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Abstract

Flooding is a worldwide problem with more adverse effects in developing countries.

In Kenya, severe flooding is experienced on the lower tributaries of Lake Victoria,

mainly Budalang’i area. This is indicated in the historical floods of 2003, 2007,

2017 and 2019, leading to mass displacement of people and property destruction.

This has attracted attention of researchers worldwide and application of different

measures to curb flood in the study regions. Mathematical modeling of flood wave

has however not been adopted in Budalang’i flood plain. Therefore this study

formulated, analyzed and simulated the 2D flood wave model with incorporation

of a sink to the Budalangi flood plain. Formulation was applied on existing Navier

Stokes equations with the addition of a sink term on continuity equation. Analy-

sis of the shallow water model entailed transforming the equations using Jacobian

transformation and assessing the nature of flow using Froude number. For simula-

tions of the 2D shallow water model, the study adopted a finite difference scheme

to make approximations which solved the system of equations and displayed in the

figures . It is realized that in the formulation of the 2D shallow equations, appro-

priate model for Budalang’i flood plain is easily derived from the 3D Navier Stokes

equations under flood plain assumptions and addition of a sink term is necessary

for modelling in the flood plain. Assessment of the properties reveals that super-

critical flows are dominant. Addition of a sink term ensures steady state velocity

thus reducing higher frequency and turbulence as well as over bank flows while

incorporating coriolis term has significant effect on the turbulence. The study

concludes that addition of a sink term to the 2D shallow water model will enable

control of the floods in the area of study. The findings will aide disaster manage-

ment stakeholder to come up with a more reliable flood prevention technique and

new knowledge on how source terms can help reduce flood risk.
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Chapter 1

Introduction

This chapter contains the background of the study, basic concepts, statement of

the problem, objectives of the study, methodology and significance of the study.

These are presented in the subsequent sections

1.1 Background of the Study

A flood is a large amount of water moving along the earth’s surface in an un-

controlled manner [21]. Mathematical modelling of flood propagation is therefore

the quantitative description of the characteristics and evolution of this flow that

is set up. The quantitative description includes the external boundaries and in-

ternal geometry of the system, the boundary conditions, and the flow terms are

considered. The main aim of mathematical modelling of 2D is the development of

a mathematical framework that entail algorithms to numerically approximate flow

behaviour in an area. [10] Floods in a given area mainly originate from long term

rains or failure of a dam or some other water control structure. Floods can be slow,

extreme or violent based on the nature of their origin. Mathematical modelling

of floods dates back to the 1960’s at the time the first models were suggested
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CHAPTER 1. INTRODUCTION

Ponce[40]. However, over the past decades, many flood prediction models have

been developed and reported in the literature[5]. Flood modelling is governed by

laws that indicate the physical changes that take place in the flow processes [35].

The fundamental mathematical laws that govern the flood phenomenon are the

Navier-Stokes equations. Their solutions are however practically impossible for

the space and time scales of any real case leading to the need of simplified descrip-

tions such as the shallow water equation (SWE) model which is now widely used

[10]. Over time, the development of the shallow water model has been widely used

to model different physical phenomena of water flows such as flood waves, dam-

breaks, tidal flows in estuary, coastal water regions and bore wave propagation in

rivers among other uses. Substantial effort has been devoted to the development

of computational techniques for that kind of fluid flow simulations [15]. However,

most of the studies carried out have dwelt on 1D models and for those that have

attempted the 2D model, they have failed to include a sink term which is very

significant in modelling. The purpose of this study was to carry out flood prop-

agation by means of modelling the 2D shallow water system of equations with

application to the Budalangi flood plain in Busia County, Kenya.

1.2 Basic Concepts

1.2.1 Free Surface

This is the surface of a fluid that is subject to zero parallel shear stress, such as the

interface between two homogeneous fluids, for example, liquid water and the air in

the earth’s atmosphere. Unlike liquids, gases cannot form a free surface on their

own. Fluidized/liquified solids, including slurries, granular materials and powders

2



CHAPTER 1. INTRODUCTION

may form a free surface.

1.2.2 Navier Stokes Equations

These are equations that describe the motion of viscous fluid substances. These

equations are in the balance form and arise from applying Isaac Newton’s second

law to fluid motion. The assumption that the stress in the fluid is the sum of

a diffusing viscous term (proportional to the gradient of velocity) and a pressure

term hence describing viscous flow is added. The main difference between them and

the simpler Euler equations for inviscid flow is that Navier Stokes equations also

factor in the Froude limit (no external field) and are not conservation equations,

but rather a dissipative system, in the sense that they cannot be put into the

quasilinear. They are expressed as follows, (
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= Fx −

∂p

∂x
+

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τzx
∂z

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= Fy −

∂p

∂y
+

(
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

)
ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= Fz −

∂p

∂z
+

(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
.

(1.1)

where the first equation is the mass conservation equation in the three dimen-

sions, which are x, y, z. ρ in the next three momentum equations represents the

fluid density. Fx,y,z terms represent force in the respective directions (that is, the

directional momentum). The partial derivatives ∂p
∂x

, ∂p
∂y

and ∂p
∂z

represents the

change in pressure in the x, y and z directions. τ indicates the viscous shear

stresses due to the fluid change in momentum.
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CHAPTER 1. INTRODUCTION

1.2.3 Catchment

A surface water catchment is the total area that drains into a river. A groundwater

catchment is the total area that contributes to the groundwater component of the

river/basin flow.

1.2.4 Flood Plain

Refers to any area of land over which water flows or is stored during a flood event

or would flow but for the presence of flood defences.

1.2.5 Hydraulic Model

A simplified physical representation of a scaled flow within a river system. It can

be sketched in different dimensions and thus we may not have a specific general

model. In fluid dynamics, it represents a sketch that can picture and visualize

flow field before coming up with a specific design. It is used within the catchment

flood management plan to test the influence of flood risk management measures

on flooding.

1.2.6 The Shallow Water Model

The shallow water model was formulated from the Navier Stokes equations under

the assumption of larger horizontal scale compared to vertical scale. Below is a

typical shallow water model.

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= S(U) (1.2)

4



CHAPTER 1. INTRODUCTION

where

U =


h

hu

hv

 , F (U) =


hu

hu2 + 1
2
gh2

huv

 , G(U) =


hv

huv

hv2 + 1
2
gh2

, and

S(U) =


0

gh(Sox − Sfx)

gh(Soy − Sfy)

,

from which, u and v denote the velocity components in the x and y directions

respectively, h indicates the water depth, g is the acceleration due to gravity, b

is the bottom elevation, Sfx and Sfy are the frictions in the x and y directions

respectively, whereby

Sfx = n2u
√
u2+v2

h
4
3

and

Sfy = n2v
√
u2+v2

h
4
3

in which n denotes Mannings Roughness Coefficient. Thus the full system of

shallow water equations can be written in conservation form as,

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0

∂hu

∂t
+
∂(hu2 + 1

2
gh2)

∂x
+
∂huv

∂y
= −gh ∂b

∂x

∂hv

∂t
+
∂huv

∂x
+
∂(hv2 + 1

2
gh2)

∂y
= −gh∂b

∂y

where u and v are the horizontal and vertical velocities respectively, b represents

the change in bed slope source term and friction source term Sf in the x or y

directions. The other variables, g represents force of gravity, h represents water

height and t represents time. On the right hand side, the change in bed slope source

5



CHAPTER 1. INTRODUCTION

terms are negative implying that the bottom is a material surface of the fluid and

therefore not crossed by the flow. Under some assumption and successful derivation

of appropriate model for the flood plain, a Froude number can be obtained.

1.3 Statement of the Problem

Budalang’i flood plain basin has been experiencing consistent floods on the onset

of heavy rains causing loss of lives, destruction of property, outbreak of water

borne diseases and siltation of arable lands. In the recent past, the frequency and

intensity of the floods has greatly increased, partially attributed to climate change

and human activities in the area. In response, few methods have been proposed

to solve the flood occurrences with little success. Mathematical approach to the

solution of the problem using advanced technology such as inundation analysis of

floods using computer-based models and flood routing, has however not been fully

adopted in the area of study. The few mathematical approaches developed have

also not adopted flood wave modeling as an approach to model the phenomena.

This study therefore sought to formulate and analyze the 2D flood wave model

incorporating coriolis force and sinks for Budalang’i flood plain.

1.4 Objectives of the study

The general objective of the study was to carry out mathematical modelling of

flood wave in Budalang’i flood plain in Busia County, Kenya.

The specific objectives of the study were to:

6



CHAPTER 1. INTRODUCTION

1. Formulate a 2D mathematical flood wave model for Budalang’i flood plain

basin.

2. Analyze the 2D mathematical flood wave model for Budalang’i flood plain

basin.

3. Carry out the 2D mathematical flood wave model simulations for Budalang’i

flood plain basin.

1.5 Methodology

In objective one, the study sought to formulate the 2D shallow water model appro-

priate for Budalang’i flood plain. Formulation followed from the reduction of the

3D Navier Stokes equations using Leibnitz and Chain Rules. Each of the terms

of the system of equations were integrated respectively, factored and terms recol-

lected in the formulation. The continuity equation from the formulated equations

was finally modified by including a sink term for Budalang’i flood plain.

The sink term in this case referred to the term quantifying the difference between

inflow and outflow and was noted as s1. In the second objective, the study anal-

ysed the shallow water equations formulated for Budalang’i flood plain. Analysis

entailed establishing the nature of flow and the stability condition based on the

Froude number for the flood plain basin with the aide of Jacobian transformation.

Using Nature of wave propagation and Froude number, alternative types of solu-

tions were established.

In objective three, an explicit centered finite difference method was used to des-

critize the shallow water equations. Numerical approximations were followed with

the adoption of Courant Friedrichs Lewy Condition for convergence. The use of

7



CHAPTER 1. INTRODUCTION

numerical approximations were carried out to enable appropriate simulations of

the wave propagation in the Budalang’i flood plain using the Flood plain basin

data. Simulations were carried out with the aide of Python program version 3.8.

For effective simulations, varying depths were considered. Since the study accom-

modates both analytical part in objective one and two and numerical simulations

in objective three, the methods were considered both analytical and numerical in

modelling.

1.5.1 Area of Study

Budalang’i division lies on the shores of Lake Victoria, partly on the mouth of

River Yala, but largely on the mouth of river Nzoia [27]. According to [14], River

Nzoia is one of the largest rivers in western Kenya. The main stream of the river

flows from the western side of the Elgeyo Escarpment and the Cherangani Hills

from an elevation of approximately 2,286 m above mean sea level. It’s tributaries,

which flow from the high slopes of Mount Elgon, attain maximum elevation in the

river’s basin and are estimated at about 4,300 m above mean sea level. The trib-

utaries in Mount Elgon include Kuywa, Sosio, Ewaso, Rogai and Koitobos. The

catchment of river Yala has an estimated area of 3,351 km2 and the River is one of

the main rivers in Kenya draining into Lake Victoria. The river is approximated

to be about 219 km long and it originates from the Nandi Escarpment water tower

traversing Kakamega and Siaya counties as it flows downstream. The study basin

has an annual average discharge of 28 m3 s−1 [34]. The flood magnitudes have been

estimated to be approximately an average of 2,367 m3 s−1 to 3,881 m3 s−1. The up-

per reach is 135 m2 to 257 m2, with a slope of 1 to 240 which is approximated to

be a percentage of 0.42. The middle reach is 20 km to 135 km with a slope of 1

8



CHAPTER 1. INTRODUCTION

to 390, approximated to be 0.26 % and finally the lower reach is 10 km to 20 km

with a slope of 1 to 3,400 which is approximately 0.03 % . Approximately 110 km2

of the basin is usually affected by floods from Yala and Nzoia Rivers almost every

year with an approximated flood depth of 0.5 m to 1 m lasting 20 to 30 days [20].

The lower River Nzoia and Yala (Budalang’i) basin was chosen because of its re-

gional importance to agricultural crop production. It is also a flood prone basin

and the rivers are the major tributaries to Lake Victoria. The area of the basin

is approximated to 3,351 km2 with an average discharge approximately 28 m3 s−1.

During floods there is overtopping despite the building of the dykes as structural

measures to curb flooding, leading to destruction of crops. Overtopping occurs as

a result of sediment accumulation in the flood plain causing overbank flow and

therefore resulting to floods [4].

1.5.2 Mathematical Model

The study formulated a 2D Shallow water model from the well known 3D Navier

Stokes equations. The 2D shallow water model represents mass and momentum

conservation, and is obtained by depth averaging the Navier Stokes equations [33].

The procedure eliminates from the beginning the free surface location problems

which is now simply placed as the depth above the bottom surface. The momentum

due to viscosity, turbulence and wind effects were neglected but coriolis terms

were included in the model. Therefore the model can be written in differential

conservation law form as a single vector equation. The main assumption of the

shallow water model is that the horizontal length scale is much greater than the

depth scale [8]. Thus, one can get rid of the vertical dimension by averaging the

9



CHAPTER 1. INTRODUCTION

mass and momentum conservation equations over the depth. The model can thus

be written as,
∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= S(U)

in which U is a variable vector and is a function of flood directions and time, that

is x, y, t. F is the convective flux vector and G is the diffusive flux vector in the x

and y directions respectively. S represents the source terms and the sink along the

two momentum equations and the continuity equation respectively. The system

describes the flow at time t where the height of the fluid at (x, y, t) are greater than

0, and finally, h denotes the water depth. Therefore the shallow water equation

can also be written as in conservation form as

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0 (1.3)

∂hu

∂t
+
∂(hu2 + 1

2
gh2)

∂x
+
∂huv

∂y
= −gh ∂b

∂x
(1.4)

∂hv

∂t
+
∂huv

∂x
+
∂(hv2 + 1

2
gh2)

∂y
= −gh∂b

∂y
(1.5)

where u and v are the horizontal and vertical velocities respectively, and b repre-

sents the change in bed slope source term in the x or y directions. In the system,

the 2D model allowed setting up of different conditions. For the initial conditions,

initially dry and flood levels were taken to consideration. The initial boundary

conditions were associated to the horizontal and vertical velocities where initially

u(x, y, 0) = f(x, y), v(x, y, 0) = f(x, y) (x, y) ∈ Ω and t = 0. For the bound-

ary conditions, free flow, wall and specified velocities were considered. Therefore

U(x, y, t) = g(x, y, t), (x, y) ∈ Ω and t > 0 were treated as the boundary condi-

tions. Even though the model is of the average type, a thin vertical elevation was

10



CHAPTER 1. INTRODUCTION

considered because h > 0, implying that the vertical to horizontal distance of the

domain of wave travel is less than 1.

The following fundamental theorems were used in the study:

Theorem 1.5.1 (Leibnitz Rule)

Let f(x, y) be a function where f(x, y) and its partial derivative fx(x, y) are con-

tinuous in y and x in some region of the (x− y) plane including a(x) ≤ y ≤ b(x),

x0 ≤ x ≤ x1. In addition, suppose the functions a(x) and b(x) are both continuous

and both have continuous derivatives for x0 ≤ x ≤ x1. Then for an integral of the

form ∫ b(x)

a(x)

f(x, y)dy,

where −∞ < a(x), b(x) <∞, the derivative of this integral is expressed as,

∂

∂x

[∫ b(x)

a(x)

f(x, y)dy

]
= f(x, b(x)).

d

dx
b(x)−f(x, a(x)).

d

dx
a(x)+

∫ b(x)

a(x)

∂

∂x
f(x, y)dy,

where the partial derivative indicates that only the variation of f(x, y) with x is

considered in taking the derivative inside the integral.

Theorem 1.5.2 (Jacobian Transformation)

Let x = g(u, v) and y = h(u, v) indicate a transformation on the plane that is

one to one from region S to region R. If h and g have continuous partial derivatives

then the Jacobian of this transformation is,

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

Therefore the Jacobian is simply the derivative of a coordinate transformation.
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CHAPTER 1. INTRODUCTION

1.6 Significance of the Study

The solution of the flood wave Shallow water equations will be significant to me-

teorological stake-holders in flood mitigation. The results of this study can inform

appropriate measures to reduce flood havoc in the study area. The findings may

also aide flood disaster management stakeholders in determining risk in flood-prone

areas to support decisions for risk management. Finally, the results will add more

knowledge to the body of literature among scholars.
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Chapter 2

Literature Review

Currently, there is rapid climate change due to ever increasing industrial activities,

increase in population and clearance of indigenous forests in search for settlement

worldwide [12]. This has increased the risks of droughts and floods, with the later

affecting developing countries adversely [1]. Floods are a temporary inundation of

water from the rivers, streams, lakes, oceans or flash floods onto lands not normally

covered by water, and therefore have attracted scholarly studies in modeling [13].

This is also because extreme floods are characterised by unpredictable whether

conditions, thus leading to shortfalls in the flood prediction systems in place [14].

In Kenya, historical flood occurrences has led to a comprehensive set up of flood

mitigation strategies which have incurred the country a lot of finances [27]. For in-

stance, in the year 2017, there were heavy downpours with inadequate preparedness

in spite of the warning from the Kenya meteorological departments leading to the

displacement of an estimated 800,000 people and death of approximately 300 peo-

ple countrywide. Reports revealed that in Western Kenya, Busia and Siaya coun-

ties received most of the humanitarian needs due to prolonged rainfall with an esti-

mated 35,000 people being affected as a result of displacement, [11]. Other counties

that were affected were West Pokot, Garissa, Isiolo, Kisumu, Mandera, Marsabit,
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Narok, Samburu, Taita-Taveta, Tana River, Turkana and Wajir [37]. In Western

Kenya, floods have been occurring mainly in Budalang’i area in Busia County

[16]. The major floods include the 1937, 1947, 1951, 1957, 1958, 1961, 1978, 1977

to 1978, El Nino, 2002, 2003, 2007 and 2009. During the 1997 to 1998 El nino,

rainfall was 300 % of the normal with 12,000 people being displaced. The dykes

were extensively damaged due to overtopping and breaching [34].

The Ministry of Water and Irrigation, through Kenya Meteorological departments

came up with integrated flood management system [26]. The functional being the

early flood warning system, which is a core component of flood mitigation that

consists of real time monitoring, forecasting and dissemination of the warnings

[30]. Other measures of flood mitigation in the area have included management

of the catchment area, multipurpose dams, buildup of community based disas-

ter management and making good use of flood waters [35] and [22]. Structural

measures such as setting up of dykes to curb floods in the area have achieved a

milestone success, leading to reduction in the displacement of people and extreme

havoc previously caused by floods. However, the 2017 floods caused destruction of

crops in the region, which are the main source of livelihood in the area [28]. Such

a phenomenon was not expected, and implies that there is still much that needs

to be done on flood propagation. Perhaps, a different approach can be applied in

the flood mitigation. This gave a motivation to model the flood propagation using

the shallow water equations.

Various studies have been carried out on the development of 2D shallow water

equation among previous scholars. For instance, March[33] studied the derivation

of a new two dimensional viscous shallow water model in rotating framework using

asymptotic analysis while considering irregular topography, linear and quadratic

bottom friction terms and capillary effects. This study formulated a new form

14
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of the 2D equation with viscous effects, consistent with a previously formulated

one dimensional equation by [18]. The results demonstrated that addition of a

quadratic drag term with modified water depth dependent coefficients was co-

herent with the usual friction Manning-Chezy formulation used in oceanographic

simulations.

Ferrari in [19] introduced appropriate scalings into a 3D anisotropic eddy viscosity

model after averaging on the vertical direction and considering some asymptotic

assumptions, and obtained a two-dimensional model. The study incorporated the

motion of an incompressible fluid confined to a shallow basin with a slightly vary-

ing bottom topography. Coriolis force, surface wind and pressure stresses, together

with bottom and lateral friction stresses were also taken into account. The derived

model was found to be symmetrizable through a suitable change of variables. Nu-

merical tests were also approximated with the aim to validate the proposed model.

Studies were carried out by [17] on the application of the depth averaged shallow

water equations to several free surface flows in which the treatment of geometry

introduced on the source terms and turbulence modelling were of interest. The

convective flux was discretised with an hybrid scheme of upwind Godunovs schemes

based on Roes average. The study established that fishway flows occurred which

were highly turbulent and it had strong recirculation eddies which made it per-

fect model for turbulence tests but not an appropriate solution for shallow water

model. Studies by [23] revealed modelling of shallow water equations using a high

resolution 2D dam-break model with parallelization. Other techniques that have

been used to solve the SWEs have highly adopted the upwind schemes. Among

these techniques are the Volume of Fluid [30], Maker in cell [43], Finite Volume

[31], high resolution Godunov-type scheme with finite volume [3] and volume of

fluid methods [24] which did not give accurate results on the flood wave equation
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and were limited to theoretical tests. A numerical model for the solution of the

two-dimensional dam break problem developed in [45] was also based on second

order approximate Riemann solver with a van Leer type limiter to solve the shallow

water wave equation on a Cartesian grid. More recently, a study on the solution of

shallow water equations was carried out by [2] on flood propagation with assumed

grid. However, the current problem involves the structural measures such as dykes,

which hold the water during flooding although the area encounters overtopping.

This study sought to address the problem in Budalang’i flood plain.

Different studies that are related to modeling the flood phenomena in the study

area include [26], who carried out the rainfall runoff modeling in Yala River Basin

of Western Kenya. The study adopted the Geological stream flow and Muskingum

Cunge models to model the hydrologic process of the River Yala network. The

objective of this study was to come up with an early flood warning system to avoid

the flood risk exposed to the downstream inhabitants. The findings indicated that

the adopted tools were useful for issuing early flood warning message defined by

peak stream flow and flood wave travel time. The study however concentrated

on the stream flow routing whereas the most affected region are the downstream

inhabitants, who mainly benefit from the flood basin. In addition, little was done

on the flood wave dispersion thus without the knowledge of the frequency and

wavelength, little can be known on the intensity of the hazard likely to happen in

the event of a flood occurrence.

Flow Regime from International Experimental and Network Data (FRIEND) by

[7] presented an appraisal study on suitable models that could be used in fore-

casting flows in the rivers of the Nile basin. In this appraisal study, systems

and conceptual modeling techniques were applied to lake Victoria, Awash and the

Blue Nile catchments. The models were applied in non-parametric and parametric
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forms. Parameter optimization was carried out by ordinary least squares, Rosen-

brock, Simplex and genetic algorithm. The rainfall which was the main input to

these models was estimated using arithmetic mean. The findings revealed that

in catchments which exhibit marked seasonal behaviour good results can be ob-

tained with Linear Perturbation Model (LPM) which involved the assumption of

linearity between the departures from seasonal expectations in input and output

series. The application of the GFFS (collection of systems and conceptual mod-

els) software proved to be possible with variable efficiencies in the Nile River basin

[20]. However, flood routing involving the wave propagation was not done under

the conceptual models used. An almost similar work was also carried out by [38]

who mainly indicated the challenges that were encountered in modeling the flow

of Nile Rivers. Further work on flood routing techniques have also been reported

in [9, 12, 25, 32, 39, 41, 42] but none of these studies have applied the 2D shallow

water routing that pursues the wave dispersion and captures the variation of the

depth and dry front effects as the wave propagates. Thus this study sought carry

out mathematical modelling of flood wave in Budalang’i flood plain.
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Chapter 3

Model Formulation, Analysis and

Discussion

Model formulation entails depth averaging the Navier Stokes equations then apply-

ing the Leibnitz Rule. This is done with application to the Budalang’i flood plain

while using the flood flow directions in the basin. The parameters governing the

flood plain basin such as pressure, wind terms, vertical and horizontal velocities

guide the formulation. Finally, a sink term is introduced to show the adjustment

to most ideal formulated equations for the basin. Analysis of the shallow water

model for the study domain entails obtaining the eigenvalues that eventually help

determine the nature of flow. Finally, numerical simulation of the model is carried

out using finite difference scheme.

18
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3.1 Formulation of 2D flood wave model for Bu-

dalang’i Flood Plain

We consider the Navier Stokes equation, (
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= Fx −

∂p

∂x
+

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τzx
∂z

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= Fy −

∂p

∂y
+

(
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

)
ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= Fz −

∂p

∂z
+

(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
.

(3.1)

The stress state is represented as a symmetric tensor τ , whose components can

be expressed in coordinate systems. The components of the velocity vector u, v, w

align with the Cartesian- Coordinate directions (x, y, z). Such fluids are called

Newtonian fluids. If we assume an incompressible fluid, the components of stress

tensors can be expressed as follows,

τxx = −p+ 2µ∂u
∂x

τyy = −p+ 2µ∂v
∂y
, τzz = −p+ 2µ∂w

∂z

τxy = τyx = µ·
(
∂u
∂y

+ ∂v
∂x

)
, τxz = τzx = µ·

(
∂u
∂z

+ ∂w
∂x

)
, τyz = τzy = µ·

(
∂w
∂y

+ ∂v
∂z

)
,

where µ is the coefficient of dynamic viscosity and p is the pressure term. We carry

out integration of equation (3.1) using Leibnitz rule and later depth average. Since

the shallow water equations are derived by applying a vertical averaging approach

to the 3D Navier-Stokes equations shwon in system (3.1) under assumption of

small vertical scale to horizontal scale, it is necessary to include the precipitation

and infiltration terms in the resulting equation [44], as it ensures an appropriate

accounting for the additional source terms to complete the model. Thus we start
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CHAPTER 3. MODEL FORMULATION, ANALYSIS AND DISCUSSION

with the continuity equation,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.2)

from equation (3.1) and integrate the individual terms over the vertical scale while

taking the limits from the bottom of Budalang’i flood plain basin (bottom bound-

ary) (z = −h) to the surface water displacement of the basin (free surface elevation)

(η). For the first term, we have,

∫ η

−h

∂u

∂x
dz =

∂

∂x

∫ η

−h
udz + u |z=−h

∂(−h)

∂x
− u |z=η

∂η

∂x
. (3.3)

For the second term,

∫ η

−h

∂v

∂y
dz =

∂

∂y

∫ η

−h
vdz + v |z=−h

∂(−h)

∂y
− v |z=η

∂η

∂y
. (3.4)

For the third term ∫ η

−h

∂w

∂z
dz = w |z=η −w |z=−h . (3.5)

Combining equations (3.3)− (3.5) yields

∂

∂x

∫ η

−h
udz + u |z=−h

∂(−h)

∂x
− u |z=η

∂η

∂x
+

∂

∂y

∫ η

−h
vdz + v |z=−h

∂(−h)

∂y
− v |z=η

∂η

∂y
+ w |z=η −w |z=−h= 0

(3.6)
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which can be rearranged as shown in the equation (3.7)

∂

∂x

∫ η

−h
udz +

∂

∂y

∫ η

−h
vdz+

u |z=−h
∂(−h)

∂x
+ v |z=−h

∂(−h)

∂y
− w |z=−h −

u |z=η
∂η

∂x
− v |z=η

∂η

∂y
+ w|z=η = 0.

(3.7)

During flooding, the free surface becomes complex for the Budalang’i flood plain

as observed by [1] and so the boundary becomes a moving boundary. This implies

there is no relative normal flow and so by the condition of free surface, we have

the change in free surface over time. Therefore velocity at free surface and bottom

surface may be expressed as

w̄|z=η =
Dη

Dt
|z=η =

∂η

∂t
+ ū|z=η

∂η

∂x
+ v̄|z=η

∂η

∂y
. (3.8)

Now, in Budalang’i flood plain, the bottom is a material surface of the fluid

and therefore not crossed by the flow and is stationary or impermeable, there-

fore this gives rise to another condition. We have w̄|z=−h = D(−h)
Dt
|z=−h = ∂(−h)

∂t
+

ū|z=−h ∂(−h)
∂x

+ v̄|z = −h∂(−h)
∂y

. Rewriting the above and considering that ∂(x,y)
∂t

= 0,

we have

u |z=−h
∂(−h)

∂x
+ v |z=−h

∂(−h)

∂y
− w |z=−h= 0, (3.9)

from the second part of equation (3.7). Combining the first part of (3.7) and the

left hand side (change in water surface elevation term) in equation (3.8), we end up

with equation (3.10). First, we have
[
ū∂η
∂x

+ v̄ ∂η
∂y
− w̄

]
= ∂η

∂t
which is equation 3.8

and
[
ū∂(−h)

∂t
+ v̄ ∂(−h)

∂y
− w̄

]
z=−h

= 0. Substituting these expressions into continuity
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equation, we have,

∂η

∂t
+

∂

∂x

∫ η

−h
ūdz +

∂

∂y

∫ η

−h
v̄dz = 0. (3.10)

Another geographical characteristic of Budalang’i flood plain is that the horizontal

scale, 10,000 km is much larger than the vertical scale approximately 1.5 m during

floods [26]. This implies that in the flood plain, the vertical momentum exchange

is negligible as compared to the horizontal momentum exchange and so the vertical

velocity component is much smaller than the horizontal velocity component. Thus

the acceleration of movement of the flood waters in the vertical direction is negli-

gible except acceleration due to gravity. Therefore, the pressure distribution over

the vertical direction is hydrostatic and can be expressed as shown in the following

equation, which is referred to as the hydrostatic pressure balance equation.

∂p

∂z
= −ρg. (3.11)

Finally, we carry out depth averaging of equation (3.10) and employ the assump-

tion of hydrostatic pressure as given by (3.11). In order to depth average, we

consider the free surface of the water in the flood plain which is simply at z = η

and the bottom which is the water sediment interface at z = −h and define two

variables ū and v̄. Let ū and v̄ be the vertically averaged velocity vectors in

the vertical of the horizontal components. Let also H be the total depth of the

water, such that H = h + η. Then the averages on the vertical of the horizontal

flood domain of the velocity vector can be expressed as equations (3.12) and (3.13)
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below,

ū =
1

H

∫ η

−h
udz (3.12)

v̄ =
1

H

∫ η

−h
vdz. (3.13)

These variables affirms the assumption that water flow in the vertical direction

in the flood plain is small. Substituting the two variables, (3.12) and (3.13), in

equation (3.10) yields depth averaged continuity equation (3.14)

∂η

∂t
+
∂(Hū)

∂x
+
∂(Hv̄)

∂y
= 0 (3.14)

which is the depth averaged form of the continuity equation.

We now formulate the depth averaged momentum equation for the shallow water

system. First, we show that due to hydrostatic approach and constant density

of the flood waters in the flood plain, pressure depends on η and the vertical

coordinate while the horizontal pressure gradient depends on the free surface only.

We only consider the right hand side term ∂p
∂z

of the third momentum equation of

system (3.1), which is simply the momentum equation in the z direction. This is

partly because all the terms in the z direction of system (3.1) are small compared

to the gravity and pressure terms and thus the equation reduces to equation (3.11).

Integrating equation (3.11) from free surface at z = η to some level z on the right

hand side, we have, ∫ p(x,y,z)

ps(x,y)

dp = −
∫ z

η

ρgdz,

where ps is the pressure at the free surface, which simplifies to

p− ps = −ρg(z − η).
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One of the assumptions made during flooding in the flood plain is that density is

constant and so the pressure depends on the free surface and vertical coordinate.

We thus have,

p− ps = ρgη − ρgz ⇒ p = ps + ρgη − ρgz.

After dividing the above expression through by −ρ and obtaining the partial

derivatives with respect to x we have the x-direction Reynolds equation below

−1

ρ

∂p

∂x
=
−1

ρ

∂ps
∂x
− g ∂η

∂x
+ g

∂z

∂x
, (3.15)

where ps is the pressure at the free surface. Therefore assuming that the surface

pressure does not vary spartially, we have

−1

ρ

∂p

∂x
= −g ∂η

∂x
,

in which so is the bottom slope given by ∂z
∂x

. Also, the horizontal pressure gradient

in the flood plain depends on the free surface only

−1

ρ

∂p

∂x
= −g ∂η

∂x
and

−1

ρ

∂p

∂y
= −g∂η

∂y
.

Assuming that the surface pressure does not vary then we have garvitation term

as −g ∂η
∂y

Adding the derived pressure gradients and dividing momentum equations

in system (3.1) by ρ, the two momentum equations in the x and y directions can
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thus be rewritten as follows,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

1

ρ
Fx − g

∂η

∂x
+

1

ρ

∂τxx
∂x

+
1

ρ

∂τxy
∂y

+
1

ρ

∂τzx
∂z

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=

1

ρ
Fy − g

∂η

∂y
+

1

ρ

∂τxy
∂x

+
1

ρ

∂τyy
∂y

+
1

ρ

∂τzy
∂z

.

(3.16)

Consider the left hand side of the x -momentum equation (3.16). In order to

change the terms in the left hand side of the momentum equations (3.16) from

non-conservative to conservative form, we add ū times the continuity equation to

equation (3.16) and obtain the following terms

∂ū

∂t
+ū

∂ū

∂x
+v̄

∂ū

∂y
+w̄

∂ū

∂z
+ū

∂ū

∂x
+ū

∂v̄

∂y
+ū

∂w̄

∂z
=

1

ρ
Fx−g

∂η

∂x
+

1

ρ

∂τxx
∂x

+
1

ρ

∂τxy
∂y

+
1

ρ

∂τzx
∂z

which on simplification yields equation (3.17) below.

∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= 0. (3.17)

Next, vertically averaging these equations and integrating each term with respect

to z and apply the Leibnitz Rule

∫ η

−h

∂u

∂t
dz =

∂

∂t

∫ η

−h
udz + u|z=−h

∂(−h)

∂t
− u|z=η

∂η

∂t∫ η

−h

∂u2

∂x
dz =

∂

∂x

∫ η

−h
u2dz + u2|z=−h

∂(−h)

∂x
− u2|z=η

∂η

∂x∫ η

−h

∂(uv)

∂y
dz =

∂

∂y

∫ η

−h
uvdz + uv|z=−h

∂(−h)

∂y
− uv|z=η

∂η

∂y∫ η

−h

∂(uw)

∂z
dz = uw|z=η − uw|z=−h

(3.18)
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Combining the four equations on the left hand side of equation 3.18, and the right

hand side we have the equations in system (3.19)

∫ η

−h

[
∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

]
=

∂

∂t

∫ η

−h
udz +

∂

∂x

∫ η

−h
u2dz +

∂

∂y

∫ η

−h
uvdz

−u|z=η
[
∂η

∂t
+ u|z=η

∂η

∂x
+ v|z=η

∂η

∂y
− w|z=η

]
+

u|z=−h
[
∂(−h)

∂t
+ u|z=−h

∂(−h)

∂x
+ v|z=−h

∂(−h)

∂y
− w|z=−h

]
.

(3.19)

By using conditions in equations (3.8),(3.9),(3.12), and (3.13) we have, from

system (3.19),

−∂η
∂t

= u|z=η
∂η

∂x
+ v|z=η

∂η

∂y
− w|z=η,

∂(−h)

∂t
= 0, (3.20)

since there is no change in bottom surface, and finally

u|z=−h
∂(−h)

∂t
+ u|z=−h

∂(−h)

∂x
+ v|z=−h

∂(−h)

∂y
− w|z=−h = 0,

indicating the solid bottom such that the bottom is a material surface of the fluid

not crossed by the flow and is stationary, implying that there is no normal flow

thus zero result. Therefore the x momentum equation is simplified to,

∂

∂t

∫ η

−h
udz +

∂

∂x

∫ η

−h
u2dz +

∂

∂y

∫ η

−h
uvdz =

∂Hū

∂t
+
∂(Hū2)

∂x
+
∂(Hūv)

∂y
. (3.21)

Budalang’i flood plain lies near the equatorial line and therefore the consideration

of the possible significance of the coriolis term is important. The coriolis parameter

represents the force exerted to a body in rotating frame and is more significant
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near the equatorial regions [13]. We thus introduce the coriolis term fv whereby

f = 2ρν sin θ is the coriolis parameter, ω is the angular velocity of the earth, θ is

the latitude. Taking note of this, we now integrate each term of the right hand side

of the x-momentum equation of system (3.16) with respect to z after rearranging

and also rewrite the vector of volume forces as

−→
F =


2ρων sin θ

−2ρωυ sin θ

−ρg


for volume forces Fx = 2ρων sin θ, Fy = −2ρωυ sin θ, andFz = −ρg, if only the

Coriolis and gravitational forces are accounted for as follows in system (3.22).

−
∫ η

−h
g
∂η

∂x
dz = −g

[
∂

∂x

∫ η

−h
ηdz − η|z=η

∂η

∂x
+ η|z=−h

∂(−h)

∂x

]
,∫ η

−h

[
1

ρ

∂τxx
∂x

+
1

ρ

∂τxy
∂y

+
1

ρ

∂τzx
∂z

]
dz

=
1

ρ

∂

∂x

∫ η

−h
τxxdz +

1

ρ

∂

∂y

∫ η

−h
τyxdz −

1

ρ

[
τxx

∂η

∂x
+ τyx

∂η

∂y
− τzx

]
z=η

+

1

ρ

[
τxx

∂(−h)

∂x
+ τyx

∂(−h)

∂y
− τzx

]
z=−h

,∫ η

−h

1

ρ
Fxdz =

1

ρ

∫ η

−h
(2ρων sin θ)dz = fHv̄.

(3.22)

Since we have no slip conditions at the bottom surface in the flood plain, then

u = v = w = 0. Also, applying the boundary condition by performing stress

balance at the Budalang’i flood plain surface, the equations of the wind stress and

bottom stress are expressed as,

−
[
τxx

∂η

∂x
+ τyx

∂η

∂y
− τzx

]
z=η

= −τ sx , (3.23)
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where τsx
ρ

is applied surface stress. Similarly, the equation of bottom stress are

expressed as,

−
[
τxx

∂(−h)

∂x
+ τyx

∂(−h)

∂y
− τzx

]
z=−h

= τ bx. (3.24)

Finally, the x-momentum equation from equations (3.16) can be expressed as fol-

lows,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

−g ∂
∂x

∫ η

−h
ηdz + gη|z=η

∂η

∂x
− gη|z=−h

∂(−h)

∂x
+

1

ρ
H
∂τ̄xx
∂x

+
1

ρ
H
∂τ̄yx
∂y
− τ bx

ρ
+
τ sx
ρ

+ fHv̄.

(3.25)

Expanding gravity related terms we have

−g ∂
∂x

∫ η

−h
ηdz = −gη

∫ η

−h
dz = −g∂(ηH)

∂x
,

and applying chain rule for the first three terms of the right hand side of equation

(3.24) as follows,

−g∂(ηH)

∂x
+ gη

∂η

∂x
− gη∂(−h)

∂x
=

−ηg∂(H)

∂x
− gH ∂(η)

∂x
+ gη

∂η

∂x
− gη∂(−h)

∂x
=

g

[
η
∂(H)

∂x
−H∂(η)

∂x
+ η

∂η

∂x
+ η

∂(h)

∂x

]
= −gH ∂η

∂x
,
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the right hand side of the x momentum equation of system (3.16) becomes

−gH ∂η

∂x
+

1

ρ
H
∂τ̄xx
∂x

+
1

ρ
H
∂τ̄yx
∂y
− τ bx

ρ
+
τ sx
ρ

+ fHv̄. (3.26)

Performing a similar operation for the y-direction and including the sink term

s1 which is gain or loss through inflow, outflow, evaporation and infiltration to

the equations, the overall form of the depth averaged equation can be written as

follows,
∂η

∂t
+
∂(Hū)

∂x
+
∂(Hv̄)

∂y
= s1 (3.27)

∂Hū

∂t
+
∂(Hū2)

∂x
+
∂Hūv̄

∂y
−fHv̄ = −gH ∂η

∂x
+H

1

ρ

∂ ¯τxx
∂x

+
1

ρ

∂ ¯τxy
∂y
− 1

ρ
τ bx+

1

ρ
τ sx (3.28)

∂Hv̄

∂t
+
∂(Hūv)

∂x
+
∂Hv̄2

∂y
+fHū = −gH ∂η

∂y
+H

1

ρ

∂ ¯τyy
∂y

+
1

ρ

∂ ¯τxy
∂y
− 1

ρ
τ by +

1

ρ
τ sy (3.29)

For simplicity purposes, we divide through by H and ignore the surface shear

stress, bottom shear stress and the stress tensor components in the momentum

equations since they are negligible in the study domain as they can be applicable

over domains that are over 100,000 km2 while our study is only 3,351 km2 [19].

For the continuity equation, we let H = η + h. Also, considering the mean flow

velocities and putting u, v instead of ū, v̄ the resulting system of shallow water

equations can therefore be written as

∂η

∂t
+
∂u(η + h)

∂x
+
∂v(η + h)

∂y
= s1 (3.30)

∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
− fv = −g ∂η

∂x
(3.31)

∂v

∂t
+
∂(uv)

∂x
+
∂v2

∂y
+ fu = − g∂η

∂y
(3.32)
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3.2 Analysis of Shallow water equations for Bu-

dalang’i Flood Plain

Rewriting the two momentum equations (3.30) to (3.32) in primitive form for

simplicity purpose, we have,

∂η

∂t
+

∂

∂x
[(η + h)u] +

∂

∂y
[(η + h)v] = s1 (3.33)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
= 0 (3.34)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂η

∂y
= 0. (3.35)

From these shallow water equations, analysis entailed establishing the nature of

flow and the stability condition based on the Froude number. Budalang’i flood

plain is known to have rapid flows leading to destruction of properties around the

adjacent domain of floods. Classifying the flow attenuation or amplification was

of paramount importance. The equations are therefore transformed for analysis.

From the above equations, two matrices can be formed. We apply the Jacobian

Transformation as follows,

Let (3.33) be f1, (3.33) be f2 and (3.34) be f3.

We obtain the partial derivative of free surface elevation (η), vertically averaged

velocity u and horizontally averaged velocity v for each of the three functions with

respect to x and y starting with the x term as follows,

f ′(x) =

∣∣∣∣∣∣∣∣∣
∂ ∂f1η

∂x
∂f1u
∂x

∂f1v
∂x

∂ ∂f2η
∂x

∂f2u
∂x

∂f2v
∂x

∂ ∂f3η
∂x

∂f3u
∂x

∂f3v
∂x

∣∣∣∣∣∣∣∣∣ =


u η + h 0

g u 0

0 0 u

 .
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We repeat the same process for the y term and end up with two matrices, that is,

matrix A and B corresponding to the vectors of conserved variables in the x and

y directions respectively as follows,

A = f ′(x) =


u η + h 0

g u 0

0 0 u

 and B = g′(x) =


v 0 η + h

0 v 0

g 0 v

 . (3.36)

and let I be the identity matrix

I =


1 0 0

0 1 0

0 0 1

 (3.37)

According to [40], computation of stability for flow parameters may entail assessing

the Froude number. The approach used was computing the eigenvalues that aided

in the calculation of the Froude number. Studies by [40] also indicates that the

nature of wave propagation depends on the Froude number. Now, starting with the

x-direction, we find the eigenvalues of matrix A using the characteristic equation

| A− λI |= 0, that is, ∣∣∣∣∣∣∣∣∣
u− λ η + h 0

g u− λ 0

0 0 u− λ

∣∣∣∣∣∣∣∣∣ = 0, (3.38)

and obtain the following characteristic equation

(u− λ) [(u− λ)(u− λ)]− (η + h) [g(u− λ)] = 0, (3.39)
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whose solution is

λ∗1 = u

λ∗2 = u+
√
g(η + h)

λ∗3 = u−
√
g(η + h).

Repeating the same analysis for the y direction, we obtain the following eigenvalues

λ1 = v

λ2 = v +
√
g(η + h)

λ3 = v −
√
g(η + h).

Since these eigenvalues are real and distinct, the shallow water equations are hy-

perbolic partial differential equations [36]. Therefore the equations admit discon-

tinuous weak solutions [36], which could be a ’sink’ and gives an approximate of a

breaking wave in the flood plain. However, such a wave may be extremely small

and negligible. The eigenvalues take the form of a convective velocity minus/plus

a phase velocity. Dividing convective by phase yields a Froude number, for each x-

and y-direction [6], which is practical for the flood plain. The Froude number may

be thought of as a relation of inertia to gravitational forces: the top term being

related to kinetic energy, the bottom to potential energy. Flows with Froude num-

bers less than one are said to be subcritical, and flows with Froude number greater

than one are said to be supercritical. During floods, the convective velocity implies

the surface waves which is usually more faster than the phase velocity which is

slower since initially the flood plain was dry and consequent rains and inflow leads

to increase in water depth before rapid generation of surface waves. Dividing the

convective velocity by phase velocity yields a Froude number for each of the two
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directions which are

u2

gH
= Fr2

x (3.40)

v2

gH
= Fr2

y (3.41)

indicating a relation of inertia to gravitational forces. As result of more rapid

surface waves during consistent rains, the resulting phenomena leads to super-

critical flows. The initial subcritical flows fades with time and eventually we have

rapid supercritical flows in this case. More specifically, in Budalangi plain, the

average discharge has been measured to have an average of 30 m3 s−1 [26] which

corresponds to the potential discharge of the water flow in the basin. However,

with continued rains, the surface discharge has been estimated to be 3 times more

than the potential discharge [27]. Thus we have

90 m3 s−1

30 m3 s−1 = 3 (3.42)

implying that Fr2
x > 1, which is a large Froude number implying that there are

rapid supercritical flows leading to adverse effects of unstable flood waves. How-

ever, the horizontal velocities do not vary with depth and thus the non linear terms

are eliminated. This is accomplished through linearization of the two momentum

equations for a more appropriate solution. It is also impossible to obtain complete

analytic solutions from such analysis, therefore according to [22], thus the best

numerical simulation can be obtained by linearizing the two momentum equations

while the continuity equation solved in non linear form. To carry out linearization,

we let u = ζ+ ú, v = ξ+ v́ and η = %+ ή in which the capital letters indicates the

averages and the primes indicate the perturbations. We substitute these variables
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in equation (3.43) to (3.46) as follows,

∂%+ ή

∂t
+

∂

∂x
[(%+ ή + h)(ζ + ú)] +

∂

∂y
[(η + h)(ξ + v́)] = s1 (3.43)

∂(ζ + ú)

∂t
+ u

∂(ζ + ú)

∂x
+ v

∂(ζ + ú)

∂y
− f(ξ + v́) + g

∂(%+ ή)

∂x
= 0 (3.44)

∂(ξ + v́)

∂t
+ (ζ + ú)

∂(ξ + v́)

∂x
+ v

∂(ξ + v́)

∂y
+ fu+ g

∂(%+ ή)

∂y
= 0. (3.45)

Furthermore we let V = U = 0 and drop the prime terms for assumption of lin-

earization. Finally, we end up with linearized shallow water equation appropriate

for numerical simulation as follows.

∂η

∂t
+
∂u(η + h)

∂x
+
∂v(η + h)

∂y
= s1 (3.46)

∂u

∂t
− fv = −g ∂η

∂x
(3.47)

∂v

∂t
+ fu = − g∂η

∂y
. (3.48)

Equations (3.46) to (3.48) were therefore approximated numerically using finite

difference under numerical simulation.
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3.3 Simulations of 2D Shallow water model for

Budalang’i flood plain

System (3.30) to (3.32) is solved numerically using finite difference scheme.There

are many techniques for numerical approximations, however, Finite differences are

by far the easiest numerical method to understand and implement when tackling

differential equations, particularly 2D Shallow water equations, for problems that

satisfy its structured discretization assumptions, and can be found to be useful in

any domain when estimation of derivatives is needed[5]. Unlike other numerical

methods, it is more flexible when approximating dynamic fluid such as flood flows.

For stability, Courant Friedrichs Lewy Condition CFL was used. According to

[13], the Courant number for 2D shallow water equations can be defined from

CFL as follows,

C = ∆t
(√

gH + Vmax

)( 1

∆x2
+

1

∆y2

) 1
2

,

where C refers to the Courant number. Therefore using the stability condition

CFL < 1 from the Courant number defined above, an optimal stability criteria

according to [29] is obtained as follows for optimal time step,

∆t ≤ ∆x∆y

(
√
gHmax)

√
(∆x2 + ∆y2)

. (3.49)

Where ∆t is the time increment, ∆x and ∆y are the grid spacing in the x and y

directions respectively and g is the acceleration due to the gravity.
√
gH is the

magnitude of velocity. Acceleration due to gravity is measured at 9.81 m s−2. The

velocity components of the boundary were set to zero. In addition, f , which is the

Coriolis force, is approximated to 0.00005 along the equatorial regions, [4]. The
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shallow water equations were discretized using explicit centered finite difference

in space starting with the continuity equation following [5]. Therefore the deriva-

tives of partial differential equations were approximated by linear combination of

function values at grid points in the domain Ω = (0, X) at ui ' u(xi) where

i = 1, 2, 3, ...., N . xi = i4 x with meshsize as 4x = X
N

. The first order derivative

is given as,

∂u

∂x
(x̄) = limx→0

u(x̄+ ∆x)− u(x̄)

∆x
= limx→0

u(x̄)− u(x̄−∆x)

∆x

= limx→0
u(x̄+ ∆x)− u(x̄−∆x)

2∆x

from which we use the Taylor series expansion,

Σ∞n=0

(x− xi)n

n!

(
∂nu

∂xn

)
i

, u ⊂ Ω

then we have the first approximation of forward difference as

T1 = ui+1 = ui + ∆x(
∂u

∂x
)i +

(∆x)2

2

(
∂2u

∂x2

)
i

+
(∆x)3

6

(
∂3u

∂x3

)
i

+ ...

T2 = ui−1 = ui −∆x(
∂u

∂x
)i +

(∆x)2

2

(
∂2u

∂x2

)
i

− (∆x)3

6

(
∂3u

∂x3

)
i

+ ...

Subtracting T1 − T2 and ignoring the higher order terms which form the error, we

get the first order centered finite difference approximation of vertical velocity with

respect to x partial derivative as follows,

(
∂u

∂x

)
i

=
ui+1 − ui−1

2∆x
.
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For the shallow water equations, a partial derivative at point xi, that is
∂uj
∂x

can

thus be expressed as,
∂uj
∂x
' ui+1 − ui−1

2∆x

The initial conditions are a disturbance from water inflow causing a gaussian bump

indicated by flow of water into the basin as shown in Figure 3.1 front right corner,

with velocity greater than 0.

x [m]

−10000
−5000

0
5000

10000

y
[m

]

−10000

−5000

0

5000

10000

S
u
rf

a
ce

el
ev

a
ti

o
n

[m
]

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Surface elevation η

Figure 3.1: Initial wave

Figure 3.1 shows the gravity wave in flow direction from the disturbance of the

water in the basin. The Figure shows the horizontal velocity evolving and finally,

there is decay of the wave away from the initial inception causing dispersion in

different directions. The evolution depends on time and this is further illustrated

in the same Figure 3.1. Initially, the water was assumed to be at rest and while the

boundaries were set to wall boundaries. Suddenly after a short time, water started

to move in all directions. As time increases the circular shock waves propagated

outwards, whereas the circular rarefaction wave traveled inwards showing that this
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wave almost reaches the center of the domain. This phenomenon continued until

the rarefaction wave has fully plunged into the center of the domain and this wave

was suddenly reflected creating a sharp gradient of water surface elevation.
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As the heavy down pour continues, there is increased generation of waves due to

water increase. Wave propagation becomes unstable and therefore the frequency

increases. Increased frequency and amplitude is also contributed by increased

bottom friction due to dispersion of the waves across the banks, as well as sedi-

mentation that perviously occurred.
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Figure 3.2: Turbulence

There is also an indication of turbulence of the waves showing that at the peak of

the inflow, there is likelihood of breaking of waves with shocks and increased turbu-

lence. This happens with evolution of time during the heavy rains, implying that

the flood phenomena in Budalang’i area is mainly dependent on the high frequency

waves that results to turbulence. These results could be similar to experimental

results obtained by other studies [40].
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The presence of dykes shows initial resistance to water increase. However, due

to earlier perceived sedimentation, flood waters overflows the dykes which causes

overbank burst and therefore renders the dykes of little use [26].
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Figure 3.3: Overbank Flow

This scenario indicates that the presence of dykes is of importance though not

permanent. The two blocks shown in Figure 3.3 indicates that water overflows the

dykes leading to eventual coverage. Waves therefore keep dispersing away from the

initial point resulting to floods in the surrounding area. This is a typical scenario

in Budalang’i flood plain where dykes have been previously erected with some little

help [28]. As a result of long rains, dykes are submerged by the increasing amount

of water leading to overbank flow.
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As a result of increased turbulence with greater energy of the shallow water

waves, dykes were submerged leading to overbank flow. Therefore a sink was

introduced. Sink in this case indicates the amount of water that either infiltrates

underground or bore holes within the basin of the study. Similarly, the quantity

eliminated that compares to the amount of sedimentation represented the sinks.
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Figure 3.4: Final Water Level due to

Sink

Figure 3.4 indicates that after introduction of the sink term, there is reduced level

of water the basin of the study. The reduced gravity waves loses most of the energy

due to removed sedimentation leading to reduction of the water level. With time

evolution, there is further indication of convergence to steady state of the waves.

However, as shown, there is reduced amount of water. This shows that a sink is

very important to the control of the floods and with accurate approximation, it

could reduce the flooding effect in the area of the study.
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As a result of the introduced sink term, the water level reduces and therefore

the wave velocity declines back to almost zero velocity. This is shown in Figure

3.5 that follows. The flow direction remains as shown by the arrows.
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Figure 3.5: Steady State Velocity

Given more time the circular shock wave propagated further outwards from the

domain center as shown in Figure 3.5. The primary circular waves are seen to

propagate outwards although with high decay of damping factor and interestingly,

the secondary circular shock wave that had recently been created traveled towards

that center. As time increases, it is shown that the primary circular wave almost

reached the domain boundary and at this time a very small gradient of water sur-

face elevation had been created near that boundary. On the other hand, reflection

of the secondary waves increases leading to a steady state situation of velocity.

There is reduced primary as well as secondary waves due to reduced energy.

42



CHAPTER 3. MODEL FORMULATION, ANALYSIS AND DISCUSSION

The second system of shallow water equations to be solved entailed the lin-

earized shallow water equations. This was carried out in order to compare the

two types of solutions. After linearization, the resulting equations are described

in objective two. This equations takes into consideration the effect of coriolis term

as well as the rotation of the earth.

The height field is set with an initial condition of disturbance caused by water

inflow into the basin resulting to generation of waves. As the equations evolve, the

velocities, u and v are induced and gravity waves starts radiating outwards from

the initial disturbance. Figure 3.6 shows gravity waves radiating away from the

initial disturbance.

−0.4 −0.2 0.0 0.2 0.4

−0.4

−0.2

0.0

0.2

0.4

u

−0.4 −0.2 0.0 0.2 0.4

−0.4

−0.2

0.0

0.2

0.4

v

−0.4 −0.2 0.0 0.2 0.4

−0.4

−0.2

0.0

0.2

0.4

h

−0.4 −0.2 0.0 0.2 0.4

−0.04

−0.02

0.00

0.02

0.04

h along x=0

Figure 3.6: Coriolis term

Figure 3.6 indicates some initial disturbance, usually caused by the incoming water
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waves by the basin tributaries. The generated gravity waves starts propagating

away from the initial point. The inclusion of coriolis term usually important for

assessing the effect of geostrophic implication, makes a significant effect on the

turbulence. The results indicates that reflection of the waves is minimal. This is

shown in Figure 3.7, whereby there is no reflection and the gravity wave is com-

pletely unstable. Flood waves therefore goes over bank and finally, there is little

to contain the waves back into the basin, which causes havoc to the surrounding

area.
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The second snapshot of the shalllow water simulations indicates the results

obtained after lengthy time evolution. A keen observation was made as captured in

Figure 3.7. The wave disturbances shows results almost similar to common waves

that could be classified as Coastal Kelvin as well as Rossby Waves that occurs in

lakes or oceans[36]. The solution shows that the generated waves dissipates away

from the disturbance with more energy. Since the boundary is assumed to be

zero, such that y = 0 due to presence of dykes, the generated waves further decay

exponentially away from the source.
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Figure 3.7: Wave Decay

As indicated in the previous Figure 3.6, this Figure 3.7 shows that as time evolves,

the wave is tending to decay with different behaviours. To their opposite directions,

the wave keeps decaying with indication of reflective behavour. However, as the

number of days increases, it is clear that there is weak reflection. The motivating

factor for the increase in the reflection is the addition of the sink term to the

behavior of the model. This is what could have led to decrease in energy or

increased reflections and therefore reduce the damage caused to the environment.

This is the reason for the current study. Some of the proposed ways of introducing
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sink is through consistent maintenance of the flood plain by continued emptying of

the sediments such as sand or soil. These are activities that can employ economical

ways, such as using the sand or the soil for other purposes. Alternatively, a dam

may have a proper solution to this problem.
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Chapter 4

Summary, Conclusions and

Recommendations

4.1 Summary

The study sought to formulate a 2D flood wave model for Budalang’i flood plain,

analyse the model and simulate the results with application to the Budalang’i flood

plain domain. The development revealed that averaging of the 3D Navier Stokes

equation yield an appropriate model for Budalang’i flood plain without many as-

sumptions. From the analysis, it was found that the most likely waves occurring

in the area were gravity waves. In addition, since the kinetic velocity (surface

velocity) was greater than the potential velocity (phase speed) leading to a large

Froude number, the flow was classified to be supercritical. This flow was therefore

mainly due to gravitational force with strong influence of friction and Coriolis force

as a result of closeness to the equatorial region. The findings further shows that

there was formation of weakly reflecting waves. It can thus be concluded from

the findings that adoption of measures such as digging of boreholes to improve

the reflection back to the center of the waves would improve the reduction of the
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energy within the flood plain.

4.2 Conclusions

The findings indicated that 3D Navier Stockes equation under assumption of aver-

aging velocity fields and nearness to the equatorial region for the Budalang’i flood

plain easily resulted to an appropriate 2D Shallow water model for Budalang’i

flood plain. Addition of the sink term was appropriate for capturing the water

variations due to infiltration, evaporation or boreholes through direct inclusion.

In the analysis, it was concluded that Budalng’i flood plain experiences supercrit-

ical flows resulting from heavy rainfall during flooding. These are flows that lead

to higher velocity of the propagating waves thus causing havoc in the surrounding

regions. Finally, after successful simulations, the study concludes that the super-

critical flows are responsible for turbulent flows and overbank flows but are easily

controlled by addition of sink term such as a borehole.

4.3 Recommendations

From the findings, the study recommends a comprehensive formulation of a sink

term to clearly capture flood attenuation in the 2D shallow water equations. In

addition, further improvement should be made on the analysis of the 2D shallow

water equations in order to enable explore a variety of physical areas including

violent flows, rotating flows and other types of flows that could practically occur

in any domain of flow. The study further recommends for improvement of the
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current model to enable simulation of the complex topographies in other flood

plain areas, which can increase reflection within the flood plains and reduce the

energy due to the waves as well as the havoc caused in the surrounding region.
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Appendix A

Shallow Water Code

import time

import numpy as np

import matplotlib.pyplot as plt

import viz-tools

prameters−−−−−−−−−−−−−−−

Lx = 1E + 4 Length of domain x-direction in meters

Ly = 1E + 4 Length of domain y-direction in meters

g = 9.81 Acceleration of gravity [m/s2]

H = 1.5 Maximum depth of fluid [m]

f0 = 1E − 5 Fixed part of coriolis parameter [1/s]

β = 2E − 11 gradient of coriolis parameter [1/ms]

use− coriolis = True True if you want coriolis force

use− friction = False True if you want bottom friction

use− wind = False True if you want wind stress

use− source = False True if you want mass source into the domain

use− sink = False True if you want mass sink out of the domain

param−string = ”\n ================================================================
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”

paramstring+ = ”\nuse − friction = {}\nuse − wind = {}”.format(use −

friction, use− wind)

paramstring+ = ”\nuse−source = {}\nuse−sink = {}”.format(use−source, use−

sink)

paramstring+ = ”\ng = {: g}\nH = {: g}”.format(g,H)

————— Computational prameters —————

Nx = 150 Number of grid points in x-direction

Ny = 150 Number of grid points in y-direction

dx = Lx/(Nx − 1) Grid spacing in x-direction

dy = Ly/(Ny − 1) Grid spacing in y-direction

dt = 0.1 ∗ min(dx, dy)/np.sqrt(g ∗ H) Time step (defined from the

CFL condition)

time− step = 1 For counting time loop steps

max− timestep = 5000 Total number of time steps in simulation

x = np.linspace(−Lx/2, Lx/2, Nx) Array with x-points

y = np.linspace(−Ly/2, Ly/2, Ny) Array with y-points

X, Y = np.meshgrid(x, y) Meshgrid for plotting

X = np.transpose(X) To get plots right

Y = np.transpose(Y ) To get plots right

param−string+ = ”\ngndx = : .2fkm\ndy = : .2fkm\ndt = : .2fs”.format(dx, dy, dt)

Define friction array if friction is enabled

if(use− frictionisTrue) :

kappa0 = 1/(5 ∗ 24 ∗ 3600)

kappa = np.ones((Nx, Ny)) ∗ kappa0

kappa[0, :] = kappa0
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kappa[−1, :] = kappa0

kappa[:, 0] = kappa0

kappa[:,−1] = kappa0

kappa[: int(Nx/15), :] = 0

kappa[int(14 ∗Nx/15) + 1 :, :] = 0

kappa[:, : int(Ny/15)] = 0

kappa[:, int(14 ∗Ny/15) + 1 :] = 0

kappa[int(Nx/15) : int(2 ∗Nx/15), int(Ny/15) : int(14 ∗Ny/15) + 1] = 0

kappa[int(Nx/15) : int(14 ∗Nx/15) + 1, int(Ny/15) : int(2 ∗Ny/15)] = 0

kappa[int(13∗Nx/15)+1 : int(14∗Nx/15)+1, int(Ny/15) : int(14∗Ny/15)+1] = 0

kappa[int(Nx/15) : int(14∗Nx/15)+1, int(13∗Ny/15)+1 : int(14∗Ny/15)+1] = 0

paramstring+ = ”\nkappa = : g\nkappa/beta = : gkm”.format(kappa0, kappa0/(beta∗

1000))

Define wind stress arrays if wind is enabled. if(usewindisTrue) :

taux = −tau0 ∗ np.cos(np.pi ∗ y/Ly) ∗ 0

tauy = np.zeros((1, len(x)))

paramstring+ = ”\ntau0 = : g\nrho0 = : gkm”.format(tau0, rho0)

Definecoriolisarrayifcoriolisisenabled.

if(usecoriolisisTrue) :

if(usebetaisTrue) :

f = f0 + beta ∗ y V aryingcoriolisparameter

LR = np.sqrt(g ∗H)/f0

cR = beta ∗ g ∗H/f0 ∗ ∗2

else :

f = f0 ∗ np.ones(len(y)) Constantcoriolisparameter

alpha = dt ∗ f Parameterneededforcoriolisscheme
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betac = alpha ∗ ∗2/4 Parameterneededforcoriolisscheme

paramstring+ = ”\nf0 = : g”.format(f0)

paramstring+ = ”\nMaxalpha = : g\n”.format(alpha.max())

paramstring+ = ”\nRossbyradius : : .1fkm”.format(LR/1000)

paramstring+ = ”\nRossbynumber : : g”.format(np.sqrt(g ∗H)/(f0 ∗ Lx))

paramstring+ = ”\nLongRossbywavespeed : : .3fm/s”.format(cR)

paramstring+ = ”\nLongRossbytransittime : : .2fdays”.format(Lx/(cR ∗ 24 ∗

3600))

paramstring+ = ”\n ================================================================

\n” Define source array if source is enabled.

if(usesource) :

sigma = np.zeros((Nx, Ny))

sigma = 0.0001 ∗ np.exp(−((X − Lx/2) ∗ ∗2/(2 ∗ (1E + 5) ∗ ∗2) + (Y − Ly/2) ∗

∗2/(2 ∗ (1E + 5) ∗ ∗2))) Define source array if source is enabled.

if(usesinkisTrue) :

w = np.ones((Nx, Ny)) ∗ sigma.sum()/(Nx ∗Ny) Write all parameters out to file.

withopen(”paramoutput.txt”, ”w”)asoutputf ile :

outputf ile.write(paramstring)

print(param− string)Alsoprintparameterstoscreen

==================== Allocatingarraysandinitialconditions ====================

un = np.zeros((Nx, Ny)) To hold u at current time step

unp1 = np.zeros((Nx, Ny)) To hold u at next time step

vn = np.zeros((Nx, Ny)) To hold v at current time step

vnp1 = np.zeros((Nx, Ny)) To hold v at enxt time step

etan = np.zeros((Nx, Ny)) To hold eta at current time step

etanp1 = np.zeros((Nx, Ny)) To hold eta at next time step
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Temporary variables (each time step) he = np.zeros((Nx, Ny))

hw = np.zeros((Nx, Ny))

hn = np.zeros((Nx, Ny))

hs = np.zeros((Nx, Ny))

uhwe = np.zeros((Nx, Ny))

vhns = np.zeros((Nx, Ny))

Initial conditions for u and v. un[:, :] = 0.0 Initial condition for u

vn[:, :] = 0.0 Initial condition for u

un[−1, :] = 0.0 Ensuring initial u satisfy BC

vn[:,−1] = 0.0 Ensuring initial v satisfy BC

Initial condition for eta.

etan[:, :] = np.sin(4 ∗ np.pi ∗X/Ly) + np.sin(4 ∗ np.pi ∗ Y/Ly)

etan = np.exp(−((X − 0) ∗ ∗2/(2 ∗ (LR) ∗ ∗2) + (Y − 0) ∗ ∗2/(2 ∗ (LR) ∗ ∗2)))

etan = np.exp(−((X − Lx/2.7) ∗ ∗2/(2 ∗ (0.05E + 6) ∗ ∗2) + (Y − Ly/4) ∗ ∗2/(2 ∗

(0.05E + 6) ∗ ∗2)))

etan[int(3 ∗Nx/8) : int(5 ∗Nx/8), int(3 ∗Ny/8) : int(5 ∗Ny/8)] = 1.0

etan[int(6 ∗Nx/8) : int(7 ∗Nx/8), int(6 ∗Ny/8) : int(7 ∗Ny/8)] = 1.0

etan[int(3 ∗Nx/8) : int(5 ∗Nx/8), int(13 ∗Ny/14) :] = 1.0

etan[:, :] = 0.0

viztools.surface−plot2D(X, Y, etan, (X.min(), X.max()), (Y.min(), Y.max()), (etan.min(), etan.max()))

Sampling variables.

etalist = list();ulist = list(); vlist = list() Lists to contain eta and u,v

for simulation

=============== Donewithsettinguparraysandinitialconditions ===============

t0 = time.perf − counter() For timing the computation loop
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========================= Maintimeloopforsimulation ==========================

==================================================================================

while(timestep < maxtimestep) :

−−−−−−−−−−−−Computingvaluesforuandvatnexttimestep−−−−−

−−−−−−−−−

unp1[: −1, :] = un[: −1, :]− g ∗ dt/dx ∗ (etan[1 :, :]− etan[: −1, :])

vnp1[:, : −1] = vn[:, : −1]− g ∗ dt/dy ∗ (etan[:, 1 :]− etan[:, : −1])

Addfrictionifenabled.

if(usefrictionisTrue) :

unp1[: −1, :]− = dt ∗ kappa[: −1, :] ∗ un[: −1, :]

vnp1[: −1, :]− = dt ∗ kappa[: −1, :] ∗ vn[: −1, :]

Add wind stress if enabled.

if(usewindisTrue) :

unp1[: −1, :]+ = dt ∗ taux[:]/(rho0 ∗H)

vnp1[: −1, :]+ = dt ∗ tauy[:]/(rho0 ∗H)

Use a corrector method to add coriolis if it’s enabled.

if(usecoriolisisTrue) :

unp1[:, :] = (unp1[:, :]− betac ∗ un[:, :] + alpha ∗ vn[:, :])/(1 + betac)

vnp1[:, :] = (vnp1[:, :]− betac ∗ vn[:, :]− alpha ∗ un[:, :])/(1 + betac)

vnp1[:,−1] = 0.0

upper boundary condition

unp1[−1, :] = 0.0

left boundary condition

−−−−−−−−−−−−−−−−−−−−−−−−−−Donewithuandv−−−−−

−−−−−−−−−−−−−−−−−−−−−−−− he[: −1, :] = np.where(unp1[:

−1, :] > 0, etan[: −1, :] +H, etan[1 :, :] +H)
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he[−1, :] = etan[−1, :] +H

hw[0, :] = etan[0, :] +H

hw[1 :, :] = np.where(unp1[: −1, :] > 0, etan[: −1, :] +H, etan[1 :, :] +H)

hn[:, : −1] = np.where(vnp1[:, : −1] > 0, etan[:, : −1] +H, etan[:, 1 :] +H)

hn[:,−1] = etan[:,−1] +H

hs[:, 0] = etan[:, 0] +H

hs[:, 1 :] = np.where(vnp1[:, : −1] > 0, etan[:, : −1] +H, etan[:, 1 :] +H)

uhwe[0, :] = unp1[0, :] ∗ he[0, :]

uhwe[1 :, :] = unp1[1 :, :] ∗ he[1 :, :]− unp1[: −1, :] ∗ hw[1 :, :]

vhns[:, 0] = vnp1[:, 0] ∗ hn[:, 0]

vhns[:, 1 :] = vnp1[:, 1 :] ∗ hn[:, 1 :]− vnp1[:, : −1] ∗ hs[:, 1 :]

————————- first computations done ————————-

− − − − − − − − − − − − − − − − −Computingηvaluesatnexttimestep − − −

−−−−−−−−−−−−−−−−

ηnp1[:, :] = ηn[:, :]− dt ∗ (uhwe[:, :]/dx+ vhns[:, :]/dy)

Add source term if enabled. if(usesourceisTrue) :

etanp1[:, :]+ = dt ∗ sigma

Add sink term if enabled. if(usesinkisTrue) :

etanp1[:, :]− = dt ∗ w

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Donewitheta−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

un = np.copy(unp1) Update u for next iteration vn = np.copy(vnp1) Update v for

next iteration

etan = np.copy(etanp1) Update eta for next iteration

timestep+ = 1

if(timestepsampleinterval == 0) :
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hmsample.append(etan[:, int(Ny/2)])

tssample.append(etan[int(Nx/2), int(Ny/2)])

tsample.append(timestep ∗ dt)

Store eta and (u, v) every anin-interval time step for simulations.

if(timestepprint(”Time : \t: .2fhours”.format(timestep ∗ dt/3600))

print(”Step : \t/”.format(timestep,maxtimestep))

print(”Mass : \t\n”.format(np.sum(etan)))

ulist.append(un)

vlist.append(vn)

etalist.append(etan) ============================= Maintimeloopdone ================================

print(”Maincomputationloopdone!\nExecutiontime : : .2fs”.format(time.perfcounter()−

t0)) print(”\nV isualizingresults...”) ================== V isualizingresults ==================

viztools.pmeshplot(X, Y, ηn, \Finalstateofsurfaceelevationη”)

viztools.quiverplot(X, Y, un, vn, ”Finalstateofvelocityfieldu(x, y)”)

viztools.hovmullerplot(x, tsample, hmsample)

viztools.plottimeseriesandf t(tsample, tssample)

etaanim = viztools.etaanimation(X, Y, ηlist, animinterval ∗ dt, ”η”)

etasurfanim = viztools.etaanimation3D(X, Y, ηlist, animinterval∗dt, ”ηsurface”)

quivanim = viztools.velocityanimation(X, Y, ulist, vlist, animinterval∗dt, ”velocity”)

print(”\V isualizationdone!”)

plt.show()
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