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ABSTRACT
G

In this thesis, we determine the norm of a two-sided symmetric operator

in an algebra. More precisely, .we investigate the lower bound of the operator

using the injective tensor norm. Further, we determine the norm of the inner

derivation on irreducible C*-algebra and confirm Stampfli's result for these

algebras.
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Chapter 1

INTRODUCTION

1.1 Introduction

In this section we give definitions of various mathematical concepts and ex-

amples that we intend to use in the subsequent chapters. We have also given

some theorems and lemmas that we shall refer to in the subsequent chapters.

We shall use the capital letters X, Y, U, V, W to denote vector spaces and

small letters x, y, u, v, w to denote their elements.

1.1.1: Definition; Inner product space.

Let X be a vector space over the field of real or complex numbers. A mapping,

denoted by (., .) defined on X x X into the underlying field is called an inner

product of any two elements x and y of X if the following conditions are

satisfied;

(1) (x,x) 2: 0 and (x,x) = 0 if and only if x = 0, 'ix,y E X.

(2) (x + x',y) = (x,y) + (x',y), 'ix,x',y EX
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(3) (ax, y) = a(x, y), a belongs to the underlying field.

(4) (x, y) = (y, x)

See [18] page 83 for verifications of 1-4.

If the inner product (., .) is defined for every pair of elements (x, y) E X x X,

then the vector space X together with the inner product (.,.) is called an

inner product space or pre-Hilbert space usually denoted by(X, (.,.)).

1.1.2: Definition; Hilbert space.

An inner product space X is called a Hilbert space if the normed space

induced by the inner product is a Banach space (complete normed space).

That is, every Cauchy sequence Xn E X with respect to the norm induced

by the inner product is convergent with respect to this norm.

1.2 Operators and Functionals

1.2.1: Definition; Operator.

Let X and Y be norrned. spaces. Then the mapping T : X ---7 Y is called

an operator.

1.2.2: Definition; A linear operator.

Let X and Y be normed spaces. An operator T is said to be linear if the

following conditions are satisfied;

\:Ix, y EX, a a scalar,

(i) T(x + y) = Tx + Ty

(ii) T(ax) = c/T».

2



So, the map T : X ---+ Y is linear if 'ix, y E X and ex, (3 E IK,

Titxx + (3y) = c/T'» + (3Ty.

1.2.3: Definition; A bounded linear operator.

A linear operator T : X ---+ Y is said to be bounded if there exists a real

constant k > 0 such that IITxll·::::; kllxll 'ix E X. We shall denote by B(X, Y)

the set of T : X ---+ Y.

1.2.4: Definition; Norm of a bounded operator.

Let T E B(X, Y). Then the norm of T is defined as

IITII = sup{IITxll : x E fY(T), Ilxll < 1}

= sup{IITxll : x E fY(T), x =1= O} < 00.

The supremum being finite follows from the fact that IIT(x)11 ::::;kllxll, 'ix E X

and k 2::O.

1.2.5: Theorem.

Let T be a linear operator then,

(a) The range of the operator T, IJ\(T) is a vector space.

(b) The dimension of the domain of T, dimfY (T) is finite.

(c) The null space oj T', 91(T) is a vector space.

See [8] page 86 for proof.

1.2.6: Definition; Adjoint operator.

Let T E B(X, Y) where X, Yare Hilbert spaces, then the unique linear

operator T* E B(Y, X) satisfying (Tx, y) = (x, T*y) for all x E X and y E Y

is called the adjoint (Hilbert adjoint) of T.
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1.2.7: Definition; Self-adjoint, Positive, Normal and Unitary

operators.

Let T be a bounded linear operator on a Hilbert space H into itself then,

(i) T is called self-adjoint or hermitian if T = T*.

(ii) T is called normal if TT* = T*T.

(iii) T is called unitary if T*T = I = TT* where I is the identity on H.

This implies that, T preserves inner product on the Hilbert space, so

that (Tx, Ty) = (x, y)\:Ix, y E H and that T is a surjective isometry.

(iv) T is positive if (Tx, Ty) ~ 0 for all x E H.

1.2.8: Proposition.

Let T E B(H). Then the following statements are equivalent;

(i) T is self-adjoint.

(ii) (Tx, x) is a real number, \:Ix E H.

See [22] page 330 for proof.

1.2.9: Definition; Completely bounded operator.

Let H be a complex Hilbert space and B(H) the set of all bounded linear

operators on H. Any map ¢ : B(H) ---7 B(H) induces a family of maps

¢n : Mn(B(H)) ---7 Mn(B(H)), n ~ 1 defined by ¢n([Xi,j]) for any matrix

[xd E Mn(B(H)). If supll¢nll is finite then ¢ is said to be completely

bounded and the supremum defines the completely bounded norm 11¢llcb of

¢. (Here, of course the norm in Mn(B(H)) is given by the identification

Mn(B(H)) = B(Hn). "We refer to [4] and [14] for more on completely

bounded mappings" .
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1.2.10: Definition; Elementary operator.

Let H be a Hilbert space and B(H) the algebra of all bounded linear oper-

ators on H. We call T : B(H) --+ B(H) an elementary operator if T has a

representation;
k

T(x) =L aixb,
i=l

(1.1)

with tu, b, E B(H) for each i. The building blocks of such elementary oper-

ators of length one, that is if k = 1 in (1.1), has the form Ta,b(X) = axb.

Compact operators:

1.2.11: Definition; Compactness.

A metric space X is said to be compact (sequentially compact) if every

sequence in X has a convergent subsequence. A subset M of X is said to

be compact if M is compact considered as a subspace of X, i.e. if every

sequence in M has a convergent subsequence whose limit is an element of M.

1.2.12: Definition; Compact linear operators.

Let X and Y be normed spaces. An operator T : X --+ Y is called a

compact linear operator (or completely continuous linear operator) if T is

linear and if for every bounded subset M of X the image T(M) is relatively

compact i.e. the closure T(M) is compact or totally bounded subset of Y.

1.2.13: Definition; Compact operators on Banach spaces.

An operator T E B(X, Y) is compact if TBx, the image of the unit ball B;

under T, is relatively compact (i.e. totally bounded) subset of Y. Thus T is

compact if and only if for every sequence (xn) E X the sequence (Txn) has

a convergent subsequence. In short, compact operators are "small" in the

sense that they map the unit ball into a "small" set.
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1.2.14: Theorem.

Let T : HI ~ H2 be compact linear map between Hilbert spaces HI and H2.

Then the image of the closed ball of HI under T is compact.

Proof.

Let U be a closed unit ball of HI. It is weakly compact, and T is weakly

continuous. So T(U) is weakly compact and therefore weakly closed. Hence

T(U) is norm closed, since the weak topology is weaker than the norm topol-

ogy. Since T is a compact operator, this implies that T(U) is norm compact.

1.2.15: Lemma.

Let X and Y be normed spaces. Then

(a) Every compact operator T : X ~ Y is bounded hence continuous.

(b) If dimX = 00, the identity operator j : X ~ X (which is continuous)

is not compact.

Proof.

(a) The unit ball SeX such that S = {x EX: [z] = I} is bounded.

Since T is compact, T(S) is compact and is bounded by the fact that

a compact subset M of a metric space is closed and bounded. So that

sUPllxll=IIITxll < 00. Hence T is bounded since we have that T is

continuous.

(b) The closed unit ball SEX such that S = {x EX: Ilxll ~ I}

is bounded. If dimX = 00, then the fact that a normed space has

a property that the closed unit ball S is compact, then X is finite

dimensional, implies that S cannot be compact. Thus I (S) = S = S is

not relatively compact.
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1.2.16: Theorem.

Let X and Y be normed spaces and T : X ----t Y a linear operator. Then

T is compact if and only if it maps every bounded sequence (xn) E X onto a

sequence (Txn) E Y which has a convergent subsequence.

Proof.

If T is compact and (xn) is bounded then (Txn) E Y is compact and by

definition of compactness, (Txn) contains a convergent subsequence.

Conversely,

Let every bounded sequence (xn) contain a subsequence (xnJ such that

(Txnk) converges in Y. Consider any subset SeX and let (Yn) be any

sequence in T(S). Then Yn = TXn for some (xn) E Sand (xn) is bounded

since S is bounded. By assumption, (Txn) contain a subsequent sequence.

Hence T(S) is compact because Yn E T(S) was arbitrary. Hence by definition,

this shows that T is compact. (compactness criierion.}

1.2.17: Theorem.

Let X and Y be normed spaces and T : X ----t Y a linear operator. Then,

(i) If T is bounded and dimT(X) < 00, the operator T is compact.

(ii) If the dimX < 00, the operator T is compact.

Proof.

(i) Let (xn) be a bounded sequence in X. Then the inequality

IITxnl1 ~ IITllllxnl1 shows that (Txn) is bounded. Hence (Txn) is rel-

atively compact (in a finite ?imensional normed space X, any subset

SeX is closed and bounded.) Since dimT(X) < 00 it follows that
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(Txn) has a convergent subsequence. Since (xn) was arbitrary bounded

sequence in X, the operator T is compact by theorem 1.2.1().

(ii) This follows from (i) by noting that dimX < 00 implies boundedness

of T and by the fact that if a normed space X is finite dimensional,

then every linear operator on X is bounded. So dimT(X) :::;dimX for

any linear operator T. If dimfJ(T) = n < 00 then dimlJ{(T) :::;n.

1.2.18: Examples of compact operators.

(1) Every finite operator T E B(X, Y) is compact i.e. if dimT = dimT(X) <

00 then T E Bo(X, Y). Indeed, the set Z = ImT. Since Z is finite di-

mensional, Bz is compact and so T Bx is a subset of the compact set

TB'lL.

(2) Every bounded linear functional f E X* is !1 compact operator from X

to C.

(3) An operator T defined on the space e2 i.e. T : e2 ---7 e2 defined by

y = CT/j) = Tx where 'T/j = Ej/j for j = 1,2, .

1.2.19: Definition; Uniform topology.

This is defined by the operator norm IITII for T E B(H), where

IITII = sup{IITxll : x E H, Ilxll < I}.

1.2.20: Definition; Strong-operator topology.

For x E H, the map T ---7 IITxl1 defines a semi-norm on B(H). The family

of all such semi-norms {IITxll : x E H} defines a Hausdorff locally convex

topology called the strong operator topology.
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1.2.21: Definition; Weak-operator topology.

For x,y E H, the map T --7 I(Tx,y)1 defines a semi-norm on JJ(H). The

family of such semi-norms {I (Tx, y) I : x, y E H} define a Hausdorfflocally

convex topology called the weak-operator topology.

1.2.22: Definition; The maximal numerical range.

Let H be a Hilbert space (complex). T : H --7 H, T bounded. Let B(H)

be the set of all bounded linear operators on H. For all T E B(H) we define

a set W(T) given by

W(T) = {A : (Txn, xn) --7 A, Ilxnll = 1, IITxnl1 --7 IITII}·
When H is finite dimensional, W(T) corresponds to the numerical range

produced by the maximal vectors (vectors x such that Ilxll = 1 and IITxl1 =

IITII). Thus we have W(T) = {(Tx,x) : Ilxll = 1}

1.2.23: Lemma.

The set W(T) is non-empty, closed, convex and contained in the closure of

the numerical range [19j.

1.2.24: Definition; Diagonal matrix.

A diagonal matrix is a square matrix in which the entries outside the main

diagonal are zero. The diagonal entries themselves mayor may not be zero.

Thus the matrix A = 8(i, j) with n columns and n rows is diagonal if 8(i, j) =

0, i i=jVi,j = {1,2, ... ,n}.

1.2.25: Definition; Unitary diagonolizable operator.

A bounded operator T on a Hilbert space H is said to be unitary diagonoliz-

able if it has diagonal matrix relative to some orthonormal basis i.e., if there

is an orthonormal basis {en} for H consisting of eigen vectors of T. We note

that all normed operators on a finite dimensional space, and generally, all
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compact normed operators are unitarily diagonolizable.

1.2.26: Definition; Functionals.

A functional is an operator whose range lies on the real line IR or in the

complex plane C while its domain lies in a vector space. It is usually denoted

by f or F i.e. f : X --+ 1)(1) --+ lK, lK is either IR or cc. Functionals are

said to be linear and bounded if for f :X --+ lK there exists a real number

k 2: 0 such that; If(x)1 ::; kllxll for all x E X. Further,

1.2.27: Definition; Sesquilinear form.

Let U and V be vector spaces over the same scalar field lK (lRorC). Then a

sesquilinear form (functional) £ on U x V is a mapping £ : U x V --+ lK such

that VU,Ul,U2 E U, V,Vl,V2 E V and o:,{3 E lK;

(iii) £(o:u,v) = o:£(u,v)

(iv) £(u,{3) = 7J£(u,v).

Thus £ is linear in the first argument and conjugate linear in the second. If

U and V are in IR then (iv) is simply £(u,{3v) = (3£(u,v) and £ is bilinear

since it is linear in both arguments. If k 2: 0 such that 1£(u,v)l::; kilullllvil
Vu, v, then £ is bounded and the number

I£(u, v)1 .11£11= supu,oo,v,oo{ Ilullllvll ' u E U, v E V} = sUPllull=lIvll=l {I£(u, v)lu E U, v E V}

is the norm of E.
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1.2.28: Definition; Dual space.

The set of all functionals defined on a vector space X is called the""'dual of X

and is denoted by X*. It is also a vector space if addition and multiplication

by vectors are pointwise defined.

1.2.29: Remark.

The dual space X* of X is a Banach space whether X is a Banach space or

not. See [18] page 26.

1.3 Algebra

1.3.0: Definition; An algebra.

A vector space X in which multiplication is defined having the following

properties; Vx, y, z E X and A E IK,

(a) x(yz) = (xy)z

(b) x(y + z) = xy + xz

(c) (x+y)z=xz+yz

(d) A(XY) = (AX)Y = XAY is called an algebra.

An algebra X is called commutative (abelian) if xy = yX.

1.3.1: Definition; A Banach algebra.

(e) Given that X above is a Banach space (complete normed space) with

respect to a norm that satisfies the multiplicative inequality

IIXyl1 :s; IlxllllyllVx, y E X

then X is called a Banach algebra.
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(f) Given that X contains a unit element e such that xe = ex = x, 'ix E X

and Ilell = 1. Then X is a unital Banach algebra if the properties (a)

to (f) are satisfied by X.

1.3.2: Definition; Subalgebra.

A subspace S of X which is also an algebra with respect to the operation on

X is a subalgebra of X.

1.3.3: Definition; Involution.

Let X be an algebra. A mapping from X ---t X defined by x ---t x* 'ix, x* E

X is an involution on X it satifies the following conditions; 'ix, x*, Y E X

and A a scalar,

(i) (x + y)* = x* + y*

(ii) (Ax)* = ~x*

(iii) (xy)* = y*x*

(iv) x** = x

1.3.4: Definition; *-algebra.

An algebra X with an involution x ---t x* is a *-algebra.

1.3.5: Definition; Banach *-algebra.

This is a normed algebra X with an involution, which is complete and has

the property Ilxll = Ilx*ll. In this case, we define a normed algebra as follows:

i.e. the algebra X is a normed algebra if for each element x E X there

is an associated real number Ilxll, satisfying the axioms of a norm. Thus

'ix,y E X,

(1) Ilxll 2: 0 and IIxll = 0 if and only if x = 0
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(2) Ilaxll = lalllxli

(3) Ilx + yll :::; Ilxll + Ilyll

(4) Ilxyll :::; Ilxllllyll

1.3.6: Definition; C*-algebra.

A Banach *-algebra X with the property Ilx*xll = IIxl12 '\Ix E X is called a

C*-algebra.

1.3.7: Examples of C*-algebra.

We refer to only one which is B(H), the set of all bounded linear operators

on a Hilbert space H. We prove that B(H) is a C*-algebra.

B(H) is an algebra.

Let T E B(H) where T : H ---7 H. Multiplication is defined pointwise in

B(H). Thus

ST(x) = S(T(x))'\IS, T E B(H), x E H

B(H) is a normed algebra.

B(H) is a normed space, consequently, a normed algebra. For if we let T E

B(H) then IITII satisfies the axioms of a norm i.e.,

(i) Clearly, IITII 2: 0 and IITII = 0 if and only if T = O.

(ii) IlaT11 = sup{ 11(~:tll : x =FO}

- sup{ Ila(Txlll . x -I- O}
- Ilxll' r
- sup{ lalllTxl1 . X -I- O}
- Ilxll' r
= lalsup{ II,fx"II : x =FO}

= lalllTII·
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(ii) liT + SII = sup{ II(T~~t)11 : x =1= O}
- sup{ IITx+Sxll . x-/.. 0- Ilxll· r
< sup{ IITxl1+ IISxll : x-/.. 0- Ilxll llxll r
::; sup{ IIlfxiil : x =1= O} + sup{ IIlfxilll: x =1= O}

= IITIIIISII·

(iv) IITSII = sup{IITlfx(II)11 : [z] = I}

= sup{ IITI\~II)II: Ilxll = I}

::; IITllsup{lllfxilll : Ilxll = I}

= IITIIIISII·

B(H) is a *.algebra.

Since B(H) is an algebra and T E B(H), it has an involution from B(H) -----t

B(H) define by T -----t T* i.e. since T is a 'bounded linear operator,

(i) (T + S)* = T* + S*.

((T + S)z, x) = (z, (T + S)*x) \/x, z E H.

Also,

((T + S)z, x) = (Tz + Sz, x)

= (Tz, x) + (Sz, x)

= (z, T*x) + (z, S*x). Thus

(z, (T + S)*x) = (z, T*x + S*x).

(ii) (aT)* = aT*. Clearly,

((aT)z, x) = (z, (aT)*x) (l.2)

Also,

((aT)z, x) = a(T(z),x) = a(z, T*(x)) = (z, aT*(x)) (l.3)
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From equations (1.2) and (1.3),(z, (aT)*x) = (z, aT*(x)).

(iii) (TS)* = S*T*

Clearly, ((TS)x, y) = (x, (TS)*y)

Since (TS)x = T(S(x)),

((TS)(x), y) = (T(S(x)),y)

= (Sx, T*y)

= (x, S*(T*(y)))

= (x, (S*T*)(y))

(iv) T** = T

(Tx, y) = (x, T*y) = ((T*)*x, y) Vx, y E H.

Since B(H) satisfy (i) to (iv), it is an involution and hence a *-algebra.

B(H) is a Banach *-algebra.

For all T E B(H), IITII = IIT*II.
IIT*(x)112 = (T*x, T*x)

= (T(T*(x)),x)

:::; IIT(T*(x))llllxll

:::; IIT*xIIIITllllxll

IIT*(x)11 < IITllllxl1 i.e. IIT*II :::; IITII·
Conversely, applying this relation to T** we have, IIT** II :::; IIT* II. But

T** = T. Therefore, IITII :::; IIT* II·

B(H) is a C*-algebra.

Since B(H) is a *-algebra, we need to show that it has the property

IIT*TII = IITI12
, VT E B(H).
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IIT*T(x) II ::; IIT* 1IIITllllxli = IITI1211xli hence

IIT*TII ::; IITI12 (1.4)

On the other hand, IITxl12 = (Tx, Tx)

= (T*Tx, x)

::; IIT*Tllllxl12 hence

(1.5) .

From equations (1.4) and (1.5), IIT*TII = IITI12. Hence B(H) is a C*-algebra.

1.3.8: Definition; Positive functionals.

This is a linear functional f on a Banach algebra A with an involution that

satisfies the condition f(xx*) 2:: 0 for all x·E A.

1.3.9: Definition; Complex Homomorphism.

Suppose A is a complex algebra and f is a linear functional on A which is

not identically zero. If f(xy) = f(x)f(y) for all x E A then f is a complex

homomorphism on A i.e. a multiplicative linear mapping from one Banach

algebra into another.

An element x E A is invertible if it has an inverse in A i.e. if there exists an

element x-1 E A such that x-1x = xx-1 = e, e is the unit element inA.

1.3.10: Definition; *-morphism (homomorphism)

Suppose A and Bare C*-algebras, a mapping ¢ :A -----t B is a C*-homomorphism

if for any a, s « C. and x, yEA the following four conditions are satisfied.

(i) ¢(ax + by) = a¢(x) + b¢(y)

(U) ¢(xy) = ¢(x)¢(y)
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(iii) ¢(x*) = (¢(x))*

(iv) ¢ maps a unit in A to a unit in B

If further ¢ is 1- 1 and onto, then it is a C*-isomorphism i.e.\ix, yEA and

x =f y, ¢(x) =f ¢(y).

1.3.11: Definition; State.

Let A be an algebra with involution. A linear functional f on A is self-adjoint

or hermittian if f(x*) = f(x) \ix E A. If further, Ilfll = f(e) = 1, then f is

called a state.

1.3.12: Example.

A functional f on B(H) for example is a state if x E H, Ilxll = 1 and

f(T) = (Tx, x) for all T E B(H).

Proof.

For all TI, T2 E B(H) and aI, a2 E IK

f(alTI + a2T2) = ((aITI + a2T2)x, x)

= (aITlx, x) + (a2T2x, x)

= al(Tlx,x) + a2(T2x,x)

= ad(Td + ad(T2)'

Also,

If(T)1 = I(Tx,x)1 < IITxllllxl1 ~ IITllllxl12

i.e. Ilfll ~ IIxl12 but Ilxll = 1. So

Ilfll ~ 1 (1.6)

f(1) = (Ix, x) = (x, x) = IIxl12 = I.'

1= If(1)1 ~ Ilfllll!11 = Ilfll· (1.7)
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From equations (1.7) and (1.8), ](1) = Ilfll = 1. The functional] on B(H)
c-

is positive since ](T*T) = (T*Tx, x) = (Tx, Tx) = IITxll2 2: O. Hence lis a

state on B(H).

1.3.13: Definition; Representation.

A representation of a C*-algebra A is defined to be the pair (H, ¢), where

H is a complex Hilbert space and ¢ a *-morphism of A into B(H). The

representation (H, ¢) is said to be faithful if and only if ¢ is a *-isomorphism.

between A and ¢(A) i.e. if and only if ker(¢) = {O}.

The space H is called the representation space, the operators ¢(x) are called

the representatives of A. By implicit identification of ¢ and the set of repre-

sentatives, one also says that ¢ is a representation of A on H.

1.3.14: Gelfand-Naimark Segal Representation.

With each positive linear functional, there is associated representation. Sup-

pose that] is a positive linear functional on a C*-algebra A, setting

N, = {a E A : ](a*a) = O} where Nf is a left ideal on A. N, is closed

[11] and the map (A/Nf)2 ---7 <Cdefined by (a + Nf, b + Nf) = ](b*a) is

a well defined inner product on A/ Nf. We denote H f the Hilbert comple-

tion of A/Nf. If a E A, we define an operator ¢(a) E B(A/Nf) by setting

¢(a)(b + Nf) = ab + Nf. The inequality ¢(a) s: lIall holds since we have

II¢( a) (b + Nf) 112= ](b*a*ab)) s: lIall2 ](b*b) S:lIall2l1b + N, 112. The operator

¢(a) has a unique extension to a bounded operator ¢f(a) on Hf. The map

¢f : A ---7 B(Hf) defined by a = ¢f(a) is a *-homomorphism. The repre-

sentation (Hf' ¢f) of A is called the Gelfand Naimark-Segal representation

associated to ] (GNS representation).
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1.3.15: Definition; Calkin algebra.

Calkin algebra denoted by B(H)j K(H)is the quotient of B(H), the algebra

of all bounded linear operators on separable infinite dimensional Hilbert space

H, by the ideal K(H) of compact operators. Since the compact operator

K(H) is norm closed, minimal ideal in B(H), the Calkin algebra is simple.

As a C*-algebra, the Calkin algebra is remarkable because it is not isomorphic

to an algebra of operators on a separable Hilbert space; instead, a larger

Hilbert space has to be chosen. (By GNS theorem, every C*-algebra is

isomorphic to an algebra of operators on a Hilbert space, for many other

simple C*-algebras, there are explicit descriptions of such Hilbert spaces,

but for the Calkin algebra this is not the case).

1.3.16: Remark.

If K(H) is an ideal of B(H), then B(H)j K(H) is a C*-algebra with the

multiplication given by

(T + K(H))(5 + K(H)) = T5 + K(H) \IT, 5 E B(H).

Calkin algebra is a vector space if we define addition as below;

For B(H)j K(H) = {T + K(H) : T E B(H)},

(T + K(H)) + (5 + K(H)) = (T + 5) + K(H) \IT,5 E B(H).

1.3.17: Lemma.

Let K(H) be a subspace of B(H). Then the set of all cosets

B(H)j K(H) = {T + K(H) : T E B(H)} is abelian under coset addition;

(T + K(H)) + (5 + K(H)) = (T + 5) + K(H). In order for the product

(T + K(H))(5 + K(H)) = T5 + K(H) to be well defined, we must have,

5 + K(H) = 5' + K(H) ===? T5 '+K(H) = T5' + K(H) or equivalently,

5 - 5' E K(H) ===? T(5 - 5') = (5 - 5')T E K(H). But 5 - 5' may be any
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element of K(H) and T any element of B(H) and so this condition implies

that K(H) must be ideal.

Conversely, if K(H) is an ideal, then the coset multiplication is well defined.

1.3.18: Theorem.

Let B(H) be the set of all bounded operators on Hand K(H) the set of

compact operators on H. Then

liT + 311= inf{IIT + 311: 3 E K(H)} (1.8) .

defines a norm on the Calkin algebra B(H)j K(H) \:IT E B(H).

Proof.

(i) liT + 311 2: 0 is clear since

liT + 311= inf{IIT + 311 : IITII = 1,3 E K(H)}.

Also,

liT + 311 = 0 if and only if liT + 311 = 0 implies that IITII = 0 since

the zero element in B(H)j K(H) is the coset 0 + K(H) = K(H) i.e.

0+3=3,3EK(H).

(ii) Ila(T + 3)11 = inj{lla(T + 3)11 : 3 E K(H)}

= inf{lalllT + 311: 3 E K(H)}

= lalinj{IIT + 311 : 3 E K(H)}

= lalllT + 311·

(iii) II(T + R) + 311= inf{II(T + R) + 311: 3 E K(H)} for all T, R E B(H)

= inf{II(T + 31) + (R + 32) : 31,32 E K(H)}

~ inf{IIT + 3;11: 31 E K(H)} + inf{IIR + 3211: 32 E

K(H)}

= liT + 3111+ IIR + 3211
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1.3.19: Definition;Span of 5.
'-'

Let 5 be a non-empty subset of a linear space X over the field K The set

of all linear combinations of elements of 5 is called the space spanned by 5

and is represented by [5] i.e. [5] = {alxl + .....+ anxn}: n E N, Xi E 5 and

ai E lK for i = 1, .... , n.

1.3.20: Definition; Convex set.

Let X be a linear space. A subset M of the linear space X is convex if.

for all X, y E M, and for any positive real number t satisfying 0 < t < 1,

tx + (1 - t) Y EM.

1.3.21: Lemma.

Let Xl, X2, ... , Xrt be points in the convex set M and let aI, a2, ..... , an be non-

1.3.22: Definition; Convex hull.

If M is a subset of a linear space X, then a convex hull of M, represented by

(CoM) is the smallest convex subset of X containing M i.e. the intersection

of all the convex subsets of X that contain M.

1.3.23: Remark.

The intersection of any convex subsets of X is also convex.

1.4 Tensor products

Tensor product, denoted by 0, may be applied in different contexts to vec-

tors, matrices, tensors, vector spaces, algebras, topological vector spaces and

modules. In each case the significance of the symbol 0 is the same; the most

general, bilinear map.
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Let U and V be vector spaces over the same field F, and let T be the sub-

space of the free vector space £uxv on U x V generated by all vectors of the

form;

(i) r(u, v) + s(u', v) - (ru + su, v)

(ii) r(u,v) +s(u,v') - (u,rv+sv') Vr,s E F,u,u' E U and v,v' E V

The quotient space £uxv/T is called the tensor product of U and V denoted

by U Q9V. An element of U Q9V has the form L:ri( iu, Vi) + T. The coset

(u, v) + T is denoted by u Q9v and therefore any element f-l of U Q9V has the

form f-l = L:iUi Q9Vi. We note that by (i) and (ii), any element of T is equal

to the zero vector.

Given bases {Ui} and {Vi} for U and V respectively, the tensors of the form

u;Q9Vi forms a basis for UQ9V. The dimensions of the tensor product therefore

is the product of the dimensions of the original spaces, for example, Rm Q9H"

will have dimension mn.

1.4.1 Bilinear maps and tensor products

A mapping! from the cartesian productX x Y of vector spaces into a vector

space Z is bilinear if it is linear in each variable i.e.

!(alxl + a2X2, y) = ad(xl, y) + azf(x2, y) and

!(X,f31Yl + f32Y2) = f3d(X,Yl) + f3zf(X,Y2) VX,Xl,X2 E X, Y,Yl,Y2 E Y

and scalars ai, f3i, (i = 1,2). We write B(X, Y; Z) to denote the vector

space of bilinear mappings from the product X x Y into Z; (the set of all

bilinear functions from X x Y to 'Z). When Z is a scalar field we denote

the corresponding space of bilinear forms simply by B(X x Y) i.e. bilinear
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function f :X x Y --7 F with values in the base field F is a bilinear form
G

on X x Y.

1.4.1.1: Lemma.

Let f be a mapping from a cross product space to the tensor product space

f: X x Y --7 X ® Y defined by f(x, y) = x ® y. Then f is a bilinear map.

Proof.

Let x, Xl, X2 E X and y, YI, Y2 E Y. Also let a, (3 E lK.

Linearity in X

f(axI + (3X2, y) = (axI + (3x2) ® Y

= (axI ® y) + ((3x2 ® y)

= a(xI ® y) + (3(X2 ® y)

= af(xI, y) + (3f(X2, y)

Linearity in Y.

f(x, aYI + (3Y2) = X ® (aYI + (3Y2)

= (x ® aYI) + (x ® (3Y2)

= a(x ® Yd + (3(x ® Y2)

= af(x, yd + (3f(x, Y2).

1.4.1.2: Remark.

The tensor product X ® Y, of vector spaces X and Y can be constructed as

a space of linear functionals on B(X x Y) in the following ways. For x E X,

Y E Y, we denote x ® Y the functional given by evaluation at the point (x, y)

i.e. (x ® y)(J) = (1, x ® y) = f(x, y) for each bilinear form on X x Y. The

tensor product X ® Y is the subspace of the dual B(X x Y)* spanned by

these elements. Thus a typical ten'sor in X ® Y has the form L~=lAiXi ® Yi

\In E N, Ai E lK, x E X and y E Y. We also note that the space (X x Y)*
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(the dual space of X x Y containing all linear functionals on that space)

corresponds naturally to the space of all bilinear functionals on X x Y i.e.

every bilinear functional is a functional on the tensor product and vise versa.

Whenever X and Yare finite dimensional, there is a natural isomorphism

between X* Q9y* and (X Q9Y)*. For vector spaces of arbitrary dimension

we only have an inclusion X* Q9Y" C (X Q9Y)*. So the the tensors of linear

functionals are bilinear functionals. This gives us a new way to look at the

space of bilinear functionals as a tensor product itself.

1.4.2 Algebraic properties of tensor products.

Tensor products obey a number of nice rules. For matrices A, B, C, D, vectors

U, V, Wand scalars a, b, c, d, the following hold;

(1) (A Q9B)(C Q9D) = AC Q9BD

(2) (A Q9B)(U Q9V) = AU Q9BV

(3) (U + V) Q9W = U Q9W + V Q9W

(4) U Q9(V + W) = U Q9V + U Q9W

(5) aU Q9bV = ab(U Q9V)

(6) (U Q9V)* = U* Q9V*

(7) (U Q9V) Q9W = U Q9(V Q9W)

(8) ({3U) Q9V = U Q9({3V)
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(9) (V Q9U)-l = V-l Q9U-l

i.e. (U Q9V)(U-l Q9V-l) = UU-l Q9VV-l = I Q9I = I

This shows that (U Q9V)-l = U:' Q9V-l.

(10) Thus for matrices

(
A B)Q9U=(AQ9U BQ9U)

C D CQ9U DQ9U
which specializes for scalars too

(
a b) Q9U = (au bU)

c d cU dU
We note that the conjugate transpose distributes over tensor products

1.4.3 Universal property of tensor products

The space of all bilinear maps from X x Y to, another vector space Z is

naturally isomorphic to the space of all linear maps from X Q9Y to Z. This

is built into the construction; X Q9Y has all relations that are necessary to

ensure that a homomorphism from X Q9Y to Z will be linear.

1.4.3.1: Lemma.

Let X and Y be vector spaces over the same field F. There exists X Q9Y

called tensor product of X and Y with a canonical bilinear homomorphism

f : X x Y ----7 X Q9Y distinguished up to isomorphism, by the following

universal property; Every bilinear homomorphism ¢ : X x Y ----7 Z lifts to a
- -unique homomorphism ¢ : X Q9Y ----7 Z such that ¢(x, y) = ¢(x Q9y) for all

x E X and y E Y.

Proof.

Since f(x,y) = x Q9y = (x,y) + T, the map f : X x Y ----7 X Q9Y is a
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canonical injection j : X x Y -7 EXxY followed by a canonical projection

Jr: £XxY -7 X ® Y = £xxy/T i.e. != tto]

The universal property of free vector spaces implies that there is a/unique

linear transformation a : E XxY -7 Z for which aoj = ¢. Since ¢ is bilinear,

it sends any of the vectors

(i) r(x,y)+s(x',y)-(rx+sx',y)

(ii) r(x, y) + s(x, y') - (x, sy + sy')

that generates T to the zero vector, so T C ker(a). Hence there exists a
~ ~

unique linear transformation ¢ : X x Y -7 Z for which dior: = a. Thus
~ ~ ~
co] = ¢oJroj = aoj = ¢. Moreover, if do] = ¢, then

a' = ¢'OJr : £XxY -7 Z is a linear transformation for which

a' oj(x, y) = ¢oJroj(x, y) = ¢o!(x, y) = ¢(x, y) = aoj(x, y) and so

a' oj = aoj =} a' = a =} ¢' = ¢. Hence ¢ is unique.

1.4.3.2: Remark.

The universal property of tensor products says that for each bilinear function

¢ :X x Y -7 Z, there corresponds a unique linear function ¢ :X ® Y -7 Z

through which the function! : X x Y -7 X ® Y is factored i.e.

¢ = ¢of. This establishes a map 7jJ: B(X, Y; Z) -7 Z(X ® Y, Z) defined by

7jJ(¢) = ¢where 7jJ(¢) is a unique linear map 7jJ(¢) : X ® Y -7 Z defined by

7jJ(¢) (x ® y) = ¢(x, y).

We observe that 7jJis linear, since if ¢, t E B(X, Y; Z), then 'ir, s E F

[r7jJ(¢) + s7jJ(t)](x ® y) = r(¢)(x, y) + s(t)(x, y) = (r¢ + st)(x, y) and so the

uniqueness part of the universal property implies that

r7jJ(¢) + s7jJ(t) = 7jJ(r¢ + st).
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Also, 'ljJ is surjective since if ¢ : X ® Y ~ Z is any linear map, then

¢ = ¢oj : X x Y ~ Z is bilinear, and by the uniqueness 'part of the

universal property, 'ljJ(¢) = ¢.
Finally, 'ljJis injective, for if 'ljJ(¢) = 0 then ¢ = 'ljJ(¢)oj = o.
This implies that for X, Y, Z vector spaces over the same field F the map

'ljJ: B(X, Y; Z) ~ 'c(X ® Y; Z) defined by the fact that 'ljJ(¢) is the unique

linear map for which ¢ = 'ljJ(¢)oj is an isomorphism. Thus

B(X, Y; Z) ~ 'c(X ® Y; Z).

1.4.4 Tensor norm

Proposition 1

Let X and Y be Hilbert spaces. We denote X ® Y the tensor product space

between X and Y. The elements oj X ® Yare denoted by x ® y where x E X

and y E Y. Then Ilx ® yll = Ilxllllyll defines a norm.

Proof.

We shall prove that Ilx ® yll satisfy all the axioms of a norm.

(i) Ilx ® yll 2: 0 and that Ilx ® yll = 0 {:}x ® y = 0 is clear.

(ii) Ila(x ® y)11 = lallix ® YII a E Jl{.

Now, Ilx ® yI12 = (x ® Y,x ® y) = (x,x)(y,y) = IIxl1211Yl12and by the

algebraic properties of tensor products,

a(x®y) = (ax®y) = (x®ay), so

Ila(x®y)112 = (ax®y,ax®y)

= (x®ay,x®ay)

= (ax, ax) (y, y)

= lal211xl1211Yl12
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= lalllx®yll
Ila(x ® y)11 = lallix ® yll·

(iii) For all Xl, X2 E X and Yl, Y2 E Y we have that

II(Xl ® Yl) + (X2 ® Y2) :::; Ilxl ® Ylil + IIx2 ® Y211· Now,

II(Xl ® Yd + (X2 ® Y2)112 = (Xl ® Yl + X2 ® Y2, Xl ® Yl + X2 ® Y2)

= (Xl ®Yl, Xl ®Yl) +(Xl ®Yl, X2®Y2) +(X2®Y2, Xl ®Yl) + (X2®Y2, X2®Y2)

= (Xl,Xl)(Yl,Yl) + (Xl,X2)(Yl,Y2) + (X2,Xl)(Y2Yl) + (X2,X2)(Y2,Y2)

= IIxll1211Yll12 + IIx211211Y2112+ (Xl,X2)(Yl,Y2) + (Xl,X2)(Yl,Y2)

= IIxd211Yll12 + IIx211211Y2112+ 2Re(Xl, X2) (Yl, Y2).

:::; IIxll1211Yll12 + IIx211211Y2112+ 211X11IX21111Y11IY211
= {IIX11111Ylll + IIx21111Y211P by Cauchy-Schwarz inequality.

=* II(Xl®Yl)+(X2®Y2)11:::; IIX1111IYlii + Ilx21111Y211·

Proposition 2

Let X and Y be vector spaces, let E and F be linearly independent subsets of

X and Y respectively. Then {x ® Y : X E E, Y E F} is a linearly independent

subset of X ® Y.

Proof.

Suppose we have that fJ = 2:::~1 AiXi ® Yi = 0 where Xi E E and Yi E F.

Let i,9 be linear functionals on X and Y respectively and consider the

bilinear form defined by ¢(x,y) = f(x)g(y). We have M(¢) = 0 and so

2:::7=1 A;J(Xi)g(Yi) = g(2:::7=1 A;J(Xi)Yi) = O. Since this holds for every

9 E Y*, we can conclude that 2:::7=1 A;J(Xi)Yi = 0 and so by linear indepen-

dence of F, we have A;J(Xi) = 0 for all f E X*. But by linear independence

of E, each Xi is non zero and it follows that Ai = 0 for all i. Thus if X and

Yare finite dimensional spaces then dim(X ® Y) = dim(X)dim(Y).
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1.4.3.3: Definition; Haagerup norm.

The Haagerup norm on the algebraic tensor product B(H) @B(H}is defined

by II¢nll = infIIL:=laia;II~IIL:=lb:bill~, where the infimum is taken over

all possible representations of ¢ in the form ¢ = L:=l a; @ bi. By natural

map; B(H) @B(H) ---+ CB(B(H)) is defined by e(Li ai@bi)(x) = Li aixbi.

We may algebraically identify B(H) @B(H) with the space of all elementary

operators on B(H). For each ¢ in B(H) @ B(H) the completely bounded

norm of e(¢) is equal to the Haagerup norm of ¢ [9]. e(Li a; @ bi)(x) =

Li a.xl», We may algebraically identify B(H) @ B(H) with the space of all

elementary operators on B(H). For each ¢ in B(H) @ B(H) the completely

bounded norm of e( ¢) is equal to the Haagerup norm of ¢ [9].

1.4.5 Statement of The Problem

Let H be a complex Hilbert space, T : H -7 H a bounded linear operator

and B(H) the set of bounded linear operators on H. Clearly B(H) is an

algebra. Our main result shall concern the operator Ta,b : B (H) -7 B (H)

defined by Ta,b(X) = axb + bxa for all x E H and a, b fixed in B(H). No

formula is known for computing the norm of Ta,b. Clearly,

IITa,b/B(H) II ::; 21lallllbll· But in estimating the norm of Ta,b in the opposite

direction, the largest possible c such that IITa,b/B(H) II 2: cilalillbil for all a, bE
B(H) and c E lR is not known. Nyamwala [12] proved c = 2 in B(C2

).

We shall extend our research to investigate the norm of derivation of the

elementary operator and the corresponding tensor norm. We shall further

establish the relationship between the norm of derivation of the elementary

operator Ta,b and the corresponding tensor norm.
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1.4.6 Objectives of the study

(i) To investigate the lower bound of the operator Ta,b.

(ii) To investigate the derivation of the operator Ta,b.
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Chapter 2

TENSOR PRODUCT

OPERATOR.

In this chapter we show that the tensor products T®S and T0S are normed

operators. We have also shown the relationship between the C*-norrns; spa-

tial, projective and Haagerup. Consequently, we prove that IITa,bll 2:: 211alillbil
on the injective tensor norm.

The standard tensor product of Hilbert spaces Hand K shall be denoted by

H®K i.e. the tensor product H ® K completed with respect to the norm

induced by the inner product given on elementary tensors by

(x®y,x' ®y') = (X,X')H(y,y')K, so that B(H)®B(K) ~ B(H®K) via

(T ® S)(x ® y) = T(x) ® S(y) for all T E B(H), S E B(K).

2.0.0: Theorem.

Let Hand K be Hilbert spaces, B(H) and B(K) be sets of bounded linear

operators on Hand K respectively. Suppose that T E B(H) and S E B(K),

then there is a unique linear bounded operator T®S E B(H®K) defined by
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(T05)(x ® y) = T(x) ® 5(y) for all x E Hand Y E K. Moreover,

IIT0511 = IIT1111511. G

Proof.

The map ¢ : T x 5 --+ T ® 5 defined by ¢(T, 5) = T ® 5 is bilinear.

Linearity in T

Let a, (3 E OC, T1, T2 E B(H) and 5 E B(K). Then

¢(aT1 + (3T2'5) = (aT1 + (3T2) ® 5

= (aT1 ® 5) + ({3T2® 5)

= a(T1 ® 5) + (3(T2 ® 5)

= a¢(T1' 5) + (3¢(T2' 5).

Linearity in 5.

¢(T, a51 + (352) = T ® (a51 + (352) '151,52 E B(K).

= (T ® a5d + (T ® (352)

= a(T ® 5d + (3(T ® 52)
= a¢(T, 5d + (3¢(T, 52)'

The operator T ® 5 : H ® K --+ H ® K is bounded. We may assume that T

and 5 are unitaries, since unitaries span the C*-algebras B(H) and B(K).

Now, I:~=1 Xi ® Yi E H ® K where Y1, .... , u« are orthogonal. Hence

II(T ® 5)(I:~=1 Xi ® Yi)112= II I:~=1 T(Xi) ® 5(Yi)112

= I:~=1 IIT(Xi) ® 5(Yi)112

(since 5(Y1' ... , 5(Yn) are orthogonal).

= I:~=1 IIT(xi)112115(Yi)112

= I:~=1 IIxil1211Yil12

= II I:~=1 Xi ® Yil12

Consequently, liT ® 511= 1.
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Thus. for all operators T, S on H, K respectively, the linear map T ® S is

bounded on H ® K and hence has an extension to a bounded linear map

T@S on H@K. The maps B(H) --7 B(H@K) defined by T --7 T@~K and

B(K) --7 B(H@K) defined by S --7 eH@S are injective *-homomorphism.

For example,

¢(T) = T@eK = ¢(T),

¢(T1T2) = ¢(T1)¢(T2) and

¢(T*) = ¢(T)* for all T1, T2 E B(H).

Consequently, the maps are isometric for if Tl =I T2, then ¢(T1) =I ¢(T2).

Hence, IIT@ell = IITII and Ile@SII = IISII·
SO, IIT@SII = II(T@e)(e@S)11 ::; IITIIIISII·
If E is a sufficiently small positive number, and if T, S =I 0, then there are unit

vectors x and Y such that IIT(x)11 > IITII- E > 0 and IIS(y)11 > IISII - E > o.
Hence, II(T@S)(x ® y)11= IIT(x)IIIIS(y)11 > (IITII- E)(IISII - E). SO

IIT@SII > (IITII - E)(IISII - E) and as E --7 0 we get

IIT@SII ~ IITIIIISII· See [11].

2.0.1: Lemma.

Let Hand K be Hilbert spaces and suppose that T, T' E B(H) and S, S' E

B(K). Then

(i) (T@S)(T'@S') = TT'@SS' and

(ii) (T@S)* = T*@S*.

Proof.

(i) The proof follows from the following theorem.
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2.0.2: Theorem.

If A and B are algebras, then there is a unnique associative ;nultiplica-

tion M on the vector space A (3) B for which the equation

M(al(3)bl, a2(3)b2) = (ala2)(3)(blb2) holds for all al, a2 E A and blb2 E B

Proof.

Letp : A --7 ~(A) and p : B --7 ~(B) be left regular representations of

A and B respectively. Consider a bilinear map ¢ : A x B --7 ~(A (3)B)

defined by ¢(a, b) = e(a)p(b) where e(a) (3)p(b) is the unique linear

transformation on A (3)B where, e(a) (3)p(b)[c (3)d] = (ac) (3)(bd) for all

c (3)d E A (3)B. By the universal property of tensor products, there is

a unique linear transformation ¢ :A (3)B --7 ~(A (3)B) where

¢(a (3)b) = ¢(a, b) for all a E A and b E B. We define

M((A(3)B) x (A(3)B)) --7 A(3)B by M(~, 7)) = ¢~[7)] for all~, 7) E A(3)B.

Since ¢and ¢~are linear transformations, M is a bilinear function, thus

it remains to show that M is an associative multiplication. To do so,

we note that by bilinearity of M, it is sufficient to show that M, it is

sufficient to show that M is associative on the spanning set of elemen-

tary tensors.

Verification.

M((al (3)bd, M(a2 (3)b2, a3 (3)b3)) = e(al) (3)p(bl)[e(a2) (3)p(b2)(a3 (3)b3)]

= e(ad (3) p(bl[(a2a3)(3) (b2b3)]

= al(a2a3) (3) (blb2)b3

= (ala2)a3 (3) (blb2)b3

= M(M(al (3)bl, a2 (3)b2)a3 (3)b3)·

Thus M is an associative multiplication on A (3)B. Suppose now
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M' is another such multiplication and similarly we can show that

M' (al Q9 bl, a2 Q9 b2) = (ala2)Q9 (blb2) holds Val, a2 E A and"ol, b2 E B.

Then M and M' have identical values on spanning set of A ® Band

therefore M = M', which proves that M is unique.

(ii) (T0S)* = T*0S* ¢:? (T0S)*(x Q9 y) = T*(x)0S*(y) Vx Q9 y E H Q9 K.

By definition of (T0S)*,

((T0S)x' Q9y',XQ9Y) = (x' Q9Y', (T0S)*XQ9Y) VXQ9Y,x' Q9Y' E HQ9K ..

Also, ((T0S)x' Q9y',XQ9Y) = (T(x')0S(y'),XQ9Y)

= (T(x'), x)0(S(y'), y)

= ((x',T*x)0((y',S*y)

= (x'0y', T*x0S*y)

i.e. (x' Q9 y', (T0S)*x Q9 y) = (x' Q9 y', T*x0S*y).

2.0.3:Theorem.

Let Hand K be Hilbert spaces. Then there is a unique inner product (., .)

on H Q9 K such that (x Q9 y, x' Q9 y') = (x, x') (y, y') Vx, x' E Hand y, y' E K.

Proof.

Let T : H ---+ C and p : K ---+ C be conjugate linear maps. Then there is a

unique conjugate linear map, T Q9 P : H Q9 K ---+ C defined by T Q9 p(x Q9 y) =

T(X) Q9 p(y) Vx E H, y E K. We note that 1" and p are linear and set

T Q9 P = (1" Q9 p)-. Now, TX is a conjugate linear functional defined by setting

TX(Y) = (x, y) Vx E H. If X is the space of all conjugate linear functionals

on H Q9 K, then the map from H x K defined by (x, y) = TX Q9 Ty is bilinear,

i.e. Va,(3 E OC,x,x' E H,

(ax + (3x', y) = T(ax + (3x') Q9 Ty

= (Tax Q9 TY) + (T(3X' Q9 TY)
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= a(TX ® TY) + (3(TX' ® TY)

= a (X, y) + (3 (X' , y).

Also, (x, ay + (3y') = TX ® T(ay + (3y')

= (TX ® Tay) + (TX ® TY')

= a(Tx ® TY) + (3(TX ® TY')

= a(x, y) + (3(x, y') Vy, y' E K.

And so by the universal property of tensor products, there exists a unique

linear map f : H®K ---f X defined by f(x®y) = TX®Ty Vx E Hand y E K.

The map (.,.) : (H ®K)2 ---f C defined by (z, z') = f(z)(z') is a sesquilinear

form on H ® K Vz E H ® K such that (x ® y,x' ® y') = (x,x')(y,y') for

all z , x' E Hand y, y' E K. If z E H ® K, then z = L:~=l Xi ® Yi for some

Xl, ... , Xn E Hand Yl, ... , Yn E K. Let ei, .. , em be an orthonormal basis for

the linear span of YI,'" Yn' Then z = L:~=l Xi ® ei for some Xl, '" Xm E H.

So, (Z,z') = L:~=I(X; ® ei'X~ ® ej) = L:~=I(X;,x;)(ei,ej) = L:::lllx;112
.

Thus (., .) is positive, and therefore if (z, z) = 0 then for x;s we have z = 0

for i = 1, "., m. Hence (., .) is an inner product.

2.0.4: Lemma.

If E, and E2 are orthonormal basis for Hand K as above respectively, then

E, ® E2 = {x ® y : X EEl, Y E E2} is an orthonormal basis for H®K. See

[12] and [20] page 301 for the proof.

36



2.1 Norm of tensor product operator.

Let V, Vi, W, w be vectors over the same field. Let T :. V ----7 Vi and

S : W ----7 Wi be operators. Then there is a unique linear operator

T 0 S : V ® W ----7 Vi ® Wi (2.1)

defined by T 0 S(x ® y) = T(x) ® S(y) for all x E V, YEW. The function

'1 : V x W ----7 Vi ® Wi defined by '1(x, y) = T(x) ® S(y) is bilinear and

so by the universal property of tensor products, there exists a unique linear

operator for which (2.1) holds. The map T0Sis called the tensor product of

T and S. The map ¢ :£(V, W) ® £(V', Wi) ----7 £(V ® W, Vi ® Wi) defined

by ¢(T, S) = T 0 S is also bilinear and so there is a linear transformation

'IjJ: £(V, W)®£(V', W') ----7 £(V®W, Vi ®W') defined by 'IjJ(T®S) = T0S.

'IjJis injective.

We observe that any non zero product ~ E £(V, W) ® £(V', Wi) has the form

~ = I:~11i® s, where T:sand S:s are linearly independent. It suffices

therefore to show that keT('IjJ) = {O}.

Suppose 'IjJ(~) = 'IjJ(I:~=11i ® Si) = 0 then Vv E V, yEW,
n

LTi(x) ® Si(Y) = 0
i=l

(2.2)

Let us choose x E V so that Ti(x) =1= 0 and suppose that T1(x), ... , Tk(x) is a

maximal linearly independent set among T1(x), .. , Tn(x). Then

T1(x) = I:~=1Tl,jTj(x) for I = k + 1, ..,n. Hence equation (2.2) gives

o = I:~=l1i(X) e Si(Y) + I:~=k+1 (I:;=1Ti,jTj(x)) ® Sl(Y)

= I:~=1Ti(x) ® Si(Y) + I:~=1Ti(x) ® I:~k+1 Ti,jSl(Y)

= I:~=1Ti(x) ® Si(Y) + I:~=k+1 Ti,jSl(Y) and since T1(x), .. , Tk(x) are linearly

independent, we must have Si(Y) + I:~k+1 Ti,jSl(Y) = 0 for all i = 1, .. , k and
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YEW. So S, + 2::~=k+l ri,jSI = ° which is a contradiction to the fact that

the S:s are linearly independent. Hence 'ljJ(~) 'I and so 'ljJ is injective. See

[20] page 303.

2.1.1: The operator T 0) S is both linear and bounded.

Linearity

The map T 0) S : V (9 W --+ Vi (9 Wi is defined by

T 0) S(2::~l Xi (9 Yi) = 2::~1 T(Xi) (9 S(Yi) Vx E V, YEW. Let a, (3 ElK and.

T 0) S(a 2::~1 Xi (9 Yi + (3 2::~=1X~ (9 y~) =

= T 0) S(a 2::~=1Xi (9 Yi) + T 0) S((3 2::~=1x~ (9 y~)

= a 2::~=1T(Xi) (9 S(Yi) + (3 2::~=1T«) (9 S(y~)

= «t 0) S(2::~=l Xi (9 Yi) + (3T 0) S(2::~=l X~ (9 y}

Boundedness

liT 0) S(2::~=l Xi (9 Yi)11= 112::7=1T(Xi) (9 S(Yi)11

:::;2::7=1IITxillllSYil1
:::;2::7=11ITllllxiIIIISIIIIYill
= IITIIIISIl 2::7=1IlxillllYil1
= IITIIIISIlIl 2::7=1Xi (9 Yill·

2.1.2: The norm of T 0) S.

liT 0) SII = sUPl1E~=lx.;0Yill=1{liT 0) S(2::7=1 Xi (9 Yi) II,X E V,y E W}

IITIIIISIlIl 2::7=1Xi (9 Yill
:::;SUPIIE:'=l xi0Yill=1 { 112::7=1Xi (9 Yill ,X E V, YEW} = IITIIIISII

liT 0) SII :::; IITIIIISII (2.3)

Conversely,since
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{IT 8 S(I::1 Xi Q9Yi) I }' 0IIT8SII=SUp III:n .11 ,xEV,yEWi=l X, Q9y,

It follows that

liT 8 SII.;:::: IT 8 S~I:~=lXi Q9 Yi)1
II I:i=l Xi Q9 Yi II

for all I:~=1 Xi Q9 Yi E V Q9W and I:~=1 Xi Q9u. i= 0

IITIIIISII ;:::: IITIIIISII (2.4)

So by equations (2.3) and (2.4) we have liT 8 SII = IITIIIISII·

2.2 Tensor products of Banach spaces

The obvious way to define the tensor product of two Banach spaces A and

B is to copy the method for Hilbert spaces; define a norm on the algebraic

tensor product, then take the completion in this norm. The problem is that

there are more than one natural way to define a norm on the tensor product.

A cross norm 11.11on the algebraic tensor product of A and B is a norm

satisfying the conditions Iia Q9 bll = Ilallllbll and Ila* Q9 b*11 = Ila*llllb*. Here

a" and b' are the duals of a and b respectively and 11.11*is the dual of 11.11.
There is the smallest cross norm 11.11v called the injective cross norm given

by 11f.Lllv = Supl(a* Q9 b*)(f.L)1 where the supremum is taken over all pairs

a* and b* of norm at most one. The largest cross norm 11.11/\ is called the

projective cross norm given by 11f.L11/\= in! I:i Ilaililibill where the infimum

is taken over all finite decompositions f.L = I:i a; Q9 bi. The completion of

the algebraic tensor products in these two norms are called injective and

projective tensor products, denoted by A Q9v B and A Q9/\ B respectively.
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The norm used for the Hilbert space tensor product is not equal to either of

these norms in general.

2.3 Tensor products of operator spaces

The operator space injective tensor product also known as spatial tensor

product is defined as follows; if X and Yare operator spaces contained in

B(H) and B(K) respectively, then B(H 0 K) assigns an operator space

structure to X 0 Y which is independent of the particular Hilbert spaces on

which X and Yare represented. We write this operator space as

X e, Y. The operator space projective tensor product X 0/\ Y, is defined

by specifying CB(A'0/\Y, B(H)) for any arbitrary Hilbert space. A map

¢ : X 0/\ Y ---t B(H) is completely contractive iff II[¢(Xi,j 0 Yk,tllln,m :::;
II[xd Ilnll [Yk,zlilm whenever [xd E Mn(X) and [Yk,zl E Mm(Y). The Haagerup

tensor product X 0h Y of operator spaces X and Y may also be defined

by specifying CB(X 0h Y, B(H)) for an arbitrary Hilbert space. The map

¢ : X 0h Y ---t B(H) is completely contractive iff II [~k ¢(Xi,k 0 Yk,j )]llh :::;
II[xi,jllhll[Yi,j]llh whenever [Xi,j] E Mn(X) and [Yi,j] E Mn(Y).

2.3.1; Theorem.

The largest reasonable operator space norm (cross norm) is maximal and

minimal is the smallest operator space tensor norm 11.11 such that 11.11* is also

reasonable. Also, 11·llv = 11·11/\

This theorem is the precise analogue of the Banach case.
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2.4 Tensor product of C*-algebras.

From [5] the norm of C*-algebra is unique in the sense that on a given algebra

A, there exists at most one norm which make A into a C* -algebra. Also,

on a *-algebra A there may exist different norms satisfying the C*-property.

The completion with respect to any of such norms results in a C*-algebra

which contain A as a dense subalgebra. This is precisely what happens when

tensor product of C*-algebras is considered; in general case, there are many

norms on the algebraic tensor A ® B (which is a *-algebra) with the C*-

property i.e. C*-tensor norms and tensor products of C*-algebras completed

with respect to C*-norm shall be refered to as C*-tensor product. These are

spatial (minimal) and maximal norms.

2.4.1 Spatial norm.

2.4.1.1: Lemma.

Suppose that f is a positive linear functional on a C*-algebm A then

(i) For each a E A, f(a*a) = 0 if and only if f(ba) = 0 for all b E A.

(ii) The linearity oj J(b*a*ab) :::;Ila*aIIJ(b*b) holds Jar all a, s « A.

Proof.

Condition (i) follows from the Cauchy Schwarz inequality i.e If (x, y) I ::;
f(x,x)~f(y,Y)~ for all X,y E H holds for any positive sesquilinear form f.

It implies that the function p : x --7 J f(x, x) is a semi-norm on H; p satis-

fies the axioms of a norm except that the implication p(x) = 0 :::::}x = 0 may

not hold.
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To show condition (ii) we may suppose, using (i) that f(b*b) > O. The func-

tion p : A ---7 C defined by f (b*cb) / f (b*b) is positive and linear. IT (j.L>..) ).,EA is

any approximate unit for A, then Ilpll = lim).,p(j.L).,) = lim).,f(b*j.L).,b)/J(b*b) =

f(b*b)/ f(b*b) = 1. Hence we have p(a*a) ~ (a*a), therefore f(b*a*ab) ~

Ila*allf(b*b).

2.4.1.2: Theorem (GNS).

If A is a C*-algebra, then it has a faithful representation. Specifically, its

universal representation is faithful. [11]

Proof.

Let (H, ¢) be the universal representation of A and suppose that a is an

element of A such that ¢(a) = 0, then since if a is a normal element of a

non-zero C*-algebra A, then there is a state f of A such that Iiall = If(a)l·

We have Ila*all = f(a*a). If b = (a*a)~, then IIal12 = f(a*a) = f(b)4 =

II¢f(b)(b + Nf)112 = 0 since ¢f(b4) = ¢f(a*a) ~ 0 so ¢(J)(b) = O. Hence

b = 0 and thus ¢ is injective.

2.4.1.3: Theorem.

Suppose that (H, ¢) and K, 'Ij;) are representations of C*-algebras A and B

respectively, then there exists 7T' : A 0 B ---7 B(H0K) such that 7T'(a0 b) =

¢(a)0'1j;(b) for all a E A and b E B. Moreover, if ¢ and'lj; are injective, so

is 7T'. See [11] and [12] for the proof.

2.4.1.4: Definition.

Let A and B be C*-algebras with faithful representations (H, ¢) and (K, 'Ij;)

respectively. The norm 11.llv defined by the inclusion A 0 B ~ B(H) 0

B(K) ~ B(H0K) is called the Spatial norm i.e. for all t E A0B we have

Iltllv = II(¢ 0 'Ij;)(t)IIB(H0K)'
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f

Iltv = II(¢ ® 1/;)(t)IIB(H®K) defines a norm.

(i) Iltllv 2:: 0 and Iltllv = 0 if and only if t = O. i.e.

II(¢ ® 'zP)(2:7=1 Xi ®Yi)IIB(H®K) 2:: 0 and

II(¢ ® 'zP)(2:7=1 Xi ® Yi) IIB(H®K) = 0 iff 2:7=1 Xi ® Yi = 0 Vx E H, Y E K.

(ii) Ilatll = Ila(¢ ® 'zP)(t)II
= Ila(¢ ® 1/;)(2:7=1 Xi ® Yi)11

= Ila(2:7=1 ¢(Xi) ® 'zP(Yi)) II Va E K So,

Ila(2:7=1 ¢(Xi) ® 'zP(Yi))112= (a(2:7=1 ¢(Xi) ® 'zP(Yi)), a(2:7=1 ¢(Xi)®

'zP(Yi)))

= (a 2::1 ¢(Xi), a 2:7=1 ¢(Xi)) ('zP(Yi) , 'zP(Yi))

= lal2 2:7=111¢(Xi)11211'zP(Yi)112

= lal2 2:::~1 11¢(Xi) ® 'zP(Yi) 112
= laI211(¢ ® 1/J-)(2:~=1 Xi ® Yi)112. So,

Ila(2:7=1 ¢(Xi) ® 'zP(Yi))II = lalll(¢ ® 'zP)(2:~=1 Xi ® Yi)11
= lailltll·

(iii) Let Xi, X: E A, Yi, y~ E B and a E K Then for t = 2:~=1 Xi ® Yi,

2:n I I

S = . 1 X ® y.2= 'l. 2'

II(¢®1/;) (t)+( ¢®1/;) (s) 112= ((¢®'zP) (t)+( ¢®'zP) ( s), (¢®'zP) ( t)+( ¢®'zP) (s))

= ((¢ ® 'zP)(t), (¢ ® 'zP)(t)) + ((¢ ® 'zP)(t), (¢®
'zP)(s ) )+((¢®'zP ) (s ), (¢®'zP) (t) )+((¢®'zP ) (s ), (¢®
'zP)(s))

= 2:7=111¢(Xi)11211'zP(Yi)112+2:~=111¢(x:)11211'zP(Y)112+
2Re(2:7=1 ¢(Xi), 2:7=1 ¢(X:)) (1/;(Yi) , 1/;(y~))

~ {2:7=111¢(Xi)IIII'zP(Yi)II+11 2:7=111¢(x:)IIII'zP(Y~)IIF·
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Taking square roots on both sides,

11(¢@?j;)(t) + (¢@?j;)(s)11 ::; Iltllllsll·

2.4.1.5: Remark.

The spatial norm is the least reasonable C*-norm on the tensor product of

C*-algebras and is often referred to as "the minimal C*-norm" [5].

2.4.2 Projective norms on tensor products.

Let U, V, W be normed spaces and ¢ : U X V ----7 U @ V the tensor map.

Then every continuous bilinear map ] : U x V ----7 W factors through a

linear map g: U @ V ----7 W i.e. ] = g(¢). The identification T : £(U, V :

W) ----7 £(U @ V : W) defined by T(J) = 9 is an algebraic isomorphism.

Here the norm is defined on U @ V so that T becomes an isometry. A norm

on the algebraic tensor product U @ V is called atensor norm or cross norm

if Ilx @ yll = Ilxllllyll for all decomposable tensors x @ y. [See proposition 1

page 28]. Clearly, if U, V contain non zero vectors, then II¢II = 1 for every

tensor norm on U @ V. For every I-" E U @ V, we shall write I-" = I:~=1Xi @ Yi

where Xi E U and Yi E V. We note that Xi, Yi may be zero vectors and hence

I-"may be zero tensor. Let 111-"11= in] I:~=1IlxillllYil1 where the infimum is

taken over all representations of I-" as a sum of decomposable tensors. This

is called the projective norm.

In theorems 2.4.2.1 and 2.4.2.2. we assume that our results holds for finite

tensor products of normed spaces without further specifications: see [21].

2.4.2.1: Theorem.

The projective norm is the largest tensor norm on U @ V.

Proof.

44



Clearly, the projective norm is positive and projective norm of zero tensor

is zero. Let c = I:7=1 x; ® y~ and f-L = I:7=1 Xi ® Yi be tensors 'ill U ® V.

We have Ilc+f-L11 :::; 2:7=11Ix;IIIIY~11 + I:7=11IxiIIIIYill· Taking infimum over the

representations of c, f-Lwe obtain Ilc+ f-LII :::; IICIIIIf-LII· Similarly, IIAf-LII :::; IAIIIf-L11
VA E lK. If A -=/- 0, then IAIIIf-L11= IAIII*Af-L11 :::; IAII*IIIAf-L11 = IIAf-LII· i.e.

IAIIIf-L11:::; 1lAf-L11·Therefore, IAIIIf-L11= IIAf-LII which can be verified directly if

A = 0.

Suppose f-L -=/- 0, we write f-L= I:7=1 Xi ® Yi where {Xi} and {yJ are linearly

independent sets. There are continuous linear forms i,g on U, V respectively

such that f(Xi) = g(Yi) = 1 and f(Xi) = g(Yi) = ° for all i 2: 2. Hence,

(f ® g)(f-L) =i';'1 f(Xi)g(Yi) = 1. But for any representation f-L= I:7=1 Xi ® Yi,

1= (f ® g) (I:7=1 Xi ® Yi)

= I::1 f(Xi)g(Yi)

= I I:7=1 f(Xi)g(Yi)1

:::; I:7=1 If(Xi) Ilg(Yi) I
:::; Ilfllllgll I:7=11IxiIIIIYill· Taking infimum over all representations of f-L, we

have 1 :::; Ilfllllgllllf-Lll. Therefore f-L v= 0. This proves that the projective

norm is a norm on U ® V.

To show that the projective norm is a tensor norm, we suppose that f-L =

E ® F -=/- ° is a decomposable tensor. Then both E and F are continuous

linear forms on U and V respectively such that Ilfll = Ilgll = l,f(E) =

IIEII and g(F) = IIFII· Thus (f ® g)(f-L) = f(E)g(F) = IIEIIIIFII· For any

representation f-L= I:7=1 Xi ® u; calculation as above gives IIEIIIIFII :::; Ilf-LII·
This together with the definition shows that IIEIIIIFII = Ilf-LII. Therefore

projective norm is a tensor norm on V ®U. Finally, let 1.1be any tensor norm
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t,

on U ® V. Then for every f-L = 2:~=1 Xi ® Yi, we have If-LI~ 2:~=1 IXi ® Yil ~
2:~=11IxiIIIIYill. Taking the infimum over all representations of f-L,If-L1~ Ilf-LII
hence projective norm is the largest tensor norm.

2.4.2.2: Theorem.

For every continuous bilinear map 1 : U x V ---r W, there is a unique

continuous linear map 9 : U ® V ---r W such that 1= g¢ where ¢ : U x V ---r

U ® V is a tensor map. If we let T : £.(U, V; W) ---r £.(U ® V; W) defined

by T 1= g. Then T is an isometric isomorphism.

Proof.

Let f-L = 2:~=1 Xi ® Yi be any tensor in U ® V for all Xi E U and Yi E V.

Then, Ilg(f-L)11~ 2:~=11Ig(Xi ® Yi)11= 2:~=11II(xi'Yi)11 ~ 2:~=11IIllllxiIIIIYill·
Taking the infimum over all representations of u; we have Ilg(f-L)II ~ IIIIIIIf-LII·
Hence 9 is continuous under the projective norm on U ® V. Furthermore,

Ilgll ~ 11111·
Conversely, if 9 E U ® V ---r W is continuous linear, then the composite

1= g¢ is continuous bilinear, i.e.

I(x, Y) = III(x ® Y)II ~ Ilgllllx ® yll = Ilgllllxllllyll so that

Ilfll < Ilgll· Thus 11111= Ilgll· TI is linear in 1· D

2.4.2.3: Maximal C*-norm.

This norm has good properties, the most important being that the representa-

tion defined by 2:~=1 ai®bi ---r 2:~=1 ¢(ai)'l/J(bi) can be continuously extended

to a representation on the C*-algebra A®/\ B for any pair of commuting rep-

resentations ¢ and 'l/J of A and B respectively, on the same Hilbert space. A

pair (¢,?jJ) of representations is called commuting if ¢(a)?jJ(b) = ?jJ(b)¢(a) for

every a E A and b E B. An algebraic representation ¢ : A ® B ---r B(H)
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which satisfies 11¢(a ® b)11 ::; Ilallllbll Va E A, b E B is called a subtensor

representation. Since for every subtensor representation 7r of A"-'® B there

exists a pair of commuting representation ¢ and 1j; of A and B such that

7r(a ® b) = ¢(a)1j;(b) = 1j;(b)¢(a) and every representation of A ®IIII B is a

subtensor ( for every C*-normll.II), then

IIt IIA = sup{ II¢( t) II : ¢ sub tensor representation of A ® B} for tEA ® B.

This is the original Guichardet's definition of the maximal C*-norm for the

tensor product of C* -algebras [5].

Proposition 4.

Let A and B be C*-algebms. ¢ and 1j; be faithful representations of A and

B respectively on Hilbert spaces Hand K also respectively. Then there is a

maximal C*norm II.IIA on A ® B defined by IltiiA = sup{II¢(t)IIB(H)}.

Proof.

(i) Clearly, IltiiA = sup{II¢(t)IIB(H)} ~ 0 and IltiiA = 0 if and only if t = 0

for all tEA ® B.

(ii) II00tliA= sup{llo:¢(t)11 :¢ subtensor representation of A ® B}

= sup{ o:¢(I:~=l Xi ® Yi) II}

= sup{11 I:~=l O:¢l(Xi) ® ¢2(Yi)ll}

= 100Isup{II~=1¢1(Xi) ® ¢2(Yi)ll}

= 10011ItiiAfor all 0: E lK.

(iii) Let t = I:~=l Xi ® Yi and s = I:~=l x; ® Y~, then

lit + s] = sup{II¢(t + s)ll: ¢ subtensor representation of A ® B}

= sup{ll¢t + ¢sIIB(H)}

= sup{II[I:~=l ¢l(Xi) ® ¢2(Yi] + [I:~=l ¢l(X;) ® ¢2(Y~)]II}
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t,

:S sup{11 I:~=l (!h(Xi) 0 ¢2(Yi)ll} + sup{11 I:~=l ¢l(X;) 0 ¢2(Y~)II}
= IltiiA + Ilslk '-'

2.4.2.4: Theorem.

Let A and B be C*-algebras. There is a minimal C*-norm 11.llvand maximal

norm II.IIA) so that any Ct-norm on A 0 B must satisfy) Iltllv :S Iltll :S IltiiA
for all tEA 0 B.

Proof.

We denote by A®vB (respectively A®AB) the completion of A 0v B for the

norm Iltllv (respectively IltIIA). The maximal norm is described as

IltiiA = supll¢(t)IIB(H) where the supremum runs over all possible Hilbert

spaces H of all possible *-homomorphisms; ¢ : A 0 B --+ B(H). For any

such ¢, there is a pair of (necessary contractive) *-homomorphisms

¢i : A --+ B(H) (i = 1,2) with commuting ranges such that,

¢(I:~=l Xi 0 Yi) = I:~=l ¢1(Xi)¢2(Yi).

Conversely, any such pair ¢i : A --+ B(H), ¢i : B --+ B(H) (i = 1,2) of

*-homomorphisms of commuting ranges determines uniquely a *homomor-

phism ¢: A0B --+ B(H) by setting ¢(xi0Yi) = ¢1(Xi)¢2(Yi). Thus we can

write for t = I:~=l Xi 0 Yi E A 0 B, IltiiA = sup{11 I:~=l ¢1(Xi)¢2(Yi)II} where

the supremum runs over all possible such pairs. The inequality Iltll :S IltiiA
follows by considering Gelfand Naimark embedding of the completion of

(A 0 B, Iltll) into B(H) for some H [11].

The minimal norm can be described as follows; embedding A and B ac C*-

sub-algebras of B(Hd and B(H2) respectively. Then for any t = I:~=l Xi 0Yi

in A 0 B, Iltllv coincides with the norm induced by the space B(Hl 011.11 H2),

i.e. we have an embedding (an isometric *-homomorphism) of the comple-
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tion denoted by A0vB into B(H10 H2). In other words, the minimal tensor

product operator spaces, when restricted to two C*-algebras coincides with

the minimal C*-tensor product.

Let (C, D) be another pair of C*-algebras and consider completely bounded

maps f1 : A --7 C and 12 : B --7 D. Then h 0 12 defines a completely

bounded map from A0vB to C 0 D with IIf1 0 12llcb = Ilf11lcbll12llcb. In

sharp contrast, the analogous property does not hold for the maximal tensor

products. However, it does hold if we moreover assume that f1 and 12 are

positive and then the resulting map f1 0 12 is also completely positive (on

the maximal tensor product) hence

2.4.3 Haagerup norm.

Besides the minimal and the maximal norm, there is another important op-

erator space cross-norm: the Haagerup norm. Generally, the Haagerup norm

on the algebraic tensor product A 0 B, where A and Bare C*-algebras is

defined by
n n

Iltllh = infll LXix;II!11 LY;Yill!
i=l i=l

for tEA 0 B. The proof that 11.llhis a norm is not completely trivial since

the proof of the triangle inequality and the definiteness are non-trivial. We

also note that the Haagerup norm is not a C*-norm, but if the definition is

repeated for n E Nand t E Mn(X 0 Y) for operator spaces X and Y, it turns

out that the Haagerup norm is an operator space cross-norm with a number

of good properties [5].

The motivation for the Haagerup norm was the consideration of elementary
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operator ¢ : B(H) ---7 B(H) defined by ¢(a) = "£~1 XiaYi for a E B(H)

and Xi, Yi fixed in B(H). These operators result from the action 'Of

,,£7=1 Xi ® u. E B(H) ® B(H)OP on B(H) (where B(H)OP is the C<algebra

with the reversed product). For some ~,TJ E H where II~II = IITJII= 1, the

Cauchy-Shwarz inequality implies;

1(¢(a)~,TJ)1 = 1(,,£7=lxiaYi~,TJ)1

= 1(,,£7=1aYi~,x;TJ)1

:::; (,,£7=1 IlaYi~112)~(,,£7=1 Ilx;TJI12)~. But

,,£7=1 Ilx;TJ112= ,,£7=1 (x;TJ, X;TJ)

:::; 11,,£7=1XiX; 1IIITJI12

Also,llaYi~11 < IlaIIIIYi~ll,

,,£7=1 IIYi~112= ,,£7=1(Yi~' Yi~)

= ,,£7=1 (~, Y;Yi~)

:::; II,,£7=1 Y;Yillll~112.

So, I(¢( a)~, TJ) :::;Ilallll ,,£7=1 XiX: II~ II,,£7=1 Y;Yi II~ II~IIIITJII·

Hence, II¢II :::; II,,£7=1 xix:II~11 ,,£7=1 Y;Yill~

From these considerations we obtain the natural definition;

2.4.3.1: Theorem.

Let a, bE B(H) and let Ta,b= a ® b + b ® a. Then IITa,bllv 2:: 211allllbll.

Proof.

Let Q. = [a, b], 12 = [b, a]t. We shall use the notation Q. 8 12 = a ® b + b ® a and

recall that the Haagerup norm of Ila®b+b®allh 2:: Ilallllbll [9]. We assume that

[e] = Ilbll = 1. Let a, b « 6 = (B(H)*h where 6 = {f E B(H)* : Ilfll :::; I}
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and Ta,b E 6. x 6.. We let So, to E 6. be some scalars of modulae 1 and that

(i) Ta,b(So, so) = (a®b+b®a)(so,so)

= a ® b(so, so) + b ® a(so, so)

= a(so)b(so) + b(so)a(so)

= bl + b,

= 2bl·

(ii) Ta,b(to, to) = a ® b + b ® a)(to, to)

= a ® b(to, to) + b ® a(to, to)

= a(to)b(to) + b(to)a(to)

(ii) Ta,b(So, to) = a ® b(so, to) + b ® a(so, to)

= a ® b(so, to) + b ® a(so, to)

= a(so)b(to) + b(so)a(to)

= 1.1 + blal

= 1 + albl.

If Iall or Ibll is greater or equal to 1, then the proof is completed.
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Chapter 3

THE NORM OF A

DERIVATION

3.1 Introduction.

In this chapter, we determine the norm of the inner derivation

6.T : TA - AT acting on B(H) which is irreducible. More precisely, we show

that IITA,AII = 2inf{IIA - AliA E C}.

A derivation 6. on a C*-algebra A is a linear mapping 6. : A -T A satisfying

the usual Leibniz product rule i.e. 6.(x, y) = x(6.y) + (llx)y \;fx, yEA.

Such a mapping is bounded as was first shown by Sakai [16]. If there is an

element a such that 6.x = xa - ax \;fx E A, then the derivation is inner. In

most cases such an element doesn't exist in A. Therefore one tries to extend

the derivation II to a bigger C*-algebra which may contain an implementing

element.

Since 6. is inner, it is easier to estimate its norm which of course, is important

from the analytic point of view. It is easy to see that if llx = xa - ax \;fx E A,
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then II~II :::;2dist(a, Z(A)) where Z(A) is the center of A.

3.2 Preliminary results.

"We say that a state f of a C*-algebra B(H) is definite on the self-adjoint

operator A in B(H) when f(A2) = f(A)2. In this case, f is multiplicative

on the C*-subalgebra of B(H) generated by A. The following lemma is a

combination of Singer's argument that the derivations of commutative C*- .

algebras are 0 and results on the multiplicative properties of definite states" .

See [7].

3.2.1: Lemma.

If ~ is a derivation of the C*-algebra B(H) and f is definite on A in B(H),

then f(~(A)) = O.

Proof.

We note that 6.(1) = ~(J2) = 2~(1), so that ~(1) = O. Thus

~(A) = ~(A - f(A)I); and we may assume that f(A) = O. In this case

o = f(A+) = f(A-), where A = A+ - A-, A+ and A- are "positive" and

"negative" parts of A; for A+ A = A+
2
, so that

0= f(A+)f(A) = f(A+ A) = f(A+
2
) = f(A+)2.

Since ~(A) = ~(A+) - ~(A-), it will suffice to show that

f(6.(A+)) = f(6.(A-)) = O. We may assume that A> 0 and f(A) = O. Let

T = At Then f(T) = O. Hence

f(~(A)) = f[~(T)T] + f[T~(T)l = f[~(T)lf(T) + f(T)f[~(T)] = O. The

substance of the foregoing lemma is that each derivation of a C*-algebra

maps each self-adjoint operator in the algebra onto an operator that has 0

diagonal relative to a diagonalization which diagonalizes A [7].
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3.2.2: Theorem.

Each derivation of a C*-algebra annihilates its center ['lj.

Proof.

Let~ be a derivation of the C*-algebra B(H) with center Z(B(H)). Let f
be a pure state of B(H), andz an element of Z(B(H)). The representation

of B(H) associated with f is irreducible [23] and therefore maps Z(B(H))

into scalars. Together with the Schwarz inequality, this yields that f is

multiplicative on Z(B(H)). From the preceding lemma,j(~(z)) = O. Since

the pure states of B(H) separate B(H), ~(z) = O.

3.2.3: Lemma.

If ~ is a derivation of the C*-algebra B(H) acting on the space H, then

~ has a unique ultra weakly continuous extension which is a derivation of

B(Ht·

Proof.

We show that for each x, y in H, Wx,yo~ is strongly continuous at 0 on 'l9i,

the positive operators in the unit ball '191 of B(H). Now

A -------7 ([A~(A) + ~(A)A]x, y)

is strongly continuous at 0 on '191*, the set of self-adjoint operators in the unit

ball of B(H), since I((A~(A) + ~(A)A)x,y)1 :::;11~11(IIAxllllyll+ IlxIIIIAyII)
where II~II < 00 by Sakai's theorem [21]. Moreover, A -------7 A! is strongly

continuous at 0 on positive operators, since IIA! II = I(Ax, x) I :::; IIAxllllxll·
Thus A -------7 A! -------7 (~(A)x, y) is strongly continuous at 0 on '191. We

note next that ~ is weakly continuous on '191 to B(H) in the weak operator

topology. Since Ax = A+x - A,-x with A+ and A- orthogonal, IIA+II :::;
IIAxl1 and IIA-xll :::; IIAxll; so that A -------7 A+ and A -------7 A- are strongly
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continuous mappings on the self-adjoint operators in B(H) at O. Thus, A ----+

(~(A+)x, y) - (~(A-)x, y) = (~(A)x, y) is strongly continuous at 0 on '!91*.

By linearity this mapping is strongly continuous at 0 on 2'!91* and from this,

everywhere on '!91*. Hence the inverse image of a closed convex subset of the

complex numbers under A ----+ (~(A)x, y) has an intersection with '!91*which

is strongly closed relative to '!91*.This intersection being convex, each weak

limit point is a strong limit point [3,15], so that it is weakly closed relative to

'!91*.Since the closed convex subsets of the complex numbers form a subbase

for the closed subsets, A ----+ (~(A)x,y) is weakly continuous on '!91*' Now

A ----+ (A + A*)j2 and A ----+ (A - A*)j2i are weakly continuous mappings

of'!91 into '!91*;so that A ----+ (~(A-t;A*)x,y) +i(~(A2:-)x,y) = (~(A)x,y)

is weakly continuous on '!91.Thus ~ is weakly continuous on '!91'

The linearity of ~ yields its uniform continuity relative to the weak-operator

uniform structure on '!91.From the Kaplansky density theorem [14], '!91is the

unit ball in B(H)-, and is compact in the weak-operator topology. Thus ~

has a unique weak-operator continuous extension to '!91' and this extension

has an obvious extension ~ from '!91to B(H)-. It is easily checked that this

extension is well defined and linear. For if x E H, (A, T) ----+ ([~(AT) -

~(A)T-A~(T)]x, x) is strongly continuous on '!9px'!9p,by strong continuity

of operator multiplication on bounded sets, weak continuity of ~ on '!91and

boundedness of ~ (hence ~). Since this mapping is 0 on '!91*x '!91*,a strongly

dense subset of '!9px '!9p;it is 0 on '!9px '!9p,for each x, so that ~ is a

derivation on B(H)- [7].

3.2.4: Lemma.

Every derivation ~ on a C*-algebra is bounded.
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Proof.

Since every derivation on a non-unital C*-algebra can be uniquely extended

to its minimal unitization, the assertion follows from the fact thai every

generalised derivation on a unital C*-algebra is bounded.

3.3 Main results.

3.3.1: Lemma.

Every derivation 6. on a C*-algebra A vanishes on the center Z(A) of A.

Proof.

Let a E Z(A). Then for all x E A, x(6.a) = 6.(xa) - (6.x)a = 6.(ax) -

a(6.x) = (6.a)xwhere 6.a E Z(A). From a(6.a) - (6.a)a = 0, "the bounded-

ness of a derivation and the general version of Kleinecke-Shirokov theorem"

[7], we conclude that 6.a is quasinilpotent but being central, this implies that

6.a= 0.

3.3.2: Lemma.

If IITII = Ilxll = 1and IITxl12 ~ (1- E), then II(T*T - I)x112 ~ 2E.

Proof.

° ~ II(T*T - I)x112

II(T*T - I)x112 = ((T*T - I)x, (T*T - I)x)

= (T*Tx - Ix, T*Tx - Ix)

= (T*Tx,T*Tx) - (T*Tx, Ix) - (Ix,T*Tx) + (Ix,Ix)

= IIT*TxI12 - 2(Tx, Tx) + IIxl12

= IIT*TxI12 - 211Tx,112+ IIxl12

~ (1IT*IIIITllllx)2 - 211Txl12 + IIxl12
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..

= 1 - 211TxI12 + 1
= 2(1 - IITxI12)
::; 2(1 - (1 - s)

= 2€.

3.3.3: Lemma.

Proof.

We note that II~TII = sup{IITA - ATII : A E B(H),IIAII = I}. Since

f.L E W(T), there exists Xn E H such that Ilxnll = 1, IITxnl1 ---+ IITII, and

(Txn, xn) ---+ f.L. If we set TXn = anXn + {3nYn, where (xn, Yn) = 0 and

IIYnl1 = 1. Also, Vnxn = z.,, VnYn = -Yn and Vn = 0 on {xn, Yn}. Then

II(TVn - VnT)xnl1
2 = IITxn - VnTxnll

2

= Ilanxn + {3nYn - Vn(anxn + (3nYn) 112
= (anXn + {3nYn - Vn(anXn + (3nYn), anXn + {3nYn'- Vn(anXn + (3nYn))

= (anXn + {3nYn, anXn + (3nYn) - (anXn + {3nYn, Vn(anXn + (3nYn)) - (Vn(anXn +

(3nYn), anXn + (3nYn) + (Vn(anXn + (3nYn), Vn(anXn + (3nYn))

= [(anxn, anxn)+(anxn, (3nYn) + ((3nYn, anXn) + ({3nYn, (3nYn) ]-[(anxn, VnanXn)+
(anxn, (3nYn) + ((3nYn, VnanXn) + ({3nYn, Vn{3nYn) ]-[ (Vnanxn, anXn)+(VnanXn, (3nYn) +
(Vn{3nYn, anxn) + (Vn{3nYn, (3nYn)] + [(Vnanxn, Vnanxn) + (Vnanxn, Vn{3nYn) +

(Vn{3nYn, Vnanxn) + (Vn{3nYn, Vn{3nYn)]

= [laI21IXnI12+an:Gn (Xn, Yn)+{3nZin(Yn, Xn)+1{3121IYnI12]-[lanI2I1xnI12-an:Gn (Xn, Yn)+

(3nZin(Yn,Xn) -1{3nI21IXnI12] - [lan1211Xn112+ an:Gn(Xn,Yn) - (3nZin(Yn,Xn)-

l{3nI21IYnI12]+ [lan1211Xn112- an:Gn(Xn,Yn) - (3nZin(Yn,Xn) + l{3nI2I1YnI12]
= [lan1211Xn112+ (3nZin(Yn, Xn) + lI?nI21IYnI12] - [lan1211Xn112+ (3nZin(Yn, Xn) -

l{3nl21lYn112]- [lanl21lXn 112-{3nZin (Yn, Xn) -1{3nI21IYn 112]+[lan 1211xn112-{3nZin (Yn, Xn)+
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l,Gn1211Yn112]
= l,Gn1211Yn112+ l,Gn1211Yn112= 21,GnI2.
===> II (TVn - VnT)Xnll = 21,Gnl ~ 2(IIT112 - lanI2)~ - En, where En ----:0 and

since an ----7 f-L the proof is complete. see [19].

3.3.4: Theorem.

II~TII = 211TII if and only if 0 E W(T).

Proof.

From lemma 3.3.3, we have that II~TII ~ 211TII if 0 E W(T). Since II~TII S
211TII for any T, sufficiency is proved. We assume that the 116TII = 211TII,
and hence there exists Xn and An such that Ilxnll = IIAnl1 = 1 and II (TAn -

AnT)xnll -7 211TII. Clearly, IIAnxn11 -7 1, IITxnl1 -7 IITII and IITAnxnl1 -7

IITII. Moreover, since II (TAn - AnT)xnll -7 211TII, TAnxn = -AnTxn + E'n

where liE' nil ----7 O. Let (Txn' xn) -7 f-L by choosing subsequence if necessary,

i.e. f-L E W(T). We observe that (TAnxn' Anxn) ~ -(AnTxn, Anxn) + En

= -(Txn, A~Anxn)

= -(Txn, Xn)+E~ where the

last step follows from lemma 3.3.2. Thus, limn-----+oo(TAnxn' Anxn) = -f-L.

Since u; -f-L E W(T), it follows that 0 E W(T).

3.3.5: Theorem

If 0 E W(T), then IITI12 + IAI2 silT + AI12 for all A E C. Conversely, if

IITII SilT + All for all A E C, then 0 E W(T).
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Proof.

If 0 E W(T), then there exists Xn E H, Ilxnll = 1 such that

II(T + A)xn112= IITxnl12 + Re).(Txn,xn) + IAI2 -r IITI12 + IAI2.
Conversely, let IITII ~ liT + All VA E <C. We assume that 0 tf. W(T). By

rotating T, we may assume that ReW(T) ?::: T > O. Let

( = {x E H : Ilxll = landRe(Tx, x) ~ T /2}, 7) = sup{IITxll : x E O· Then

7) < IITII· Let f-L = min{T/2, (IITII - 7))/2} and consider (T - f-L). If x E (,

then II(T-f-L)xll ~ IITxll+f-L~7)+f-L< IITII·
Let Tx = (a + ib)x + y where x tf. (, Ilxll = 1 and (x, y) = O. Then

II(T - f-L)xI12= (a - f-Lj2 + b2 + IIYl12
= IITxl12 + (f-L2 - 2af-L)

< IITI12 since a > f-L > 0

i.e. liT - f-LII< IITII, contrary to the hypothesis

3.3.6:Corollary. (Pythagorean relation for operator.)

Let T be a bounded linear operator. Then there exists a unique Zo E C, such

that liT - zol12+ IAI2 ~ II(T - zo) + AI12VA E <C. Moreover, 0 E W(T - A) if

and only if A = Zoo

Proof.

Now, there exists a Zo E C such that liT - zoll ~ II(T - zo) + All VA E <C. The

rest of the proof easily follow from theorem 3.3.5.

3.3.7: Theorem.

Let 6.T be a derivation on B(H). Then II6.T/B(H) II = sup{IITA - ATII : A E

B(H), IIAII = I} = inhEd211T - All}·
Proof.

Since IITA - ATII = II(T - A)A - A(T - A)II ~ 211T - AIIIIAII· It follows
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therefore that 116.TII:::;inhEd211T - All}·
On the other hand, liT - All is larger for A large. So infllT - Xii must be

taken on at some point, say Zoo But liT - Zoll :::; II(T - Z; + All VA E C

implies that 0 E W(T - Zo). Hence 116.TII= 116.T-ZJ = 211T- Zoll. 0

3.3.8: Definition.

A C*-algebra A is irreducible if the commutant of A contains only the scalars.

3.3.9: Theorem.

Let B(H) be an irreducible C*-algebra on H. Let T E B(H). Then

116.TIB(H)II = sup{IITA - ATII : A E B(H), IIAII = I} = inhEd211T - All}.
See[19] for proof.

3.3.10: Theorem.

Let A, B E B(H). Then IITA,BII = sup{IIAX - X BII : X E B(H), IIXII =

I} = inhEdllA - All + liB - All}·
Proof.

IITA,BII :::; inf{IIA - All + liB - All} follows from theorem 3.3.7. If we let

inhEdIIA-AII+IIB-AII} = IIA-Aoll+IIB-Aoll. Then it follows from [19]

lemma 6 and theorem 7 that IITA,BII = IIT(A-'\o,B-,\o)II = IIA- Aoll + liB - Aoll.
If A = B, then the norm of TA,B is an inner derivation induced by A or B

respectively i.e. IITA,AII = inJ{IIA - All + IIA - All: A E C}

= 2inf{IIA - All : A E C}

= 2RA where RA is the radius of the spectrum of A.

If B(H) is irreducible then IITA,AII = 2inf{IIA - All : A E C} implies that A is

the center of B(H). Further if X is close to A, then the norm is small hence

X almost commute with the elements of the unit ball of B(H).
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3.4 Conclusion

In this thesis, the problem stated in 1.4 has been solved. We have shown in

section 2.4 that the constant c = 2 i.e. \lTa,b\l 2: 2\\a\l\\b\l by taking Ta,b =

a® b+ b® a. We have also shown that \lTA,B = in!AEc{\lA - A\I + \\B - A\I}
which in turn is an inner derivation when A coincides with B.
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