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Abstract: Africa accounts for nearly 30% of the discovered world’s mineral reserves, with half of the
world’s platinum group metals deposits, 36% of gold, and 20% of cobalt being in Southern Africa
(SA). The intensification of heavy-metal production in the SA region has exacerbated negative human
and environmental health impacts. In recent years, mining waste generated from industrial and
artisanal mining has significantly affected the ecological integrity of SA aquatic ecosystems due to the
accelerated introduction and deposition of heavy metals. However, the extent to which heavy-metal
pollution associated with mining has impacted the aquatic ecosystems has not been adequately
documented, particularly during bioassessments. This review explores the current aquatic ecological
impacts on the heavily mined river basins of SA. It also discusses the approaches to assessing the
ecological risks, inherent challenges, and potential for developing an integrated ecological risk
assessment protocol for aquatic systems in the region. Progress has been made in developing rapid
bioassessment schemes (RBS) for SA aquatic ecosystems. Nevertheless, method integration, which
also involves heavy-metal pollution monitoring and molecular technology, is necessary to overcome
the current challenges of the standardisation of RBS protocols. Citizenry science will also encourage
community and stakeholder involvement in sustainable environmental management in SA.

Keywords: aquatic ecosystems; bioassessment; bioindicator; ecological risk assessment; heavy-metal
pollution; Southern Africa; mining and processing; rapid bioassessment schemes

1. Introduction

Southern Africa (SA) is rich in large river basin networks, from the over 1.4 million km2

Zambezi River Basin in the upper parts and extending further to the 0.4 million km2

Limpopo and 0.9 million km2 Orange River Basin systems southwards [1–3]. Given that
most SA river basins hold vast mineral deposits, the mining waste generated by arti-
sanal and mechanised mining industries has significantly affected the health of its aquatic
ecosystems [4–8]. Nevertheless, progress has been made in assessing the ecological risks
of mining and mineral processing to characterise and manage geogenic and anthropic
aquatic pollution in SA [9–12]. Ecological risk assessment (ERA) principally employs bio-
logical organisms to detect, evaluate, and predict ecological impacts of physical, chemical,
and biological environmental changes in ecosystems. ERA comprises a logical process
of assessing the occurrence or possibility of adverse ecological impacts from exposure
to one or more undesired ecological effects [13,14]. The process incorporates problem
formulation, exposure impact, effect analysis, risk characterisation, and risk-driven man-
agement decision-making [14]. Therefore, ERA provides a comprehensive mechanism for
determining, monitoring, and sustainably managing ecosystem health and integrity.
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Aquatic ecosystem health and integrity is critical, considering their role in providing
physical and biologically mediated ecosystem goods and services [15,16]. Aquatic sys-
tems are environmental buffers to human health; they reduce the risks associated with
pollutants and pathogenic microorganisms [17,18] that would otherwise impact human
health. Therefore, monitoring natural and anthropic risks to these ecosystems using ecolog-
ical indicators must be a priority for sustainable environmental management. Karr [19]
described several ecological indicators (EIs) used to assess ecosystem stressors (e.g., contam-
inants), the exposure magnitude (e.g., pollutant concentration and habitat alteration), and
response dynamics (e.g., community metrics and thermodynamics). Suitable EIs should be
“measurable, integrative, ecologically and socially relevant, interpretable, cost-effective,
anticipatory, collected at appropriate geographic and temporal scales, and able to detect
trends” [19]. EIs must respond to multiple stressors and provide quantitative, comparable,
and statistically reliable information based on sound ecological principles [20].

Conventional physical and chemical monitoring methods have been primarily and
widely applied to evaluate the integrity of aquatic environments [21,22]. Over time, tech-
niques have been developed, tested, and improved to increase the precision in monitoring
and evaluating ecosystem health and ERA [23–25]. Besides physicochemical monitoring,
biomonitoring can also be adopted during the ERA of aquatic systems (e.g., diversity and
biotic indices and multimetric and multivariate techniques). Biomonitoring, including the
application of functional feeding groups (FFGs) and multiple biological trait (e.g., molecu-
lar) characterisation, is being adopted as a complementary biomonitoring approach [26,27].
This review dwells on the current approaches to assessing the ecological risks to lotic
systems in mining basins of SA from heavy-metal mining and processing. We also explore
the inherent challenges and potential for developing and integrating an ERA protocol for
the bioassessment of SA mining basins’ aquatic systems.

2. River Basins of Southern Africa and Environmental Threats

Africa’s metallic and non-metallic mineral enrichment accounts for nearly 30% of
the discovered Earth’s reserves [28]. For instance, 55% of the global diamond production
comes from the Democratic Republic of Congo (DRC) and Botswana. Gold mining in Africa
contributes to 60% of her mineral production and 22% of the Earth’s total gold [29]. Despite
this substantial endowment, Africa’s mineral production accounts for a dismal 5.5% of the
global total, only second to Asia with 58.3% [30]. There are significant mineral deposits in
SA and an extended exploration and exploitation history [4,31]. South Africa, in particular,
contributes up to 50% of SA minerals [28]. In 2018, the region produced approximately
20.2% of the sub-Saharan Africa (SSA) minerals, principally as iron and ferro alloys (9.7%),
nonferrous metals (0.6%), precious metals (0.1%), and industrial minerals (9.8%) [30]. There
are also significant quantities of mineral fuel deposits, including coal (e.g., in Mozambique,
South Africa, Zimbabwe, and Zambia); oil (e.g., in Angola and DRC); and uranium (e.g., in
Namibia and South Africa) [30]. The fuels and mineral exports account for over 58% of
Africa’s trade exchange [28].

Given the enormous mineral potential in SA, revenue from the mining industry has
soared in recent years [32–34]. For instance, in 2018, South Africa produced over 380 million
metric tons of mineral fuels, iron and ferro alloys, and ferrous metals of US $120 billion
market value [30]. However, the intensification of mineral production in SA has exacerbated
negative human and environmental health impacts [35]. The adverse effects include water
pollution [36], atmospheric air contamination [37], land degradation [38], and threats to
biodiversity [39,40] and animal and human health [41] and the disruption of ecosystems [8].
Rivers have been the most affected due to their lotic nature, hence receiving anthropic-
derived effluents from adjacent ecosystems within mining catchments [12,42–44]. Detailed
accounts of the vulnerability of lotic ecosystems to large-scale pollution sources are widely
available in the published literature and scientific-based information repositories [45–47].
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2.1. Southern Africa River Basin Systems

The Southern African Development Community (SADC) block comprises 16 member
states, including neighbouring region members such as Tanzania (Eastern Africa) and DRC
(Central Africa), on a total land area of 9,779,742 km2 inhabited by over 345 million people
as of 2018 [48,49]. About 25% of the total land is suitable for agricultural production [50].
The Southern Africa region of SADC has 12 major transboundary river basins that extend
from the 1.4 million km2 of the Zambezi Basin, south of the vast Congo Basin and the
Limpopo Basin draining over 400,000 km2 of the land area to the 900,000 km2 of the
Orange-Senqu Basin to the south (Figure 1). With a 1.39-million km2 land area, the Zambezi
Basin transverses eight SADC states, where up to 70% transboundary water resources
sharing occurs.
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mining and processing (Map shapefiles from FAO GeoNetwork [51]).

The SA basins face similar environmental challenges to most river basins worldwide.
In particular, rapid human population increase and faster industrial development have
exacerbated the impacts of climate change, causing extreme changes in basin hydrology; ac-
celerating land degradation, agroindustrial (water, air, and soil) pollution; and biodiversity
loss [3,49]. At least six basins (Zambezi, Pungwe, Buzi, Limpopo, Save, and Orange-senqu),
with a total drainage area of 6.88 million km2 (88.1% of the SADC land area), have sig-
nificant mining pollution among the environmental threats (Table 1). Over 158.1 million
people across the seven basins comprise at least 45.8% of the SA population (2018 statistics).

2.2. Environmental Threats to SA River Basins

Like river basins elsewhere, the SA basins’ environmental threats result from natu-
ral and anthropic pressures (Table 1). Environmental degradation, riparian population
growth, and impacts from climate change and extreme hydrological events have caused
alarming alterations to the basins’ ecosystem functioning. The environmental presence and
persistence of pollution elements (contaminants), either in physical, chemical, biological, or
energy forms, harm biodiversity, are hazards to human and animal health, and deter ecosys-
tem processes and services. Elevated levels of environmental contaminants increase the
probability of environmental pollution [52], which, if uncontrolled, can cause irreversible
damages and alterations to ecosystem functionality and service delivery. The point and
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diffuse sources of surface water pollution in SA include agroindustrial effluents, mining
waste, atmospheric fallout, and e-waste recycling [45,53–56]. However, this review focuses
mainly on the human-mediated pollution of aquatic systems from metal and industrial
mineral mining, knowing that mining is a critical economic activity in SA [28].

2.2.1. Aquatic Heavy-Metal Pollution
Zambezi Basin

The widely studied 1.4-million km2 Zambezi Basin, shared by at least eight SADC
states (Figure 1), endowed with minerals, is the largest in SA, implying significant environ-
mental impacts from agriculture, industrial development, population growth, and natural
resource utilisation [1,57]. In the arid Gruben region of Namibia, there was pollution
of the Gruben River water flowing through copper mining spoil heaps, releasing 94.7%
Cu (36 mg L−1) and 90.5% Ni (35 mg L−1) and high Cu concentrations (10,500 mg L−1)
in suspended sediments during episodic flows [58]. The surface waters of the “Yellow
Jacket” (from Fe-hydroxysulphate precipitation) and Mazowe rivers in Zimbabwe have
been observed to be highly acidic (pH < 2) following contamination by outflows from the
Iron Duke pyrite mine containing Fe; Fe alloys (Co and Ni); and nonferrous metals (Cu,
Pb, and Zn) and sulphates [59]. Similarly, Love et al. [60] emphasised the role of mineral
ore geochemistry and mineral processing technology in accelerating acid mine drainage
formation, cyanide (CN) formation, and the production of heavy-metal contaminants from
waste rocks and slimes in the Zimbabwean Zambezi Basin. These groups of pollutants
impact negatively aquatic biota communities (e.g., microbes, macroinvertebrates, fish, and
macrophytes) [60,61].

Ikenaka et al. [62] clustered heavy-metal pollution in Zambia based on the pollution
intensity, with Kabwe and Copperbelt dominating. In Kabwe, Cu, Pb, Zn, Cd, and As
release from smelter processing has caused soil and atmospheric contamination [63–65].
Surface runoff, leaching from the slag heaps, senescing metallophyte vegetation, and
atmospheric fallout further deposit the metal contaminants into surface water drainage
systems, resulting in aquatic pollution.

The Kafue River Basin, occupying about 20% (743,000 km2) of Zambia’s land area,
drains the Copperbelt Province, also heavily impacted by mining waste pollution [38,66,67].
The waste effluents pose potentially adverse ecological risks to aquatic biota and human
health [66]. The water and sediment pollution of the Kafue River, mainly by Cu, Co, Cr, Pb,
and Cd, significantly increases downstream in an alternate sink–source–sink pattern due
to remobilisation and pH fluctuations, especially in the Kabwe transect [61,62]. Observable
inputs of Cu and Co in bed sediments of the Mushishima Stream from HM processing
plants and tailings in Chingola deserve attention to alleviate the potential environmental
and health risks [59]. In Kitwe, aquatic HM contaminants originate from the Uchi Mine
tailings, Nkana smelter, and the famous “Black Mountain” slag dumps in the town’s
industrial area into the aquatic system via leaching, precipitation, and overland flow [66].

M’kandawire et al. [12] detailed the HM aquatic sediment pollution assessment of
Kafue River and indicated high values for As, Co, and Mn and extreme enrichment with
Cu within the industrial mining areas of the Copperbelt. The risk indices (RI) of the heavy
metal pollution in the Kafue River were notably very high (RI > 600) across three seasonal
transitions (warm-rainy, dry–cold, and dry–hot) in Chililabombwe and Chingola Districts,
where industrial mining is predominant. In the Kafue area, the Kafue flats, however, serve
as sinks of HM species, as reflected by the exceptionally low RI (<150) values [68–70]. Since
wetlands absorb large amounts of contaminants, this observation should be a concern to
environmentalists and wildlife managers due to the likely increased risks during changes
in the water chemistry and subsurface seepage that may cause HM release [71]. High
levels of Pb mg/kg dry weight (DW) have been observed in wildlife (a semiaquatic grazer
antelope, the Kafue lechwe, 16–18; Tilapia and African catfish, 23–33; commonly grazed
grass, Echinochloa sp. 26–48) of the Lochnivar and Blue Lagoon National Parks in Kafue
flats, thereby posing a health risk to higher trophic organisms [12,72,73].
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Pungwe, Buzi, and Save Basins

The three basins cumulatively draining a basin area of 172,570 km2 are shared be-
tween Mozambique and Zimbabwe, with the main tributaries originating from Zimbabwe
(Figure 1). Artisanal alluvial gold mining is predominantly informal across the subregions.
For instance, in the Mozambique Pungwe Basin, over 90% of gold production comes from
a long history of artisanal and small-scale mining (ASM) [74]. The sector employs over
20,000 people in Central Mozambique and produces nearly 600 kg of gold annually [75].
Over 500,000 miners earned income from ASM in Zimbabwe, contributing almost 50% to
the foreign earnings in 2016 [76]. However, uncontrolled ASM of gold and diamonds in
the three basins exposes the surface waters to siltation, Hg, CN, and As contamination [77]
and environmental degradation [41,78]. Such is the human health and environmental
threats from unregulated gold prospecting in the Manica Province of Mozambique due
to increased Hg amalgamation and CN toxicity [74,79]. Turbid water from suspended
sediment and heavy-metal contaminants in transit from artisanal gold and diamond mining
areas characterise River Buzi and its two major tributaries, Revue and Lucite [80,81].

Save River, a key source of drinking water for the riparian community, forms the
primary drainage system for the Save Basin. In Zimbabwe’s Buhera District of the Save
Basin, phosphate rock (fluoroapatite) mining pollutes the surface water and sediment with
Cu, Pb, Co, Ni, Zn, Cd, and Tn via weathering and dissolution of metal-hosting heavy
metals [82]. Since alkaline rock bedloads adsorb mineral pollutants, they act as repositories
forming a potential source of stream water pollution in the future [83,84]. Diamond mining
in the Marange-Odzi Region releases high Fe, Ni, and Cr from ferro-silicon (FeSi) sand used
during extraction into the Save-Odzi River with potential carcinogenic (Cr and Ni) and Fe
poisoning effects to consumers among the many environmental impacts to the basin [85].

Limpopo Basin

The 408,000 km2 Limpopo Basin transcends ecologically important conservation zones
of high biodiversity and supports a sizeable rural-urban population and farming commu-
nities. Mining and mineral processing in the basin contributes to physical and chemical
environmental degradation, acid mine drainage, metal toxicity, erosion, and sedimenta-
tion [46,86]. The mining pollution threat has extended into aquatic systems of protected
areas in the basin, e.g., South Africa’s 2 million ha Kruger National Park [87]. In the Blyde
and Steelport tributaries of the Olifants River, high mg L−1 Fe (0.01–0.4), Ni (0.03–0.14), and
Zn (0.004–0.054) in the surface water coupled with elevated mg kg−1 sediment concentra-
tions for As, Cr, Fe, Mn, Ni, Pb, and Zn, indicated high metal enrichment [88]. Similarly, in
Mvudi River of the lower Limpopo Basin, average concentrations of HM contaminants in
mg L−1 water (Pb, 0.287; Al, 0.602; Fe, 0.947; Mn, 0.202; Cr, 0.406) and mg kg−1 sediments
(Cr, 0.115; Cu, 0.701) surpassed the recommended South African/WHO guidelines for
potable water [89,90]. These contaminants pose potential aquatic and human health risks
to riparian water resource users [91].

Wolmarans et al. [92] affirmed the deteriorating condition of the Olifants River system.
Out of 35 macroinvertebrate taxa sampled, only seven were highly sensitive to pollution.
Additionally, Marr et al. [86] and Addo-Bediako et al. [91] noted that the consumption of Ba,
Co, Cr, Sb, Pb, and V metal-contaminated tilapia and catfish from surface waters in the basin
expose humans to health risks. In Dzindi River, the mg L−1 heavy-metal contaminations
from Fe (1.33), Al (0.3), Mn (0.15), Zn (0.10), Cr (0.06), Cu (0.05), and Pb (0.03) revealed
probable health risks from drinking water use without pre-treatment [93]. In the Mkuvisi
River in Harare, Zimbabwe, increased Fe, Cr, Cu, and Zn pollution from industrial and
municipal waste effluents caused a sharp decline in macroinvertebrate taxa. The South
African Scoring System (SASS-4) for the aquatic habitat assessment average score per
taxon (ASPT) ranged from 2.74 (poor) to 3.61 (fair) for Mkuvisi River, indicating negative
impacts on the aquatic biodiversity [94]. Additionally, the persistence of high Pb levels in
sewage effluents into Sebakwe River, Zimbabwe, is a significant human health risk from
Pb poisoning [95]. However, in the Nyl River floodplain Ramsar site, Greenfield et al. [96]
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attributed the low ug L−1 heavy-metal concentrations (Zn, As, Cu, Cd, Fe, Se, Pb, Al,
Cr, and Mn) in the Nyl River to geogenic origins with values below the South African
maximum allowable limits for water quality [89].

Orange-Senqu Basin

At about 900,000 km2 and the second-largest, the Orange-Senqu Basin covers nearly
half of South Africa in the central region, entire Lesotho (Senqu Basin), Southern Botswana,
and parts of Southern Namibia [97]. A basin-wide study by UNDP-GEF [98] on human-
mediated heavy-metal and risk assessments noted high-risk areas (and risk elements),
including Molo Eye (Cr, Mn, Ga, Ni, Ag, and Se); Vaal (U); Riet and Koranna Spruit;
Caledon and Makbomatso (several elements); Skoon Spruit (Fe and Ni); and Fish River
(As). The elemental bioavailability to aquatic biota was in the order Rh < Ag < Sn < Au
< Rb < Pt. Additionally, As and Be were detected in fish tissue and bird eggs during the
study. Recent findings in the Vaal Basin by Moloi et al. [99] from two Maluti-a-Phofung
Municipality rivers, Eland and Wilge, and Iloms et al. [54] from Vaal River indicated
increased noncarcinogenic human health risks from the consumption of water containing
elevated levels of As, Cu, Pb, and Zn. A similar study on the Sand River, Limpopo Province
noted the increased risk to the Pb levels from consuming the river’s fish [100]. In KwaZulu-
Natal, agroindustrial pollution is a significant source of Cr, contamination, mobility, and
enrichment in the Palmiet and Sezela Rivers [101].

In Lesotho, mining at Letseng Diamonds mines has negatively impacted the ecosys-
tems of Mokhotlong District via soil erosion, site contamination, surface water pollution
from mining waste, land degradation from nonbiodegradable litter, and the accumulation
of toxic waste landfills [102]. Separately, a major tributary to Orange River, Lesotho’s Cale-
don (Mohokare) River, a key water supply source to Lesotho and South Africa (Lesotho
Highlands Water Project), received above allowable mg L−1 limits for Fe (0.5) and Mn (0.7)
in untreated effluents from textile industries around Maseru, raising concerns about the
rising aquatic pollution [53,103].
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Table 1. Basin characteristics, environmental threats, and selected studies on heavy-metal mining impacts to lotic systems of Southern Africa.

No Basin Countries Basin Overview [3,49] Environmental Threats [3,49] HM Pollution Threats and
Selected Studies

1 Zambezi
Angola, Botswana, Malawi,

Mozambique, Namibia, Tanzania,
Zambia and Zimbabwe

Basin area: 1.4 million km2 (17.3% of SA).
Zambezi river length: 2574 km.

Important tributaries: Luena and
Lungue-Bungo (Angola); Chobe (Botswana);
Shire (Malawi); Luiana (Namibia); Kabompo,

Kafue and Luangwa (Zambia).
Basin population > 30 million.

Climate change impacts; mineral
mining and agricultural pollution;

competing uses: agroindustrial and
hydropower.

Sediment-water-biota
[12,58–60,62,104]

2 Pungwe Mozambique and Zimbabwe

Basin area: 31,150 km2 (0.45% of SA).
Main tributaries located in Zimbabwe: Honde,

Nyazengu, Chiteme, Nyamhingura, Nyawamba,
Nyamukombe and Rwera.
Population > 1.6 million

Climate change and land degradation
impacts; water pollution from alluvial

gold mining.

Sediment-water-biota
[74,75,78,80]

3 Buzi Mozambique and Zimbabwe

Basin area: 31,000 km2 (0.45% of SA).
Buzi river length: 250 km.

Main tributaries: Revue and Lucite.
Basin population > 1.2 million.

Floods and drought events; pollution:
agrochemicals, industries;

deforestation; riparian degradation;
unregulated alluvial gold and

diamond mining and sedimentation;
hydropower dam development;

irrigation water overdraw.

Sediment-water-biota
[77,78,80,81,84]

4 Save Mozambique and Zimbabwe

Basin area: 110,420 km2 (1.4% of SA).
Save river length: 740 km.

Main tributary: Runde.
Basin population > 3.3 million

Climate change; ecosystem
degradation; pollution: agroindustrial;
mineral mining; hydrological flows: ca.

60 dams constructed.

Sediment-water-biota
[82–85]
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Table 1. Cont.

No Basin Countries Basin Overview [3,49] Environmental Threats [3,49] HM Pollution Threats and
Selected Studies

5 Limpopo Botswana, Mozambique, South
Africa, Zimbabwe

Basin area: 408,000 km2 (5.0% of SA).
Limpopo river length: 1750 km.

Important tributaries: Olifants/Elephant,
Crocodile, Luvuvhu, Marico, Mzingwane,

Mwenezi and Shashe.
Basin population > 17 million.

Climate change; agro-industrial and
municipal pollution; mining

expansion; water scarcity from
irrigated agriculture.

Sediment-water-biota
[46,86–88,91,92,96,105]

6 Orange-senqu Botswana, Lesotho, Namibia,
South Africa

Basin area: 900,000 km2 (11.1% of SA).
Orange river length: 2300 km.

Important tributaries: Senqu and Caledon
(Lesotho); Vaal (South Africa); Fish River

(Namibia).
Basin population > 20 million.

Climate change/variability; land
degradation; increasing water demand;
declining water quality: agroindustrial
pollution, domestic and heavy mining;

changes in hydrology; damming;
population growth/settlements.

Sediment-water-biota
[52–54,98,99,101]
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2.3. Threats to Southern African Lotic System Biodiversity from Metal Mining and Processing

Despite containing a dismal 0.01% of Earth’s water, freshwater ecosystems support
over 6% and above 10% of the global biodiversity and known species, respectively [22,106].
However, the increased global demand for freshwater resources threatens these ecosys-
tems and their inherent biodiversity [107]. Such threats include water pollution, habitat
destruction and degradation, resource overexploitation, streamflow modification, and
species invasions or introductions [106]. Africa’s freshwater biodiversity is more than
ever under threat from multiple anthropic factors exacerbated by climate change impacts,
leading to species and habitat loss [108]. In the mining rivers basins of SA, the most
important anthropogenic threats include water pollution (e.g., acid mine drainage and
metal ions/metalloids); habitat degradation/destruction (e.g., open-cast, ground, and
alluvial mining); and flow modification (abstraction, diversion, and effluent discharges).
The magnitude of these threats depends on the source, type, nature, and quantity of mining-
generated contaminants entering the aquatic systems. For instance, both hydraulic and
hard rock mining accelerates the release of toxic metals (e.g., Pb, Zn, and Hg); metalloids
(e.g., As and CN); and other substances (e.g., acids) via runoff or leaching (Figure 2),
causing physical and chemical disturbances to stream ecosystems and exacerbating the
biodiversity loss [109]. Additionally, minerals like diamonds and gold, frequently mined in
water-scarce environments, demand the abstraction of significant volumes of water for ex-
traction [110], exposing aquatic ecosystems to increased water stress and shrinking habitats,
already exacerbated by episodic stream drought and climate change events [111–113].

2.3.1. Source-Receptor Pathways of Metal Mining Pollutants in Aquatic Systems

In mining-dominated river basins, stream water and sediment pollution result from
the surface and subsurface runoff/leaching of excessively heavy-metal-laden solid and
liquid wastes, mostly anthropogenic (Figure 3). Acid mine drainage (AMD) is of envi-
ronmental concern to aquatic systems in such regions. Besides transporting elevated
concentrations of heavy metals and metalloids, AMD alters the streamwater chemistry by
increasing the acidity to pH < 4 [114,115]. At low water pH/Eh in an anoxic environment,
the bioavailability and toxicity of HM (e.g., Pb and Zn) in AMD is enhanced, more so by
the presence of organic matter, carbonate minerals (e.g., hydrocerussite), and iron(III) hy-
droxides and oxides [116]. Ettler et al. [63] observed an increase in the percentage of orally
bioaccessible Pb (24–95), V (21–100), and Zn (54–81) at pH < 1.5 in slag–dust-contaminated
air at the Kabwe mining town of Zambia, indicating a potential environmental and human
health risk. In the Kombat, Berg Aukas, and Tsumeb polymetallic mining areas of Northern
Namibia, the exceptionally high oral bioaccessibility of Pb and As in mining dust was
triggered under highly soluble phases and acidic gastric conditions [117].

In the aquatic environment, the low pH of water similarly lowers the diversity of
communities of aquatic biota, including microbes [118], periphyton, macroinvertebrates,
and fish, by increasing the bioavailability and toxicity of HM [119–121]. Additionally,
the ecotoxicity of streamwater to aquatic biota increases with elevated levels of ionic and
complexes of heavy metals, which can bioaccumulate and bioaugment in the aquatic
ecosystem [122,123]. Aquatic microbiota; benthos; and larger organisms (e.g., fish, am-
phibians, and reptiles) tend to bioaccumulate and subsequently biomagnify heavy metals
and increase their toxicity to other secondary consumers, including terrestrial wildlife and
humans [104,124–126]. Further, the thermodynamic solubility characteristics and local
chemistry of contaminant-containing mineral waste effluents in the aquatic media influence
their mode of transport, chemical reactivity, and toxicity to aquatic biota [127,128].



Minerals 2022, 12, 225 10 of 41

Minerals 2021, 11, x FOR PEER REVIEW 9 of 41 
 

 

 
Figure 2. Threats to aquatic biodiversity and stream ecosystem functions from artisanal and industrial mining in river basins. The impacts of mining are further accentuated 
by the negative influences of climate change on stream hydroecology. Photo credits and copyrights: A. Hendricks; J. Houston; X. Rana; K. O. Ouma; L. Iaccino.

Figure 2. Threats to aquatic biodiversity and stream ecosystem functions from artisanal and industrial mining in river basins. The impacts of mining are further
accentuated by the negative influences of climate change on stream hydroecology. Photo credits and copyrights: A. Hendricks; J. Houston; X. Rana; K. O. Ouma;
L. Iaccino.



Minerals 2022, 12, 225 11 of 41

Depending on the water chemistry, stream sediments can act as sinks and sources
of heavy metals in polluted rivers (Figure 3). This dual role depends on the dissolution
and precipitation processes of the discrete heavy-metal phases, as determined by the am-
bient stream water chemistry and thermodynamic properties [129]. In Pb-contaminated
sediments, “the mineral forms (e.g., PbSO4, PbCO3), and Pb2+ adsorbed to Fe and Mn
(hydr)oxides are comparatively inert” [128]. However, the carbonates, oxides, and sul-
phates of Pb readily dissolve under a highly acidic environment, posing significant en-
vironmental risks [130]. An increased accumulation of sediment-associated heavy-metal
nanoparticles (HM-NPs) subsequently increases the ecotoxicity risk due to bioaccumula-
tion in stream benthic communities. For example, oxidative hepatopancreatic and gonadal
damage has been observed in the gastropod Bellamya aeruginosa after exposure to Cu
(180-µg g−1 dry weight (DW)) as CuO-NPs over 14 days [131]. The sediment toxicity to
aquatic biota can also be monitored using genetic and metabolic changes among various
species of the benthic communities, e.g., chironomids and gastropods [132].
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ground waters draining mining landscapes. The arrow density directly correlates to the importance
of the respective exposure pathway. Based on the interplay between biotic and environmental
components, the model is developed from the contaminant exposure concept in Giddings et al. [133].

Figure 3 illustrates the pathways through which heavy-metal contaminants enter
the aquatic ecosystem from multiple sources. Runoff, leaching, erosion, and wastes from
tailings dams are highly significant metal contaminant sources. Atmospheric gases and
other HM waste-laden fugitive dust are also significant pollution contributors. Exposure to
heavy-metal contaminants in an aquatic environment can occur at different interphases:
from allochthonous sources (e.g., surface runoff, spills, direct application, and groundwater
intrusion); within the various aquatic repositories (e.g., water and sediment); biouptake
by aquatic receptors (e.g., microbiota, invertebrates, macrophytes, and vertebrates); and
export into the terrestrial food chain by wildlife and other tertiary consumers (e.g., humans).
Surface waters and wetlands contribute significantly to biologically available heavy-metal
contaminants to biota within aquatic systems. In contrast, surface and deep sediments
serve as temporary sinks (e.g., adsorption and burial) or sources (e.g., desorption, biotur-
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bation, and resuspension), as determined by the water chemistry, thermodynamic, and
hydrological processes [129].

2.3.2. Toxicity of Selected Heavy-Metal Pollutants to Macroinvertebrate
and Macrophyte Communities

The elevated presence of heavy metals beyond geogenic concentrations in aquatic
systems is traceable to human-mediated agroindustrial pollution. Heavy metals biocen-
trate and bioaccumulate in aquatic biota and persist in the water-sediment matrix [134].
High and toxic levels of As, Cr, Hg, Pb, Cu, Ni, and Zn are frequently reported in aquatic
environments [135]. Some elements, such as Ni, Cu, Cr, and Zn, are essential metabolic
components at trace concentrations but cause systemic toxicity above permissible thresh-
olds [61,136]. Other elements (e.g., Pb, Hg, and As) are toxic to aquatic organisms, even at
trace levels [137].

Arsenic (As)

Due to the high bonding affinity with other natural elements, As naturally occurs as
a major ingredient in over 200 mineral ores, mainly as elemental As, arsenide, arsenate,
phosphate, sulphide, arsenite, and oxide mineral forms released biogeochemically during
oxidation, reactive desorption, or chemical and bioleaching processes [137,138]. As is also
introduced anthropogenically via agrochemical processing byproducts and mining effluent
discharges into natural water systems [139,140]. The inorganic As forms are considered
more toxic than the organic derivatives, with marked differences in their biochemical
effects on aquatic biota [141].

In the aquatic matrix, the As toxicity varies with the water chemistry (e.g., pH and
redox potential), presence of oxides (e.g., Fe and Mn) [142], and microbial activities (e.g.,
algal biosorption) [137]. As exists mainly in four oxidation and pH-dependent states as
arsenite (As(III)), arsenate (As(V)), and arsenic (As(0)) and arsine (As(-III)) [143]. As(III)
and As(V)) are the most abundant inorganic forms, where the transformations between the
two are pH- and Eh-dependent. Microbial biochemical processes in water convert the dom-
inant inorganic As species to methylarsenicals and high-order organoarsenic forms such as
arsenosugars, which bioaccumulate in living tissues [144]. Under anoxic conditions, anaer-
obic bacteria reduce biomethylated inorganic As to the organic monomethlyarsonic (MMA)
and dimethlylarsinic (DMA) acid metabolites that are more mobile in water [145,146]. In
the agricultural sector, the two organic compounds MMA and DMA, the active ingredients
of organic herbicides, enter the aquatic environment via point or diffuse sources [146].

As (III) is more soluble and, hence, more readily bioavailable and toxic than As(V) to
aquatic organisms under reducing Eh conditions and low pH, particularly the metallophytic
hyperaccumulator macrophytes (e.g., Water hyacinth, duckweeds, water ferns, water
cabbages, and watercress) [140]. Falinski et al. [147] recorded As bioaccumulation up to
0.572 and 0.075 mg L−1, respectively, for two edible macrophytes, Nasturtium officinale
(watercress) and Diplazium esculetum (vegetable fern), of Hawaii. The corresponding
potential human health risk quotients were 0.12 and 0.03. In the coontail (Ceratophyllum
demersum L.), tissue accumulation of 0.302-mg As g−1 DW exhibited necrosis and biomass
reduction over 48-h exposure to As(III) [142].

As toxicity on macroinvertebrate communities results in lower biodiversity, reduced
population densities, changes in population structure, and ultimately, lower community
biomass. Canivet et al. [148] and Chi et al. [149] observed a significant absence of sensitive
EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa (e.g., Heptagenia sulphurea and Hydrop-
siche pellucidula), the abundance of more tolerant Chironomidae (e.g., Cardiocladius sp.), and
transition to tolerant predator functional feeding combined with the disappearance of filter
feeders, scrappers, and collectors from As toxicity in an aquatic environment.

Chromium (Cr)

Chromium occurs naturally in the nontoxic trivalent (Cr3+) state. However, Cr3+

oxidises to the toxic hexavalent (Cr6+) form on exposure to water and air. Cr3+ is soluble
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over a wide pH range [150,151]. Prolonged exposure of freshwater crustacean amphipods
(e.g., Gammarus and Niphargus sp.) and isopods (e.g., Asellus sp.) to a half-maximal lethal
concentration (LC50) of Cr6+ exhibited toxic sensitivity [148]. However, the trait-based
evaluation of physiological sensitivity to Cr and other heavy metals ranked crustaceans
(molluscs and bivalves) above cladoceran and trichopteran insect orders [152]. Cr pollution
has caused a longitudinal decline in macroinvertebrate taxa richness in river systems [94].
For instance, in Hex River draining the Bushveld Igneous Complex platinum mining region
of South Africa, the Cr body loads for macroinvertebrate taxa increased downstream. The
benthic Tubificidae accumulated the highest Cr (92 µg g−1), followed by Libellulidae
(69 µg g−1), per DW [153].

In macrophytes (e.g., Pistia stratiotes and Salvinia herzogii), Cr bioaccumulation occurs
via ion exchange, adsorption, and chelation processes [154]. Toxicity from Cr in macro-
phytes manifests as changes in the chloroplast ultrastructure and cell malignancy. Cell
death, tissue necrosis, and root wilting may also result from Cr poisoning [150,154]. Dif-
ferent macrophyte species display varying tolerance levels to Cr toxicity. For instance, in
China’s Taihu Basin aquatic systems with a mean 92.4 mg kg−1 of sediment and 5.4 ug L−1

of Cr concentrations, Potamogeton malaianus, Nymphoides peltata, Eichhornia crassipes, and
Hydrilla verticillata, Cr6+ phytouptake ranged between 4.2–44.2, 1.5–8.4, 1.7–5.5, and 3.4–
10.4-mg kg−1 DW, respectively, against the 5–30-mg kg−1 DW toxic level criteria [155].
Macrophytes have been used extensively in the phytoremediation of Cr6+ toxicity, e.g.,
Pistia stratiotes is a better hyper-accumulator for Cr in an aqueous Co–Cr environment,
hence significantly reducing the Cr toxicity over two-fold compared to Co removal [156].

Copper (Cu)

Jeppe et al. [132] examined sediment-derived Cu toxicity to stream macroinvertebrates
at the subindividual and population levels. The authors noted genetic and metabolomic
changes in Chironomus tepperi (Chironomidae) at EC50 and 60-mg kg−1 Cu. However, this
taxon was most tolerant to Cu toxicity at EC50 with up to 94.5% survival. A rapid decline in
the highly sensitive mayfly (Rithrogena sp.) population coupled with Cu bioaccumulation in
caddisfly (e.g., Brachycentrus sp.) tissues indicates the heavy-metal toxicity of aquatic insect
communities [157,158]. Additionally, Joachim et al. [159] observed a reduced abundance,
richness, and diversity of macroinvertebrates, emergent insects, and zooplankton on
prolonged exposure to 25–75-ug L−1 Cu concentrations.

Macrophytes are suitable for biomonitoring and phytoremediation due to their ability
to bioaccumulate and bioconcentrate heavy metals in aquatic environments. Lemna minor,
Elodea canadensis, and a moss (Leptodictyum riparium) have excellent biouptake and removal
capabilities for Cu, Cd, Pb, and Zn [160]. E. canadensis has been used to monitor Cu
toxicity [161]. However, sublethal heavy-metal doses alter the chloroplast ultrastructure,
cause cell plasmolysis, and eventually reduce the biomass [160,161]. There is evidence of
Cu build-up inducing oxidative stress by limiting the antioxidant enzymatic activity and
chlorophyll content in free-floating coontail (Ceratophyllum demersum L.) and duckweed
(Spirodela polyrhiza) [162,163].

Mercury (Hg)

Methylmercury (MeHg) is considered the most bioavailable and toxic form in aquatic
environments [164]. This organomercury forms rapidly in aquafauna since MeHg is
lipophilic, passes through cells, and has a high affinity for amino acids [165]. MeHg
toxicity in the aquatic food web is amplified in the organic form through bioaccumulation
and biomagnification. For instance, the shoots of Elodea nuttallii can accumulate up to
60% MeHg intracellularly from water and sediments, hence availing it to higher trophic
levels [166]. Mercury toxicity is an environmental cause of systemic imbalance in aquafauna,
e.g., oxidative stress and neurotoxicity [167].

MeHg uptake by stream macroinvertebrates can be used to predict bioaccumulation
and the lateral–vertical transfer of Hg in the aquatic food web [168,169]. Macroinvertebrate



Minerals 2022, 12, 225 14 of 41

functional feeding groups (e.g., obligate predators) can also be used as surrogates to
monitor Hg pollution in heavy-metal-polluted streams [170]. Mercury methylation in
macroinvertebrates mainly occurs from stream sediment repositories [164].

Zinc (Zn)

Most Zn in freshwater systems increasingly adsorbs into sediments and humic sub-
stances at high temperatures, low oxygen levels, and low pH. In dissolution, hexa-aqua
zinc (Zn(H2O)2+

6) is the most stable and highly toxic to aquatic biota [171]. Most aquatic
organisms can tolerate bioavailable Zn concentrations below 100 µgL−1 [172]. However,
at elevated levels, Zn toxicosis lowers the metamorphosis and emergence rate of adult
stages of freshwater insect communities [173]. The presence and toxicity of Zn in ternary
mixtures of heavy metals in streams lowers the abundance of pollution-sensitive mayflies
(Ephemeroptera) in aquatic species-sensitivity distribution (SSD) profiles [158].

3. Monitoring and Assessment of Aquatic Heavy-Metal Pollution in SA River Basins

A multidisciplinary approach to analysing aquatic ecosystems in river basins is more
impactful in monitoring and assessing ecosystem integrity. Monitoring involves sampling
and analysis to determine the ecological status, while assessment interprets the data to
establish the system’s ecological integrity [174]. This multidisciplinary consideration pro-
vides an ecological platform for a holistic study and a better understanding of “catchment
ecology” under the five main ecological components [175]:

1. System conditions, which incorporate climate-related structures, characteristics, and processes.
2. System hydrology, the catchment hydrological and hydraulic processes, including

lateral and longitudinal instream and terrestrial flows. Surface and groundwater
interactions are also considered.

3. Structures, the morphological features that influence catchment hydrology, energy
and material transfers, and retention/recycling potentials.

4. Substances, the longitudinal qualitative and quantitative determination of dissolved
components, such as pollutants, gases, ions, and nutrients as load transport in
lotic ecosystems.

5. Biotic, the response of living components to the functioning of the above controlling
abiotic factors. This component includes the taxonomic and ecosystem responses
and biotic processes, like primary production, respiration, competition, reproduction,
and trophic relationships. Biotic responses to the controlling factors are an essential
indicator for catchment management and biodiversity conservation.

Building on the five components, a TRIAD assessment of the ecological integrity of
catchment ecosystems, which integrates the biological, ecotoxicological, and physicochemi-
cal data, has been proposed [176,177].

3.1. Physicochemical Monitoring and Assessment

In most environmental assessment initiatives, physical and chemical surveys fre-
quently take precedence to determine the pathways for further investigations, including
biological method integration. Physicochemical monitoring provides feedback mechanisms
since fluctuations in the water quality can be rapidly detected and further reference-based
monitoring action taken when or where necessary. Any aquatic system’s physical and
chemical attributes significantly influence its biotic structure and functions [178].

SA river systems’ physical and chemical water qualities have been extensively docu-
mented and used to categorise their ecological statuses [43,62,179]. Heavy-metal pollution
in the different aquatic matrices of SA lotic systems has received increasing attention over
the past decades due to the associated negative ecological impacts [96,180–183]. The pollu-
tion intensity and environmental impact of HM contamination will likely increase with the
demand for raw materials, advances in industrial mining and processing technologies, and
expansion of areal mining in the SA region.
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3.2. Bioindicators, Biomonitoring, and Bioassessment

Biological monitoring (biomonitoring) initiatives have gained popularity in SA due to
their cost-effectiveness, eco-friendliness, rapid application, and integration into aquatic
assessment programmes [26]. While physical and chemical monitoring can be used to
reveal the direct and instantaneous effects of HM pollutants in the aquatic matrices, biotic
communities offer the advantage of revealing the integrated and “historic” impacts of
pollutants on both the biota and the ecosystem. Biomonitoring uses bioindicators such
as free-floating algae, the periphyton complex, macrophytes, invertebrates (zooplank-
ton, insects, molluscs, and gastropods); and vertebrates (fish, amphibians, reptiles, and
large mammals) to evaluate contaminations in the environment. Zhou et al. [184] defined
biomonitoring as a “scientific technique for assessing the environmental and biotic expo-
sures to pollutants, based on sampling and analysis of the target matrix”. Biomonitoring
uses markers (biological or chemical signatures) to reflect the potential impact or ecotoxicity
of anthropogenically produced pollutants on the bioindicators and the environment.

Suitable bioindicators are based on several desirable biological and physical attributes.
However, since it is virtually impractical to find such organisms, a bioindicator with
representative qualities may serve the specific objectives of biomonitoring. For instance, in
using fish, the abundance, ubiquity, tolerance or sensitivity, sedentary nature, trophic status,
and life history can be considered when selecting appropriate species [184]. Bioindicators
can be categorised based on the objectives of bioindication as diagnostic, compliance, and
early warning indicators or, according to their application, into biodiversity, environmental,
and ecological indicators [185].

3.2.1. Macroinvertebrate and Fish-Based Assessment

The suitability of macroinvertebrates as bioindicators in lotic systems lies in their abil-
ity to reflect the magnitude of aquatic degradation spatiotemporally using well-established
assessment methods and indices [50,186–190]. The sedentary macroinvertebrate com-
munities, particularly Ephemeroptera, Plecoptera, and Trichoptera (EPT), have been
widely used as bioindicators of aquatic pollution, integrating both water and habitat quali-
ties [87,184,191]. Macroinvertebrates have been used to assess heavy metal contamination
in Southern African riverine systems [26,92,188,192,193]. In South Africa’s Bushveld plat-
inum mining complex, metal accumulation varied in different functional feeding groups
of macroinvertebrates. The epibenthic taxa (Tubificidae and Chironomidae) accumulated
higher concentrations of Cr and Pt than the water column feeders, scraper grazers (Lym-
naediea), shredders (Baetidae), and predators (Coenagrionidae) [153]. Phiri [94] noted
a sharp decline in macroinvertebrate taxa along the lower reaches of Mukuvisi River in
Harare, Zimbabwe, which was dominated by tolerant oligochaetes and chironomids due
to elevated Fe, Cr, Cu, and Zn loads in the streamwater.

Fish, due to their desirable biological attributes, such as size, habitat variability,
life cycle, ease of culture and taxonomic identification, trophic level, and socioeconomic
significance, qualify their relevance, preference, and wide application in the biomonitoring
and bioassessment of aquatic ecological integrity [174]. Fish as bioindicators can represent
aquatic degradation at local and regional scales. The behavioural (growth, reproduction,
metabolism, and feeding), biochemical (biomarkers), and the sublethal response of fish to
metal pollution have been suggested for biomonitoring [194]. High metal (Co, Cd, and
Zn) concentrations have been detected in tissues of the highly adaptive African catfish
(Clarias gariepinus) and the Nile Tilapia (Oreochromis niloticus) in an HM-polluted reservoir,
Eleyele Lake, in Nigeria [195]. Histopathological studies on fish have also established the
relationship and the severity of heavy-metal pollution on fish health and susceptibility to
diseases [196]. HM bioaccumulation in the endocrine system of fish in Kafue River, Zambia,
has potentially negative effects on reproduction by depressing sex hormones [197]. Further,
the sequestration of HM in fish tissues and organs is emerging as a human and aquatic
ecological health concern [198–200].
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3.2.2. Microphytes, Periphyton, and Macrophytes

All three groups respond to water quality changes by variations in the species spec-
trum and abundance. However, the microphytes (phytoplankton and phytobenthos) and
periphyton display quicker reactions more appropriate for short-term investigations. Mi-
crophytes, other heterotrophic microbes, and organic matter complexes form a periphytic
matrix attached to submerged surfaces in the aquatic environment. Due to their very
short life cycles and high reproduction rates, periphyton respond quickly to environmental
pollution. Besides the individual plankton communities, periphyton can also be suitable
for detecting short-term and sudden environmental variations.

Additionally, the ubiquitous nature and extensive knowledge of periphyton ecology
within the scientific community makes periphyton suitable for monitoring and assess-
ing aquatic HM pollution [18,184,201–203]. Benthic diatoms and filamentous green algal
assemblages are useful in evaluating biotic responses to mining pollutions in stream ecosys-
tems [204–206]. Respectively, several diatom-based biotic indices have been developed to
assess the ecological integrity of SA river systems, including the Trophic Diatom Index
(TDI) and the South African Diatom Index (SADI) [26,204].

Several macrophyte species, including Eichhornia, Ludwigia, Polygonum, Pistia, Cyperus,
Lemna, Elodea, Typha, and Azolla, have been used to study HM contamination dynamics in
tropical aquatic environments [135,160,207,208]. Macrophytes are appropriate bioagents
for the long-term monitoring of aquatic ecosystem health due to their sedentary nature,
high diversity, abundance, ease of identification and handling, and tolerance to HM
pollution [105,209,210]. Changes in the macrophyte community structure and composition
can also be a valuable indicator of pollution trends and alterations of the stream water
quality [184,211].

3.3. Approaches in Biomonitoring and Bioassessment of Aquatic Ecosystems
3.3.1. Ecological Tools and Models

Ecological assessment tools employ a cocktail of physical, chemical, and biotic com-
ponents to evaluate the ecosystem integrity. Oberholster et al. [205] used the Ecological
Screening Tool (EST) comprising physical-chemical and biological phases. The EST used
a weight-of-evidence approach to determine the impact of acid mine drainage (AMD)
on the health of the Bloubane Stream in South Africa. Beyond the ecological assessment
tools, ecological models are developed to explain the composition and variability of ecosys-
tems’ aquatic communities. For instance, the step-wise stress model uses indicators in
the pressure–state–impact–response (PSIR) chain at ecosystem-level responses, using bio-
diversity and sustainability parameters [185]. Other complex models for ERA have also
been developed, from food web- and ecosystem- to socioecological-based scales [212]. The
ecosystem model is the most relevant in our context since it evaluates the response of
biotic and abiotic components to perturbations, e.g., pollutants or ecosystem modifica-
tions. Ecosystem models are developed from the input of multivariate, multimetric, and
population or community biotic response indices.

3.3.2. Multivariate Methods

Multivariate indices (MIs) are model-oriented predictive systems that compare the
observed ecological status and referenced conditions projected from pristine environmen-
tal conditions from environmental parameters (e.g., reference condition approach). The
multivariate approach requires in-depth knowledge of the ecology of the target biotic
community, the ecosystem, and the evaluation criteria.

3.3.3. Multimetric Indices (MMIs)

The MMIs build on the multivariate approach and combine several quantifiable bi-
ological attributes (biometrics) and ecological characteristics of the ecosystem. The four
common types of biometrics are abundance/composition, diversity/richness, sensitiv-
ity/tolerance, and functional diversity [213,214]. In an MMI, individual metrics are related
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predictably and reasonably to environmental pressures and impacts. Therefore, the method
combines several metrics and different categories to generate a single assessment index,
making the method more robust than single-metric approaches. However, there are some
drawbacks during the development of the MMIs: (1) some information is lost, (2) re-
dundancy of certainty, (3) vulnerability to compound errors, and (4) rigidity to method
updates [215].

3.3.4. Biotic Indices

A biotic index is a numerical equivalent of biotic assemblage responses (sensitivity or
tolerance) to anthropic disturbances [214,216]. Biotic indices assign different types of taxa
to different sensitivity or tolerance levels based on numeric expressions (scores) of human-
induced disturbances. Biotic indices rely on the diversity approach that characterises an
ecosystem based on abundance, richness, and evenness as descriptors of the community
structure. Less disturbed communities usually exhibit high diversity (taxa richness) and
evenness among species in an ecosystem. Biotic indices have been widely used for the
rapid bioassessment of aquatic ecosystems in SA due to their robustness, sensitivity, cost-
effectiveness, ease of application, and interpretation [26,81,204,217].

SA has seen the development of biometric-based sampling protocols and rapid bioassess-
ment schemes (RBS) [26]. The South African Scoring System, SASS-5 [189], uses stream macroin-
vertebrates to rapidly evaluate the aquatic ecosystem conditions [94,191,192,218]. Other national
and regional RBSs have also been derived from the Chutter [219] SASS-1 model: the Zam-
bian Invertebrate Scoring System (ZISS) [190], Botswana’s Okavango Assessment System
(OKAS) [220], the Namibian Scoring System (NASS) [221], and the Tanzania River Scoring
Systems (TARISS) [222].

The South Africa fish assemblage integrity index (FAII) integrates multiple fish and
habitat ecological attributes [223]. The FAII was developed from the Karr 1998 [224] fish
index of biotic integrity (F-IBI) and later modified by Kleynhans [225] into the fish response
assessment index (FRAI). The FRAI measures the responses of fish assemblages to the
cumulative effect of environmental changes in lotic systems.

Flora-based stream integrity assessment indices have also been developed: the Zam-
bian Macrophyte Trophic Ranking (ZMTR) system [226] and the Harding and Taylor [227]
South African Diatom Index (SADI). The SADI has been successfully applied to assess the
Wemmershoek River catchment and river basins in South Africa [228].

3.3.5. Integrated Ecological Assessment (IEA)

The IEA refers to the simultaneous linkage of biological, ecotoxicological, and physical-
chemical data and ecosystem components during the ecological assessment to define an
ecosystem’s integrity [25,176,177]. Due to its compounded nature, the IEA provides “all-
rounded and detailed” risk assessment feedback as a basis for implementing holistic
aquatic ecosystem management plans. One of the increasingly adopted IEA systems is
the ERA framework [14,229,230]. Several studies have investigated the ecological risks of
mining pollution to biotic communities in different environmental matrices [12,231–237]
and human health [10,24,195,238–242]. Nevertheless, the scope of this paper is limited to
the aquatic ecological risk assessment (AERA) of heavy-metal pollution as an emerging
concern and threat to the sustainability of the health and functioning of surface water
systems of SA.

4. Aquatic Ecological Risk Assessment (AERA)

Aquatic ecosystems are integral to the biosphere’s survival since they provide requi-
site ecosystem goods and services. However, the ecological integrity of these systems is
consistently under threat since the components providing benefits to nature and society
are also highly vulnerable to deleterious anthropogenic impacts [15,243]. For instance, in
mining environments, the major threats to freshwater ecosystems include heavy metals
and metalloids [244,245], mine drainage [246,247], the fallout from atmospheric contam-
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ination [248], and sediment-laden waste pollution [249–251]. Hence, there is a need to
develop an integrated method to monitor the health of aquatic ecosystems to ensure the
sustained provision of benefits to nature and society [16]. AERA provides a comprehensive
and reasonable approach to evaluating the current and potential anthropogenic impacts on
aquatic resources [23,252].

A risk assessment determines the impact of a stressor(s) on the environmental (ecolog-
ical risks) or human well-being (human health risks) [253]. An ecological risk assessment
(ERA) evaluates the probability of present or potential risks driven by human actions and
the likely environmental impacts [14,254]. Risks arise from a combination of the severity
(nature and magnitude) and the probability (depending on the frequency of exposure) of
effects from a proposed action(s) or stressor(s) [255]. The probabilities of risks may result
from variability or uncertainty arising at the different tiers of the assessment framework.
An action or stressor category may range from hydrological, geophysical, or biological to
a chemical matrix, mostly anthropogenically mediated. Therefore, the ERA framework
applies scientific knowledge and tools to evaluate the associated effects of stressors on
receptors to generate useful information for a collaborative expert-guided risk management
decision-making process to mitigate the different environmental stressors/risk factors [212].
The principal focus of an ERA is to minimise the probability of ecological risks evolving
into possibilities (i.e., hazards) with deleterious effects by providing stakeholders with
practical decision support and management tools [256].

The ERA principle was founded on three aspects of scientific inquiry: what events
can occur, how they are likely to happen, and the endpoints from the set of events [257].
Therefore, the ERA process integrates three fundamental and logical phases: problem
formulation, risk analysis, and risk characterisation [256,258]. Reporting to risk managers
and other relevant stakeholders sets the stage for risk management or reevaluation, de-
pending on the risk significance level [259]. The prevailing economic, social, technological,
and political dynamics must be considered during risk management. Suter II et al. [255]
prescribed the sociopolitical purposes of an ecological risk assessment: serving as a basis for
technical decisions, providing legitimate redress to stakeholder concerns, and facilitating a
common platform for stakeholder engagement and involvement in decision-making.

4.1. Application of Pollution Factors/Indices in ERA of Aquatic Systems

Environmental pollution indices are useful in establishing or estimating the ecologi-
cal risks posed by contaminants naturally or anthropogenically introduced into different
ecosystem matrices [260,261]. Numerous studies have applied contaminant pollution
indices, such as the contamination factor (CF), degree of contamination (DC), geoaccumu-
lation index (Igeo), enrichment factor (EF), pollution load index (PLI), potential ecological
risk factor ((Eri), potential ecological risk index (PERI), and the combined pollution index
(PLI), for ERA and monitoring of the impacts of anthropogenic activities to the levels of
HM in the environment [101,200,238,262–267].

Table 2 describes the commonly used pollution indices and their applications, strengths,
and weaknesses in ERA programs. Virtually all the indices described have wide appli-
cations and provide the criteria for classifying risk levels. From Table 2, however, it is
apparent that a significant proportion of these factors/indices only consider the abiotic
environmental matrix as a surrogate for evaluating the current and future ecological risks.
This biasedness frequently results in lopsided conclusions and recommended remedial
actions concerning risks to biotic communities [268,269].

To address this challenge, Grapentine et al. [270] proposed four lines of evidence
(LOE) (i.e., surface sediment chemistry, laboratory toxicity bioassays, benthic community
structure, and benthic bioaccumulation and biomagnification gradients). The LOE incorpo-
rates exposure, effect, weight of evidence (WOE), and risk elements in the ERA process.
Therefore, the LOE selected depends on the environmental stressors of potential concern
(SOPCs) and the biological receptors of potential concern (ROPCs), based on the spatiotem-
poral considerations and ecological relevance. Chapman and Hollert [271] recommended
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that the application of a sedimentological analysis in ERA should ensure that the LOE
applied adequately accounts for critical ERA components (Problem Formulation, Exposure,
and Impacts); addresses cause-and-effect; and sufficiently considers other “nonchemical”
stressors [14,255].
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Table 2. Characteristics and applications of environmental pollution factors and indices in the ERA of heavy-metal pollution.

Index/Factor Description and Classification Application Strengths (S) and Deficiencies (D)
[260] References

1 Contamination Factor (CF)

Evaluates the ratio of contamination to that of
background environmental HM levels.

CF = Cm
Cb

, where cm is the concentration of
metal m; cb is the pre-industrial concentration

of metal m.
Classification: CF < 1, low contamination; 1 ≤
CF ≤ 3, moderate contamination; 3 < CF≤ 6,

considerable contamination; CF ≥ 6, very high
contamination

Reflects preliminary
contaminant enrichment in

the environment.

S: Simple and direct; individual factor
determined per metal; compares
between sample and reference

concentrations; precise classification
scale.

D: No account for variability from
natural processes; excludes the

potential availability of other HM;
requires the incorporation of
background reference values.

[232,251,261,263,272–275]

2 Degree of Contamination
(DC)

DF is the sum of all HM contamination factors
in a particular location.

DC = ∑ n
i=1CF

Classification: DC < 6, low degree; 6 ≤ DC <
12, moderate; 12 ≤ DC < 24, considerable

degree; DC ≥ 24, very high degree

Estimates extent of
contamination from derived

contamination factors.

S: Analysing unlimited HM possible;
evaluates a sum of CF; classification

scale available.
D: Not widely used; no account for

natural geochemical processes;
inclusion of background HM reference

values mandatory.

[12,239,250,260,261,263,276–278]

3 Geo-accumulation index
(Igeo)

Useful in evaluating HM contamination based
on the ratio of the concentration in the

soil/water to the geogenic background levels.

Igeo = log2

(
Cn

1.5Bn

)
, where Cn is the measured

concentration of the HM; Bn is the
environmental background value of the metal;

1.5 is the background matrix correction
coefficient to moderate the impact of possible

variations due to lithogenic and
anthropogenic influences.

Classification: Igeo ≤ 0, uncontaminated; 0 <
Igeo ≤ 1, uncontaminated to moderately

contaminated; 1 < ≤ 2, moderately
contaminated, 2 < ≤ 3, moderately to strongly
contaminated; 3 < ≤ 4, strongly contaminated;
4 < ≤ 5, strongly to extremely contaminated;

Igeo > 5, extremely contaminated.

Evaluates the degree of metal
contamination or pollution in

the environment.

S: Wide usage; allows historical
comparison of HM contamination;

simplified quantitative index;
correction for lithogenic interferences

accounted for via the 1.5 correction
coefficient; precise classification scale

available.
W: No account for the availability of
HM of no interest; no account of the
variability of natural geochemicals.

[234,236,238,250,263,279,280]
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Table 2. Cont.

Index/Factor Description and Classification Application Strengths (S) and Deficiencies (D)
[260] References

4 Enrichment Factor (EF)

Evaluates the severity/ pollution state of
anthropogenic enrichment of individual HM.

EF = (Ms/Cre f )

(Mcr/Ccr)
, where Ms/Cre f is the ratio of

metal concentration in the sample to reference
metal C; Mcr/Ccr is the ratio of the

background value of metal M to the reference
metal C.

In ER determination, the reference values are
included for normalisation (to compensate for

distortions from geogenic/anthropogenic
activities).

Classification: EF < 2, none to minor
enrichment; 2 ≤ EF < 5, moderate enrichment;
5 ≤ EF < 10, significant enrichment; 10 ≤ EF <

25, severe enrichment; 25 ≤ EF < 50, very
severe enrichment; EF > 50, extremely severe

enrichment.

Determination of degree and
status of pollution of

individual HM by natural
and anthropogenic factors.

EF values of 0.5–1.5 indicate
enrichment from natural

geogenic processes.
EF values > 1.5 reflect the

influence of anthropogenic
activities on the levels of HM

present.
The use of reference

elemental values makes the
EF index a more reliable

indicator of HM pollution.

S: HM source tracking; reduces HM
variability; estimates anthropogenic

impacts; evaluates pollution impact of
individual metals; precise classification

scale.
W: Relies on reference values; choice of
appropriate geochemical background

critical.

[272,273,275,280–283]

5 Pollution Load Index (PLI)

PLI is an empirical pollution indicator
expressed geometrically as a mean (nth root)

of the EF of all the metals evaluated in a
particular site.

PLI for a single site = (EF1 × EF2 × EF3 × . . .
× EFn)1/n, where n is the number of elements

involved.
Classification: PLI < 1, no or low pollution

level; PLI = 1, baseline/background pollution;
PLI > 1, progressive pollution.

Empirical index for
comparative assessment of
environmental pollution.

PLI accounts for the overall
effect of all the HM per site.

S: Combines multiple HM analyses;
easy application and wide usage;
allows site comparison; precise

classification scale available.
D: Omits the influence of natural

geochemical processes; relies on the
geochemical background and EF

values; no account for the availability
of other HM outside the scope of

interest.

[12,183,210,247,275,280,284]
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Table 2. Cont.

Index/Factor Description and Classification Application Strengths (S) and Deficiencies (D)
[260] References

6 Potential Ecological Risk
Factor (Eri)

The Eri determines ecological risk as
influenced by HM contamination and

responses of biocoenosis to toxicity.
Eri = TRF × CF, where TRF is the toxic

response factor calculated individually for
each HM and depends on the sediment toxic
factor; CF is the contamination factor for each

metal.
Classification: Eri <40, low ER; 40< Eri < 80,

moderate ER; 80< Eri < 160, considerable ER;
160 < Eri < 320, significant ER; Eri > 320,

severe ER.

Quantitatively estimates the
potential ecological risk of an
environmental contaminant.

S: Widely used; easy application;
accounts for HM impact on biota;

precise classification scale.
D: Relies on CF and TRF estimators for
determination; excludes the potential

availability of other HM in the
environment.

[68,236,261,263,275,285]

7 Potential Ecological Risk
Index (PERI)

Summation of all Eri values calculated for a
contaminant in an area.

PERI = ∑ Eri, where Eri is a single index for
each element evaluated.

Classification: PERI <150, low risk; 150 ≤
PERI < 300, moderate risk; 300 ≤ PERI < 600,
high risk; PERI > 600, significantly high ER.

PERI evaluates the degree of
environmental risks from HM

pollution based on the
sensitivity of biotic

communities to contaminant
concentrations.

S: Widely used comprehensive index;
accounts for toxicity and ecological
sensitivity of HM; precise scale of

classification.
D: Requirement for TRF (only Cd, Hg,
Pb, As, Cr, Cu, Ni, and Zn available)

and CF values.

[249,261,263,267,275,286–289]

8 Combined Pollution Index
(CPI)

A combined PLI (CPI) determines the overall
pollution for all the sites of interest.

CPI for a study area = ∑ PLIk
m , where PLIk are

the PLI values for k sites; m is the number of
HM considered.

CPI estimates the integrated
pollution status of an area

based on the individual PLI
values.

S: Overall pollution estimator; easy
application.

D: Heavy reliance on other estimators
(TRF, CF, Eri); no distinction of
variability due to natural and

anthropogenic influences.

[183,279,290]
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4.2. Conceptualisation and Potential Application of AERA in Freshwater Systems of SA
4.2.1. The Five-Tiered AERA Concept for Aquatic Systema in Degraded
Mining Landscapes

Based on the risk hypothesis, the AERA framework is conceptualised around the
interrelationships between the risk elements, risk exposure pathways, receptor exposure,
endpoint impact measurement, and characterisation of ecological risks in aquatic environ-
ments [255]. The aim is to identify and map the potential ecological risks of mining waste,
predisposing factors, monitoring mechanisms, and management options for the hazards to
aquatic resources in mining-generated wastelands. Hence, a triad approach, modified from
the 1998 US Environmental Protection Agency ERA guidelines [258], has been adopted
and modified to optimise the potential risks assessment framework for aquatic systems
draining these wastelands (Figure 4). The conceptual model defines the risk assessment
framework from problem formulation, risk assessment, risk characterisation, and transi-
tions to management decision-making and risk management. These components, further
elaborated below, are classified at three main levels: stakeholder engagement in planning,
expert(s) participation, and management evaluation and decision-making sessions. These
subcomponents are integrated to establish a holistic risk assessment framework that incor-
porates the key environmental indicators in the three constituents of the aquatic ecosystem
matrix: water, sediment, and biota.

Problem Formulation and Risk Hypothesis

The assessment is on the potential aquatic ecological risks linked to post-mining
landscapes. It is hypothesised that there is a high potential ecological risk to the resident
biotic communities in aquatic ecosystems due to exposure to particular risk factors, the
environmental stressors of potential concern (SOPCs), associated with mining wastelands.
Since mine waste elements enter aquatic systems either as a solid flow (e.g., collapsed
waste rock pile) or semisolid (e.g., tailings from dams); liquid (e.g., surface mine drainage,
contaminated plumes in groundwater, or heap and dump leach); or direct atmospheric
fallout (e.g., fugitive dust), the exposure pathways are initially defined. An aquatic ecosys-
tem’s risk factors and likely impacts can be physical, chemical, biological, or combined. The
representative ecological receptors are the resident aquatic biota exposed to the potential
risks at the spatial and temporal scales and can provide “historical evidence” of the SOPCs.
The risk questions formulated from this theory are used to address the complete exposure
pathways, assessment, and measurement endpoints in risk evaluation and characterisation.

Exposure Assessment

The potential environmental stressors (SOPCs) are identified by analysing the physic-
ochemical properties of water, sediment, and sediment-associated contaminants (SACs) to
quantify contamination levels compared to reference sites and respective quality guide-
lines. This information is also important in interpreting endpoint ROPC responses to
physicochemical environmental fluctuations and stressors. Toxicity tests on streamwater
will provide supporting indications of episodic anthropogenic pollution events. Sediment
analyses of toxicity determine whether the responses observed in the representative ROPC
communities are related to the SACs of concern rather than other multiple environmental
risk factors. Water and sediment tests are also employed to discriminate contaminated or
impacted sites from the reference sites.
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Effects Assessment

Representative biotic communities serve as bioindicators or receptors of potential
contaminants (ROPCs). In addition, the variability in the community structure of benthic
ROPCs between impacted and reference sites is used to indicate the biological responses
to the spatial and temporal magnitudes of environmental contaminations. The toxicity
factors (TFs), body burdens (bioaccumulation), and trophic transfer (biomagnification)
profiles of the ROPCs explain the toxicity endpoints or observed effects (OEs) (e.g., growth,
mortality, survival, or reproductive rates) on representative receptor populations and
community structure [256]. Additionally, sediment-associated contaminants (SACs), biota–
sediment accumulation factors (BSAFs), and biota–water accumulation factors (BWAFs)
are determined to estimate the magnitude and likelihood of SOPC transfer from the abiotic
matrix to ROPC populations and communities [254]. The level of SOPCs in the tissues of
receptor biota give evidence of the contaminant bioavailability and stressor origin [291] or
nonbioavailability [270]. Dissolved SOPCs usually indicate the bioavailability of chemical
stressors. However, nonbioavailability does not negate the associated potential risks since
the bioaccumulation and biomagnification of toxic materials can be detrimental at higher
trophic levels in the aquatic food web.

Risk Characterisation and Sources of Unpredictability

The characterisation of risks is both on the observed effects (qualitative) and outcomes
of different risk quantification methods (e.g., community metrics, biota–water accumulation
factors, toxicity factors, and biota–sediment accumulation factors) at predefined “significant
risk levels” [255]. The causality between receptor exposure profiles and exposure endpoint
effects are derived and employed to develop potential ecological risk index(es). Index
development considers the diversity and complexity of aquatic ecosystems, which may
increase the unpredictability of the outcomes. The unpredictability of endpoints can arise
from uncertainty, measurement and analytical errors, and ignorance or confusion during
certain developmental stages (e.g., conceptualisation and risk characterisation) [255]. For
instance, uncertainty usually determines the confidence level in developing and apply-
ing the indices in a risk management toolkit [212]. An illustration of uncertainty is the
spatiotemporal influence on foraging, breeding, or reproduction interdependencies that
periodically determine community population dynamics and composition patterns.

Additionally, the presence or absence of a keystone predator(s) or multiple envi-
ronmental stressors besides the SPOCs under consideration may significantly affect the
community characteristics’ diversity. Such uncertainties will be factored in during risk de-
scription, index development, and the building of risk management scenarios. Variabilities
can arise from events (e.g., climate and seasonality) or entities (e.g., stressor properties)
that cannot be manipulated, making them indeterminate. Errors can be incurred at any
stage in the risk assessment process from design, measurement, sampling, analysis, or the
interpretation of data. Efforts are geared towards minimising or estimating potential errors
statistically [292]. Ignorance (“unknown unknowns”) and confusion due to the complexity
of the existing environmental problem(s) may introduce unrecognisable uncertainty during
the risk description process [255].

Risk Mitigation and Management

The assessment outcome provides information on the ecological status, potential risk
factors and risks, and mitigation and management options. This process is based on the
established comprehensive ecological risks assessment framework for aquatic systems in
the mining-generated wastelands. Implications for current and future uses of the impacted
sites are clearly defined to enhance the informed judgements for risk mitigation and
management. However, decision-making lies with the risk managers and policy managers.
Nevertheless, significant uncertainty levels usually warrant site-specific characterisation
and further reassessment to develop reevaluated potential risk indices through a step-wise
risk assessment iteration process [17,259].
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5. Rapid Bioassessment Schemes for Management of Aquatic Pollution in Mining
Landscapes of SA

Mangadze et al. [26] and Dallas [293] described several rapid bioassessment schemes
(RBS) for aquatic systems developed in SA for specific or integrated assessment objectives.
The benefit of the RBS is the potential to rapidly detect changes in the habitat, water
chemistry, and the aquatic ecosystem’s biotic integrity compared to the reference condi-
tions [293,294]. Different RBS incorporating single or multiple metrics have been developed
or applied to monitor aquatic ecosystem health and HM pollution management in most of
the mining-impacted river basins of SA (see Table 1). The benthic- and macrophyte-based
RBS developed for the region monitoring programs are of particular interest.

5.1. Congo and Zambezi Basins

The 2009–2012 integrated Southern Africa River Assessment Scheme (SAFRASS)
project resulted in the development of benthic- (diatoms and macroinvertebrates) and
macrophyte-based bioassessment protocols for freshwater ecoregions of Zambia [295].
The SAFRASS project derived the ZISS-1 in a survey of benthos; water chemistry (pH,
conductivity, phosphate, and nitrate); and habitat conditions of 95 rivers. The ZISS is based
on the SASS model but with an additional six taxa found within Zambia. The efficacy of
ZISS lies in its potential to provide a reliable macroinvertebrate-based evaluation of stream
integrity in SA.

The macrophyte-based ZMTR was developed from 218 samples comprising 156 macro-
phyte species alongside water quality determination (SRP, nitrate, pH, alkalinity, and
conductivity) to establish the trophic preferences of macrophytes. The ZMTR score was
acceptable for an 83% trophic status of Zambian and 100% for Botswanan macrophyte
samples. Despite the overestimation of low-enriched and overestimation of highly enriched
nutrient conditions in impacted streams, ZISS remains a good predictor of the trophic
status of SA river systems [226].

Lang et al. [296], under the 2009–2012 SAFRASS multidisciplinary project, assessed
the stream integrity using a benthic diatom index (BDI) as a decision support tool for
freshwater ecosystem management in SA. A collection of 242 diatom samples from various
substrate types in Zambian aquatic ecoregions was used to develop an evidence-based
BDI assessment framework for authorities and community-based monitoring programs for
tropical SA river systems.

Kaaya et al. [222] developed the Tanzania River Scoring System, TARISS, by re-
adjusting the SASS-5 assessment indicator framework for 96 taxa. The taxa sensitivity
distributions were reassigned to simulate the Tanzanian freshwater ecosystem macroin-
vertebrate biodiversity. The TARISS model reflected higher reliability in disaggregating
the stream types. However, the TARISS metric and average score per taxon (ASPT) values
were more predictable in response to the stream-site variabilities. A recent study pro-
posed a more simplified and cost-effective macroinvertebrate-based assessment method
for Tanzanian rivers [297]. In this scheme, after the pair-wise screening of all the taxa
in the existing methods (e.g., TARISS, ZISS, and SASS), four macroinvertebrate orders:
Ephemeroptera, Diptera, Odonata, and Trichoptera (EDOT) are suggested for adoption
during rapid bioassessments. The EDOT approach simplifies the taxonomic requirements
of large datasets and extrapolations of taxa with unrated sensitivity weightings during the
development of bioassessment models. Furthermore, the EDOT method requires minimal
data consistency, basic taxonomic expertise, and reduces the cost and time demands during
the bioassessment exercise. Further testing of the EDOT method is nevertheless required
to validate its consistency, reliability, and preference over the SASS-based assessment
protocols for tropical African river systems.

Palmer and Taylors [221] based the Namibian scoring system (NASS-2) on SASS-5
using the family-level abundance and composition of macroinvertebrates. The NASS-2
was further expanded to include taxa of Northern Namibia and applied in the Katima
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Mulilo stretch of the Zambezi River. However, seasonal flow regimes highly influenced the
NASS-2 bioassessment performance in the Zambezi River ecosystem.

5.2. Limpopo and Orange-Senqu Basins

By establishing the national River Ecostatus Monitoring Program (REMP), South Africa
has spearheaded the development of flora- and fauna-based RBS in two basins [26,298].
The Chutter [219,299] SASS model has been thoroughly tested and significantly improved
to the current version, SASS-5 [189,300–302]. SASS-5 presents improved sampling and
analytical procedures with quality controls. Changes were also made on the taxa listing to
reflect the South African macroinvertebrate biodiversity. The method’s ASPT score remains
consistent in the bioassessments across all biotopes, with the highest variability in the
gravel–sand–mud biotope. The ASPT score gives a more reliable and consistent assessment
of river health. Given the variability between the SASS scores and taxa counts among
field personnel, competency-based training is required to ensure consistency in the field
application of SASS-5 [189]. Generally, SASS is widely accepted into the pool of RBS for
tropical freshwater ecosystems by the scientific community. A mini version of SASS-5 has
been piloted for community-based ecosystem monitoring and participatory management
in SA [188]. The miniSASS program is hosted online, and a mobile miniSASS app is
available for local communities to monitor and manage freshwater systems in real-time
(http://www.minisass.org/en/; accessed on 16 October 2021).

The South African Diatom Index (SADI) was developed based on the European Spe-
cific Pollution Index (SPI) to cater for the role of aquatic primary and secondary producer
bioindicator communities in RBS during the application of SASS-5 [227]. The SADI pro-
vides for the documentation and implementation of diatom biodiversity for ecological
monitoring and environmental management. The application of SADI in moderation with
the Biological Diatom Index (BDI) has increased the accuracy of diatom-based in SA [228].

The 2005–2009 Botswana Biokavango Freshwater Research Project in the Limpopo
Basin developed the Okavango scoring system (OKASS) for aquatic bioassessments. The
OKASS incorporates aquatic biota and physicochemical water quality indicators to de-
velop a macroinvertebrate-based biomonitoring index for management purposes [220,303].
Further studies in the delta have explored the possibility of developing similar bioassess-
ment indices for its aquatic systems, e.g., based on the delta’s hydrodynamics and habitat
peculiarities [304].

6. Challenges and Opportunities in Implementation of AERA for Mining Landscapes
of SA
6.1. Challenges

The unpredictability of climate change impacts, seasonal variability, and hydro-
logical changes on tropical aquatic biodiversity limits their reliability and application
for rapid bioassessments. The SA region lacks common networking and knowledge-
sharing platforms among the national and regional bioassessments, particularly the trans-
boundary river management programs, to synchronise RBS development [298]. Another
long-term challenge is the inadequate reference materials or incomplete taxonomic res-
olution databases for tropical taxa required for index development [305,306]. Further-
more, most RBS are biased toward nutrient enrichment and organic pollutants as a proxy
for river health, therefore excluding the ecological impact of heavy metals on aquatic
biocoenosis [293,307,308].

6.2. Opportunities

Despite the existing bottlenecks, there are opportunities to incorporate modern
bioassessment technologies to enhance rapid and higher taxonomic resolutions. Molecular
environmental DNA/RNA (eDNA/eRNA) technologies have overcome the challenges
of conventional bioassessments, allowing for task automation, higher and broader tax-
onomic precision, and are less invasive [309,310]. However, the eDNA/RNA coding

http://www.minisass.org/en/
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and metabarcoding technology should be applied cautiously and supplemented with
conventional methods due to the current inherent technicalities during method develop-
ment, e.g., PCR primer bias and quantitative stage-specific variations in macroinvertebrate
biomass [309,311]. Secondly, the development of eDNA/RNA sequencing methods for
aquatic biomonitoring and bioassessment should be streamlined through stakeholder
and practitioner engagement. The objective is to standardise and optimise the effective-
ness of the methods developed. Streamlining can be done in the areas of barcoding and
referencing, biotic and metric index development, testing field and lab protocols, data anal-
ysis, storage and availability procedures, and knowledge transition at the science-policy
interphase [312].

The adoption of community-based monitoring and reporting programs will provide
opportunities for increased stakeholder engagement in environmental management. The
modification of SASS to the miniSASS has entitled riparian communities to be collectively
responsible for environmental conservation of South Africa’s river basins [188]. Further,
the open-source miniSASS mobile app and the miniSASS website will expand knowledge
dissemination and response mechanisms to improve the management of aquatic ecosys-
tems. Similar community-based environmental management programs have been rolled
out in other regions of Africa, e.g., the “Adopt A River’ citizen science in East Africa [298].

However, in cases where inadequate knowledge, less expertise, and low capacity for
rolling out RBS exist, historical physical and chemical methods of characterising aquatic
systems can be adopted. More often than not, inorganic parameterisation is either a manda-
tory baseline or complementary assessment procedure in most environmental monitoring
programs [313]. Over time, physical (e.g., turbidity, temperature, and particulate matter)
and chemical (e.g., pH, EC, Eh, oxygen, and organic and inorganic elements) analytical
methods have been tested, improved, and standardised, making them universally accept-
able for field and laboratory applications. Nevertheless, these techniques require long-term
data since they mostly return a “snapshot” scenario of the water physicochemical condi-
tions. Conventional physical and chemical monitoring methods can also be relatively more
expensive due to equipment costs, operational logistics, and analytical and data processing
requirements than RBS. In contrast, RBS accounts for the historical or long-term cumula-
tive environmental conditions. The sentinel organisms, through biomarkers, display the
cumulative impacts of the long-term pollution of aquatic ecosystems [27,191,192,205].

7. Conclusions

Aquatic ecosystems are integral to a biosphere’s survival since they provide requisite
ecosystem goods and services for life. However, these systems are constantly under
harmful anthropogenic impacts. For instance, in Southern Africa (SA), the intensification
of mining releases heavy metals and metalloids, acid-laden drainage, fallout from acid rain,
and solid waste pollutants into its river basins. Therefore, it is necessary to monitor and
mitigate these detrimental impacts through established or developed scientifically feasible
physical, chemical, or biological methods and integrated assessment systems.

In SA, there is a long-term history of the application of physical and chemical methods
in monitoring and managing the pollution of its aquatic systems. Gradually, an integrated
approach incorporating inorganic and biomonitoring approaches is becoming more practi-
cally sensible and scientifically defensible. Biological methods are gaining popularity due
to their robustness, sensitivity, cost-effectiveness, ease of application, and interpretation.

Rapid bioassessment schemes (RBS) have been developed for SA leverage based on
the successful South Africa SASS-5 method. However, challenges still exist in aquatic
ecosystem monitoring due to the disaggregated approaches in bioassessments. A ma-
jor gap is the exclusion of heavy-metal (HM) pollutant indicators in the RBS despite the
HM constituting a significant source of water pollution in SA. There is also a need to
integrate and standardise the existing methodologies, especially taxonomic resolutions
for biodiversity assessments. The inclusion of environmental molecular monitoring tech-
niques (eDNA/eRNA) in barcoding and referencing biotic and metric index developments
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would provide long-term benefits in RBS development. Finally, citizenry science is a vi-
able and inclusive approach for collective responsibility and accountability by riparian
communities and stakeholders in sustainable river basin management; a classic case is the
miniSASS biomonitoring, reporting, and knowledge exchange platform for South Africa’s
River systems.
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