Let 7: H — C and p: K — C be conjugate linear maps. Then there is a
unique conjugate linear map, 7®p : H® K — C defined by 7® p(z®@y) =
7(x) ® ply) Vx € H,y € K. We note that 7 and 7 are linear and set
7®p=(FT®p)". Now, 7z is a conjugate linear functional defined by setting
rz(y) = (z,y) Vo € H. If X is the space of all conjugate linear functionals
on H® K, then the map from H x K defined by (z,y) = 72 ® Ty is bilinear,
ie. Va,8eK,z,2' € H, ,
(az + Bz’ ,y) = T(az + Bz ) @ Ty

= (raz ® Ty) + (182" ® TY)
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=a(tz®TY) + Btz ® TY)
= a(z,y) + Bz, y).
Also, (z,ay + By) =Tz @ 7(ay + By)
=(rz®@Toy) + (T2 1Y)
= a(rz@1y) + Brz @ 1Y)
= a(z,y) + B(z,y) Yy,y € K.
And so by the universal property of tensor products, there exists a unique
linear map f : HRK — X defined by f(z®y) = Te®@71y Vo € H andy € K. .
The map (.,.) : (HQK)? — C defined by (2,2') = f(2)(2') is a sesquilinear
form on H ® K Vz € H ® K such that (z ®‘y,r/ ®y) = (z,2){y,y) for
allz,z € Handy,y € K. If z€ H® K, then z = > | ; ® y; for some

Ty, ...z, € H and y1,...,y, € K. Let e;,..,en, be an orthonormal basis for

the linear span of yi,..,y,. Then z = Y, z; ® e; for some zy,..,T,, € H.

So, (2,2) = Loy (@ ® €7y ® e5) = L7y {wi, ) ene) = iy Izl
Thus (., .) is positive, and therefore if (z,2) = 0 then for z;5 we have z = 0

for i = 1,...,m. Hence (.,.) is an inner product.

2.0.4: Lemma.
If By and E, are orthonormal basis for H and K as above respectively, then
Ei®Ey,={z®y:z € Ey,y € Ey} is an orthonormal basis for HRK. See
[12] and [20] page 301 for the proof.
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2.1 Norm of tensor product operator.

Let V,V', W, W' be vectors over the same field. Let 7 : V — V' and

S : W — W' be operators. Then there is a unique linear operator
TOS: VW —V oW (2.1)

defined by T ® S(z ® y) = T(z) ® S(y) for all z € V,y € W. The function
6:VxW — V' @ W' defined by ¢(z,y) = T'(z) ® S(y) is bilinear and
so by the universal property of tensor products, there exists a uniciue linear
operator for which (2.1) holds. The map T'® S is called the tensor product of
T and S. Themap ¢ : LV, W)@ L(V' , W) — LV W,V @ W') defined
by ¢(T,S) =T ® S is also bilinear and so there is a linear transformation
VLV, W)@LV W) — L(VRW,V'@W') defined by (T®S) = T®S.
U 1S injective.

We observe that any non zero product £ € £(V, W) ®£(V',W’) has the form
€ =57 ,T,®S; where Ts and S}s are linearly independent. It suffices
therefore to show that ker(¢) = {0}.

Suppose ¥(§) =¥ (> T; ® S;) =0 then Vo € Viy e W,

me) ® Si(y) = 0 (2.2)

Let us choose z € V' so that T;(x) # 0 and suppose that T1(z), ..., Tx(z) is a
maximal linearly independent set among T} (x), .y To(x). Then
Ti(z) = Zle r;T;(x) for | = k + 1, ..,n. Hence equation (2.2) gives
0=321 Ti(@) ® Sily) + Xilprs (1 71,T5(2)) © Sily)

= L1 T(®) ® Si(y) + £ioa Ti(®) © ity 74551(y)

= Zi;l Ti(z)® Si(y +Zizk+1 7:,;51(y) and since Ti(z), .., T (z) are linearly

independent, we must have S;(y) + Y . —k+1TiiS1(y) =0foralli =1,..,k and
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y € W. So S, + 3 i 17,5 = 0 which is a contradiction to the fact that
the S’s are linearly independent. Hence 9(£) # and so ¢ is injective. See
[20] page 303. /

2.1.1: The operator T ® S is both linear and bounded.

Linearity

The mapT@S:V@W—%V@W’ is defined by

TOS L, 7:0y) = w T(@:)®S(y:) Yz € V,y € W. Let a,feKand

Z?:lxi ®yi,2?_1 ol ®yl e VeoW. Then

ToSY, z®y+B8Y i 2, ®y) =
=ToSaY 20y +TOSBY-, T, ®Y;)
=ad .y T(z:) ® S(y) +5221T ®S(yz)
=T OS2 ®y) + BT S, z; ®y,).

Boundedness \
IT© (i z @yl = | 2im: T(w:) @ S(i)l
< Y 1Tzl Swi
< i 1Tl STyl
= ITINSN 2oy lillllys
= (TINS5 =i ® will-

2.1.2: The norm of T ® S.
IT © S|| = supysr, siaw=1{IT © S( i,z @yl € V,y € W}

IS >y s ® will W

< su T Ti®uill= n : SRS V: € = ||T|[||S

= P S zi®yil| 1{ H Zi:1 I ® yln Y | } ” ” H H
1T eS| < THIS] (2.3)

Conversely,since
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T ® S(Zyzl z; @ yy)|

IT© S| = sup{ 5 2@ vl

,z€V,ye VV}—v
It follows that
ITOSQ i % ®yi)l

1225 = © il
forall Y 2, Qu e VW and > ) 2;®y #0

IT eS| >

ITISI = (TS| 2y

So by equations (2.3) and (2.4) we have ||T ® S|| = ||T||||S]|-

2.2 Tensor products of Banach spaces

The obvious way to define the tensor pro‘duct of two Banach spaces A and
B is to copy the method for Hilbert spaces; define a norm on the algebraic
tensor product, then take the completion in this norm. The problem is that
there are more than one natural way to define a norm on the tensor product.
A cross norm ||.|| on the algebraic tensor product of A and B is a norm
satisfying the conditions |la ® b|| = ||a||||b|| and ||a* @ b*|| = |la*||||b*. Here
a* and b* are the duals of a and b respectively and ||.||* is the dual of ||.|.
There is the smallest cross norm |||y called the injective cross norm given
by ||pllv = Sup|(a* @ b*)(u)| where the supremum is taken over all pairs
a* and b* of norm at most one. The largest cross norm ||.||» is called the
projective cross norm given by ||u||n = inf ), ||a;||||b;|| where the infimum
is taken over all finite decompositions p = >, a; ® b;. The completion of
the algebraic tensor products in these two norms are called injevctive and

projective tensor products, denoted by A ®, B and A ®, B respectively.
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The norm used for the Hilbert space tensor product is not equal to either of

these norms in general.

2.3 Tensor products of operator spaces

The operator space injective tensor product also known as spatial tensor
product is defined as follows; if X and Y are operator spaces contained in
B(H) and B(K) respectively, then B(H ® K) assigns an operator space
structure to X ® Y which is independent of the particular Hilbert spaces on
which X and Y are represented. We write this operator space as

X ®, Y. The operator space projective tensor product X ®, Y, is defined
by specifying CB(X®,Y, B(H)) for any arbitrary Hilbert space. A map
¢ : X @Y — B(H) is completely contractive iff ||[¢(z:; ® yii]llnm <
Wi |nll k) | Wwhenever [z; ;] € M,(X) and [yx,] € M(Y). The Haagerup
tensor product X ®;, Y of operator spaces X and Y may also be defined
by specifying CB(X ®; Y, B(H)) for an arbitrary Hilbert space. The map
¢ X ®,Y — B(H) is completely contractive iff ||[>_, ¢(zir ® yr;)|l|ln <
i i lInll[yss]lln Whenever [z;;] € Mn(X) and [y;;] € Ma(Y).

2.3.1; Theorem.
The largest reasonable operator space norm (cross norm) is mazimal and
minimal us the smallest operator space tensor norm I|.|l such that ||.||* s also
reasonable. Also, ||.||v = ||-||a

This theorem is the precise analogue of the Banach case.
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2.4 Tensor product of C*-algebras.

From [5] the norm of C*-algebra is unique in the sense that on a given algebra
A, there exists at most one norm which make A into a C*-algebra. Also,
on a *-algebra A there may exist different norms satisfying the C*-property.
The completion with respect to any of such norms results in a C*-algebra
which contain A as a dense subalgebra. This is precisely what happens when
tensor product of C*-algebras is considered; in general case, there are many
norms on the algebraic tensor A ® B (which is a *-algebra) with the C*-
property i.e. C*-tensor norms and tensor products of C*-algebras completed
with respect to C*-norm shall be refered to as C*-tensor product. These are

spatial (minimal) and maximal norms.

2.4.1 Spatial norm.

2.4.1.1: Lemma.

Suppose that f is a positive linear functional on a C*-algebra A then

(i) For each a € A, f(a*a) =0 if and only if f(ba) =0 for allb € A.
(ii) The linearity of f(b*a*ab) < ||a*a|| f(b*b) holds for all a,b € A.

Proof.
Condition (i) follows from the Cauchy Schwarz inequality ie |f(z,y)| <
fx, m)% f(y, y)% for all z,y € H holds for any positive sesquilinear form f.
It implies that the function p : z — \/m is a semi-norm on H; p satis-

fies the axioms of a norm except that the implication p(z) = 0 = = = 0 may

not hold.




To show condition (ii) we may suppoée, using (i) that f(b*b) > 0. The func-
tion p : A — C defined by f(b*cb)/f(b*b) is positive and linear. It (1x)ren is
any approximate unit for A, then ||p|| = limap(py) = limy f(b*uxb)/ f(b*b) =
f(*b)/f(b*b) = 1. Hence Wé have p(a*a) < (a*a), therefore f(b*a*ab) <
la*all.f (6°D).

2.4.1.2: Theorem (GNS).
If A is a C*-algebra, then it has a faithful representation. Specifically, its
universal representation is faithful. [11] '
Proof.
Let (H, ) be the universal representation of A and suppose that a is an
element of A such that #(a) = 0, then since if a is a normal element of a
non-zero C*-algebra A, then there is a state f of A such that ||a| = |f(a)|.
We have ||a*a| = f(a*a). If b = (a*a)i‘, then ||a||> = f(a*a) = f(b)* =
lpf (b)(b+ Ny)||?> = 0 since ¢f(b*) = ¢f(a*a) = 0 so ¢(f)(b) = 0. Hence
b = 0 and thus ¢ is injective.

2.4.1.3: Theorem.
Suppose that (H, @) andiKﬂ,/J) are representations of C*-algebras A and B
respectively, then there exists m : A® B — B(H®K) such that m(a ® b) =
#(a)@(b) for alla € A and b € B. Moreover, if ¢ and ) are injective, so
is . See [11] and [12] for the proof.

2.4.1.4: Definition.
Let A and B be C*-algebras with faithful representations (H, ¢) and (K,v)
respectively. The norm ||.||y defined by the inclusion A ® B C B(H) ®
B(K) C B(H®K) is called the Sf)atial norm i.e. for all t € A® B we have
Itllv = [I(é @ ¥) (D)l Baok)-
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Ity = [[(¢ ® V) (D)l BeK) deﬁnes/ a norm.

(i) lItlv = 0 and |t]ly = 0 if and only if ¢ = 0. i.e.

(6@ U)X = ® i)l Brek) = 0 and
(@) (Ximy 7 @ yi)l| BaeKk) =0 >y : =Qy=0¥re Hye K.

(i) [lat] = lle(¢ @ V) (@)
= (¢ ® )iz 2 @ vl
= (X0 d(z:) ® (ys)) || Yo € K. So,
(T, é(a:) ® Y = (a(Ti, olx:) @ Y(u:), (i, 4(2:)®
V(y))

= (aYiy las), a 3oy &) ((w:), ¥ (i)
= |a> Y, lle@) 1P (v l?
= o Y, ll¢(z:) ® ¥(ya)l®
= |a?|l(¢ ® ¥)(Xies 2 ® ¥:)|I%. So,

(S ¢la:) @ Yyl = lalll(é @ ¥)(3imy =i ® wi)l
= lal||t]-

)
)

(iii) Let 21,2, € A, y,y, € Band a € K. Then for t = Y1, 2 ® u,
5= Y15 0% |
1(6@9) (£)+(6@¥) (s)]1> = ((9R%)(£)+(¢@%)(s), (#@Y)(£)+($®Y)(5))

= (¢ ®@¥)(t), (@@ Y)(t) + (6@ Y)(?), ($®

P)(8))+{(#9Y)(s), (d@P)(£)) +((9RY)(s), (¢©

¥)(s))

= 30 @) P 1P+, (@) Pl (v 1P+

2Re(S0, (@), Soimy S(a)) (W (), ¥(¥:)

< Ie@nlllv @I+ i le@) e @)llY.
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Taking square roots on both sides,

(6 ®w)(E) + (¢ @ w)(s)] < IItllls]l. e

2.4.1.5: Remark.
The spatial norm is the least reasonable C*-norm on the tensor product of

C*-algebras and is often referred to as ”the minimal C*-norm” [5].

2.4.2 Projective norms on tensor products.

Let U,V,W be normed spaces and ¢ : U x V — U ® V the tensor map.
Then every continuous bilinear map f : U x'V — W factors through a
linear map g : U ®V — W ie. f = g(¢). The identification T : £(U,V :
W) — LU ®V : W) defined by T(f) = ¢ is an algebraic isomorphism.
Here the norm is defined on U ® V' so that T becomes an isometry. A norm
on the algebraic tensor product U ® V' is called a tensor norm or cross norm
if ||z ® y|| = ||z|||]y|| for all decomposable tensors = ® y. [See proposition 1
page 28]. Clearly, if U,V contain non zero vectors, then ||¢|| = 1 for every
tensor norm on U® V. For every u € U®V, we shall write p = >, 2, Qy;
where z; € U and y; € V. We note that z;, y; may be zero vectors and hence
p may be zero tensor. Let ||u|| = inf > . ||@;||||y:]| where the infimum is
taken over all representations of 4 as a sum of decomposable tensors. This
is called the projective norm.

In theorems 2.4.2.1 and 2.4.2.2. we assume that our results holds for finite

tensor products of normed spaces without further specifications: see [21].

2.4.2.1: Theorem.
The projective norm is the largest tensor norm on U @ V.

Proof.
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Clearly, the projective norm is positi\}e and projective norm of zero tensor
is zero. Let ¢ = Y0 z; ®y; and u = Y ) 2; ® y; be tensors RMUSV.
We have [le-+ all < S0y el + 0y syl Taking infimum over the
representations of ¢, u we obtain lle+ull < llellliull. Similarly, [|Agp]l < [A|llx]l
VA€ K It A # 0, then Nl = ISl < INIMIMGI = 2l ie.
IAlell < IAwll. Therefore, |Al|ju|| = ||Ap|| which can be verified directly if
A=10,
Suppose p # 0, we write p = Y -, x; ® y; where {z;} and {y;} are linearly '
independent sets. There are continuous linear forms f, g on U, V respectively
such that f(z;) = g(y;) = 1 and f(x;) = g(yz) = 0 for all © > 2. Hence,
(f®@g)(p) =", f(x:)g(y;) = 1. But for any representation p = . ; 2; ®;,
1= (f®0)(Ti % ®u)

=21 fz)g(w)

= | 2imy fxa)g(wi)l

< i 1 (@a)llg(wa)l

< WFIMgl oy Nl |yl Taking infimum over all representations of u, we
have 1 < ||fIllglllleell. Therefore p #= 0. This proves that the projective
norm is a norm on U ® V.
To show that the projective norm is a tensor norm, we suppose that u =
E ® F # 0 is a decomposable tensor. Then both E and F' are continuous
linear forms on U and V respectively such that ||f|| = |lg]| = 1,f(E) =
|E| and g(F) = |F||l. Thus (f ® g)(n) = f(E)g(F) = [|E|||F||. For any
representation p = Y ;| x; ® y;, calculation as above gives ||E||||F|| < |l
This together with the definition shows that |E||||F| = ||u|l. Therefore

projective norm is a tensor norm on V®U. Finally, let |.| be any tensor norm
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on U® V. Then for every pn = > 1, 2; ® y;, we have |u| < Yol ®uyl £
Sor i lzillllys]|. Taking the infimum over all representations of ,u;—”[ul < |lpll

hence projective norm is the largest tensor norm.

2.4.2.2: Theorem.
For every continuous bilinear map f : U x V. — W, there is a unique
continuous linear map g : UQV — W such that f = g¢ where ¢ : UXV —
U®YV is a tensor map. If we let T : LU, V; W) — LU ® V; W) defined .
by Tf =g. Then T is an isometric isomorphism. |
Proof. ‘
Let u = > 2; ® y; be any tensor in U ® V for all 2, € U and y; € V.
Then, lg(u)ll < Siy llg(zs @ ga)ll = S0y I1f (@i )l < 20y I Nl
Taking the infimum over all representatiogs of u, we have [|g(u)|| < || fI1w]l-
Hence g is continuous under the projective norm on U ® V. Furthermore,
lgll < I£1I-
Conversely, if g € U® V — W is continuous linear, then the composite
f = g¢ is continuous bilinear, i.e.
flzy) = f oyl < lglllz @yl = llglllzlllyl so that
Il < llgll- Thus [|f]| = llgll. T'f is linear in f. T

2.4.2.3: Maximal C*-norm.
This norm has good properties, the most important being that the representa-
tion defined by Y 7 | a;®b; — Y, #(a;)1p(b;) can be continuously extended
to a representation on the C*-algebra A®, B for any pair of commuting rep-
resentations ¢ and 1 of A and B respectively, on the same Hilbert space. A
pair (¢, ¥) of representations is called commuting if ¢(a)y(b) = ¥(b)¢(a) for
every a € A and b € B. An algebraic representation ¢ : A® B — B(H)
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which satisfies ||¢(a @ b)|| < ||a||||b]| Va € A, b € B is called a subtensor
representation. Since for every subtensor representation m of AD® B there
exists a pair of commuting representation ¢ and ¢ of A and B such that
7(a ®b) = ¢(a)p(b) = ¥(b)¢(a) and every representation of A @ B is a
subtensor ( for every C*-norm ||.||), then

It|la = sup{||¢(t)|| : ¢ subtensor representation of A® B} for t € A® B.
This is the original Guichardet’s definition of the maximal C*-norm for the

tensor product of C*-algebras [5].

Proposition 4. ‘
Let A and B be C*-algebras. ¢ and v be faithful representations of A and
B respectivelg) on Hilbert spaces H and K also respectively. Then there is a
mazimal C*norm ||.||x on A® B defined by Itlla = sup{llo(t)|l B }-
Proof.

(i) Clearly, ||t|a = sup{|l¢(t)|lpen} = 0 and [|t||» = 0 if and only if ¢ =0
forallt € A® B.

(ii) ||at||x = sup{||ad(t)| :¢ subtensor representation of A ® B}
= sup{ad(Li, 7 @ yi)ll}
= sup{|| 1r_; a1 (z:) ® d2(vi)ll}

= lalsup{llizi¢1(z:) © ¢a(y:)ll}
= |a||t||» for all a € K.

(iii) Let t =37 2, ®y; and s = Y5, 7; ® y;, then
|t + s|| = sup{||#(t + s)||: ¢ subtensor representation of A ® B}
= sup{||¢t + ¢sllpn}
= sup{||[; ¢1(:) ® do(y] + [Ziey d1(zz) ® d2(yi)]lI}
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< sup{| S0, 1) ® So(w) [} + sup{ | iy 61(25) @ 62911}
= [ItllA + lIslia- v

2.4.2.4: Theorem.

Let A and B be C*-algebras. There is a minimal C*-norm |.||v and mazimal
norm ||.||, so that any C*-norm on A ® B must satisfy, ||t]lv < [t < ||t
forallt € A® B.

Proof. v

We denote by A&, B (respectively A®,B) the completion of A ®y B for the
norm ||¢|lv (respectively ||t[|»). The maximal norm is described as

ltla = supll¢(t)| sy where the supremum runs over all possible Hilbert
spaces H of ail possible *-homomorphisms; ¢ : A ® B — B(H). For any
such ¢, there is a pair of (necessary contractive) *-homomorphisms

¢; : A — B(H) (i = 1,2) with commuting ranges such that,

(i T ® i) = 3oy $1(xi)P2(ys)-

Conversely, any such pair ¢; : A — B(H), ¢, : B — B(H) (i = 1,2) of
*_homomorphisms of commuting ranges determines uniquely a *homomor-
phism ¢ : AQB — B(H) by setting ¢(z; @ y;) = ¢1(x;)$2(ys). Thus we can
write for t = Y, 2; @ y; € AQ B, ||t]|a = sup{|| Y i, ¢1(x:)d2(vi)||} where
the supremum runs over all possible such pairs. The inequality ||| < ||t[|a
follows by considering Gelfand Naimark embedding of the completion of
(A® B, ||t||) into B(H) for some H [11].

The minimal norm can be described as follows; embedding A and B ac C*-
sub-algebras of B(H;) and B(H,) respectively. Then for any t = > ", ; ®y;
in A® B, ||t||v coincides with the norm induced by the space B(H; ®).| H2),

i.e. we have an embedding (an isometric *-homomorphism) of the comple-
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tion denoted by A®yB into B(H; ® H2) In other words, the minimal tensor
product operator spaces, when restricted to two C*-algebras coincides with
the minimal C*-tensor product.

Let (C,D) be another pair of /C*—algebras and consider completely bounded
maps f; : A — C and fo : B — D. Then f; ® f, defines a completely
bounded map from ARyB to C ® D with ||fi ® fall = || fillev]l follev- In
sharp contrast, the analogous property does not hold for the maximal tensor
products. However, it does hold if we moreover assume that f; and f, are .
positive and then the resulting map f; ® f> is also completely positive (on

the maximal tensor product) hence

Ifv ® f2(D)llez,p < 11l fallllE] sz, 5 for all t € A® B.

2.4.3 Haagerup norm.

Besides the minimal and the maximal norm, there is another important op-
erator space cross-norm: the Haagerup norm. Generally, the Haagerup norm
on the algebraic tensor product A ® B, where A and B are C*-algebras is
defined by ’

n n

; - 1

ltlln = inf Y zaai 2l Y vivill?
i=1 i=1

for t € A® B. The proof that ||.||, is a norm is not completely trivial since
the proof of the triangle inequality and the definiteness are non-trivial. We
also note that the Haagerup norm is not a C*-norm, but if the definition is
repeated forn € Nand t € M,,(X®Y) for operator spaces X and Y, it turns
out that the Haagerup norm is an operator space cross-norm with a number
of good properties [5]. l

The motivation for the Haagerup norm was the consideration of elementary
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operator ¢ : B(H) — B(H) defined by ¢(a) = >, ziay; for a € B(H)
and x;,y; fixed in B(H). These operators result from the action of
S,z ®y; € B(H)® B(H)® on B(H) (where B(H)® is the C*-algebra
with the reversed product). /For some &,n € H where ||£]| = ||n|| = 1, the
Cauchy-Shwarz inequality implies;
[(B(a)s, M| = 12 izy miawi€, m)|
= (3 ie1 ayi€, zin)|
< (T loy€l?)* (i ltnl®)s. But

Yo laimll? = 325y (e, )

=2 im1(m, zizim)

< 1 iz llnll®
Also,[lagi|l < llallly:€l,
>t il = 301 (i, wid)

=2 im1 (& v k)

< I i wiwlliel®.
So, [{¢(a)€, m) < llallll iy zai 121 iy wiwsll 2 lIEN Iml-
Hence, [|4]| < | o0z, @i lI2 | o0, viwill2
From these considerations we obtain the natural definition;
Il = inf{ll Siy 2|21 Zily visal2 - € N,t € B(H) © B(H)}.
2.4.3.1: Theorem.
Let a,b€ B(H) and let T,y = a®b+b®a. Then |Tupllv > 2[|all]d]l-
Proof.
Let a = [a,b], b = [b,a]*. We shall use the notation a®b=a®b+b®a and
recall that the Haagerup norm of [|[a®b4-b®al|n > ||al|||b]| [9]. We assume that
lall = [|bll = 1. Let a,b € A = (B(H)"); where A = {f € B(H)": || f[| <1}
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and T, € A x A. We let so,t, € A b’e some scalars of modulae 1 and that
a(s,) = 1, b(t,) = 1. If a; = a(t,) and by = b(s,), then b4

(1) Tap(80,50) = (a®b+b® a)(so, 50)
= a ® b(s,,50) +b® a(s,, $5)
= a($,)b(s,) + b(s0)a(so)
=b; +b |
= 2b;.

(ii) Top(to,to) =a®@b+b® a)(ts,ts)
=0 ® b(to, to) + b ® alto, to)
= a(to)b(to) + b(to)a(to)
=a; + a;

L 2(11.

(ii) Tap(S0rto) = a® b(Se,to) +b @ a(so, to)
=a®b(s,,t) +b® a(s,, o)
= a(8,)b(t,) + b(s,)a(t,)
=11+bay

=1+ albl.

If |ay| or |by] is greater or equal to 1, then the proof is completed.
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Chapter 3

THE NORM OF A
DERIVATION

3.1 Introduction.

In this chapter, we determine the norm of the inner derivation

Ar : TA — AT acting on B(H) which is irreducible.More precisely, we show
that ||Ta 4] = 2inf{||A — A||X € C}.

A derivation A on a C*-algebra A is a linear mapping A : 4 — A satisfying
the usual Leibniz product rule i.e. A(z,y) = z(Ay) + (Az)y Vz,y € A
Such a mapping is bounded as was first shown by Sakai [16]. If there is an
element @ such that Az = za — az Yz € A, then the derivation is inner. In
most cases such an element doesn’t exist in A. Therefore one tries to extend
the derivation A to a bigger C*-algebra which may contain an implementing
element.

Since A is inner, it is easier to estimate its norm which of course, is important

from the analytic point of view. It is easy to see that if Az = za—axz Vz € A,

52




then ||A|| < 2dist(a, Z(A)) where Z(A) is the center of A.

3.2 Preliminary results.

"We say that a state f of a C*f-algebra B(H) is definite on the self-adjoint
operator A in B(H) when f(A%) = f(A)2. In this case, f is multiplicative
on the C*-subalgebra of B(H) generated by A. The following lemma is a
combination of Singer’s argument that the derivations of commutative C*-
algebras are 0 and results on the multiplicative properties of definite states”.
See [7].

3.2.1: Lemma.

If A is a derivation of the C*-algebra B(H) and f is definite on A in B(H),
then f(A(A)) =0.

Proof.

We note that A(J) = A(I?) = 2A([), so that A(I) = 0. Thus

A(A) = A(A — f(A)I); and we may assume that f(A) = 0. In this case
0= f(AT) = f(A7), where A = A* — A7, AT and A~ are "positive” and
"negative” parts of A4; for AYA = A*?, so that

0= f(AY)f(A) = f(A*A) = f(AY") = f(A*).

Since A(A) = A(AT) — A(A7), it will suffice to show that

F(A(AT)) = f(A(AT)) = 0. We may assume that A >0 and f(A) = 0. Let
T = A3. Then f(T) = 0. Hence

F(AA)) = FIADT] + FITAD)] = FATNAT) + FTFIAD)] = 0. The
substance of the foregoing lemma is that each derivation of a C*-algebra
maps each self-adjoint operator in the algebra onto an operator that has 0

diagonal relative to a diagonalization which diagonalizes A [T7].
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3.2.2: Theorem.

Each derivation of a C*-algebra annihilates its center [7]. =
Proof.

LetA be a derivation of the’C*-a,lgebra B(H) with center Z(B(H)). Let f
be a pure state of B(H), and z an element of Z(B(H)). The representation
of B(H) associated with f is irreducible [23] and therefore maps Z(B(H))
into scalars. Together with the Schwarz inequality, this yields that f is
multiplicative on Z(B(H)). From the preceding lemma,f(A(z)) = 0. Since

the pure states of B(H) separate B(H), A(z) = 0.

3.2.3: Lemma.
If A is a d’em"vatz'on of the C*-algebra B(H) acting on the space H, then
A has a unique ultra weakly continuous extension which is a derivation of
B(H)".
Proof.
We show that for each z,y in H, w,,0A is strongly continuous at 0 on B,
the positive operators in the unit ball ¥; of B(H). Now
A — ([AA(A) + A(4)Ale, ) (= (A4)z,y))
is strongly continuous at 0 on 9;+, the set of self—édjoint operators in the unit
ball of B(H), since [((AA(A) + A(A)A)z, )| < (AN A=yl + lllllAy])
where |A|| < oo by Sakai’s theorem [21]. Moreover, A — A? is strongly
continuous at 0 on positive operators, since HA%“ = |(Az,z)| < ||Az||||z].
Thus A — A% — (A(A)z,y) is strongly continuous at 0 on ¥;. We
note next that A is weakly continuous on ¥, to B(H) in the weak operator
topology. Since Az = A*r — A~z with A* and A~ orthogonal, [[A*|| <
|Az| and ||A~z| < ||Az||; so that A — A" and A — A~ are strongly
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continuous mappings on the self—adjoiht operators in B(H) at 0. Thus, A —
(A(AN)z,y) — (A(A7)z,y) = (A(A)z,y) is strongly continuous at 0 on ¥1-.
By linearity this mapping is strongly continuous at 0 on 2¢;- and from this,
everywhere on ¥;.. Hence the inverse image of a closed convex subset of the
complex numbers under A — (A(A)z,y) has an intersection with ;. which
is strongly closed relative to ¥;+. This intersection being convex, each weak
limit point is a strong limit point [3,15], so that it is weakly closed relative to
9¥1+. Since the closed convex subsets of the complex numbers form a subbase .
for the closed subsets, A — (A(A)z,y) is weakly continuous on ;. Now
A— (A+ A*)/2 and A — (A — A*)/2i are weakly continuous mappings

of ¥; into ¥y+; so that A — (A(2E8)z,y) + i(A(455 )z, y) = (A(A)z,y)

is weakly continuous on ;. Thus A is weakly continuous on ¢;.

The linearity of A yields its uniform continuity relative to the weak-operator
uniform structure on 9;. From the Kaplansky density theorem [14], J5 is the
unit ball in B(H)~, and is compact in the weak-operator topology. Thus A
has a unique weak-operator continuous extension to 91, and this extension
has an obvious extension A from ¥7 to B(H)™. It is easily checked that this
extension is well defined and linear. For if 2 € H, (A,T) — ([A(AT) —
A(A)T—AN(T)]z, x) is strongly continuous on ¥1=X ¥+, by strong continuity
of operator multiplication on bounded sets, weak continuity of A on 97 and
boundedness of A (hence A). Since this mapping is 0 on ¥;- X ¥;+, a strongly
dense subset of 9= x V1=; it is 0 on ¥+ x V1=, for each z, so that A is a
derivation on B(H)~ [7].

3.2.4: Lemma.

FEvery derivation A on a C*-algebra is bounded.
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Proof.

Since every derivation on a non-unital C*-algebra can be uniqueiif extended
to its minimal unitization, the assertion follows from the fact that every

generalised derivation on a unital C*-algebra is bounded.

3.3 Main results.

3.3.1: Lemma.

Every derivation A on a C*-algebra A vanishes on the center Z(A) of A.
Proof.

Let a € Z(A). Then for all z € A, z(Aa) = A(za) — (Az)a = Aaz) —
a(Az) = (Aa)x where Aa € Z(A). From a(Aa) — (Aa)a = 0, ”the bounded-
ness of a derivation and the general version of Kleinecke-Shirokov theorem”
[7], we conclude that Aa is quasinilpotent but being central, this implies that
D =1}

3.3.2: Lemma.
IFIT) = llzll = 1 and |Tz|? > (1 —¢), then |(T*T — Iz|* < 2¢.
Proof. ‘
0 < |(T*T - I)z|?
(T*T — Dz||* = (T*T = Dz, (T"T - D)z}
= (T*Tz — Iz, T*Tx — Iz)
= (T*"Tx, T*Tx) — (T*Tz,Iz) — (Iz, T*Tx) + (Iz, Iz)
= |T*T=|* - 2(Tz, Tz) + ||=|*
— |T*Tall? - 2| Tz | + ol
< (IT*NTHlw)? = 2Tz + Nl
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=1-2||Tz|*>+1

= 2(1 - |Tz|?) -
<2(1—(1-¢)
= 2¢.

3.3.3: Lemma.

Let p € W(T). Then Ar > 2(||:r||2 )3,

Proof.

We note that |Ar]| = sup{|TA — AT|| : A € B(H),||A|l = 1}. Since
1 € W(T), there exists z, € H such that [|z,[| =1, |\ Tz.|| — T, and
(T 20) —> p. If we set T2, = QnZn + Payn, Where (zn,yn) = 0 and
lynll = 1. Also, Vozn = Tn, Valn = —¥n and V,, = 0 on {Zn,yn}. Then
TV, = VoT)za|? = | Txn — Vi Tz, ||

= |lenZn + Butn — Va(@nZn + Baya) I

= (nZn + Butin — Va(@nZn + Baln); tnn + Butin = Va(@nZn + fuyn))

= (0nTn + Balns @nn + Buyn) — (0nZn + Bayn, Va(@nTn + Baln)) = (ValanTn +
Buyn), nn + Butin) + (Va(@nZn + Buyn), Va(anZn + Buyn))

= [{Qn@ns WnZn) +(nTns B+ {(Bnbins WnZn) +(Bayn, Bayn)] = [(@nTn, Vantindn)+
(s Brtin) +{(BnYns Vatnn)+(Brtn, VaBryn)] = [(Vaann, nTp)+ (Vo QnZn, Baln)+
(VaBatn, @nn) + (VaBuln, Bayin)] + [(VanZn, VattnTn) + (Van@n, ValBuyn) +
(VaBun, Vatin@n) + (VaBaYn, VaBnyn)]

— [laPl|zal2+ 0B (Tns o) +BuTn (s Ta+ B 1nl]~llva Pl|2nl1® — B (2, yn)+
BTin(Yns Tn) — 1BalPlzall?] = llemPllzall® + @nBu(Tn, yn) — Brlin(Yn; Tn) =
1BalPllynl2) + [ln 2llall? = @nBr(Ens Yn) = Baa(Yn, Tn) + 1Bl 19nll?]

= (lonZall? + BaTn(Yn, 2n) + BalPllyall®] = llomllznll® + Baln(yn, 2n) —
1B l19n |2~ [l tn 2|20 1>~ BaTin Yn, Tn) =B 2 [Yn ]+ ctn 2| 2nl|* = BnBin (Y, 2n)+
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18n I ynI?]
= Bl l|ynll? + 1B llynll? = 218al*- | b
= |(TV,, = Vo1 )z, = 218 = 2(|| )% - [anIQ)é — €,, where €, — 0 and

since o, — p the proof is complete. see [19].

3.3.4: Theorem.

|Az|| = 2||T|| if and only if 0 € W(T).
Proof.
From lemma 3.3.3, we have that ||Ar|| > 2||T| if 0 € W(T). Since |Ar] < |
2||T|| for any T, sufficiency is proved. We assume that the A7l = 2T,
and hence there exists z,, and A, such that ||:cn|| = || 4]} = 1 and || (T'An—
ATzl = 20Tl Clearly, 4wl = 1, |Taull = 7] and |TAzn| =
|T||. Moreover, since ||(TA, — AnT)zall = 2T\, TAnzn = —AnT2n + G
where || €,|| — 0. Let (T2p, z,) — p by éhoosing subsequence if necessary,
i.e. u€ W(T). We observe that (TAnmﬁ, Ann) = —(AuT 20, AnZn) + €

= —(Tzp, AL AnTy)

= — (T, Tp)+e€,, Where the
last step follows from lemma 3.3.2. Thus , limpy—oo(T AnZn, Any) = —p.
Since pu, —p € W(T), it follows that 0 € W(T).

3.3.5: Theorem
If 0 € W(T), then ||T|)> + A\ < ||IT + A||? for all X € C. Conversely, if
7|l < |IT + A|| for all X € C, then 0 € W(T).
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Proof.

If 0 € W(T), then there exists z,, € H, ||z.]| = 1 such that <
(T + Nzall? = |T2al|? + RENTzn, ) + AP — [T + AP
Conversely, let ||T|| < ||IT + )\|| VA € C. We assume that 0 ¢ W(T). By
rotating T, we may assume that ReW (T') > 7 > 0. Let
¢ ={z € H: |z| = landRe(Tz,z) < 7/2}, n = sup{||Tz| : € ¢}. Then
n < |T||. Let u = min{r/2, (|T|| — n)/2} and consider (T — p). If z € ¢,
then [|(T — )zl < [ Tz] +p < n+p < [T |
Let Tx = (a + ib)z +y where z € ¢, ||z|| = 1 and (z,y) = 0. Then
(T — )zl = (a = p)?* + 0> + [ly]® |

= |Tz|* + (u* — 2ap)

< ||Tt|2 since a > p >0

ie. |T -l <|IT|, contrary to the hypothesis

3.3.6:Corollary. (Pythagorean relation for operator.)
Let T be a bounded linear operator. Then there exists a unique z, € C, such
that |T — 2|12 + A\ < (T = 2,) + AlI> VA € C. Moreover, 0 € W(T — A) if
and only if X = z,. '
Proof.
Now, there exists a z, € C such that | T — zo|| < ||(T' = 2,) + Al VA € C. The

rest of the proof easily follow from theorem 3.3.5.

3.3.7: Theorem.
Let Ar be a derivation on B(H). Then |Ar/pm|| = sup{||TA— AT||: A€
B(H), | A]l = 1} = infrcc{2IT - All}.
Proof.
Since |[TA — AT|| = (T — M)A — A(T = M| < 2||T = All[|A]]. It follows
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therefore that ||Ar| <infaec{2||T — A||}.

On the other hand, ||T — A| is larger for A large. So inf||T — X” must be
taken on at some point, say Z,. But ||T'— Z,|| < (T — Z, + \|| VA € C
implies that 0 € W(T — Z,). Hence |A7|| = |Ar—z || =2|T - Z,||. O

3.3.8: Definition.

A C*-algebra A is irreducible if the commutant of A contains only the scalars.

3.3.9: Theorem.
Let B(H) be an irreducible C*-algebra on H. Let T € B(H). Then
|AT/Bml = sup{|TA — AT : A € B(H),||A|l = 1} = infacc{2/IT - Al}.
See[19] for proof.

3.3.10: Theorem.

Let A,B € B(H). Then |[Tag|| = sup{|AX — XB| : X € B(H),||X]| =
1} = infrec{ll4 = Al + 1B = Al}.
Proof.
ITanl < inf{||A— A+ ||B — A||} follows from theorem 3.3.7. If we let
infaec{l|A=A+1B=Al} = [|[A=Xo|| +]|B = X,||. Then it follows from [19]
lemma 6 and theorem 7 that [|Ta,5ll = | Tta—s, 8- | = 4= Aoll+ [ B=Ao].
If A = B, then the norm of T4 p is an inner derivation induced by A or B
respectively i.e. |[Taal = inf{||A—-X|+||A—-X|]|: X e}

=2inf{]|A—- | : A eC}

= 2R 4 where R, is the radius of the spectrum of A.
If B(H) is irreducible then | T4 || = 2inf{||A—A|| : A € C} implies that A is
the center of B(H). Further if X is close to A, then the norm is small hence

X almost commute with the elements of the unit ball of B (H).
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3.4 Conclusion

1.4 has been solved. We havei shown in
(Tapll = 2llalilibll bY taking Tap =
infaec{lA—= N +1B— \i;

In this thesis, the problem stated in

section 2.4 that the constant ¢ = 2 i.e.

a®b+b®a. Wehave also shown that ||Ta,B =

which in tu

rn is an inner derivation when A coincides with B.
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