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Abstract

Time Series Analysis has been used over the decades in data analysis and forecast-

ing. Auto Regressive Integrated Moving Average (ARIMA) models have been fit on

economic data and engineering data. The models have also been used in analysis of

climate data. Previous studies have focussed on temperature data from National Mete-

orological Stations where summarized monthly values were used. In this study, we used

daily rainfall data from Kenya Meteorological Services Station in Kisumu. The objec-

tives included univariate time series modelling using ARIMA on long term rainfall data

for daily, monthly, seasonal and annual data and forecasting rainfall for the different time

periods. The other objective was to compare forecast from univariate ARIMA to Vector

Autoregression (VAR) when rainfall, minimum and maximum temperature values are

included in model. ARIMA models were fit on the KMS rainfall data, and VAR models

were fit on temperature, minimum and maximum rainfall data from KMS. Finally, farm-

ers’ local rainfall data was compared to that of KMS for independence. Results showed

that forecasts under VAR did not give a more precise forecast of future rainfall than

ARIMA. Further, that there was not enough statistically significant evidence to suggest

that rainfall data from KMS and farmers’ locale were independent.
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Chapter 1

Introduction

1.1 Introduction and Background

Statistics has a symbiotic relationship with many disciplines since its methods are ap-

plied to help solve everyday challenges by offering a range of probable solutions. For

instance, the Auto Regressive Integrated Moving Average (ARIMA) models have been

used in forecasting one-variable data over time. One area where they have been used is in

econometric analysis. Another time series model commonly used in econometrics is the

Vector Autoregression (VAR). VAR is a Multi-Variate Time Series (MTS) Model which

has additional variables alligned in equal time intervals with the variable of interest and

are used to predict endogenously.

In weather and climate forecasting, numerical methods are used for both short and

long term forecasts [54]. Weather forecasting is considered to be a “complex and challeng-

ing science”, which depends on the efficient quantities of weather observations[54]. The

data used include surface weather observation and upper air observation. The surface

weather observations usually include measurements of atmospheric pressure, temperature,

wind speed and direction, humidity and precipitation. The records are ideally measured

at standard times across the world, by National Meteorological Stations (NMS). For bet-

ter forecasts, a big network covering short distances is required. ARIMA models have

been used to analyse and forecast weather elements, in most cases the monthly average

temperature.

Dense climatic data is important in order to develop climate forecasting models. The
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direction and strength of wind affects how far the rain stretches in a given area. The NMS

and World Meteorological Organization (WMO) are able to obtain regional data hence

produce forecasts for the globe and regions. This they do by including upper air obser-

vation like the El Niño-Southern Oscillation (ENSO) data which varies the atmospheric

pressure hence predict the movement of wind across regions.

There are still gaps in the analysis of climatic data for various regions globally. The

Intergovernmental Panel for Climate Change (IPCC) stated that “Uncertainty in mod-

eling some modes of climate variability, and of the distribution of precipitation between

heavy and light events, remains large. In many regions, projections of changes in mean

precipitation also vary widely between models, even in the sign of the change. It is neces-

sary to improve understanding of the sources of uncertainty”and again “Climate models

remain limited by the spatial resolution and ensemble size that can be achieved with

present computer resources, by the need to include some additional processes, and by

large uncertainties in the modeling of certain feedbacks (e.g., from clouds and the carbon

cycle)”[29].

One challenge when analyzing climatic data in Africa is the scarcity of both daily

rainfall and temperature data. The presence of these gaps imply that the data is not

dense enough to give the true local picture. For instance, Hulme et al [6] did not use

local data in their study on African climate change. They used records of rainfall and

temperature at regional level hence it would be difficult to translate their work to local

users who may have a varying opinion. WMO has relied heavily on the data from NMS

stations which is sparsely distributed, hence the forecasts are for large regions. It is not

surprising that concerns are raised about how accurate the forecasting models used are

on local context[3].

In his essay, Katz [31] identified the need to include modeling extreme events, specif-

ically for the heat waves and the consideration of spatial dependencies. Rainfall is char-

acterized by extreme occurrences from time-to-time and from point to point, unlike tem-

perature. Rainfall is important since many small-scale farmers pay closer attention to

it as opposed to temperature. Thus a lot of rainfall data recorded daily is required to

further conduct such analyses.
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In Kenya, the Kenya Meteorological Services (KMS) has been mandated to collect

and store historical climatic data. The climatic data can be accessed from the main

KMS through a written request to the Customer Service Office. In 2012, KMS had thirty

surface climate observing stations countrywide (Figure 1.1), which was an average of one

station per 19, 377 Km2. These stations collect thirteen climatic data including rainfall,

air temperature, wind speed and direction, air pressure, soil temperature, solar radiation,

sunshine duration, relative humidity, evaporation and cloud cover.

3



Figure 1.1: Geographic distribution of surface observing stations in Kenya as at 2021

(Source: Tageo website [44])
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Thus, climatic data is sparsely distributed since one station serves an average of

19, 377 Km2. Because of this, micro-climatic differences are overlooked when forecasting

weather for a given region in the country. One of the gaps identified in the working

paper by Lindsey [40] and her team indicated the importance of having a better network

of observations of climatic data. They identified a possible opportunity is working with

the private sector. In addition, the General Circulation Models (GCM) used to estimate

climate projections work at low resolutions, some of 100 Km2, with better models repre-

senting 25-50 Km2. There is unique opportunity to utilize farmers’ daily collected rainfall

data.

In November 2013, Climate Change Agriculture and Foods Security (CCAFS) em-

powered 100 farmers in Nyakach and Soin-Sigowett and provided them with rain-gauges

to collect daily rainfall. This data is freely available to researchers. Furthermore, CCAFS

partnered with Trans African Hydro-Meteorological Observatory (TAHMO) and installed

two AWS in Nyakach and Soin that record hourly precipitation, minimum and maximum

temperature, wind speed, solar radiation and atmospheric pressure. Challenges including

inadequate technical capacity for operating and maintaining equipment resulted in gaps

within the available data. Nyando was a good site which we used for this study given

the availability of farmers recorded rainfall data, proximity to KMS Kisumu and Kericho

and the presence of additional data from nearby volunteer stations.

Increasingly, there is need to use locally available data so as to solve local problems.

The local problems may be hidden when one uses data from NMS alone which is sparse.

In addition, when working on local contexts, the researchers are limited hence can’t access

upper air observation. Partnerships like the CCAFS can help expand the network of data

that can be used for research and help inform members of the public. However, it is not

feasible yet to find local data on temperature. Thus, there is a limitation on using rainfall

data to understand and make informed decisions.

The rainfall data is time series data. Therefore, time series models such as ARIMA

can be fit to it and used for forecasting. Most analysis so far use monthly summaries,

however, short term forecasts including daily forecasts are important considerations when

dealing with single variable. The use of ARIMA and VAR models can be adequately
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explored and their effectiveness determined to enhance their utility for locally available

data. It is noteworthy that, little has been done to fit VAR models on rainfall data.

However, the VAR models, which use MTS data, can add value when applied to close

range meteorological data. The data from different stations can be used endogenously

hence help in the forecast for multiple points.

This study fits time series models for rainfall considering the spatial and temporal

dependencies. The VAR model is fit on local farmer collected rainfall data from Nyando,

Kenya, and used to forecast rainfall while considering the spatial dependencies between

farmers’ rainfall data. The models will be useful to predict local rainfall using spatially

distributed local rainfall data.

1.2 Statement of the Problem

The World Meteorological Organization (WMO) use regression analysis to forecast re-

gional climate. The local NMS thereafter downscale this using the analogous seasons,

where they select a season that best resembles the expected forecast, and use recorded

daily values to give the downscaled version. In addition, the forecasts provide information

qualitatively using the scales like ”above normal”, ”below normal” and ”near normal”.

To produce the regional forecasts, WMO uses both aerial and surface values available

at the NMS stations, hence there are concerns on how reliably the forecasts represent

the local context. Increasingly, local volunteers and scientists are collecting climatic data

yet they need to learn to interpret the quantitative rainfall values. In addition, there is

need to apply statistical methods to help develop products that can help users under-

stand and use the data they have collected. Autoregressive Integrated Moving Average

(ARIMA) models can fit on long term univariate rainfall data and forecast for daily,

monthly, seasonal and annual rainfall data. Although VAR models have potential to

be used in short-term forecasting of MTS data, there is need to conduct a comparative

analysis on how well they perform in comparison to univariate ARIMA models.
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1.3 Objective of the Study

1.3.1 Main Objective

The main objective was to compare ARIMA and VAR models for forecasting rainfall data

and to see how closely related the data from Kisumu KMS is to the farmers in Nyando

rerion in Western Kenya.

1.3.2 Specific Objectives

The specific objectives were to:

1. Conduct univariate time-series analysis, modelling and forecasting for different time

periods using rainfal data from Kenya Meteorological Serice Station (KMS) in

Kisumu

2. Fit VAR models for Kisumu data using rainfall, minimum and maximum temper-

atures, and compare its forecast with that of the univariate forecast

3. Test how representative rainfall data from KMS is to the local Nyando region

1.4 Significance of the Study

In this study, there are three main beneficiaries. First, the research community who will

be able to utilize and further critique the methods of using ARIMA and VAR models

on rainfall data, and using it to forecast for short and long term periods. Secondly, this

study is beneficial to the KMS to the extent that it provides a method of downscaling

data by using short term local MTS rainfall data and get dependable short term forecasts.

Finally, the study is important to users, including farmers, who can utilize the outputs

of point short term forecasts to help them make local farm management decisions.
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1.5 Overview of the chapters

This chapter gave a brief introduction to the study, cited the problem statement and

gave the objectives. Chaper 2 will give a literature review of the works done that closely

relate. Chapter 3 gives a brief on the methods applied in our work. Chapter 4 gives the

results while discussing them. In the chapter, conduct long term univariate time series

modelling and forecasting before using the VAR models. The last Chapter, 5, makes the

concluding remarks and provide some recommendations.
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Chapter 2

Literature Review

2.1 Introduction

Climate change has been an imprtant subject since towards end of the 20th century. It

is currently the thirteenth goal in the Sustainable Development Goals (SDGs). Climate

consists of multiple elements, with most common being temperature and precipitation.

In 2006, Hansen et al [56] found that the global surface tempreature had increased by

≈ 0.2°C per decade over a period of thirty years. The increase in temperature were

projected to have higher impacts on the precipitation and increase the likelihoods of

extreme rainfall. It has not been easy to find out the changes in rainfall globally due to

several reasons. One of them is the lack of quality rainfall data.

Climatic data are useful to prepare climate users to mitigate the current variability

and adopt for eventual climate change. This is driven by the fact that most Sub-Saharan

Africa farmers practice rain fed agriculture. It is not clear if the change in rainfall will

be positive (increase) or negative [41]. Cooper et al [41] proposed that academicians can

use available data to study trends that will help farmers calculate risks involved with

planting. In another study, 53 years of available climatic data was used to analyze risks

that farmers face with planting different crops and varieties of crops [42]. However, an

earlier study using daily data found that there are localized influences that affected the

cessation of rainfall [43].

As a result of the scanty nature of historical climate data, data from satellite stations

has been used to study past climate while GCM models have been used to simulate
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projections for future climate trends. Hulme et al [6] studied available historical African

climatic data and in their 2001 publication, they found that temperature had increased

by a rate of 0.5°C per decade in the 20th century. The GCM projected warming of

between 0.2°C to more than 0.5°C per decade. Rainfall was found to be increasing in

some areas of East Africa [6, 13]. The study projected drier months to have 5-10 %

reduction in rainfall and the wetter months to have 5 - 20 % increase in precipitation. In

addition, they projected increased occurrences of extreme weather conditions. This is not

very suprising since East Africa is usually affected by the El Niño-Southern Oscillation

(ENSO), even though it rarely experience extreme climate events. From historical data,

September 1997 to March 1998 period recorded very high rainfall [6]. Other researchers

have shown that there is too much variability in precipitation patterns hence no clear

indication of increase or decrease in rainfall [10]. The idea of increased rainfall is further

in contradiction to how farmers felt about their context.

The Kenya Meteorological Services (KMS) [35], is the main custodian of most weather

information in Kenya. To be able to effectively monitor weather over the country, KMS

has data collection stations which include among others thirty (30) synoptic surface

weather observation stations, with more concentration in the wetter regions of the country.

The synoptic weather stations collect daily data on rainfall, minimum and maximum

temperatures, wind speed, wind direction, air pressure, soil temperature, solar radiation,

sunshine duration, relative humidity, evaporation and cloud cover. There exists volunteer

stations that collect data for personal use, hence increases spatial coverage. However,

most volunteer stations collect rainfall data only.

Rainfall is an important weather element to farmers who are end users themselves

of forecast information and any other products that result out of it. It is important to

contextualize information to users since they eventaully make decisions using the output.

For instance, this study we focused on the farmers from Kenya, and specifically in Nyakach

and Soin-Sigowett, generally referred to here as Nyando.
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2.2 Spatial Coverage of Climate Data

The scarcity of data presents a problem of spatial representation. Such data is important

to aid in decision making for policy makers. Several tools have been developed to help

researchers cover as much area as possible. One tool is the Precipitation Estimation

from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record

(PERSIANN-CDR) that estimates daily rainfall for an area of 0.25°[27]. This is equivalent

to 756.25 Km2 at the equator. There also exists the Australian dataset for quality climate

[20] and for North America [27] and a more recent German National Forest Inventory [33].

To assess quality, a spatial data can be used to look at questions like; Are there significant

regional differences in accuracy among data sets? How accurate are their mean values

compared with extremes? Does their accuracy depend on spatial resolution. Benkhe et

al in 2016 considered downscaled datasets from different stations and found considerable

differences for the rainfall, but not so much with temperature [17]. Bengtsson and Shukla

[55] in 1988 cited limitations of climate data where they saw a need of multi-vatiate data

to help with the forecasts. Inclusion of dense rainfall data can be used to overcome the

limitations.

Farmer-recorded rainfall is another useful resource and can be used for research such

as to understand spatial differences in rainfall magnitude and trends. This is particularly

important since rain-fed agriculture is the main source of livelihood to a vast proportion

of the population in Western kenya. To enhance food production in rain-fed agriculture,

long-term rainfall records need to be recorded and analyzed to help inform farmers on

the best Climate Smart Agricultural (CSA) practices to either mitigate or adapt against

rainfall extremities.

For the farmers in Soin-Sigowett, cummulatively refereed to here as Nyando, the main

observatory sites are in Kisumu and Kericho. These are more cosmopolitan areas and

the people who receive this actual rainfall are not the main users. The users are several

kilometers away from the KMS stations. Nyakach is more than 20 kilometers by road

from the Kisumu Observatory while Soin-Sigowett is around 30 kilometers away. Due to

distances from the main observatory centers, farmers believed that the rainfall recorded in

the main observatory centers is not representative of the rainfall experienced locally. For
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this reason, we compared the rainfall data from individual farmers with the overlapping

KMS data. This would confirm whether or not the data is truly significantly different

from KMS data.

2.3 Analysis of Long-Term Rainfall Data

2.3.1 Modeling of Rainfall Data

From literature, work has been done to understand the rainfall variability, model the

rainfall occurrence and amount, and also model extreme rainfall. In this section we look

at sample works done for each.

Researchers have analysed the inter and intra-seasonal rainfall variability using Zam-

bia as a case study [9]. For this, the researchers based their discussions and analysis on

events that play a significant role in growth and development of maize. They analyzed

monthly summaries for possible trends by using polynomial trend up to cubic terms, and

by using non-parametric spline functions. For analysis purposes, a clear definition for

“rainy day” and for “start of season” had to be defined. Rainy day was defined to be

a day with a minimum of 0.85 mm of recorded rain. Start of season was defined as a

day after, either 1st March or 1st September, which received more than 20 mm rain in a

span of three days. Coe and Stern [9] concluded by stating the need for skillful seasonal

forecasts that would help farmers make informed decisions on their cropping pattern for

the next day. This raised the issue of considering spatial variability and not just using

the KMS recorded data.

Modelling has also been done to be able to understand the chance of rainfall occurring

on a single day and possibly the amount. For this, Stern and Coe [2] first discussed on the

distribution of rainfall amount on a given day of the year[2]. Stern and Coe [2] used daily

rainfall data to fit non-stationary Markov chains models to rainfall occurrence. Analysis

outputs showed that the daily rainfall amount followed a Gamma distribution, however,

the scale and location parameters varied according to the time of year [2].
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Models developed in the studies mentioned in [2, 12] were useful in simulation. This

could still be improved by using daily data.

2.3.2 Time Series Analysis of Rainfall Data

The Ordinary Linear Models (OLM) and the Generalized Linear Models (MGLM) are

the classical regression models used to predict values within specified ranges of indepen-

dent variables. However, when dealing with time series data, one is interested to learn

more about the period exceeding the last independent variable. The time series methods

apply the idea of linear models, but uses a lag with the lagged values being the explana-

tory variables. The theoretical developments in time series analysis started early with

stochastic processes, however, first actual application of Autoregressive (AR) models to

data can be found back to the work of George Udny Yule through his three papers in

the 1920’s “On the time-correlation problem”, “an investigation of a form of spurious

correlation” and “On a Method of Investigating Periodicities in Disturbed Series, with

Special Reference to Wolfer’s Sunspot Numbers” in the 1920s. Over time ARMA Models

were developed through Herman Wold starting with his PhD thesis titled “A Study in

the analysis of stationary time series”. The thesis resulted in the Wold decomposition

which implies that any stationary discrete-time stochastic process can be decomposed

into a pair of uncorrelated processes, one deterministic, and the other being a Moving

Average (MA) process.

Time series analysis and forecasting methods, in particular ARIMA Models, have

been used in many areas with a majority being in econometrics [49, 50, 51, 52] and

engineering [53]. Climate data is time series data as many of its elements are measured

daily. However, researchers have applied ARIMA models using monthly [23] and annual

[24] summaries while focussing on evapotranspiration [19, 18]. It is important to generate

models that utilize the daily values and see how well they do in comparison to the seasonal

and monthly values.

Time series analysis is useful both to understand the data and for prediction. There

are many studies across disciplines that have used the time series to understand trends

and forecast events. Time series has been applied in the study of phenology of North

13



America using 21 years of data [38]. Reed et al [38] found there was a change in seasonality,

which was an integrated response to climate change and changes in land use practices.

For climate studies, long term climatic data is encouraged. For instance, long term

climatic data was used to show that Seuss Wiggles were present 11,000 years ago in the

Holocene [36]. In Africa, work has been done to understand the effect of climate change

on the resurgence of Malaria in East African Highlands [14]. Hay et al [14] conducted

both spatial and aerial analyses and concluded that there was not enough change in

temperature and rainfall for climate to be responsible for Malaria cases in East African

Highlands. This might have been as a result of sparse data on climate. Thus, work has

been done to establish the availability of climate data and their quality for regions in

Western Kenya. The data has been used to study risks involved with the farming of

essential crops in Western Kenya [42]. In all the cases, historical data was used, but no

forecasts were made.

Trend analysis has been applied to different climatic data sets across the globe. The

Mann-Kendall analysis was conducted in most of the work done [30, 32], with some

utilizing the Mann-Kendall despite correlations being present in data [16]. Lettenmaier

et al [21] applied trend analysis using data from 1036 KMS and 1009 stream flow stations

from (USA) using Mann-Kendall tests. The trend analysis has also been done using

data from Japan, focussing on rainfall data [22]. The data used was annual and monthly

summaries and the study found significantly negative trends. In Canada, annual total

precipitation was used and the results showed increasing trends in annual precipitation

totals [32]. The researchers used the methods by Von Storch and Navara [8] to remove

effects of serial correlation before applying the Mann-Kendall test.

In Africa, trend analysis was applied to precipitation data from 96 KMS stations across

Turkey [37]. Turkey coveres a land area of 783, 562Km2. One station, on average, was

used to cover a landmass of 8, 162Km2. The researchers considered station specific trend

analysis and region-based trend analysis. They used serial correlation, Mann-Kendall and

sequential Mann-Kendall tests for the station-based trend analysis. They further used

Sen’s T test and Sen’s estimator for the station based analysis.
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2.4 Forecasting Time Series Data

In Kenya, weather forecasting is the reserve of KMS [35]. They monitor the oceanic

wind movements, the Indian Ocean Dipoles, and predict the weather for seasons, months

and weeks. For long range forecasts, the KMS use empirical statistical regression of

(SST) , SST gradients and expected evolution of global SST patterns together with upper

air circulations patterns. However, their focus is on wide area forecasts, and they use

qualitative methods for presenting forecasted rainfall, cloud cover and temperature. They

use the terms like normal˝, above normal˝and below normal˝to represent the intensity

of rainfall in comparison to the long-term average. Kenya Meteorological Services (KMS)

further selects an analogue year, which is a year in recent or distant past that exhibits

similar characteristics as the forecast year, to help disseminate downscaled information.

This is particularly useful for the small-scale farmers who depends on rain fed agriculture.

In addition to weather forecast, researchers use mathematical Decision Support Tools

(DSTs) to help farmers make informed decisions on risk involved. Such tools, most of

which are crop models, require detailed information which are not provided in the KMS

forecasts.

The DSTs are used by researchers across disciplines to help make informed decisions.

They can be calculations on papers, apps or software. There are many of them and they

cover all disciplines. For instance, in 2016, a study was done that catalogued 395 DSTs

specific to Agriculture [15]. The models can be simplistic, for example Food and Agri-

culture Organization (FAO) CROPWAT [1]. This is a computer program for irrigation

planning and management that utilizes the crop satisfaction index using ten-day (dekadal)

data. Others like Decision Support Tools for Agrotechnology Transfer (DSSAT) [34]and

APSIM [7] are more complex and require inputs like daily weather data and farm manage-

ment options. The DSTs help researchers and farmers make future decisions using actual

quantitative data. Most of the DSTs require a minimum of daily rainfall data in order

to calculate water satisfaction indices for crops. Thus, consideration of forecast methods

that can provide quantitative data is important. Time series is a main methodology used

for forecasting quantitative data.

Time series analysis and forecasting utilizes the time lag to forecast the next few
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events in similar time gaps. The ARIMA model integrates Auto Regression and the

Moving Averages to generate a model of best fit. The ARIMA models have been used

for rainfall forecasting, for instance, it was applied in Hyderabad region, India, where

93 years of annual data was train and 10 years as the test data [24]. The ARIMA

models were preferred to the Autoregressive Moving Average (ARMA) when forecasting

rainfall data over Thailand using data from 31 stations [28]. In addition, ARIMA and the

Artificial Neural Networks (ANN) have been used to forecast weekly evapotranspiration

for Northern Spain [19]. In Africa, the seasonal component in the Seasonal Autoregressive

Integrated Moving Average (SARIMA) model was applied on data for Ashanti Region,

Ghana, for the period 1974 to 2010, and used forecast monthly rainfall [23]. Psilovikos [18]

found ARIMA (2,1,2)1,1,2)[6] to be the best model to forecast daily evapotranspiration

over Nile Delta Region, Egypt. Psilovikos [18] focused on evapotranspiration, as opposed

to rainfall. None of the studies modeled using daily rainfall data, which is an important

component for use in DSTs.

Comparison of model performances are not new area of study. For instance, Adamowski

[26] compared linear models, the ARIMA model and ANN to forecast peak daily water

demands for the summer months residents of Ottawa, Canada. His models showed that

ANN was better than the other two, however, he focused on rainfall occurrence compared

to amount.

2.5 VAR(p) Models

The ARIMA models are univariate and focus on time lags for observed values, the moving

average terms. In case data is not staionary, differencing is done to make it stationary.

In this study we advanced the use of VAR and applied it to long term climate data for

KMS Kisumu, and short term rainfall data from farmers. The long term climate data

had rainfall, maximum and minimum temperatures as the endogenous variables.

The VAR models have been used in macroeconomic studies to provide very useful

forecasts. Examples of VAR in use include the study of Australian Economy where 11

variables were used to study the economy for 19 years starting 1980 [5]. The co-integrated
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VAR models have also been applied to find the direct effects of oil price shocks in the

output and price for the G-7 countries [25]. The VAR model was used in Semarang-

Central Java Indonesia where the rainfall, humidity and temperature were used to forecast

with the results showing that it was better than ARIMA [39]. In this study, we used the

VAR model to predict the next five events of rainfall and temperature data for KMS

Kisumu. The events were in time gaps of days, month and seasons.

2.6 Conclusion

The literature shows that a lot of work has been done to incorporate time series models

across disciplines. Studies also show that a lot of the focus has been on the use of

summarized data, not daily. One area that is still not yet clear is applying the time series

models to capture both space and time. The VAR models can be used to bridge this gap

when data from multiple stations that are not far apart are used as MTS.

The VAR has been used extensively in the econometric models, but not applied a lot

in the analysis of rainfall data and forecasting. What is also not clear is how well it can

represent the forecast values when compared to the ARIMA models which are univariate.
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Chapter 3

Methodology

The methods used can be classified into methods that checked on the data quality, meth-

ods used for univariate data analysis and forecasting, and Multivariate Time Series (MTS)

model fitting and forecasting.

3.1 Sampled Farmers

All farmer recorded data used in this study were secondary data obtained from farmers

under a CCAFS project in Nyando region and from the KMS. Nyando region (0.2833°S,

35.1167°E) was an opportune site to extend studies related to rainfall and tailor them

for farmers’ use. Most farmers are small-holder with average farm sizes of less than one

hectares (ha). They have high levels of poverty, their environment has been subjected

to widespread soil erosion, declined soil fertility and deforestation over decades of use.

Despite a consistent decline in maize yields over the years, rain fed agriculture is predom-

inant. Many farmers blame low erratic rainfall and climate shocks like floods, droughts

and temperature stresses for this decline in yield.

For sampling, the Yamane [11] formula was used:

n =
N

(1 +N × e2)
(3.1)

By substituting N with 1174 (Table 3.1) and setting e=0.1, the sample size was
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calculated as:

n =
1174

(1 + 1174× 0.12)
= 92.15 ≈ 93 (3.2)

The project had sampled 100 (> 93) farmers from three farmer groups to collect

rainfall data using simple raingauges. All 100 farmers came from the (10 × 10) km2

region where CCAFS East Africa works in Nyando region, and its environs. The spatial

representation is provided in the map on Figure 3.1. Figure 3.1 gives the spatial position

for the farmers, with the top pointing to north. Each dot represents the physical location

of the farmer. The farmers are all within the (10 × 10) km2. The shapes and coler

have been used to distinguish the farmers from different farmer groups. Friends of Katuk

Odeyo Development Project (FOKODEP) had most farmers (circles) while Kapsokale

had more spread among farmers (triangles). The square shapes represent the spatial

distribution of farmers in NECODEP. Both FOKODEP and NECODEP farmers resided

in Kisumu County while KAPSOKALE were from Kericho County. Farmers in Kericho

had relatively bigger portions of land.

The project had selected the farmers randomly but used purposely allocated the

proportion for each group. The three farmer groups were allocated the given slots. Despite

having a many farmers, FOKODEP (circles) was allocated 40 slots since the farmers were

concentrated in a very small area compared to NECODEP and KAPSOKALE farmers

(Figure 3.1). The third column in Table 3.1 gives the ideal proportion had stratified

sampling bee applied on the sample size of 93. Purposive allocation was applicable

since farmers from Kapsokale (triangles) had a lot more spread, compared to those from

FOKODEP.

Table 3.1: Farmer sampling according to the farmer groups

Farmer group Number of farmers in group Number of Sampled farmers

Calculated Actual

FOKODEP 790 63 40

NECODEP 240 19 30

KAPSOKALE 144 11 30

Total 1174 93 100
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Figure 3.1: Spatial distribution of farmers’ farms in the Nyando region

Four sets of rainfall data were used in this study. They included long term daily rain-

fall, for period 1961-2015, provided by KMS for Kisumu and Kericho Meteorological Sta-

tions, daily rainfall data from thirty (30) volunteer stations in the area, farmer-recorded

daily rainfall data for the period 2014-2015 and qualitative data on farmers’ recollection

of previous rainfall events. The rainfall data from the volunteer stations varied in length

for different stations but were all within the period 1961-2015. Since farmers were not

compelled to carry out the survey, there was selective attrition for some due to various

reasons which included theft and general depreciation of the rain gauges. Eventually,

data was collected from forty-two (42) farmers who had recorded daily rainfall data for

at least seventy-five percent (75%) of the period 2014-2015.
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3.2 Analysis of Long-Term Rainfall

Spatial analysis essentially incorporates the exact positioning of the data collection. A

common method is to use pictorial representations using the GIS software, with color

codes used to help visualize the event of interest across different points. In this study, the

spatial analysis included the discussion on how different data from farmers was compared

to that from KMS situated 20 km away. Data from volunteer stations were used as control

since they were closer to farmers hence more representative and they catered for different

lenths of time hence gave a better picture of the region in comparison wwith the KMS

data.

Farmers felt the KMS data was not representative of their locale. Hence, their recol-

lection from past experiences was plotted on charts through focus group discussions. For

the first spatial comparison, a descriptive analysis of long term KMS rainfall data was

done using line plots and then compared to the qualitative plots by farmers.

3.3 Uni-Variate Forecasting Models

The univariate time series models were fit on daily, monthly, seasonal and annual rainfall

values from KMS Kisumu. The choice time series model was the ARIMA model. An

ARIMA was fit for each of the time periods given and used to forecast daily, monthly,

seasonal and annual data.

3.3.1 ARIMA Model

Time series analysis is used to analyze data that are collected in equal time periods.

They can be single variable, or multiple variable data. In this context, rainfall has been

collected daily, hence time series methodology is appropriate. There are basic time series

models, but the most commonly used model is the ARIMA model.

The ARIMA model is a time series model that constitutes Auto-Regressive (AR)

of order p (AR(p)) and Moving Average (MA) of order q (MA(q)) components and a
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differencing of order d. Stationary time series data does not have trend. In addition, it’s

mean and variance do not change significantly over time. The AR(p) implies that p lags

of the data are used in the prediction. MA(q implies that q lags of the forecast errors are

included in the model. In case no differencing is done, then ARIMA becomes ARMA.

3.3.2 Differencing in an ARIMA Model

To difference is to find the difference between the current term and the preceding term.

If we let Yt denote the original model, yt the differenced model, and d be the differencing

conducted, then

if d=0: yt = Yt no difference

if d=1: yt = Yt − Yt−1 first difference

if d=2: yt = (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2 second difference

if d=p: yt = (Yt − Yt−1)− (Yt−1 − Yt−2)− · · · − (Yt−p−1 − Yt−p) p-difference

When d = 2, the second difference is the first-difference of the first-difference (Yt−1 −

Yt−2), not difference from two previous periods (Yt − Yt−2).

3.3.3 ARIMA(0,1,0) Model

In a case with no AR or MA terms, but with one difference, then the model is a random

walk. Say we want to predict the value at time t, Ŷt and that µ is the average period-to-

period change in Y, then the ARIMA(0,1,0) model can be written as:

Ŷt − Yt−1 = µ

⇒ Ŷt = µ+ Yt−1
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3.3.4 ARIMA(p,0,0) Model

The ARIMA(p,0,0) model is the equivalent of an AR(p) model. This is so since the data

was not difference (d=0) and there are no MA terms (q=0). This model depends on the

preceding p values in the forecast. It can be written mathematically as:

Ŷt = µ+

p∑
i=1

φiYt−i

The AR(1) model is different from the random walk (ARIMA(0,1,0)). The coefficient

φ is not in the random walk, thus it is weakly dependent on the preceding term.

3.3.5 ARIMA(0,0,q) Model

The ARIMA(0,0,q) model is the equivalent of an MA(q) model. No difference has oc-

curred and AR terms (p=0). Thus the model would depend on the preceding q forecast

error terms. It can be written mathematically as:

Ŷt = µ+

q∑
j=1

θjet−j

In the equation et−j = Yt−j − Ŷt−j, which is the forecast error at time t− j.

3.3.6 ARIMA(p,1,q) Model

A model with AR(p) and MA(q) terms but no differencing is referred to as an ARMA(p,q)

model. It can be considered to be an ARIMA(p,0,q) model since no differencing has been

done. The prediction equation can be represented mathematically as:

Ŷt = µ+

p∑
i=1

φiYt−i −

(
q∑

j=1

θjet−j

)

When differencing occurs, then we have the ARIMA models. The forecast model for
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ARIMA(1,1,1) is represented mathematically as:

Ŷt − Yt−1 = µ+ (φ1(Yt−1 − Yt−2))− (θ1(et−1 − et−2))

The forecast model for ARIMA(p,1,q) is represented mathematically as:

Ŷt − Yt−1 = µ+

(
p∑

i=2

φi(Yt−i − Yt−i−1)

)
−

(
q∑

j=2

θj(et−j − et−j−1)

)

and the forecast model for ARIMA(p,d,q) is represented mathematically as:

Ŷt − 2Yt−1 + Yt−d = µ+

(
p∑

i=d+1

φi(Yt−i − 2Yt−i−1 + Yt−i−d)

)

−

(
q∑

j=d+1

θj(et−j − 2et−j−1 + et−j−d)

)

3.3.7 Determining the Number of Differences

Consider the following:

Mean = E(Yt1) = µt = µ

Variance = V (Yt1) = σ2
t = σ2 and

Auto Covariance = V (Yt1 , Yt2) = γt1,t2 = 0 where t1 6= t2

For sample time data, y1, y2, . . . , yn, we calculate the mean, variance and auto covari-

24



ance using the formulae below

Sample mean = ȳ =
1

n

n∑
i=1

yi

Sample variance = s0 =
1

n

n∑
i=1

(yi − ȳ)2 and

Sample autocovariance = sk =
1

n

n−k∑
i=1

(yi − ȳ)(yi+k − ȳ)

=
1

n

n∑
i=1+k

(yi − ȳ)(yi−k − ȳ)

The auto-correlation is the correlation between observations at times t and t + k,

where k = 1, 2, 3, . . . is the lag. Given that the recorded rainfall amount at time t is yt,

then the auto-correlation between yt and yt−k is given by

ρk =
cov(yt, yt−k)

var(yt)
=
σk
σ0

3.3.8 The SARIMA Model

A time series data may contain seasonality, that in most cases are regular. For instance,

data may be affected by the month of recording. In such a case, seasonal difference of Y

at time t is Yt − Yt−12. This removes the gross seasonality and trend in the data. Thus

an ARIMA(0,0,0)(0,1,0) model has no non-seasonal difference (d = 0) while the seasonal

difference is 1 (D=1). Considering the season to be months, then the following would

hold.

if d = 0 and D = 0 :yt = Yt ARIMA(0, 0, 0)× (0, 0, 0)

if d = 0 and D = 1 :yt = Yt − Yt−12 ARIMA(0, 0, 0)× (0, 1, 0)

if d = 1 and D = 1 :yt = (Yt − Yt−12)− (Yt−1 − Yt−13) ARIMA(0, 1, 0)× (0, 1, 0)

The Seasonal Auto Regressive Integrated Moving Average (SARIMA) models as-

sume the ARIMA(p, d, q) × (P,D,Q) nature where P is the number of Seasonal Auto-

Regressive (SAR), Q is the number of Seasonal Moving Average (SMA) and D is the num-
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ber of Seasonal Differences. Normally, only one seasonal difference is used in SARIMA

models. The best practice is to use one order for seasonal differencing and one order for

non-seasonal differencing in a SARIMA model.

SARIMA model was used incase where there was a seasonal contribution in the uni-

variate time-series model.

3.3.9 Forecast Errors

In order to test the forecast errors, the Mean Error (ME), Root Mean Square Error

(RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)

are used to measure for both the train and test datasets. The measures are calculated as

shown. Given that

• the training data for daily rainfall is given by {yd1 , yd2 , . . . , ydT d} and the test data is

given by {yd
T d+1

, yd
T d+2

, . . .}

• the training data for monthly rainfall is given by {ym1 , ym2 , . . . , ymTm} and the test

data is given by {ymTm+1, y
m
Tm+2, . . .}, and

• the training data for seasonal rainfall is given by {ys1, ys2, . . . , ysT s} and the test data

is given by {ysT s+1, y
s
T s+2, . . .}

ME is a forecast error, that is, the deviation of forecast value from the observed value

in the test dataset. Since we used multiple time ranges, we calculated the ME for daily,

monthly and seasonal data as given below.

MEDaily = edT d+h = ydT d+h − ŷdT d+h|T d (3.3)

MEMonthly = emTm+h = ymTm+h − ŷmTm+h|Tm (3.4)

MESeasonal = esT s+h = ysT s+h − ŷsT s+h|T s (3.5)
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In addition, we calculated the scale dependent errors MAE and RMSE as shown in

the equations below. They were calculated for daily, monthly and seasonal data using

the formulae:

MAEDaily = mean(|edtd |) (3.6)

MAEMonthly = mean(|emtm |) (3.7)

MAESeasonal = mean(|emtm |) (3.8)

We calculate the RMSE for each instance as:

RMSEDaily =
√
mean((ed

td
)2) (3.9)

RMSEMonthly =
√
mean((emtm)2) (3.10)

RMSESeasonal =
√
mean((ests)

2) (3.11)

Apart from the scale dependent errors, we calculated the percentage errors, MAPE.

The percentage error is all the time frames were same would be given as

pt = 100× et/yt (3.12)

The MAPE is thereafter the mean of the percentage errors.

MAPEDaily = mean(|pdtd |) (3.13)

MAPEMonthly = mean(|pmtm|) (3.14)

MAPESeasonal = mean(|psts|) (3.15)
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3.4 Multi-Variate Forecasting Model

For multi-variate time series analyis and forecasting, the VAR models were used. It was

fit on the KMS rainfall and temperature data, which was long term data.

3.4.1 VAR(p) Model

The VAR(p) model is given by the equation:

Yd
td = a + A1Y

d
td−1 + A2Y

d
td−2 + · · ·+ ApYd

td−p + εtd (3.16)

where:

• Y d
td

= (yd
1,td
, yd

2,td
, . . . , yd

n,td
)′ is an (n × 1) series of time series variables with n en-

dogenous variables.

• a is an (n× 1) vector of the intercepts for each of the n endogenous variables.

• Ai; i = 1, 2, . . . p are (n× n) coefficient matrices, for each of the p lags, and

• εtd is (n× 1) vector of unobserved (i.i.d) zero mean error term

3.4.2 Lag selection for the VAR models

Four methods were applied in determining the lag selection for the VAR models. They

were the Akaike’s Information Criterion (AIC), , Hannan-Quinn Criterion (HQ) and

Schwarz Criterion (SC) tests to determine the best lag. The AIC is defined as:

AIC(n) = ln |Σ̃u(n)|+ 2

T
nK2 (3.17)

where T denotes the sample size, K is the dimension of time series, n is the order of VAR

fit to data and Σu is the white noise covariance matrix. Further, Σ̃u(n) is the Maximum

Likelihood Estimator (MLE) of Σu obtained by fitting the VAR(n) model to the data,

nK2 is the number of freely estimated parameters in the VAR model and
2nK2

T
is a
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penalty term which converges to zero for T → ∞. The best model is one for which the

AIC is minimized.

The HQ, SC criterion and Final Prediction Error (FPE) are defined as

HQ(n) = ln |Σ̃u(n)|+ 2 ln(ln(T ))

T
nK2 (3.18)

SC(n) = ln |Σ̃u(n)|+ ln(T )

T
nK2 (3.19)

FPE(n) =

(
T + nK + 1

T − nK − 1

)K

|Σ̃u(n)| (3.20)

The best model is one for which the HQ, SC and FPE are minimized.

3.4.3 Testing for Multi-Variate Stationarity

For an Multivariate Time Series (MTS) to be stationary, it means that its correlation

information does not change over time. Given a data of yt,i for 1 ≤ t ≤ n and i =

2, 3, . . . , k, we can get two matrices y(t−1),i and y(t−2),i. Then, if yt,i is stationary, the

correlation matrices Corr(y(t−1),i) and Corr(y(t−2),i) would not be statistically different.

The two correlation matrices would be different in case of non-stationarity.

For i = 2, 3, . . . , k, we do not expect all the time series data in the MTS to be

stationary, hence co-integration. A univariate time series yt is said to be integrated of

order d, written I(d), if it needs to be differenced d times to make it stationary. If two

seriesy(t−1),i and y(t−2),i are both I(d), then any linear combination of the two series will

usually be I(d) as well. However, if a linear combination exists for which the order of

integration is less than d, say I(d − b), then the two series are said to be co-integrated

of order (d, b), written CI(d, b). If this linear combination can be written in the form

αTyt,i, where yT
t,i = (y(t−1),i,y(t−2),i), where α is a co-integrating vector.

The most common method to test for stationarity is by considering the unit tests.

However, formal statistical tests lay assumptions and conduct a test of hypothesis based

on assumptions. Some common formal tests include the Augmented Dickey-Fuller [46]

and Phillips-Perron Tests [47], both of which focus on Univariate Time Series and are
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based on the Dickey-Fuller test. The co-integrated Augmented Dickey Fuller Test and

Phillips-Ouliaris tests [48] test for evidence of co-integration among the residuals between

two time series. In this study, we settled on using Johansen’s test since it could be applied

on MTS with greater than two variables, it is based on accepted likelihood ration principle

and it performs better than other methods [45].

The Johansen test checks for situation of no co-integration, that is, A = 0. It does

this by conducting an eigen value decomposition of A. Johansen test tests sequentially

whether the rank of A, r = 0, 1, . . . , n − 1, where n is the number of time series under

the test. The null hypothesis for the tests is that H0 : r ≤ 0 against the alternative

that H1 : r > 0. The urca package for R statistical software was used to conduct the

Johansen’s test. The package calculated critical values for up to 11 variables, but not

more.

3.4.4 VECM Models for Farmers Data

Consider a VAR yt = µ+ A1yt−1 + · · ·+ Apyt−p + wt where µ is the vector-valued mean

of the series, Ai are the coefficient matrices for each lag and wt a multivariate Gaussian

noise term with mean zero. We can form a Vector Error Corrction Model (VECM) by

differencing the time series data as:

∆yt = µ+ Ayt−1 + Γ1∆yt−1 + · · ·+ Γp∆yt−pwt (3.21)

where ∆yt = yt − yt−1 is the differencing operator, Ai is the coefficient matrix for the

first lag and Γi are the matrices for each differenced lag.

VECM models helps us decide on the number of exogenous variables that can be used

in a MTS. The best model is selected using AIC values with the low AIC values implying

a good model.
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3.5 An Overview of Analysis Applied on Different

Datasets

The analysis conducted on different datasets are summarized in Table 3.2. The factors

considered when deciding the length of data and how the data related with other datasets.

For instance, there were Geographic Information System (GIS) data for farmers, but not

for volunteer stations. Thus spatial autocorrelation could be calculated for farmers’ data

only. KMS had daily climate data for 54 years for the elements rainfall, minimum and

maximum temperature. This data was analysed using univariate time series models

(ARIMA and SARIMA) for daily data and summarised monthly, seasonal and annual

rainfall totals. Presence of temperature data opened a window for multivariate time

series models (VAR) which was later used with individual farmers models. There were

no temperature data from farmers.

Table 3.2: Analysis methods applied on available data

Analysis Data source Section

KMS Volunteer Farmers

Stations Quant. Qual.

Descriptive Analysis TRUE TRUE 4.1

ARIMA Modelling TRUE 4.2.2

SARIMA Modelling TRUE 4.2.3

VAR Modeling TRUE TRUE TRUE 4.3

In the next chapter, we use the methodology discussed to get output when applied

on data. In addition, we discuss the output in relation to the objectives. The sequence

of the analysis is as provided in the Table 3.2.The specific objectives are responded to

starting from Section 4.2.
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Chapter 4

Results and Discussions

4.1 Summary of the data

This study considers data from two sources: Daily rainfall and temperature data from

the KMS Kisumu (1961-2015) and daily rainfall data recorded by farmers in Nyakach and

Soin-Sigowett (16th July 2014 and 31st July 2015) but with some slight farmer variability.

Some farmers stopped collecting earlier in the event that their rain gauges were destroyed

or stolen.

The Kisumu KMS observatory is located at the Kisumu airport (0.1°S, 34.75°E). There

were no missing data for the Kisumu station for the period 1961-2014. Table 4.1 gives

the numerical summary of the overall daily rainfall pattern. There were days that had

recorded rainfall of up to 128 mm which were floods.

Table 4.1: A summary of the long term rainfall in Kisumu

Event Min 1st Qu. Median Mean 3rd Qu. Max

Rain overall 0.000 0.000 0.000 3.717 2.200 128.600

Rain on rainy 0.90 2.40 5.90 11.24 14.70 128.60

days only

A rainy day was defined as a day in which the amount of rainfall recorded was more

than 0.85 mm [10, 2]. An extreme event was any value that exceed the third quartile by
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1.5 times of the inter-quartile range. From Table 4.1, the lower boundaries of the extreme

rainy day can be calculated as:

Outlier lower limit for Kisumu = 14.70 + 1.5× (14.70− 2.40) = 33.15mm

Thus, rainy days that exceeded 33.15 mm were considered extreme rainfall events in

Kisumu.

4.2 Forecasting Rainfall Data for KMS using ARIMA

Models

First we focused on the long term univariate time series analysis and forecasting. The

analysis used data from the KMS Kisumu, for the period 1961-2015. Daily data was used

to generate the monthly, seasonal and annual summaries. All analyses were conducted in

R. The models were fitted using a train dataset and a test dataset of a five-period time

gap used for testing the accuracy of forecasts from the models.

Analysis using ARIMA was conducted for the daily, monthly, seasonal and annual

values. An ARIMA(p,d,q) model constitutes AR(p), I(d) and MA(q). The Integrated

(I) part considers the number of differencing used to make the data stationary. The AR

component of the model considers the influence of the values of previous p terms on the

current observation. The MA gives the influence of the previous q value of error terms

on the current. The VAR model is a multivariate time series analysis model that applies

the Auto Regression on a vector, depending on the specified lag. VAR(p) considers the

effect of the last p terms in the vector on the events in current time.

In this study, the time series analysis was categorized into three. First, raw data was

explored using the basic techniques of plotting and differencing. For the second step, the

ARIMA and SARIMA models were fitted to the data and prediction conducted. The

data was divided into the test and train data for forecasting purposes. Both ARIMA and

SARIMA models assume data to be stationary, that is, has constant mean and variance

over time.
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4.2.1 Fitting ARIMA models to the rainfall data

The data was further plotted in order to check for trend, seasonality and cyclicity. A

line plot was used (Figure 4.1) to explore it. From the figure, the daily and annual total

rainfall exhibited white noise. However, monthly total rainfall had seasonality in them.

In order to well differentiate noise from the signals, the Autocorrelation functions (ACFs)

were plotted.

Figures 4.2 and 4.3 are best used together. In Figure 4.2, the ACF for daily rainfall

data decreases exponentially. However, many of the ACF values at different lags have

crossed the significance line. The ACF value is below the blue line at lag 9. ACF lines

crossed the significance line after the first lag for monthly and before any lag for seasonal

data. None of them crossed the blue line for the annual data.

For an AR model, the theoretical are equal to 0 beyond the order of the model. In this

case we consider the values below the significance line. For an MA model, the theoretical

PACF tapers toward 0 in some manner, however, the ACF will have non-zero autocor-

relations only at lags involved in the model. In Figures 4.2 and 4.3, one would expect

there to be no AR and MA terms for the annual data and AR(3) for the seasonal rainfall

totals. There is no distinct pattern for the daily and monthly values. The daily, monthly

and seasonal totals had significant ACF values at lags greater than 1. This justified the

use of ARIMA models for the daily, monthly and seasonal data since at least one lag will

be required.
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Figure 4.1: Line graphs showing totals for daily, monthly, seasonal and annual rainfall

for Kisumu (1961 - 2014)

Figure 4.2: ACF plots for the KMS Kisumu rainfall data

The models were generated using the “auto.arima”function of the forecast library in R

3.6.0. The function used the Bayesian Information Criterion (BIC) and the AIC to select

the best model. The model whose BIC and the AIC values were lowest were selected. As

expected, the more the parameters, the lesser the AIC value. Thus, BIC was particularly
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useful since it added a penalty term for every coefficient included in the model.

Figure 4.3: PACF plots for the KMS Kisumu rainfall data

The models were generated for the daily, monthly, seasonal and annual data. The suit-

able models selected were ARIMA(1,0,2) with non-zero mean, ARIMA(0,0,4)(2,0,0)[12]

with non-zero mean, ARIMA(0,0,0)(2,1,0)[4] with drift and ARIMA(0,0,0) with non-zero

mean for daily, total Monthly, total seasonal and total annual rainfall. There was sea-

sonal differencing conducted on the seasonal data while annual data was purely white

noise since the bars do not cross the blue horizontal lines(Table 4.5).

The time gap and the unit summed differed for daily, monthly, seasonal and annual

data. We let Y d
td

be the amount of rainfall experienced on day td, Y m
tm be the total monthly

rainfall for month tm and Y S
ts be the total seasonal rainfall for season ts.

4.2.2 ARIMA for the Daily and Annual Data

The total annual rainfall was completely random and the best model selected was

ARIMA(0,0,0) with non-zero mean. Because of this, annual data was not used for fore-

casting. The average total annual rainfall experience at KMS Kisumu was 1372.075 mm

with a 95% Confidence interval of (1317.31, 1426.84) mm (Table 4.2).
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Table 4.2: Fitting ARIMA model on KMS total annual rainfall data

parameter Estimate se z p LB UB

intercept 1372.075 27.942 49.104 < 2.2e− 16 1317.31 1426.84

The best model selected for the daily rainfall was ARIMA(1,0,2) with non-zero mean,

Table 4.3. This ARIMA model had statistically significant coefficients (p− value < 0.05)

for the AR(1) and the MA(2) terms. The intercept was 3.7171 mm of rainfall. The model

can be represented as below.

Y d
td = C + φd

1Y
d
(td−1) + θd1w

d
(td−1) + θd2w

d
(td−2) + etd

Y d
td = 3.717 + 0.918 ∗ Y d

(td−1) − 0.817 ∗ wd
(td−1) − 0.040 ∗ wd

(td−2) + etd (4.1)

The model shows that the amount of rainfall experienced on the previous day contributed

positively to the amount recorded for the next day. However, the error terms experienced

on the preceding two days had reducing effect on the amount of rainfall experienced on

the day of interest.

Table 4.3: Fitting ARIMA model on KMS daily rainfall data

parameter Estimate se z p LB UB

ar1 0.918 0.014 66.804 < 2.2e− 16 0.891 0.945

ma1 -0.817 0.016 -52.138 < 2.2e− 16 -0.848 -0.786

ma2 -0.040 0.008 -4.769 < 2.2e− 16 -0.057 -0.024

intercept 3.717 0.116 32.016 < 2.2e− 16 3.489 3.944

4.2.3 SARIMA for the Monthly and Seasonal Data

The monthly data and the seasonal data both exhibited seasonality of frequencies twelve

(12) and four (4) respectively. The model selected for the monthly data was

ARIMA(0,0,4)(2,0,0)[12] with non-zero mean (Table 4.4), while for the seasonal data was

ARIMA(0,0,0)(2,1,0)[4] with drift (Table 4.5).
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Table 4.4: Fitting ARIMA model on KMS total monthly rainfall data

parameter Estimate se z p LB UB

ma1 0.160 0.041 3.882 < 2e− 16 0.079 0.240

ma2 -0.016 0.041 -0.382 0.703 -0.095 0.064

ma3 -0.120 0.042 -2.832 0.005 -0.203 -0.037

ma4 -0.049 0.040 -1.232 0.218 -0.128 0.029

sar1 0.137 0.041 3.348 0.001 0.057 0.217

sar2 0.242 0.041 5.968 < 2e− 16 0.163 0.322

intercept 113.782 4.325 26.310 < 2e− 16 105.306 122.258

The ARIMA(0,0,4)(2,0,0)[12] for the monthly total rainfall indicated that the amount

of rainfall experienced in the same month for two preceding years contributed significantly

to the amount of cumulative rainfall for the month of interest. The model is represented

as:

ymtm = C + wtm + θm1 w
m
(tm−1) + θm2 w

m
(tm−2)

+ θm3 w
m
(tm−3) + θm4 w

m
(tm−4) + φm

2 Y
m
(tm−12) + φm

3 Y
m
(tm−24) (4.2)

And after substituting the modeled coefficients

ymtm = 113.782 + 0.160 ∗ wm
(tm−1) − 0.016 ∗ wm

(tm−2)

− 0.120 ∗ wm
(tm−3) − 0.049 ∗ wm

(tm−4) + 0.137 ∗ Y m
(tm−12) + 0.242 ∗ Y m

(tm−24) (4.3)

In the model in Equation 4.3, the seasonal AR terms, the non-zero mean, and first

and third MA terms had statistical significance at α = 0.05. The second and fourth MA

terms had p-values greater than 0.05. Though this was the best model for total monthly

rainfall, using it for forecasting might result in some slight eviation from the actual data.

The ARIMA(0,0,0)(2,1,0)[4] for the seasonal total rainfall showed that the amount

of rainfall experienced in the same season in the previous year contributed significantly
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to the amount of cumulative rainfall for the current. Only the seasonal AR terms had

statistical significance at α = 0.05. The equation for the model may be represented as

below:

Y s
ts − Y s

(ts−4) = C + φs
1

(
Y s
(ts−1) − Y s

(ts−2)
)

+ φs
2

(
Y s
(ts−1) − Y s

(ts−5)
)

(4.4)

Table 4.5: Fitting ARIMA model on KMS total seasonal rainfall data

parameter Estimate se z p LB UB

sar1 -0.696 0.067 -10.354 < 2.2e− 16 -0.828 -0.564

sar2 -0.329 0.067 -4.899 < 2.2e− 16 -0.461 -0.198

ARIMA(0,0,0) with non-zero mean for the total annual rainfall

intercept 1372.075 27.942 49.104 < 2.2e− 16 1317.31 1426.84

When the coefficients were substituted, the model becomes:

Y s
ts − Y s

(ts−4) = −0.696 ∗
(
Y s
(ts−1) − Y s

(ts−2)
)
− 0.329 ∗

(
Y s
(ts−1) − Y s

(ts−5)
)

Y s
ts = Y s

(ts−4) − 0.696 ∗
(
Y s
(ts−1) − Y s

(ts−2)
)
− 0.329 ∗

(
Y s
(ts−1) − Y s

(ts−5)
)

(4.5)

4.2.4 Forecasting Precipitation Data

For the above analysis, the train data was used to fit models appropriate for the region.

A test dataset was left out for forecasting purpose and to validate the models. Test data

of 5 values were used for models for daily, monthly, seasonal and annual data. Although

this figure was selected arbitrarily, a lot of importance is attached to the next day, month

or season for general forecasts. The annual data was excluded from the forecasts.

Table 4.6 has several measures of forecast accuracy, they include the ME, RMSE,

MAE, MAPE and MASE. The formulas for calculating the MEs in Table 4.6 are provided

by Equations 3.3, 3.4 and 3.5. The MAEs are calculated as given in Equations 3.6, 3.7

and 3.8. The RMSEs are calculated as given in Equations 3.9, 3.10 and 3.11. The MAPEs

are calculated as given in Equations 3.13, 3.14 and 3.15.
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When evaluating the forecast errors, the smaller the measurements are to zero the

better the forecast. In our case, the daily values were closest to the actual observed

values in the test data. However, the errors were greater in test data when forecasting

for monthly and seasonal totals. This shows that the model is more accurate for the

daily data. However, since the denominator for pd
td

= 100 × ed
td
/yd

td
has the value zero,

the MAPE recorded inf . Thus MAPE can only be used in cases when yd
td
> 0.

Forecast values are provided in Table 4.9 for the next five time periods, that is, days,

months and seasons. The monthly and seasonal forecasts did not deviate very much from

the long-term averages, except for the fourth quarter. The test data for days ran for the

period 1st July 2014 to 5th July 2014. All the forecast values exceeded above 2 mm of

rain. When you compare forecast values to the actual value in the last column of Table

4.9, there was some disparity.

Table 4.6: Forecast errors for forecasted daily, monthly and seasonal rainfall data for

Kisumu

Period Dataset ME RMSE MAE MAPE

D
ai
ly Training 0.00 9.29 5.18 Inf

Test set -2.64 2.65 2.64 Inf

M
on

th
ly Training -0.460 70.661 53.812 Inf

Test set 17.203 60.555 55.549 1938.448

Se
as

on
al Training -6.609 127.521 97.762 37.787

Test set 85.946 288.462 243.699 61.325

The forecast values for daily was ever positive. However the actual observed values

for the test data were 0.0, 0.5, 0.0, 0.0 and 0.0 respectively. In this study, we wanted

forecasts that present the local values as much as possible. One method could include

the use of multiple vectors to help improve the forecast. The time series Model, VAR,

has been used for this especially in econometric data. In our case, additional daily data

included the maximum and minimum temperatures for KMS Kisumu. We therefore fit

data to get the VAR model of best fit, and thereafter forecasted using it.
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Table 4.7: Forecasted daily rainfall for five days using KMS data

Date Forecast Lo80 Hi80 Lo95 Hi95 Observed

average

1-Jul-2014 2.479 -9.420 14.378 -15.719 20.676 0

2-Jul-2014 2.682 -9.278 14.642 -15.609 20.973 0

3-Jul-2014 2.767 -9.210 14.743 -15.550 21.083 10

4-Jul-2014 2.844 -9.146 14.835 -15.493 21.182 0

5-Jul-2014 2.916 -9.086 14.918 -15.440 21.271 0

We used values in Table 4.7 and calculated the mean absolute error and the root mean

square error for the daily ARIMA forecast using Equations 4.6 and 3.9 to get:

MAEARIMA =

∑n
i=1 |edi |
n

=

∑5
i=1 |edi |

5

=
|(0− 2.479)|+ |(0− 2.682)|+ |(10− 2.767)|+ |(0− 2.844)|+ |(0− 2.916)|

5

= 3.6308 (4.6)

RMSEARIMA =
√
mean((ed

td
)2)

=

√
(0− 2.479)2 + (0− 2.682)2 + (10− 2.767)2 + (0− 2.844)2 + (0− 2.916)2

5

=
√

16.44925 = 4.055767 u 5.06 (4.7)

The mean absolute error for the daily rainfall forecast under the model was 3.6308

mm while the root mean square error for the forecast was 5.06 mm.
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Table 4.8: Forecasted monthly rainfall for five months using KMS data

Date Forecast Lo80 Hi80 Lo95 Hi95 Long term

average

Jan 2014 96.865 6.309 187.422 -41.628 235.359 81.268

Feb 2014 102.798 11.096 194.501 -37.448 243.045 80.432

Mar 2014 140.143 48.430 231.856 -0.120 280.406 164.936

Apr 2014 125.086 32.732 217.439 -16.157 266.328 217.183

May 2014 134.493 42.031 226.955 -6.915 275.901 162.379

Table 4.9: Forecasted seasonal rainfall for five seasons using KMS data

Date Forecast Lo80 Hi80 Lo95 Hi95 Long term

average

2013 Q2 546.586 381.574 711.597 294.222 798.949 544.498

2013 Q3 227.363 62.352 392.375 -25.000 479.727 228.443

2013 Q4 195.506 30.494 360.517 -56.858 447.869 323.608

2014 Q1 205.119 40.107 370.130 -47.245 457.482 264.217

2014 Q2 505.598 333.124 678.071 241.822 769.373 544.498

4.3 Using VAR models with Rainfall, Maximum and

Minimum Temperature Data to Forecast KMS

Data

The AR models regress the observation at time t on the lagged time intervals t − i,

i = 1, 2, . . .. The vector in the VAR adds other variables in AR model. We first used the

KMS data, which had long term time series data for rainfall, minimum and maximum

temperatures. The VAR model is a model that treats all variables as dependent variables.

The model coefficients will be used for forecasting the values at time td for all the ele-

ments included in the model. In our case we had temperature, minimum and maximum

temperatures. The resultant model could be used to forecast the three elements, but the
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focus on this study was the rainfall data.

The VAR(p) model in this case was represented by Equation 3.16. Applying it on the

rainfall, maximum and minimum temperature data, the coefficients were adjusted to be:

• Y d
td

= (yd
1,td
, yd

2,td
, yd

3,td
)′ is an (3× 1) series of time series variables rainfall, minimum

temperaure and maximum temperature respectively .

• a is a (3× 1) vector of the intercepts for rainfall, minimum and maximum temper-

ature respectively.

• Ai; i = 1, 2, . . . p are (3× 3) coefficient matrices, and

• εtd is (3× 1) vector of unobserved i.i.d zero mean error term

The VAR model was fit with for rainfall, maximum and minimum tempeature values

using the “VAR” function in R software. We fit VAR(P) for p= 1,2,3,4,5. When run,

the output provides separate coefficients for rainfall, minimum and maximum temper-

atures. From Table 4.11, VAR(5) had higher R2 for rainfall, maximum and minimum

temperature, than VAR(4), VAR(3), VAR(2) and VAR(1). However all the VAR models

had statistical significance. The VAR(5) model coefficients with rainfall as the depen-

dent variableare provided in Table 4.10. In the VAR(5) model, the five lags of rainfall

contributed significantly to rainfall at time t.

From the Table 4.10, the VAR(5) model overall had statistical significance (p-value

< 2.2e − 16. However, the model explained only 2.975% (R2 = 0.02975) of the total

variation in the data. This might be occassioned by the high variability in rainfall as

compared to the temperature data. The coefficients for rainfall had statistical significance

at all lags (p-value < 0.05). On the other hand, the coefficients for minimum temperature

had statistical significance for lags 1, 2 and 3 only. Only the coefficient for maximum

temperature at the first lag had statistical significance. The model is represented in

Equation 4.10.
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Table 4.10: VAR(5) model for predicting rainfall considering lagged rainfall, minimum

and maximum temperatures

Estimate Std. Error t value Pr(> |t|)

Rain.l1 0.099 0.007 13.839 < 2e− 16 ***

MaxT.l1 -0.109 0.050 -2.189 0.02864 *

MinT.l1 0.233 0.061 3.827 0.00013 ***

Rain.l2 0.046 0.007 6.426 1.34e-10 ***

MaxT.l2 -0.112 0.057 -1.950 0.05120 .

MinT.l2 0.133 0.067 1.981 0.04758 *

Rain.l3 0.028 0.007 3.910 9.25e-05 ***

MaxT.l3 0.066 0.057 1.158 0.24675

MinT.l3 0.193 0.067 2.856 0.00430 **

Rain.l4 0.049 0.007 6.763 1.39e-11 ***

MaxT.l4 -0.049 0.057 -0.851 0.39479

MinT.l4 -0.041 0.067 -0.614 0.53901

Rain.l5 0.031 0.007 4.347 1.39e-05 ***

MaxT.l5 -0.002 0.050 -0.042 0.96651

MinT.l5 0.101 0.060 1.682 0.09258 .

const -1.847 1.492 -1.238 0.21575

Residual standard error: 9.278 on 19518 degrees of freedom

Multiple R-Squared: 0.02975, Adjusted R-squared: 0.029

F-statistic: 39.9 on 15 and 19518 DF, p-value: < 2.2e− 16

The residual covariance matrix was found to be:

Σ =


86.083 −0.699 0.407

−0.699 1.772 0.097

0.407 0.097 1.196

 (4.8)
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And the residual correlation matrix

ρ =


1.000 −0.057 0.040

−0.057 1.000 0.067

0.040 0.067 1.000

 (4.9)

Using yd
1td

, yd
2td

and yd
3td

as the rainfall, minimum and maximum temperatures respec-

tively, then model can be represented as:


yd
1td

yd
2td

yd
3td

 =


−1.847

6.492

3.320

+


0.099 −0.109 0.233

−1.310e− 2 0.547 1.683e− 2

−3.48e− 2 0.125 0.474



yd
1td−1

yd
2td−1

yd
3td−1

+


0.046 −0.112 0.133

−1.297e− 03 9.243e− 02 −2.366e− 2

5.87e− 3 −1.054e− 2 8.634e− 2



yd
1td−2

yd
2td−2

yd
3td−2

+


0.028 0.066 0.193

3.560e− 4 5.522e− 2 1.730e− 4

3.299e− 3 −5.075e− 3 3.008e− 2



yd
1td−3

yd
2td−3

yd
3td−3

+


0.049 −0.049 −0.041

−2.240e− 5 4.467e− 2 −2.829e− 2

2.152e− 3 −8.246e− 3 3.208e− 2



yd
1td−4

yd
2td−4

yd
3td−4

+


0.031 0.101 −1.847

−6.271e− 7 6.253e− 2 4.843e− 3

3.183e− 3 −1.787e− 2 4.14e− 2



yd
1td−5

yd
2td−5

yd
3td−5

 (4.10)

The output generated contained a set of coefficients for the VAR(5) model when the

main dependent variable is rainfall (Table 4.10), maximum temperature (Table 4.12) and

minimum temperature (Table 4.13). In the three tables, it can be seen that data from

19518 days were used to fit the VAR(5). Overall, each model had statistical significance

(p-value: < 2.2e−16 for each fit model). Despite the model having statistical significance,
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not all the coefficient estimates were statistically significant. Further, the three tables

show that the VAR(5) model for rainfall explained 3% (Table 4.10) of total variabation in

data. The model for maximum temperature explained 51% (Table 4.12) and the VAR(5)

model for minimum temperature explained 38% of the variability (Table 4.13). The low

value for the R2 for the VAR(5) for rainfall can be explained by the high variability in

rainfall values, which is not a case with temperatures. In this case, the VAR(5) is suitable

for forecasting the temperature values.

The VAR(5) model was used to forecast for the same five days as used in Table 4.9.

The forecast results are provided in the last three columns of Table 4.14. The observed

values were used as the five lags used in the model. The model resulted in accurate

prediction of the temperature values. However, the forecast errors were bigger compared

to forecast errors when the ARIMA(1,0,2) was used (Table 4.9).

Table 4.11: Measure of variability accounted for in VAR models for lags 1, 2, 3, 4 and 5

p R2 p-value

Rainfall Max T Min T Rainfall Max T Min T

1 0.020 0.49 0.36 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 0.024 0.50 0.38 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 0.026 0.51 0.38 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

4 0.028 0.51 0.38 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

5 0.030 0.51 0.38 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

For demonstration, we used VAR(5) model since we had used similar lag used with

the univariate data (Section 4.2.4). We had a test data of five time periods (days, months

and seasons). We fit the VAR(5) model on the daily, monthly and was constructed for

the monthly and seasonal data.
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Table 4.12: VAR(5) model for predicting maximum temperature considering lagged rain-

fall, minimum and maximum temperatures

Estimate Std. Error t value Pr(> |t|)

Rain.l1 -1.310e-02 1.029e-03 -12.734 < 2e− 16 ***

MaxT.l1 5.472e-01 7.172e-03 76.297 < 2e− 16 ***

MinT.l1 1.683e-02 8.729e-03 1.929 0.05380 .

Rain.l2 -1.297e-03 1.037e-03 -1.251 0.21110

MaxT.l2 9.243e-02 8.205e-03 11.265 < 2e− 16 ***

MinT.l2 -2.366e-02 9.654e-03 -2.451 0.01427 *

Rain.l3 3.560e-04 1.039e-03 0.343 0.73176

MaxT.l3 5.522e-02 8.222e-03 6.716 1.92e-11 ***

MinT.l3 1.730e-04 9.682e-03 0.018 0.98575

Rain.l4 -2.240e-05 1.038e-03 -0.022 0.98278

MaxT.l4 4.467e-02 8.204e-03 5.445 5.24e-08 ***

MinT.l4 -2.829e-02 9.651e-03 -2.932 0.00337 **

Rain.l5 -6.271e-07 1.035e-03 -0.001 0.99952

MaxT.l5 6.253e-02 7.231e-03 8.647 < 2e− 16 ***

MinT.l5 4.843e-03 8.615e-03 0.562 0.57402

const 6.492e+00 2.141e-01 30.321 < 2e− 16 ***

Residual standard error: 1.331 on 19518 degrees of freedom

Multiple R-Squared: 0.5128, Adjusted R-squared: 0.5125

F-statistic: 1370 on 15 and 19518 DF, p-value: < 2.2e− 16
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Table 4.13: VAR(5) model for predicting minimum temperature considering lagged rain-

fall, minimum and maximum temperatures

Estimate Std. Error t value Pr(> |t|)

Rain.l1 -0.0034870 0.0008454 -4.125 3.73e-05 ***

MaxT.l1 0.1250813 0.0058913 21.231 < 2e− 16 ***

MinT.l1 0.4735711 0.0071709 66.041 < 2e− 16 ***

Rain.l2 0.0058796 0.0008519 6.902 5.30e-12 ***

MaxT.l2 -0.0105425 0.0067403 -1.564 0.117810

MinT.l2 0.0863381 0.0079303 10.887 < 2e− 16 ***

Rain.l3 0.0032985 0.0008532 3.866 0.000111 ***

MaxT.l3 -0.0050750 0.0067544 -0.751 0.452445

MinT.l3 0.0300881 0.0079531 3.783 0.000155 ***

Rain.l4 0.0021523 0.0008528 2.524 0.011621 *

MaxT.l4 -0.0082467 0.0067396 -1.224 0.221112

MinT.l4 0.0320817 0.0079279 4.047 5.21e-05 ***

Rain.l5 0.0031826 0.0008499 3.745 0.000181 ***

MaxT.l5 -0.0178675 0.0059403 -3.008 0.002635 **

MinT.l5 0.0413994 0.0070769 5.850 5.00e-09 ***

const 3.3201300 0.1758745 18.878 < 2e− 16 ***

Residual standard error: 1.094 on 19518 degrees of freedom

Multiple R-Squared: 0.3839, Adjusted R-squared: 0.3834

F-statistic: 810.7 on 15 and 19518 DF, p-value: < 2.2e− 16
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Table 4.14: Forecast results using VAR(5) model for daily rainfall and temperature data

Date Observed Forecast

Rainfall Max T Min T Rainfall Max T Min T

21-Jun-2014 0.6 26.3 20.3

22-Jun-2014 0.0 28.5 19.5

23-Jun-2014 0.0 29.5 18.2

24-Jun-2014 0.0 29.0 18.3

25-Jun-2014 0.0 29.5 16.8

26-Jun-2014 0.0 28.2 17.1 6.285 29.261 17.401

27-Jun-2014 0.5 30.2 17.5 5.756 28.824 17.127

28-Jun-2014 0.0 29.3 16.3 5.869 29.850 17.493

29-Jun-2014 0.0 30.0 18.8 5.582 29.481 16.806

30-Jun-2014 0.0 28.8 15.6 5.708 29.920 17.934

We calculate the mean absolute error and the root mean square error for the daily

VAR forecast using Equations 4.11 and 3.9 to get:

MAEV AR =

∑n
i=1 |edi |
n

=

∑5
i=1 |edi |

5

=
|(0− 6.285)|+ |(0.5− 5.756)|+ |(0− 5.869)|+ |(0− 5.582)|+ |(0− 5.708)|

5

= 5.74 (4.11)

RMSEV AR =
√
mean((ed

td
)2)

=

√
(0− 6.285)2 + (0.5− 5.756)2 + (0− 5.869)2 + (0− 5.582)2 + (0− 5.708)2

5

=
√

]33.06238 = 5.74999 u 5.75 (4.12)

The mean absolute error for the daily rainfall forecast under the VAR model was 5.74
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mm (Equation 4.11). This is greater than the mean absolute error for the daily rainfall

forecast under the ARIMA model which was 3.6308 mm (Equation 4.6). In addition, the

root mean square error for the forecast under the VAR model was 5.75 mm (Equation

4.12) which was greater than the root mean square error for the forecast under the ARIMA

model (Equation 4.7).

Both the MAE and the RMSE under the univariate ARIMA forecast (Equations 4.11

and 4.7) are smaller than the same under VAR (Equations 4.12 and 4.7 respectively).

The univariate ARIMA forecasts are closer to the actual value and less diverse in this

case. However, none of the two models was able to accurately forecast the case of zero

(0) rainfall in the five days.

4.4 Comparing daily amount of rainfall between farm-

ers location and Kisumu

The amount of rainfall in Kisumu and 60 farmers who had complete data was compared.

This was done using the chi-square test and done on the days the data overlapped. This

was between 16th June 2014 to 30th June 2014. The test was run for each day and the

values were compared with each other. The Kisumu daily rainfall data was treated as the

expected rainfall while the farmer daily rainfall data was treated as the observed rainfall.

The results are provided in Table 4.15.

Daily data from 60 farmers’ sites were compared to KMS data, however, only 22

farmers’ data met the threshold of comparison of having at least one rainy day. There were

four farmers’ sites whose comparison with the KMS data yielded statistically significant

output with p-value < 0.05. They are F09, F16, K05 and K08 (Table 4.15). For the

four, we conclude that their rainfall patterns were completely independent from the KMS

data.
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Table 4.15: Chi-Square test results for fifteen days comparing individual farmer’s rainfall

data to Kisumu

Station df χ2 − value p-value Station df χ2 − value p-value

F02 21 16.875 0.718655154 F22 30 32 0.36752736

F03 15 16 0.382051662 F23 6 0.576923077 0.996772673

F09 21 36.875 0.017398818 F24 33 36.875 0.294288265

F12 24 31.07142857 0.151733801 F25 27 36.875 0.097424373

F14 21 31.07142857 0.072477382 K01 24 18.33333333 0.786545547

F15 27 18.33333333 0.893001691 K02 12 16.875 0.154360204

F16 18 30.78125 0.030509052 K04 24 24.6875 0.422898113

F17 24 18.33333333 0.786545547 K05 15 30.78125 0.009396124

F18 24 18.33333333 0.786545547 K06 24 30 0.184751799

F19 12 1.363636364 0.999921932 K07 15 16.875 0.326391697

F20 15 16 0.382051662 K08 21 45 0.001731974

4.5 Comparing the number of rainy days between

farmers location and Kisumu

The null hypothesis for the tests was that the number of rainy days at an individual

farmer’s locale is independent to the number of rainy days at KMS. In the table, the

farmers’ locale that did not experience rainfall in the time period has been excluded

since the chi-square test requires at least a count of one for each of the two categories.

In the case of farmers in Nyakach, all the p-values were greater than 0.05. Hence we

reject the null hypothesis and conclude that there was not enough evidence to indicate

independence in number of rainy days between farmers’ locale and the KMS. The results

are provided in Table 4.16.

From the two chi-square tests, it is clear that the rainfall experienced in Kisumu

is not independent from that experienced by farmers in their locale. This is with the

exception of the four when we consider the daily rainfall amount shown in in Table 4.15.
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Therefore, the data from Kisumu KMS can be used to represent that of Nyando region

(Soin Sigowett and Nyakach) in Kenya.

Table 4.16: Chi-Square test results for fifteen days comparing number of rainy days

between farmers and Kisumu

Station df χ2 − value p-value Station df χ2 − value p-value

F02 1 3.54E-33 1 F22 1 4.82E-31 1

F03 1 4.82E-31 1 F23 1 9.41E-31 1

F09 1 0.004783163 0.94486193 F24 1 1.246565934 0.26420938

F12 1 3.54E-33 1 F25 1 2.00E-30 1

F14 1 3.54E-33 1 K01 1 0.044642857 0.832662106

F15 1 0.044642857 0.832662106 K02 1 3.54E-33 1

F16 1 3.54E-33 1 K04 1 9.41E-31 1

F17 1 3.54E-33 1 K05 1 3.54E-33 1

F18 1 0.044642857 0.832662106 K06 1 1.05E-31 1

F19 1 1.05E-31 1 K07 1 3.54E-33 1

F20 1 3.44E-30 1 K08 1 3.30E-32 1
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Chapter 5

Summary, Conclusion and

Recommendetaions

5.1 Summary

In this study, we conducted a quality analysis for the farmer’s data. This included the

analyzing completeness of their data, and an analysis of its representativeness of the

local setting. This was done using a standard dataset from the KMS data, with climatic

data from nearby volunteer stations being used as control for local experience. The data

showed that half of the farmers had good quality data, and well representative of the

local setting.

We used the data from 60 farmers who had relatively good datasets and conducted

spatial analysis by calculating the Morans Index for farmers’ average rainfall and number

of rainy days. The results showed that several distant farmers experienced similar rainfalls

compared to close farmers. This can be attributable to other factors not collected in the

study, like wind direction etc.

In the study, we conducted an analysis of farmer perception with respect to observed

rainfall patterns. Historical rainfall data from KMS was used as the quantitative data

with the famers perception scored on charts through participatory approaches being qual-

itatively alligned. Line graphs and descriptive summaries were used to present the long

term KMS seasonal rainfall totals and seasonal number of rainy days. The results showed
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that farmer perception is not sufficient to accurately inform the actual historical extreme

events.

In the study, we fit ARIMA models on daily, monthly, seasonal and annual rainfall

data from KMS. The best model selected for annual data was ARIMA(0,0,0) with non-

zero mean while for daily data was ARIMA(1,0,2) with non-zero mean. Monthly data

had a seasonal lag with the best model being ARIMA(0,0,4)(2,0,0)[12] while the seasonal

total rainfall followed ARIMA(0,0,0)(2,1,0)[4]. The models were used to forecast with

the daily forecasts having lower forecast errors for the test dataset than training daset

Table 4.6.

VAR(5) was fit on the KMS data with rainfall, maximum and minimum temperatures

as the endogenous variables. VAR(5) was a good model since it had the highest R2 as

can be seen in Table 4.11 in the models. The models were statistically significant.

The RMSE of the forecast under univariate ARIMA model (Equation 4.7) was smaller

than the RMSE for forecast values under the multivariate VAR model (Equation 4.7).

The univariate ARIMA ARIMA(0,0,4)(2,0,0) model was more accurate in the forecast

than the VAR(5) model.

5.2 Conclusions

1. In this study, we compared long-term rainfall data from KMS to farmer perceptions.

This helped us establish that the farmer perceptions from historical recollection is

not very acurate. The farmers’ information and KMS rainfa data on seasons with

extreme events did not tally half of the time. The study further found out that

though only few farmers experienced a statistically significantly different rainfall

from KMS data, it is important to use the local data since it best represents them.

2. The first objective was to conduct univariate time series modelling using ARIMA

on long term rainfall data for Kisumu KMS daily, monthly, seasonal and annual

data and forecast rainfall for the different time periods. The forecast showed that

forecasting daily data was resulted in less forecast errors than for seasonal and
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monthly totals.

3. The second objective was to fit VAR(p) Model on long term daily climate data

for Kisumu using rainfall, maximum and minimum temperatures and forecast, and

determine whether it was suitable in comparison to the ARIMA models. The VAR

models were better for the mximum and minimum temperatures as opposed to

rainfall. The study established that for the KMS data, univariate ARIMA models

were better for forecasting daily rainfall data in comparison to VAR(1), VAR(2),

VAR(3), VAR(4) and VAR(5) models with minimum and maximum temperatures

as endogenous variables.

4. There was not enough evidence to indicate independence in number of rainy days

between farmers’ locale and the KMS.

5.3 Recommendations

1. The study used VAR models which were very accurate. However, the VAR model

lack the error term in the model, but conducts an Ordinary Least Squares method

on the lagged values. We recommend the utilization of Vector Auto Regressive

Integrated Moving Average (VARIMA) models in forecasting the daily farmer

rainfall data.

2. The VAR might perform differently when the spatial coverage increases. We recom-

mend the increase of spatial and temporal coverage, and using a different locality

for future studies.
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APPENDIX

A.1 Procedure for Sampling
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A.2 Catalogue of Rainfall Recording Stations in Kisumu

and Kericho

Station Name Station Latitude Longitude Start End

Number year Year

Kisumu P.C’S Office 9034004 -0.1 34.75 1903 -

Kisumu Meteorological Station 9034025 -0.1 34.75 1938 -

Kisumu New Prison 9034060 -0.07 34.72 1951 -

Kibos Kisumu Water Supply 9034069 0 34.82 1955 -

Kisumu Municipal Council 9034085 -0.1 34.75 1962 -

Kisumu K.U.R.(Marine Supt) 9034003 -0.1 34.75 1904 1940

Nyalunya, Kisumu 9034035 -0.32 34.92 1941 1947

Siaya Kisumu 8934083 0.07 34.3 1951 1952

Nyakach Dispensary, Kisumu 9034020 -0.38 34.93 1939 1954

Kisumu Ahero Health Centre 9034019 -0.15 34.92 1937 1962

Kiboswa,Kisumu 9034077 -0.02 34.78 1953 1971

Kericho District Office 9035003 -0.38 35.28 1904

Jamji Estate (Kericho) 9035001 -0.48 35.18 1923

Kericho Kabianga H. School 9035044 -0.43 35.13 1932

Litein Mission,Kericho 9035059 -0.58 35.18 1935

Kaisugu House,Kericho 9035075 -0.32 35.37 1939

Kericho Chagaik Estate 9035235 -0.33 35.33 1954

Laliat Farm Ainabkoi Kericho 9035200 -0.27 35.25 1959

Ainamoi Chiefs Camp Kericho 9035199 -0.3 35.27 1960

Kericho Timbilil 9035244 -0.35 35.35 1963

Kericho Ngoina Estate 9035261 -0.55 35.05 1965

Koiwa Estate,Kericho 9035260 -0.62 35.32 1965
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Station Name Station Latitude Longitude Start End

Number year Year

Kericho Manaret Settlement Schme 9035268 -0.7 35.07 1968

Kipsitet Chief’S Office Kericho 9035269 -0.22 35.17 1968

Hail Research Station Kericho 9035279 -0.37 35.27 1973

Soitit Market,Kericho 9035322 -0.58 35.38 1983

Karabwet Kericho 9035004 -0.38 35.33 1913 1937

Cheburget , Kericho 9035105 -0.92 35.12 1946 1952

Kaisugu Forest,Kericho 9035076 -0.33 35.37 1939 1956

Kerr Kericho 9035193 -1.65 36.65 1940 1961

Upper Chepsir Kericho 9035203 -0.28 35.42 1956 1962

Bujenge School Kericho 9035213 -0.27 35.33 1958 1962

Kericho Tea Researcg Institute 9035145 -0.35 35.33 1951 1964

Chebigen Kericho 9035186 -0.3 35.35 1939 1965
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